Merge: model: is_accessor
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class MEntity
34 # The visibility of the MEntity.
35 #
36 # MPackages, MGroups and MModules are always public.
37 # The visibility of `MClass` and `MProperty` is defined by the keyword used.
38 # `MClassDef` and `MPropDef` return the visibility of `MClass` and `MProperty`.
39 fun visibility: MVisibility do return public_visibility
40 end
41
42 redef class Model
43 # All known classes
44 var mclasses = new Array[MClass]
45
46 # All known properties
47 var mproperties = new Array[MProperty]
48
49 # Hierarchy of class definition.
50 #
51 # Each classdef is associated with its super-classdefs in regard to
52 # its module of definition.
53 #
54 # ~~~
55 # var m = new ModelDiamond
56 # assert m.mclassdef_hierarchy.has_edge(m.mclassdef_b, m.mclassdef_a)
57 # assert not m.mclassdef_hierarchy.has_edge(m.mclassdef_a, m.mclassdef_b)
58 # assert not m.mclassdef_hierarchy.has_edge(m.mclassdef_b, m.mclassdef_c)
59 # ~~~
60 var mclassdef_hierarchy = new POSet[MClassDef]
61
62 # Class-type hierarchy restricted to the introduction.
63 #
64 # The idea is that what is true on introduction is always true whatever
65 # the module considered.
66 # Therefore, this hierarchy is used for a fast positive subtype check.
67 #
68 # This poset will evolve in a monotonous way:
69 # * Two non connected nodes will remain unconnected
70 # * New nodes can appear with new edges
71 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
72
73 # Global overlapped class-type hierarchy.
74 # The hierarchy when all modules are combined.
75 # Therefore, this hierarchy is used for a fast negative subtype check.
76 #
77 # This poset will evolve in an anarchic way. Loops can even be created.
78 #
79 # FIXME decide what to do on loops
80 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
81
82 # Collections of classes grouped by their short name
83 private var mclasses_by_name = new MultiHashMap[String, MClass]
84
85 # Return all classes named `name`.
86 #
87 # If such a class does not exist, null is returned
88 # (instead of an empty array)
89 #
90 # Visibility or modules are not considered
91 #
92 # ~~~
93 # var m = new ModelStandalone
94 # assert m.get_mclasses_by_name("Object") == [m.mclass_o]
95 # assert m.get_mclasses_by_name("Fail") == null
96 # ~~~
97 fun get_mclasses_by_name(name: String): nullable Array[MClass]
98 do
99 return mclasses_by_name.get_or_null(name)
100 end
101
102 # Collections of properties grouped by their short name
103 private var mproperties_by_name = new MultiHashMap[String, MProperty]
104
105 # Return all properties named `name`.
106 #
107 # If such a property does not exist, null is returned
108 # (instead of an empty array)
109 #
110 # Visibility or modules are not considered
111 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
112 do
113 return mproperties_by_name.get_or_null(name)
114 end
115
116 # The only null type
117 var null_type = new MNullType(self)
118
119 # The only bottom type
120 var bottom_type: MBottomType = null_type.as_notnull
121
122 # Build an ordered tree with from `concerns`
123 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
124 var seen = new HashSet[MConcern]
125 var res = new ConcernsTree
126
127 var todo = new Array[MConcern]
128 todo.add_all mconcerns
129
130 while not todo.is_empty do
131 var c = todo.pop
132 if seen.has(c) then continue
133 var pc = c.parent_concern
134 if pc == null then
135 res.add(null, c)
136 else
137 res.add(pc, c)
138 todo.add(pc)
139 end
140 seen.add(c)
141 end
142
143 return res
144 end
145 end
146
147 # An OrderedTree bound to MEntity.
148 #
149 # We introduce a new class so it can be easily refined by tools working
150 # with a Model.
151 class MEntityTree
152 super OrderedTree[MEntity]
153 end
154
155 # A MEntityTree borned to MConcern.
156 #
157 # TODO remove when nitdoc is fully merged with model_collect
158 class ConcernsTree
159 super OrderedTree[MConcern]
160 end
161
162 redef class MModule
163 # All the classes introduced in the module
164 var intro_mclasses = new Array[MClass]
165
166 # All the class definitions of the module
167 # (introduction and refinement)
168 var mclassdefs = new Array[MClassDef]
169
170 private var mclassdef_sorter: MClassDefSorter is lazy do
171 return new MClassDefSorter(self)
172 end
173
174 private var mpropdef_sorter: MPropDefSorter is lazy do
175 return new MPropDefSorter(self)
176 end
177
178 # Does the current module has a given class `mclass`?
179 # Return true if the mmodule introduces, refines or imports a class.
180 # Visibility is not considered.
181 fun has_mclass(mclass: MClass): Bool
182 do
183 return self.in_importation <= mclass.intro_mmodule
184 end
185
186 # Full hierarchy of introduced and imported classes.
187 #
188 # Create a new hierarchy got by flattening the classes for the module
189 # and its imported modules.
190 # Visibility is not considered.
191 #
192 # Note: this function is expensive and is usually used for the main
193 # module of a program only. Do not use it to do your own subtype
194 # functions.
195 fun flatten_mclass_hierarchy: POSet[MClass]
196 do
197 var res = self.flatten_mclass_hierarchy_cache
198 if res != null then return res
199 res = new POSet[MClass]
200 for m in self.in_importation.greaters do
201 for cd in m.mclassdefs do
202 var c = cd.mclass
203 res.add_node(c)
204 for s in cd.supertypes do
205 res.add_edge(c, s.mclass)
206 end
207 end
208 end
209 self.flatten_mclass_hierarchy_cache = res
210 return res
211 end
212
213 # Sort a given array of classes using the linearization order of the module
214 # The most general is first, the most specific is last
215 fun linearize_mclasses(mclasses: Array[MClass])
216 do
217 self.flatten_mclass_hierarchy.sort(mclasses)
218 end
219
220 # Sort a given array of class definitions using the linearization order of the module
221 # the refinement link is stronger than the specialisation link
222 # The most general is first, the most specific is last
223 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
224 do
225 mclassdef_sorter.sort(mclassdefs)
226 end
227
228 # Sort a given array of property definitions using the linearization order of the module
229 # the refinement link is stronger than the specialisation link
230 # The most general is first, the most specific is last
231 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
232 do
233 mpropdef_sorter.sort(mpropdefs)
234 end
235
236 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
237
238 # The primitive type `Object`, the root of the class hierarchy
239 var object_type: MClassType = self.get_primitive_class("Object").mclass_type is lazy
240
241 # The type `Pointer`, super class to all extern classes
242 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
243
244 # The primitive type `Bool`
245 var bool_type: MClassType = self.get_primitive_class("Bool").mclass_type is lazy
246
247 # The primitive type `Int`
248 var int_type: MClassType = self.get_primitive_class("Int").mclass_type is lazy
249
250 # The primitive type `Byte`
251 var byte_type: MClassType = self.get_primitive_class("Byte").mclass_type is lazy
252
253 # The primitive type `Int8`
254 var int8_type: MClassType = self.get_primitive_class("Int8").mclass_type is lazy
255
256 # The primitive type `Int16`
257 var int16_type: MClassType = self.get_primitive_class("Int16").mclass_type is lazy
258
259 # The primitive type `UInt16`
260 var uint16_type: MClassType = self.get_primitive_class("UInt16").mclass_type is lazy
261
262 # The primitive type `Int32`
263 var int32_type: MClassType = self.get_primitive_class("Int32").mclass_type is lazy
264
265 # The primitive type `UInt32`
266 var uint32_type: MClassType = self.get_primitive_class("UInt32").mclass_type is lazy
267
268 # The primitive type `Char`
269 var char_type: MClassType = self.get_primitive_class("Char").mclass_type is lazy
270
271 # The primitive type `Float`
272 var float_type: MClassType = self.get_primitive_class("Float").mclass_type is lazy
273
274 # The primitive type `String`
275 var string_type: MClassType = self.get_primitive_class("String").mclass_type is lazy
276
277 # The primitive type `CString`
278 var c_string_type: MClassType = self.get_primitive_class("CString").mclass_type is lazy
279
280 # A primitive type of `Array`
281 fun array_type(elt_type: MType): MClassType do return array_class.get_mtype([elt_type])
282
283 # The primitive class `Array`
284 var array_class: MClass = self.get_primitive_class("Array") is lazy
285
286 # A primitive type of `NativeArray`
287 fun native_array_type(elt_type: MType): MClassType do return native_array_class.get_mtype([elt_type])
288
289 # The primitive class `NativeArray`
290 var native_array_class: MClass = self.get_primitive_class("NativeArray") is lazy
291
292 # The primitive type `Sys`, the main type of the program, if any
293 fun sys_type: nullable MClassType
294 do
295 var clas = self.model.get_mclasses_by_name("Sys")
296 if clas == null then return null
297 return get_primitive_class("Sys").mclass_type
298 end
299
300 # The primitive type `Finalizable`
301 # Used to tag classes that need to be finalized.
302 fun finalizable_type: nullable MClassType
303 do
304 var clas = self.model.get_mclasses_by_name("Finalizable")
305 if clas == null then return null
306 return get_primitive_class("Finalizable").mclass_type
307 end
308
309 # Force to get the primitive class named `name` or abort
310 fun get_primitive_class(name: String): MClass
311 do
312 var cla = self.model.get_mclasses_by_name(name)
313 # Filter classes by introducing module
314 if cla != null then cla = [for c in cla do if self.in_importation <= c.intro_mmodule then c]
315 if cla == null or cla.is_empty then
316 if name == "Bool" and self.model.get_mclasses_by_name("Object") != null then
317 # Bool is injected because it is needed by engine to code the result
318 # of the implicit casts.
319 var loc = model.no_location
320 var c = new MClass(self, name, loc, null, enum_kind, public_visibility)
321 var cladef = new MClassDef(self, c.mclass_type, loc)
322 cladef.set_supertypes([object_type])
323 cladef.add_in_hierarchy
324 return c
325 end
326 print_error("Fatal Error: no primitive class {name} in {self}")
327 exit(1)
328 abort
329 end
330 if cla.length != 1 then
331 var msg = "Fatal Error: more than one primitive class {name} in {self}:"
332 for c in cla do msg += " {c.full_name}"
333 print_error msg
334 #exit(1)
335 end
336 return cla.first
337 end
338
339 # Try to get the primitive method named `name` on the type `recv`
340 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
341 do
342 var props = self.model.get_mproperties_by_name(name)
343 if props == null then return null
344 var res: nullable MMethod = null
345 var recvtype = recv.intro.bound_mtype
346 for mprop in props do
347 assert mprop isa MMethod
348 if not recvtype.has_mproperty(self, mprop) then continue
349 if res == null then
350 res = mprop
351 else if res != mprop then
352 print_error("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
353 abort
354 end
355 end
356 return res
357 end
358 end
359
360 private class MClassDefSorter
361 super Comparator
362 redef type COMPARED: MClassDef
363 var mmodule: MModule
364 redef fun compare(a, b)
365 do
366 var ca = a.mclass
367 var cb = b.mclass
368 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
369 return mmodule.model.mclassdef_hierarchy.compare(a, b)
370 end
371 end
372
373 private class MPropDefSorter
374 super Comparator
375 redef type COMPARED: MPropDef
376 var mmodule: MModule
377
378 redef fun compare(pa, pb)
379 do
380 var a = pa.mclassdef
381 var b = pb.mclassdef
382 return mmodule.mclassdef_sorter.compare(a, b)
383 end
384 end
385
386 # A named class
387 #
388 # `MClass`es are global to the model; it means that a `MClass` is not bound
389 # to a specific `MModule`.
390 #
391 # This characteristic helps the reasoning about classes in a program since a
392 # single `MClass` object always denote the same class.
393 #
394 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
395 # These do not really have properties nor belong to a hierarchy since the property and the
396 # hierarchy of a class depends of the refinement in the modules.
397 #
398 # Most services on classes require the precision of a module, and no one can asks what are
399 # the super-classes of a class nor what are properties of a class without precising what is
400 # the module considered.
401 #
402 # For instance, during the typing of a source-file, the module considered is the module of the file.
403 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
404 # *is the method `foo` exists in the class `Bar` in the current module?*
405 #
406 # During some global analysis, the module considered may be the main module of the program.
407 class MClass
408 super MEntity
409
410 # The module that introduce the class
411 #
412 # While classes are not bound to a specific module,
413 # the introducing module is used for naming and visibility.
414 var intro_mmodule: MModule
415
416 # The short name of the class
417 # In Nit, the name of a class cannot evolve in refinements
418 redef var name
419
420 redef var location
421
422 # The canonical name of the class
423 #
424 # It is the name of the class prefixed by the full_name of the `intro_mmodule`
425 # Example: `"owner::module::MyClass"`
426 redef var full_name is lazy do
427 return "{self.intro_mmodule.namespace_for(visibility)}::{name}"
428 end
429
430 redef var c_name is lazy do
431 return "{intro_mmodule.c_namespace_for(visibility)}__{name.to_cmangle}"
432 end
433
434 # The number of generic formal parameters
435 # 0 if the class is not generic
436 var arity: Int is noinit
437
438 # Each generic formal parameters in order.
439 # is empty if the class is not generic
440 var mparameters = new Array[MParameterType]
441
442 # A string version of the signature a generic class.
443 #
444 # eg. `Map[K: nullable Object, V: nullable Object]`
445 #
446 # If the class in non generic the name is just given.
447 #
448 # eg. `Object`
449 fun signature_to_s: String
450 do
451 if arity == 0 then return name
452 var res = new FlatBuffer
453 res.append name
454 res.append "["
455 for i in [0..arity[ do
456 if i > 0 then res.append ", "
457 res.append mparameters[i].name
458 res.append ": "
459 res.append intro.bound_mtype.arguments[i].to_s
460 end
461 res.append "]"
462 return res.to_s
463 end
464
465 # Initialize `mparameters` from their names.
466 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
467 autoinit
468 do
469 if parameter_names == null then
470 self.arity = 0
471 else
472 self.arity = parameter_names.length
473 end
474
475 # Create the formal parameter types
476 if arity > 0 then
477 assert parameter_names != null
478 var mparametertypes = new Array[MParameterType]
479 for i in [0..arity[ do
480 var mparametertype = new MParameterType(self, i, parameter_names[i])
481 mparametertypes.add(mparametertype)
482 end
483 self.mparameters = mparametertypes
484 var mclass_type = new MGenericType(self, mparametertypes)
485 self.mclass_type = mclass_type
486 self.get_mtype_cache[mparametertypes] = mclass_type
487 else
488 self.mclass_type = new MClassType(self)
489 end
490 end
491
492 # The kind of the class (interface, abstract class, etc.)
493 #
494 # In Nit, the kind of a class cannot evolve in refinements.
495 var kind: MClassKind
496
497 # The visibility of the class
498 #
499 # In Nit, the visibility of a class cannot evolve in refinements.
500 redef var visibility
501
502 init
503 do
504 intro_mmodule.intro_mclasses.add(self)
505 var model = intro_mmodule.model
506 model.mclasses_by_name.add_one(name, self)
507 model.mclasses.add(self)
508 end
509
510 redef fun model do return intro_mmodule.model
511
512 # All class definitions (introduction and refinements)
513 var mclassdefs = new Array[MClassDef]
514
515 # Alias for `name`
516 redef fun to_s do return self.name
517
518 # The definition that introduces the class.
519 #
520 # Warning: such a definition may not exist in the early life of the object.
521 # In this case, the method will abort.
522 #
523 # Use `try_intro` instead.
524 var intro: MClassDef is noinit
525
526 # The definition that introduces the class or `null` if not yet known.
527 #
528 # SEE: `intro`
529 fun try_intro: nullable MClassDef do
530 if isset _intro then return _intro else return null
531 end
532
533 # Return the class `self` in the class hierarchy of the module `mmodule`.
534 #
535 # SEE: `MModule::flatten_mclass_hierarchy`
536 # REQUIRE: `mmodule.has_mclass(self)`
537 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
538 do
539 return mmodule.flatten_mclass_hierarchy[self]
540 end
541
542 # The principal static type of the class.
543 #
544 # For non-generic class, `mclass_type` is the only `MClassType` based
545 # on self.
546 #
547 # For a generic class, the arguments are the formal parameters.
548 # i.e.: for the class `Array[E:Object]`, the `mclass_type` is `Array[E]`.
549 # If you want `Array[Object]`, see `MClassDef::bound_mtype`.
550 #
551 # For generic classes, the mclass_type is also the way to get a formal
552 # generic parameter type.
553 #
554 # To get other types based on a generic class, see `get_mtype`.
555 #
556 # ENSURE: `mclass_type.mclass == self`
557 var mclass_type: MClassType is noinit
558
559 # Return a generic type based on the class
560 # Is the class is not generic, then the result is `mclass_type`
561 #
562 # REQUIRE: `mtype_arguments.length == self.arity`
563 fun get_mtype(mtype_arguments: Array[MType]): MClassType
564 do
565 assert mtype_arguments.length == self.arity
566 if self.arity == 0 then return self.mclass_type
567 var res = get_mtype_cache.get_or_null(mtype_arguments)
568 if res != null then return res
569 res = new MGenericType(self, mtype_arguments)
570 self.get_mtype_cache[mtype_arguments.to_a] = res
571 return res
572 end
573
574 private var get_mtype_cache = new HashMap[Array[MType], MGenericType]
575
576 # Is there a `new` factory to allow the pseudo instantiation?
577 var has_new_factory = false is writable
578
579 # Is `self` a standard or abstract class kind?
580 var is_class: Bool is lazy do return kind == concrete_kind or kind == abstract_kind
581
582 # Is `self` an interface kind?
583 var is_interface: Bool is lazy do return kind == interface_kind
584
585 # Is `self` an enum kind?
586 var is_enum: Bool is lazy do return kind == enum_kind
587
588 # Is `self` and abstract class?
589 var is_abstract: Bool is lazy do return kind == abstract_kind
590
591 redef var is_test is lazy do return intro.is_test
592
593 redef fun mdoc_or_fallback
594 do
595 # Don’t use `intro.mdoc_or_fallback` because it would create an infinite
596 # recursion.
597 return intro.mdoc
598 end
599 end
600
601
602 # A definition (an introduction or a refinement) of a class in a module
603 #
604 # A `MClassDef` is associated with an explicit (or almost) definition of a
605 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
606 # a specific class and a specific module, and contains declarations like super-classes
607 # or properties.
608 #
609 # It is the class definitions that are the backbone of most things in the model:
610 # ClassDefs are defined with regard with other classdefs.
611 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
612 #
613 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
614 class MClassDef
615 super MEntity
616
617 # The module where the definition is
618 var mmodule: MModule
619
620 # The associated `MClass`
621 var mclass: MClass is noinit
622
623 # The bounded type associated to the mclassdef
624 #
625 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
626 # are the same type.
627 #
628 # Example:
629 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
630 # If you want Array[E], then see `mclass.mclass_type`
631 #
632 # ENSURE: `bound_mtype.mclass == self.mclass`
633 var bound_mtype: MClassType
634
635 redef var location
636
637 redef fun visibility do return mclass.visibility
638
639 # Internal name combining the module and the class
640 # Example: "mymodule$MyClass"
641 redef var to_s is noinit
642
643 init
644 do
645 self.mclass = bound_mtype.mclass
646 mmodule.mclassdefs.add(self)
647 mclass.mclassdefs.add(self)
648 if mclass.intro_mmodule == mmodule then
649 assert not isset mclass._intro
650 mclass.intro = self
651 end
652 self.to_s = "{mmodule}${mclass}"
653 end
654
655 # Actually the name of the `mclass`
656 redef fun name do return mclass.name
657
658 # The module and class name separated by a '$'.
659 #
660 # The short-name of the class is used for introduction.
661 # Example: "my_module$MyClass"
662 #
663 # The full-name of the class is used for refinement.
664 # Example: "my_module$intro_module::MyClass"
665 redef var full_name is lazy do
666 if is_intro then
667 # public gives 'p$A'
668 # private gives 'p::m$A'
669 return "{mmodule.namespace_for(mclass.visibility)}${mclass.name}"
670 else if mclass.intro_mmodule.mpackage != mmodule.mpackage then
671 # public gives 'q::n$p::A'
672 # private gives 'q::n$p::m::A'
673 return "{mmodule.full_name}${mclass.full_name}"
674 else if mclass.visibility > private_visibility then
675 # public gives 'p::n$A'
676 return "{mmodule.full_name}${mclass.name}"
677 else
678 # private gives 'p::n$::m::A' (redundant p is omitted)
679 return "{mmodule.full_name}$::{mclass.intro_mmodule.name}::{mclass.name}"
680 end
681 end
682
683 redef var c_name is lazy do
684 if is_intro then
685 return "{mmodule.c_namespace_for(mclass.visibility)}___{mclass.c_name}"
686 else if mclass.intro_mmodule.mpackage == mmodule.mpackage and mclass.visibility > private_visibility then
687 return "{mmodule.c_name}___{mclass.name.to_cmangle}"
688 else
689 return "{mmodule.c_name}___{mclass.c_name}"
690 end
691 end
692
693 redef fun model do return mmodule.model
694
695 # All declared super-types
696 # FIXME: quite ugly but not better idea yet
697 var supertypes = new Array[MClassType]
698
699 # Register some super-types for the class (ie "super SomeType")
700 #
701 # The hierarchy must not already be set
702 # REQUIRE: `self.in_hierarchy == null`
703 fun set_supertypes(supertypes: Array[MClassType])
704 do
705 assert unique_invocation: self.in_hierarchy == null
706 var mmodule = self.mmodule
707 var model = mmodule.model
708 var mtype = self.bound_mtype
709
710 for supertype in supertypes do
711 self.supertypes.add(supertype)
712
713 # Register in full_type_specialization_hierarchy
714 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
715 # Register in intro_type_specialization_hierarchy
716 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
717 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
718 end
719 end
720
721 end
722
723 # Collect the super-types (set by set_supertypes) to build the hierarchy
724 #
725 # This function can only invoked once by class
726 # REQUIRE: `self.in_hierarchy == null`
727 # ENSURE: `self.in_hierarchy != null`
728 fun add_in_hierarchy
729 do
730 assert unique_invocation: self.in_hierarchy == null
731 var model = mmodule.model
732 var res = model.mclassdef_hierarchy.add_node(self)
733 self.in_hierarchy = res
734 var mtype = self.bound_mtype
735
736 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
737 # The simpliest way is to attach it to collect_mclassdefs
738 for mclassdef in mtype.collect_mclassdefs(mmodule) do
739 res.poset.add_edge(self, mclassdef)
740 end
741 end
742
743 # The view of the class definition in `mclassdef_hierarchy`
744 var in_hierarchy: nullable POSetElement[MClassDef] = null
745
746 # Is the definition the one that introduced `mclass`?
747 fun is_intro: Bool do return isset mclass._intro and mclass.intro == self
748
749 # All properties introduced by the classdef
750 var intro_mproperties = new Array[MProperty]
751
752 # All property introductions and redefinitions in `self` (not inheritance).
753 var mpropdefs = new Array[MPropDef]
754
755 # All property introductions and redefinitions (not inheritance) in `self` by its associated property.
756 var mpropdefs_by_property = new HashMap[MProperty, MPropDef]
757
758 redef fun mdoc_or_fallback do return mdoc or else mclass.mdoc_or_fallback
759 end
760
761 # A global static type
762 #
763 # MType are global to the model; it means that a `MType` is not bound to a
764 # specific `MModule`.
765 # This characteristic helps the reasoning about static types in a program
766 # since a single `MType` object always denote the same type.
767 #
768 # However, because a `MType` is global, it does not really have properties
769 # nor have subtypes to a hierarchy since the property and the class hierarchy
770 # depends of a module.
771 # Moreover, virtual types an formal generic parameter types also depends on
772 # a receiver to have sense.
773 #
774 # Therefore, most method of the types require a module and an anchor.
775 # The module is used to know what are the classes and the specialization
776 # links.
777 # The anchor is used to know what is the bound of the virtual types and formal
778 # generic parameter types.
779 #
780 # MType are not directly usable to get properties. See the `anchor_to` method
781 # and the `MClassType` class.
782 #
783 # FIXME: the order of the parameters is not the best. We mus pick on from:
784 # * foo(mmodule, anchor, othertype)
785 # * foo(othertype, anchor, mmodule)
786 # * foo(anchor, mmodule, othertype)
787 # * foo(othertype, mmodule, anchor)
788 abstract class MType
789 super MEntity
790
791 redef fun name do return to_s
792
793 # Return true if `self` is an subtype of `sup`.
794 # The typing is done using the standard typing policy of Nit.
795 #
796 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
797 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
798 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
799 do
800 var sub = self
801 if sub == sup then return true
802
803 #print "1.is {sub} a {sup}? ===="
804
805 if anchor == null then
806 assert not sub.need_anchor
807 assert not sup.need_anchor
808 else
809 # First, resolve the formal types to the simplest equivalent forms in the receiver
810 assert sub.can_resolve_for(anchor, null, mmodule)
811 sub = sub.lookup_fixed(mmodule, anchor)
812 assert sup.can_resolve_for(anchor, null, mmodule)
813 sup = sup.lookup_fixed(mmodule, anchor)
814 end
815
816 # Does `sup` accept null or not?
817 # Discard the nullable marker if it exists
818 var sup_accept_null = false
819 if sup isa MNullableType then
820 sup_accept_null = true
821 sup = sup.mtype
822 else if sup isa MNotNullType then
823 sup = sup.mtype
824 else if sup isa MNullType then
825 sup_accept_null = true
826 end
827
828 # Can `sub` provide null or not?
829 # Thus we can match with `sup_accept_null`
830 # Also discard the nullable marker if it exists
831 var sub_reject_null = false
832 if sub isa MNullableType then
833 if not sup_accept_null then return false
834 sub = sub.mtype
835 else if sub isa MNotNullType then
836 sub_reject_null = true
837 sub = sub.mtype
838 else if sub isa MNullType then
839 return sup_accept_null
840 end
841 # Now the case of direct null and nullable is over.
842
843 # If `sub` is a formal type, then it is accepted if its bound is accepted
844 while sub isa MFormalType do
845 #print "3.is {sub} a {sup}?"
846
847 # A unfixed formal type can only accept itself
848 if sub == sup then return true
849
850 assert anchor != null
851 sub = sub.lookup_bound(mmodule, anchor)
852 if sub_reject_null then sub = sub.as_notnull
853
854 #print "3.is {sub} a {sup}?"
855
856 # Manage the second layer of null/nullable
857 if sub isa MNullableType then
858 if not sup_accept_null and not sub_reject_null then return false
859 sub = sub.mtype
860 else if sub isa MNotNullType then
861 sub_reject_null = true
862 sub = sub.mtype
863 else if sub isa MNullType then
864 return sup_accept_null
865 end
866 end
867 #print "4.is {sub} a {sup}? <- no more resolution"
868
869 if sub isa MBottomType or sub isa MErrorType then
870 return true
871 end
872
873 assert sub isa MClassType else print_error "{sub} <? {sup}" # It is the only remaining type
874
875 # Handle sup-type when the sub-type is class-based (other cases must have be identified before).
876 if sup isa MFormalType or sup isa MNullType or sup isa MBottomType or sup isa MErrorType then
877 # These types are not super-types of Class-based types.
878 return false
879 end
880
881 assert sup isa MClassType else print_error "got {sup} {sub.inspect}" # It is the only remaining type
882
883 # Now both are MClassType, we need to dig
884
885 if sub == sup then return true
886
887 if anchor == null then anchor = sub # UGLY: any anchor will work
888 var resolved_sub = sub.anchor_to(mmodule, anchor)
889 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
890 if not res then return false
891 if not sup isa MGenericType then return true
892 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
893 assert sub2.mclass == sup.mclass
894 for i in [0..sup.mclass.arity[ do
895 var sub_arg = sub2.arguments[i]
896 var sup_arg = sup.arguments[i]
897 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
898 if not res then return false
899 end
900 return true
901 end
902
903 # The base class type on which self is based
904 #
905 # This base type is used to get property (an internally to perform
906 # unsafe type comparison).
907 #
908 # Beware: some types (like null) are not based on a class thus this
909 # method will crash
910 #
911 # Basically, this function transform the virtual types and parameter
912 # types to their bounds.
913 #
914 # Example
915 #
916 # class A end
917 # class B super A end
918 # class X end
919 # class Y super X end
920 # class G[T: A]
921 # type U: X
922 # end
923 # class H
924 # super G[B]
925 # redef type U: Y
926 # end
927 #
928 # Map[T,U] anchor_to H #-> Map[B,Y]
929 #
930 # Explanation of the example:
931 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
932 # because "redef type U: Y". Therefore, Map[T, U] is bound to
933 # Map[B, Y]
934 #
935 # REQUIRE: `self.need_anchor implies anchor != null`
936 # ENSURE: `not self.need_anchor implies result == self`
937 # ENSURE: `not result.need_anchor`
938 fun anchor_to(mmodule: MModule, anchor: nullable MClassType): MType
939 do
940 if not need_anchor then return self
941 assert anchor != null and not anchor.need_anchor
942 # Just resolve to the anchor and clear all the virtual types
943 var res = self.resolve_for(anchor, null, mmodule, true)
944 assert not res.need_anchor
945 return res
946 end
947
948 # Does `self` contain a virtual type or a formal generic parameter type?
949 # In order to remove those types, you usually want to use `anchor_to`.
950 fun need_anchor: Bool do return true
951
952 # Return the supertype when adapted to a class.
953 #
954 # In Nit, for each super-class of a type, there is a equivalent super-type.
955 #
956 # Example:
957 #
958 # ~~~nitish
959 # class G[T, U] end
960 # class H[V] super G[V, Bool] end
961 #
962 # H[Int] supertype_to G #-> G[Int, Bool]
963 # ~~~
964 #
965 # REQUIRE: `super_mclass` is a super-class of `self`
966 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
967 # ENSURE: `result.mclass = super_mclass`
968 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
969 do
970 if super_mclass.arity == 0 then return super_mclass.mclass_type
971 if self isa MClassType and self.mclass == super_mclass then return self
972 var resolved_self
973 if self.need_anchor then
974 assert anchor != null
975 resolved_self = self.anchor_to(mmodule, anchor)
976 else
977 resolved_self = self
978 end
979 var supertypes = resolved_self.collect_mtypes(mmodule)
980 for supertype in supertypes do
981 if supertype.mclass == super_mclass then
982 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
983 return supertype.resolve_for(self, anchor, mmodule, false)
984 end
985 end
986 abort
987 end
988
989 # Replace formals generic types in self with resolved values in `mtype`
990 # If `cleanup_virtual` is true, then virtual types are also replaced
991 # with their bounds.
992 #
993 # This function returns self if `need_anchor` is false.
994 #
995 # ## Example 1
996 #
997 # ~~~
998 # class G[E] end
999 # class H[F] super G[F] end
1000 # class X[Z] end
1001 # ~~~
1002 #
1003 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
1004 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
1005 #
1006 # Explanation of the example:
1007 # * Array[E].need_anchor is true because there is a formal generic parameter type E
1008 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
1009 # * Since "H[F] super G[F]", E is in fact F for H
1010 # * More specifically, in H[Int], E is Int
1011 # * So, in H[Int], Array[E] is Array[Int]
1012 #
1013 # This function is mainly used to inherit a signature.
1014 # Because, unlike `anchor_to`, we do not want a full resolution of
1015 # a type but only an adapted version of it.
1016 #
1017 # ## Example 2
1018 #
1019 # ~~~
1020 # class A[E]
1021 # fun foo(e:E):E is abstract
1022 # end
1023 # class B super A[Int] end
1024 # ~~~
1025 #
1026 # The signature on foo is (e: E): E
1027 # If we resolve the signature for B, we get (e:Int):Int
1028 #
1029 # ## Example 3
1030 #
1031 # ~~~nitish
1032 # class A[E]
1033 # fun foo(e:E):E is abstract
1034 # end
1035 # class C[F]
1036 # var a: A[Array[F]]
1037 # fun bar do a.foo(x) # <- x is here
1038 # end
1039 # ~~~
1040 #
1041 # The first question is: is foo available on `a`?
1042 #
1043 # The static type of a is `A[Array[F]]`, that is an open type.
1044 # in order to find a method `foo`, whe must look at a resolved type.
1045 #
1046 # A[Array[F]].anchor_to(C[nullable Object]) #-> A[Array[nullable Object]]
1047 #
1048 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
1049 #
1050 # The next question is: what is the accepted types for `x`?
1051 #
1052 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
1053 #
1054 # E.resolve_for(A[Array[F]],C[nullable Object]) #-> Array[F]
1055 #
1056 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
1057 #
1058 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
1059 # two function instead of one seems also to be a bad idea.
1060 #
1061 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
1062 # ENSURE: `not self.need_anchor implies result == self`
1063 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
1064
1065 # Resolve formal type to its verbatim bound.
1066 # If the type is not formal, just return self
1067 #
1068 # The result is returned exactly as declared in the "type" property (verbatim).
1069 # So it could be another formal type.
1070 #
1071 # In case of conflicts or inconsistencies in the model, the method returns a `MErrorType`.
1072 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self
1073
1074 # Resolve the formal type to its simplest equivalent form.
1075 #
1076 # Formal types are either free or fixed.
1077 # When it is fixed, it means that it is equivalent with a simpler type.
1078 # When a formal type is free, it means that it is only equivalent with itself.
1079 # This method return the most simple equivalent type of `self`.
1080 #
1081 # This method is mainly used for subtype test in order to sanely compare fixed.
1082 #
1083 # By default, return self.
1084 # See the redefinitions for specific behavior in each kind of type.
1085 #
1086 # In case of conflicts or inconsistencies in the model, the method returns a `MErrorType`.
1087 fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self
1088
1089 # Is the type a `MErrorType` or contains an `MErrorType`?
1090 #
1091 # `MErrorType` are used in result with conflict or inconsistencies.
1092 #
1093 # See `is_legal_in` to check conformity with generic bounds.
1094 fun is_ok: Bool do return true
1095
1096 # Is the type legal in a given `mmodule` (with an optional `anchor`)?
1097 #
1098 # A type is valid if:
1099 #
1100 # * it does not contain a `MErrorType` (see `is_ok`).
1101 # * its generic formal arguments are within their bounds.
1102 fun is_legal_in(mmodule: MModule, anchor: nullable MClassType): Bool do return is_ok
1103
1104 # Can the type be resolved?
1105 #
1106 # In order to resolve open types, the formal types must make sence.
1107 #
1108 # ## Example
1109 #
1110 # class A[E]
1111 # end
1112 # class B[F]
1113 # end
1114 #
1115 # ~~~nitish
1116 # E.can_resolve_for(A[Int]) #-> true, E make sense in A
1117 #
1118 # E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
1119 #
1120 # B[E].can_resolve_for(A[F], B[Object]) #-> true,
1121 # # B[E] is a red hearing only the E is important,
1122 # # E make sense in A
1123 # ~~~
1124 #
1125 # REQUIRE: `anchor != null implies not anchor.need_anchor`
1126 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
1127 # ENSURE: `not self.need_anchor implies result == true`
1128 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
1129
1130 # Return the nullable version of the type
1131 # If the type is already nullable then self is returned
1132 fun as_nullable: MType
1133 do
1134 var res = self.as_nullable_cache
1135 if res != null then return res
1136 res = new MNullableType(self)
1137 self.as_nullable_cache = res
1138 return res
1139 end
1140
1141 # Remove the base type of a decorated (proxy) type.
1142 # Is the type is not decorated, then self is returned.
1143 #
1144 # Most of the time it is used to return the not nullable version of a nullable type.
1145 # In this case, this just remove the `nullable` notation, but the result can still contains null.
1146 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
1147 # If you really want to exclude the `null` value, then use `as_notnull`
1148 fun undecorate: MType
1149 do
1150 return self
1151 end
1152
1153 # Returns the not null version of the type.
1154 # That is `self` minus the `null` value.
1155 #
1156 # For most types, this return `self`.
1157 # For formal types, this returns a special `MNotNullType`
1158 fun as_notnull: MType do return self
1159
1160 private var as_nullable_cache: nullable MType = null
1161
1162
1163 # The depth of the type seen as a tree.
1164 #
1165 # * A -> 1
1166 # * G[A] -> 2
1167 # * H[A, B] -> 2
1168 # * H[G[A], B] -> 3
1169 #
1170 # Formal types have a depth of 1.
1171 # Only `MClassType` and `MFormalType` nodes are counted.
1172 fun depth: Int
1173 do
1174 return 1
1175 end
1176
1177 # The length of the type seen as a tree.
1178 #
1179 # * A -> 1
1180 # * G[A] -> 2
1181 # * H[A, B] -> 3
1182 # * H[G[A], B] -> 4
1183 #
1184 # Formal types have a length of 1.
1185 # Only `MClassType` and `MFormalType` nodes are counted.
1186 fun length: Int
1187 do
1188 return 1
1189 end
1190
1191 # Compute all the classdefs inherited/imported.
1192 # The returned set contains:
1193 # * the class definitions from `mmodule` and its imported modules
1194 # * the class definitions of this type and its super-types
1195 #
1196 # This function is used mainly internally.
1197 #
1198 # REQUIRE: `not self.need_anchor`
1199 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
1200
1201 # Compute all the super-classes.
1202 # This function is used mainly internally.
1203 #
1204 # REQUIRE: `not self.need_anchor`
1205 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
1206
1207 # Compute all the declared super-types.
1208 # Super-types are returned as declared in the classdefs (verbatim).
1209 # This function is used mainly internally.
1210 #
1211 # REQUIRE: `not self.need_anchor`
1212 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
1213
1214 # Is the property in self for a given module
1215 # This method does not filter visibility or whatever
1216 #
1217 # REQUIRE: `not self.need_anchor`
1218 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
1219 do
1220 assert not self.need_anchor
1221 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
1222 end
1223 end
1224
1225 # A type based on a class.
1226 #
1227 # `MClassType` have properties (see `has_mproperty`).
1228 class MClassType
1229 super MType
1230
1231 # The associated class
1232 var mclass: MClass
1233
1234 redef fun model do return self.mclass.intro_mmodule.model
1235
1236 redef fun location do return mclass.location
1237
1238 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1239
1240 # The formal arguments of the type
1241 # ENSURE: `result.length == self.mclass.arity`
1242 var arguments = new Array[MType]
1243
1244 redef fun to_s do return mclass.to_s
1245
1246 redef fun full_name do return mclass.full_name
1247
1248 redef fun c_name do return mclass.c_name
1249
1250 redef fun need_anchor do return false
1251
1252 redef fun anchor_to(mmodule, anchor): MClassType
1253 do
1254 return super.as(MClassType)
1255 end
1256
1257 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1258
1259 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1260
1261 redef fun collect_mclassdefs(mmodule)
1262 do
1263 assert not self.need_anchor
1264 var cache = self.collect_mclassdefs_cache
1265 if not cache.has_key(mmodule) then
1266 self.collect_things(mmodule)
1267 end
1268 return cache[mmodule]
1269 end
1270
1271 redef fun collect_mclasses(mmodule)
1272 do
1273 if collect_mclasses_last_module == mmodule then return collect_mclasses_last_module_cache
1274 assert not self.need_anchor
1275 var cache = self.collect_mclasses_cache
1276 if not cache.has_key(mmodule) then
1277 self.collect_things(mmodule)
1278 end
1279 var res = cache[mmodule]
1280 collect_mclasses_last_module = mmodule
1281 collect_mclasses_last_module_cache = res
1282 return res
1283 end
1284
1285 private var collect_mclasses_last_module: nullable MModule = null
1286 private var collect_mclasses_last_module_cache: Set[MClass] is noinit
1287
1288 redef fun collect_mtypes(mmodule)
1289 do
1290 assert not self.need_anchor
1291 var cache = self.collect_mtypes_cache
1292 if not cache.has_key(mmodule) then
1293 self.collect_things(mmodule)
1294 end
1295 return cache[mmodule]
1296 end
1297
1298 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1299 private fun collect_things(mmodule: MModule)
1300 do
1301 var res = new HashSet[MClassDef]
1302 var seen = new HashSet[MClass]
1303 var types = new HashSet[MClassType]
1304 seen.add(self.mclass)
1305 var todo = [self.mclass]
1306 while not todo.is_empty do
1307 var mclass = todo.pop
1308 #print "process {mclass}"
1309 for mclassdef in mclass.mclassdefs do
1310 if not mmodule.in_importation <= mclassdef.mmodule then continue
1311 #print " process {mclassdef}"
1312 res.add(mclassdef)
1313 for supertype in mclassdef.supertypes do
1314 types.add(supertype)
1315 var superclass = supertype.mclass
1316 if seen.has(superclass) then continue
1317 #print " add {superclass}"
1318 seen.add(superclass)
1319 todo.add(superclass)
1320 end
1321 end
1322 end
1323 collect_mclassdefs_cache[mmodule] = res
1324 collect_mclasses_cache[mmodule] = seen
1325 collect_mtypes_cache[mmodule] = types
1326 end
1327
1328 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1329 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1330 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1331
1332 redef fun mdoc_or_fallback do return mclass.mdoc_or_fallback
1333 end
1334
1335 # A type based on a generic class.
1336 # A generic type a just a class with additional formal generic arguments.
1337 class MGenericType
1338 super MClassType
1339
1340 redef var arguments
1341
1342 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1343
1344 init
1345 do
1346 assert self.mclass.arity == arguments.length
1347
1348 self.need_anchor = false
1349 for t in arguments do
1350 if t.need_anchor then
1351 self.need_anchor = true
1352 break
1353 end
1354 end
1355
1356 self.to_s = "{mclass}[{arguments.join(", ")}]"
1357 end
1358
1359 # The short-name of the class, then the full-name of each type arguments within brackets.
1360 # Example: `"Map[String, List[Int]]"`
1361 redef var to_s is noinit
1362
1363 # The full-name of the class, then the full-name of each type arguments within brackets.
1364 # Example: `"core::Map[core::String, core::List[core::Int]]"`
1365 redef var full_name is lazy do
1366 var args = new Array[String]
1367 for t in arguments do
1368 args.add t.full_name
1369 end
1370 return "{mclass.full_name}[{args.join(", ")}]"
1371 end
1372
1373 redef var c_name is lazy do
1374 var res = mclass.c_name
1375 # Note: because the arity is known, a prefix notation is enough
1376 for t in arguments do
1377 res += "__"
1378 res += t.c_name
1379 end
1380 return res.to_s
1381 end
1382
1383 redef var need_anchor is noinit
1384
1385 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1386 do
1387 if not need_anchor then return self
1388 assert can_resolve_for(mtype, anchor, mmodule)
1389 var types = new Array[MType]
1390 for t in arguments do
1391 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1392 end
1393 return mclass.get_mtype(types)
1394 end
1395
1396 redef fun can_resolve_for(mtype, anchor, mmodule)
1397 do
1398 if not need_anchor then return true
1399 for t in arguments do
1400 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1401 end
1402 return true
1403 end
1404
1405 redef fun is_ok
1406 do
1407 for t in arguments do if not t.is_ok then return false
1408 return super
1409 end
1410
1411 redef fun is_legal_in(mmodule, anchor)
1412 do
1413 var mtype
1414 if need_anchor then
1415 assert anchor != null
1416 mtype = anchor_to(mmodule, anchor)
1417 else
1418 mtype = self
1419 end
1420 if not mtype.is_ok then return false
1421 return mtype.is_subtype(mmodule, null, mtype.mclass.intro.bound_mtype)
1422 end
1423
1424 redef fun depth
1425 do
1426 var dmax = 0
1427 for a in self.arguments do
1428 var d = a.depth
1429 if d > dmax then dmax = d
1430 end
1431 return dmax + 1
1432 end
1433
1434 redef fun length
1435 do
1436 var res = 1
1437 for a in self.arguments do
1438 res += a.length
1439 end
1440 return res
1441 end
1442 end
1443
1444 # A formal type (either virtual of parametric).
1445 #
1446 # The main issue with formal types is that they offer very little information on their own
1447 # and need a context (anchor and mmodule) to be useful.
1448 abstract class MFormalType
1449 super MType
1450
1451 redef var as_notnull = new MNotNullType(self) is lazy
1452 end
1453
1454 # A virtual formal type.
1455 class MVirtualType
1456 super MFormalType
1457
1458 # The property associated with the type.
1459 # Its the definitions of this property that determine the bound or the virtual type.
1460 var mproperty: MVirtualTypeProp
1461
1462 redef fun location do return mproperty.location
1463
1464 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1465
1466 redef fun lookup_bound(mmodule, resolved_receiver)
1467 do
1468 # There is two possible invalid cases: the vt does not exists in resolved_receiver or the bound is broken
1469 if not resolved_receiver.has_mproperty(mmodule, mproperty) then return new MErrorType(model)
1470 return lookup_single_definition(mmodule, resolved_receiver).bound or else new MErrorType(model)
1471 end
1472
1473 private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef
1474 do
1475 assert not resolved_receiver.need_anchor
1476 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1477 if props.is_empty then
1478 abort
1479 else if props.length == 1 then
1480 return props.first
1481 end
1482 var types = new ArraySet[MType]
1483 var res = props.first
1484 for p in props do
1485 types.add(p.bound.as(not null))
1486 if not res.is_fixed then res = p
1487 end
1488 if types.length == 1 then
1489 return res
1490 end
1491 abort
1492 end
1493
1494 # A VT is fixed when:
1495 # * the VT is (re-)defined with the annotation `is fixed`
1496 # * the receiver is an enum class since there is no subtype that can
1497 # redefine this virtual type
1498 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1499 do
1500 assert not resolved_receiver.need_anchor
1501 resolved_receiver = resolved_receiver.undecorate
1502 assert resolved_receiver isa MClassType # It is the only remaining type
1503
1504 var prop = lookup_single_definition(mmodule, resolved_receiver)
1505 var res = prop.bound
1506 if res == null then return new MErrorType(model)
1507
1508 # Recursively lookup the fixed result
1509 res = res.lookup_fixed(mmodule, resolved_receiver)
1510
1511 # For a fixed VT, return the resolved bound
1512 if prop.is_fixed then return res
1513
1514 # For a enum receiver return the bound
1515 if resolved_receiver.mclass.kind == enum_kind then return res
1516
1517 return self
1518 end
1519
1520 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1521 do
1522 if not cleanup_virtual then return self
1523 assert can_resolve_for(mtype, anchor, mmodule)
1524
1525 if mproperty.is_selftype then return mtype
1526
1527 # self is a virtual type declared (or inherited) in mtype
1528 # The point of the function it to get the bound of the virtual type that make sense for mtype
1529 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1530 #print "{class_name}: {self}/{mtype}/{anchor}?"
1531 var resolved_receiver
1532 if mtype.need_anchor then
1533 assert anchor != null
1534 resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true)
1535 else
1536 resolved_receiver = mtype
1537 end
1538 # Now, we can get the bound
1539 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1540 # The bound is exactly as declared in the "type" property, so we must resolve it again
1541 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1542
1543 return res
1544 end
1545
1546 redef fun can_resolve_for(mtype, anchor, mmodule)
1547 do
1548 if mtype.need_anchor then
1549 assert anchor != null
1550 mtype = mtype.anchor_to(mmodule, anchor)
1551 end
1552 return mtype.has_mproperty(mmodule, mproperty)
1553 end
1554
1555 redef fun to_s do return self.mproperty.to_s
1556
1557 redef fun full_name do return self.mproperty.full_name
1558
1559 redef fun c_name do return self.mproperty.c_name
1560
1561 redef fun mdoc_or_fallback do return mproperty.mdoc_or_fallback
1562 end
1563
1564 # The type associated to a formal parameter generic type of a class
1565 #
1566 # Each parameter type is associated to a specific class.
1567 # It means that all refinements of a same class "share" the parameter type,
1568 # but that a generic subclass has its own parameter types.
1569 #
1570 # However, in the sense of the meta-model, a parameter type of a class is
1571 # a valid type in a subclass. The "in the sense of the meta-model" is
1572 # important because, in the Nit language, the programmer cannot refers
1573 # directly to the parameter types of the super-classes.
1574 #
1575 # Example:
1576 #
1577 # class A[E]
1578 # fun e: E is abstract
1579 # end
1580 # class B[F]
1581 # super A[Array[F]]
1582 # end
1583 #
1584 # In the class definition B[F], `F` is a valid type but `E` is not.
1585 # However, `self.e` is a valid method call, and the signature of `e` is
1586 # declared `e: E`.
1587 #
1588 # Note that parameter types are shared among class refinements.
1589 # Therefore parameter only have an internal name (see `to_s` for details).
1590 class MParameterType
1591 super MFormalType
1592
1593 # The generic class where the parameter belong
1594 var mclass: MClass
1595
1596 redef fun model do return self.mclass.intro_mmodule.model
1597
1598 redef fun location do return mclass.location
1599
1600 # The position of the parameter (0 for the first parameter)
1601 # FIXME: is `position` a better name?
1602 var rank: Int
1603
1604 redef var name
1605
1606 redef fun to_s do return name
1607
1608 redef var full_name is lazy do return "{mclass.full_name}::{name}"
1609
1610 redef var c_name is lazy do return mclass.c_name + "__" + "#{name}".to_cmangle
1611
1612 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1613 do
1614 assert not resolved_receiver.need_anchor
1615 resolved_receiver = resolved_receiver.undecorate
1616 assert resolved_receiver isa MClassType # It is the only remaining type
1617 var goalclass = self.mclass
1618 if resolved_receiver.mclass == goalclass then
1619 return resolved_receiver.arguments[self.rank]
1620 end
1621 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1622 for t in supertypes do
1623 if t.mclass == goalclass then
1624 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1625 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1626 var res = t.arguments[self.rank]
1627 return res
1628 end
1629 end
1630 # Cannot found `self` in `resolved_receiver`
1631 return new MErrorType(model)
1632 end
1633
1634 # A PT is fixed when:
1635 # * The `resolved_receiver` is a subclass of `self.mclass`,
1636 # so it is necessarily fixed in a `super` clause, either with a normal type
1637 # or with another PT.
1638 # See `resolve_for` for examples about related issues.
1639 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1640 do
1641 assert not resolved_receiver.need_anchor
1642 resolved_receiver = resolved_receiver.undecorate
1643 assert resolved_receiver isa MClassType # It is the only remaining type
1644 var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false)
1645 return res
1646 end
1647
1648 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1649 do
1650 assert can_resolve_for(mtype, anchor, mmodule)
1651 #print "{class_name}: {self}/{mtype}/{anchor}?"
1652
1653 if mtype isa MGenericType and mtype.mclass == self.mclass then
1654 return mtype.arguments[self.rank]
1655 end
1656
1657 # self is a parameter type of mtype (or of a super-class of mtype)
1658 # The point of the function it to get the bound of the virtual type that make sense for mtype
1659 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1660 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1661 var resolved_receiver
1662 if mtype.need_anchor then
1663 assert anchor != null
1664 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1665 else
1666 resolved_receiver = mtype
1667 end
1668 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1669 if resolved_receiver isa MParameterType then
1670 assert anchor != null
1671 assert resolved_receiver.mclass == anchor.mclass
1672 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1673 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1674 end
1675 assert resolved_receiver isa MClassType # It is the only remaining type
1676
1677 # Eh! The parameter is in the current class.
1678 # So we return the corresponding argument, no mater what!
1679 if resolved_receiver.mclass == self.mclass then
1680 var res = resolved_receiver.arguments[self.rank]
1681 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1682 return res
1683 end
1684
1685 if resolved_receiver.need_anchor then
1686 assert anchor != null
1687 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1688 end
1689 # Now, we can get the bound
1690 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1691 # The bound is exactly as declared in the "type" property, so we must resolve it again
1692 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1693
1694 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1695
1696 return res
1697 end
1698
1699 redef fun can_resolve_for(mtype, anchor, mmodule)
1700 do
1701 if mtype.need_anchor then
1702 assert anchor != null
1703 mtype = mtype.anchor_to(mmodule, anchor)
1704 end
1705 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1706 end
1707 end
1708
1709 # A type that decorates another type.
1710 #
1711 # The point of this class is to provide a common implementation of sevices that just forward to the original type.
1712 # Specific decorator are expected to redefine (or to extend) the default implementation as this suit them.
1713 abstract class MProxyType
1714 super MType
1715 # The base type
1716 var mtype: MType
1717
1718 redef fun location do return mtype.location
1719
1720 redef fun model do return self.mtype.model
1721 redef fun need_anchor do return mtype.need_anchor
1722 redef fun as_nullable do return mtype.as_nullable
1723 redef fun as_notnull do return mtype.as_notnull
1724 redef fun undecorate do return mtype.undecorate
1725 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1726 do
1727 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1728 return res
1729 end
1730
1731 redef fun can_resolve_for(mtype, anchor, mmodule)
1732 do
1733 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1734 end
1735
1736 redef fun is_ok do return mtype.is_ok
1737
1738 redef fun is_legal_in(mmodule, anchor) do return mtype.is_legal_in(mmodule, anchor)
1739
1740 redef fun lookup_fixed(mmodule, resolved_receiver)
1741 do
1742 var t = mtype.lookup_fixed(mmodule, resolved_receiver)
1743 return t
1744 end
1745
1746 redef fun depth do return self.mtype.depth
1747
1748 redef fun length do return self.mtype.length
1749
1750 redef fun collect_mclassdefs(mmodule)
1751 do
1752 assert not self.need_anchor
1753 return self.mtype.collect_mclassdefs(mmodule)
1754 end
1755
1756 redef fun collect_mclasses(mmodule)
1757 do
1758 assert not self.need_anchor
1759 return self.mtype.collect_mclasses(mmodule)
1760 end
1761
1762 redef fun collect_mtypes(mmodule)
1763 do
1764 assert not self.need_anchor
1765 return self.mtype.collect_mtypes(mmodule)
1766 end
1767 end
1768
1769 # A type prefixed with "nullable"
1770 class MNullableType
1771 super MProxyType
1772
1773 init
1774 do
1775 self.to_s = "nullable {mtype}"
1776 end
1777
1778 redef var to_s is noinit
1779
1780 redef var full_name is lazy do return "nullable {mtype.full_name}"
1781
1782 redef var c_name is lazy do return "nullable__{mtype.c_name}"
1783
1784 redef fun as_nullable do return self
1785 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1786 do
1787 var res = super
1788 return res.as_nullable
1789 end
1790
1791 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable`
1792 redef fun lookup_fixed(mmodule, resolved_receiver)
1793 do
1794 var t = super
1795 if t == mtype then return self
1796 return t.as_nullable
1797 end
1798 end
1799
1800 # A non-null version of a formal type.
1801 #
1802 # When a formal type in bounded to a nullable type, this is the type of the not null version of it.
1803 class MNotNullType
1804 super MProxyType
1805
1806 redef fun to_s do return "not null {mtype}"
1807 redef var full_name is lazy do return "not null {mtype.full_name}"
1808 redef var c_name is lazy do return "notnull__{mtype.c_name}"
1809
1810 redef fun as_notnull do return self
1811
1812 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1813 do
1814 var res = super
1815 return res.as_notnull
1816 end
1817
1818 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_notnull`
1819 redef fun lookup_fixed(mmodule, resolved_receiver)
1820 do
1821 var t = super
1822 if t == mtype then return self
1823 return t.as_notnull
1824 end
1825 end
1826
1827 # The type of the only value null
1828 #
1829 # The is only one null type per model, see `MModel::null_type`.
1830 class MNullType
1831 super MType
1832 redef var model
1833 redef fun to_s do return "null"
1834 redef fun full_name do return "null"
1835 redef fun c_name do return "null"
1836 redef fun as_nullable do return self
1837
1838 redef var as_notnull: MBottomType = new MBottomType(model) is lazy
1839 redef fun need_anchor do return false
1840 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1841 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1842
1843 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1844
1845 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1846
1847 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1848 end
1849
1850 # The special universal most specific type.
1851 #
1852 # This type is intended to be only used internally for type computation or analysis and should not be exposed to the user.
1853 # The bottom type can de used to denote things that are dead (no instance).
1854 #
1855 # Semantically it is the singleton `null.as_notnull`.
1856 # Is also means that `self.as_nullable == null`.
1857 class MBottomType
1858 super MType
1859 redef var model
1860 redef fun to_s do return "bottom"
1861 redef fun full_name do return "bottom"
1862 redef fun c_name do return "bottom"
1863 redef fun as_nullable do return model.null_type
1864 redef fun as_notnull do return self
1865 redef fun need_anchor do return false
1866 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1867 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1868
1869 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1870
1871 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1872
1873 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1874 end
1875
1876 # A special type used as a silent error marker when building types.
1877 #
1878 # This type is intended to be only used internally for type operation and should not be exposed to the user.
1879 # The error type can de used to denote things that are conflicting or inconsistent.
1880 #
1881 # Some methods on types can return a `MErrorType` to denote a broken or a conflicting result.
1882 # Use `is_ok` to check if a type is (or contains) a `MErrorType` .
1883 class MErrorType
1884 super MType
1885 redef var model
1886 redef fun to_s do return "error"
1887 redef fun full_name do return "error"
1888 redef fun c_name do return "error"
1889 redef fun need_anchor do return false
1890 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1891 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1892 redef fun is_ok do return false
1893
1894 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1895
1896 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1897
1898 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1899 end
1900
1901 # A signature of a method
1902 class MSignature
1903 super MType
1904
1905 # The each parameter (in order)
1906 var mparameters: Array[MParameter]
1907
1908 # Returns a parameter named `name`, if any.
1909 fun mparameter_by_name(name: String): nullable MParameter
1910 do
1911 for p in mparameters do
1912 if p.name == name then return p
1913 end
1914 return null
1915 end
1916
1917 # The return type (null for a procedure)
1918 var return_mtype: nullable MType
1919
1920 redef fun depth
1921 do
1922 var dmax = 0
1923 var t = self.return_mtype
1924 if t != null then dmax = t.depth
1925 for p in mparameters do
1926 var d = p.mtype.depth
1927 if d > dmax then dmax = d
1928 end
1929 return dmax + 1
1930 end
1931
1932 redef fun length
1933 do
1934 var res = 1
1935 var t = self.return_mtype
1936 if t != null then res += t.length
1937 for p in mparameters do
1938 res += p.mtype.length
1939 end
1940 return res
1941 end
1942
1943 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1944 init
1945 do
1946 var vararg_rank = -1
1947 for i in [0..mparameters.length[ do
1948 var parameter = mparameters[i]
1949 if parameter.is_vararg then
1950 if vararg_rank >= 0 then
1951 # If there is more than one vararg,
1952 # consider that additional arguments cannot be mapped.
1953 vararg_rank = -1
1954 break
1955 end
1956 vararg_rank = i
1957 end
1958 end
1959 self.vararg_rank = vararg_rank
1960 end
1961
1962 # The rank of the main ellipsis (`...`) for vararg (starting from 0).
1963 # value is -1 if there is no vararg.
1964 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1965 #
1966 # From a model POV, a signature can contain more than one vararg parameter,
1967 # the `vararg_rank` just indicates the one that will receive the additional arguments.
1968 # However, currently, if there is more that one vararg parameter, no one will be the main one,
1969 # and additional arguments will be refused.
1970 var vararg_rank: Int is noinit
1971
1972 # The number of parameters
1973 fun arity: Int do return mparameters.length
1974
1975 redef fun to_s
1976 do
1977 var b = new FlatBuffer
1978 if not mparameters.is_empty then
1979 b.append("(")
1980 var last_mtype = null
1981 for i in [0..mparameters.length[ do
1982 var mparameter = mparameters[i]
1983
1984 # Group types that are common to contiguous parameters
1985 if mparameter.mtype != last_mtype and last_mtype != null then
1986 b.append(": ")
1987 b.append(last_mtype.to_s)
1988 end
1989
1990 if i > 0 then b.append(", ")
1991 b.append(mparameter.name)
1992
1993 if mparameter.is_vararg then
1994 b.append(": ")
1995 b.append(mparameter.mtype.to_s)
1996 b.append("...")
1997 last_mtype = null
1998 else
1999 last_mtype = mparameter.mtype
2000 end
2001 end
2002
2003 if last_mtype != null then
2004 b.append(": ")
2005 b.append(last_mtype.to_s)
2006 end
2007
2008 b.append(")")
2009 end
2010 var ret = self.return_mtype
2011 if ret != null then
2012 b.append(": ")
2013 b.append(ret.to_s)
2014 end
2015 return b.to_s
2016 end
2017
2018 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
2019 do
2020 var params = new Array[MParameter]
2021 for p in self.mparameters do
2022 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
2023 end
2024 var ret = self.return_mtype
2025 if ret != null then
2026 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
2027 end
2028 var res = new MSignature(params, ret)
2029 return res
2030 end
2031 end
2032
2033 # A parameter in a signature
2034 class MParameter
2035 super MEntity
2036
2037 # The name of the parameter
2038 redef var name
2039
2040 # The static type of the parameter
2041 var mtype: MType
2042
2043 # Is the parameter a vararg?
2044 var is_vararg: Bool
2045
2046 redef fun to_s
2047 do
2048 if is_vararg then
2049 return "{name}: {mtype}..."
2050 else
2051 return "{name}: {mtype}"
2052 end
2053 end
2054
2055 # Returns a new parameter with the `mtype` resolved.
2056 # See `MType::resolve_for` for details.
2057 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
2058 do
2059 if not self.mtype.need_anchor then return self
2060 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
2061 var res = new MParameter(self.name, newtype, self.is_vararg)
2062 return res
2063 end
2064
2065 redef fun model do return mtype.model
2066 end
2067
2068 # A service (global property) that generalize method, attribute, etc.
2069 #
2070 # `MProperty` are global to the model; it means that a `MProperty` is not bound
2071 # to a specific `MModule` nor a specific `MClass`.
2072 #
2073 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
2074 # and the other in subclasses and in refinements.
2075 #
2076 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
2077 # of any dynamic type).
2078 # For instance, a call site "x.foo" is associated to a `MProperty`.
2079 abstract class MProperty
2080 super MEntity
2081
2082 # The associated MPropDef subclass.
2083 # The two specialization hierarchy are symmetric.
2084 type MPROPDEF: MPropDef
2085
2086 # The classdef that introduce the property
2087 # While a property is not bound to a specific module, or class,
2088 # the introducing mclassdef is used for naming and visibility
2089 var intro_mclassdef: MClassDef
2090
2091 # The (short) name of the property
2092 redef var name
2093
2094 redef var location
2095
2096 redef fun mdoc_or_fallback
2097 do
2098 # Don’t use `intro.mdoc_or_fallback` because it would create an infinite
2099 # recursion.
2100 return intro.mdoc
2101 end
2102
2103 # The canonical name of the property.
2104 #
2105 # It is currently the short-`name` prefixed by the short-name of the class and the full-name of the module.
2106 # Example: "my_package::my_module::MyClass::my_method"
2107 #
2108 # The full-name of the module is needed because two distinct modules of the same package can
2109 # still refine the same class and introduce homonym properties.
2110 #
2111 # For public properties not introduced by refinement, the module name is not used.
2112 #
2113 # Example: `my_package::MyClass::My_method`
2114 redef var full_name is lazy do
2115 if intro_mclassdef.is_intro then
2116 return "{intro_mclassdef.mmodule.namespace_for(visibility)}::{intro_mclassdef.mclass.name}::{name}"
2117 else
2118 return "{intro_mclassdef.mmodule.full_name}::{intro_mclassdef.mclass.name}::{name}"
2119 end
2120 end
2121
2122 redef var c_name is lazy do
2123 # FIXME use `namespace_for`
2124 return "{intro_mclassdef.mmodule.c_name}__{intro_mclassdef.mclass.name.to_cmangle}__{name.to_cmangle}"
2125 end
2126
2127 # The visibility of the property
2128 redef var visibility
2129
2130 # Is the property usable as an initializer?
2131 var is_autoinit = false is writable
2132
2133 init
2134 do
2135 intro_mclassdef.intro_mproperties.add(self)
2136 var model = intro_mclassdef.mmodule.model
2137 model.mproperties_by_name.add_one(name, self)
2138 model.mproperties.add(self)
2139 end
2140
2141 # All definitions of the property.
2142 # The first is the introduction,
2143 # The other are redefinitions (in refinements and in subclasses)
2144 var mpropdefs = new Array[MPROPDEF]
2145
2146 # The definition that introduces the property.
2147 #
2148 # Warning: such a definition may not exist in the early life of the object.
2149 # In this case, the method will abort.
2150 var intro: MPROPDEF is noinit
2151
2152 redef fun model do return intro.model
2153
2154 # Alias for `name`
2155 redef fun to_s do return name
2156
2157 # Return the most specific property definitions defined or inherited by a type.
2158 # The selection knows that refinement is stronger than specialization;
2159 # however, in case of conflict more than one property are returned.
2160 # If mtype does not know mproperty then an empty array is returned.
2161 #
2162 # If you want the really most specific property, then look at `lookup_first_definition`
2163 #
2164 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2165 # ENSURE: `not mtype.has_mproperty(mmodule, self) == result.is_empty`
2166 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2167 do
2168 assert not mtype.need_anchor
2169 mtype = mtype.undecorate
2170
2171 var cache = self.lookup_definitions_cache[mmodule, mtype]
2172 if cache != null then return cache
2173
2174 #print "select prop {mproperty} for {mtype} in {self}"
2175 # First, select all candidates
2176 var candidates = new Array[MPROPDEF]
2177
2178 # Here we have two strategies: iterate propdefs or iterate classdefs.
2179 var mpropdefs = self.mpropdefs
2180 if mpropdefs.length <= 1 or mpropdefs.length < mtype.collect_mclassdefs(mmodule).length then
2181 # Iterate on all definitions of `self`, keep only those inherited by `mtype` in `mmodule`
2182 for mpropdef in mpropdefs do
2183 # If the definition is not imported by the module, then skip
2184 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2185 # If the definition is not inherited by the type, then skip
2186 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2187 # Else, we keep it
2188 candidates.add(mpropdef)
2189 end
2190 else
2191 # Iterate on all super-classdefs of `mtype`, keep only the definitions of `self`, if any.
2192 for mclassdef in mtype.collect_mclassdefs(mmodule) do
2193 var p = mclassdef.mpropdefs_by_property.get_or_null(self)
2194 if p != null then candidates.add p
2195 end
2196 end
2197
2198 # Fast track for only one candidate
2199 if candidates.length <= 1 then
2200 self.lookup_definitions_cache[mmodule, mtype] = candidates
2201 return candidates
2202 end
2203
2204 # Second, filter the most specific ones
2205 return select_most_specific(mmodule, candidates)
2206 end
2207
2208 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2209
2210 # Return the most specific property definitions inherited by a type.
2211 # The selection knows that refinement is stronger than specialization;
2212 # however, in case of conflict more than one property are returned.
2213 # If mtype does not know mproperty then an empty array is returned.
2214 #
2215 # If you want the really most specific property, then look at `lookup_next_definition`
2216 #
2217 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2218 # ENSURE: `not mtype.has_mproperty(mmodule, self) implies result.is_empty`
2219 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2220 do
2221 assert not mtype.need_anchor
2222 mtype = mtype.undecorate
2223
2224 # First, select all candidates
2225 var candidates = new Array[MPROPDEF]
2226 for mpropdef in self.mpropdefs do
2227 # If the definition is not imported by the module, then skip
2228 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2229 # If the definition is not inherited by the type, then skip
2230 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2231 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
2232 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
2233 # Else, we keep it
2234 candidates.add(mpropdef)
2235 end
2236 # Fast track for only one candidate
2237 if candidates.length <= 1 then return candidates
2238
2239 # Second, filter the most specific ones
2240 return select_most_specific(mmodule, candidates)
2241 end
2242
2243 # Return an array containing olny the most specific property definitions
2244 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
2245 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
2246 do
2247 var res = new Array[MPROPDEF]
2248 for pd1 in candidates do
2249 var cd1 = pd1.mclassdef
2250 var c1 = cd1.mclass
2251 var keep = true
2252 for pd2 in candidates do
2253 if pd2 == pd1 then continue # do not compare with self!
2254 var cd2 = pd2.mclassdef
2255 var c2 = cd2.mclass
2256 if c2.mclass_type == c1.mclass_type then
2257 if cd2.mmodule.in_importation < cd1.mmodule then
2258 # cd2 refines cd1; therefore we skip pd1
2259 keep = false
2260 break
2261 end
2262 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
2263 # cd2 < cd1; therefore we skip pd1
2264 keep = false
2265 break
2266 end
2267 end
2268 if keep then
2269 res.add(pd1)
2270 end
2271 end
2272 if res.is_empty then
2273 print_error "All lost! {candidates.join(", ")}"
2274 # FIXME: should be abort!
2275 end
2276 return res
2277 end
2278
2279 # Return the most specific definition in the linearization of `mtype`.
2280 #
2281 # If you want to know the next properties in the linearization,
2282 # look at `MPropDef::lookup_next_definition`.
2283 #
2284 # FIXME: the linearization is still unspecified
2285 #
2286 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2287 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2288 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
2289 do
2290 return lookup_all_definitions(mmodule, mtype).first
2291 end
2292
2293 # Return all definitions in a linearization order
2294 # Most specific first, most general last
2295 #
2296 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2297 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2298 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2299 do
2300 mtype = mtype.undecorate
2301
2302 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
2303 if cache != null then return cache
2304
2305 assert not mtype.need_anchor
2306 assert mtype.has_mproperty(mmodule, self)
2307
2308 #print "select prop {mproperty} for {mtype} in {self}"
2309 # First, select all candidates
2310 var candidates = new Array[MPROPDEF]
2311 for mpropdef in self.mpropdefs do
2312 # If the definition is not imported by the module, then skip
2313 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2314 # If the definition is not inherited by the type, then skip
2315 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2316 # Else, we keep it
2317 candidates.add(mpropdef)
2318 end
2319 # Fast track for only one candidate
2320 if candidates.length <= 1 then
2321 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2322 return candidates
2323 end
2324
2325 mmodule.linearize_mpropdefs(candidates)
2326 candidates = candidates.reversed
2327 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2328 return candidates
2329 end
2330
2331 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2332
2333 redef var is_test is lazy do return intro.is_test
2334
2335 # Does self have the `before` annotation?
2336 var is_before: Bool is lazy do return intro.is_before
2337
2338 # Does self have the `before_all` annotation?
2339 var is_before_all: Bool is lazy do return intro.is_before_all
2340
2341 # Does self have the `after` annotation?
2342 var is_after: Bool is lazy do return intro.is_after
2343
2344 # Does self have the `after_all` annotation?
2345 var is_after_all: Bool is lazy do return intro.is_after_all
2346 end
2347
2348 # A global method
2349 class MMethod
2350 super MProperty
2351
2352 redef type MPROPDEF: MMethodDef
2353
2354 # Is the property defined at the top_level of the module?
2355 # Currently such a property are stored in `Object`
2356 var is_toplevel: Bool = false is writable
2357
2358 # Is the property a constructor?
2359 # Warning, this property can be inherited by subclasses with or without being a constructor
2360 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
2361 var is_init: Bool = false is writable
2362
2363 # The constructor is a (the) root init with empty signature but a set of initializers
2364 var is_root_init: Bool = false is writable
2365
2366 # Is the property a 'new' constructor?
2367 var is_new: Bool = false is writable
2368
2369 # Is the property a legal constructor for a given class?
2370 # As usual, visibility is not considered.
2371 # FIXME not implemented
2372 fun is_init_for(mclass: MClass): Bool
2373 do
2374 return self.is_init
2375 end
2376
2377 # A specific method that is safe to call on null.
2378 # Currently, only `==`, `!=` and `is_same_instance` are safe
2379 fun is_null_safe: Bool do return name == "==" or name == "!=" or name == "is_same_instance"
2380
2381 # Is this method a getter (auto or not)?
2382 #
2383 # See `getter_for`.
2384 fun is_getter: Bool do return getter_for != null
2385
2386 # The attribute this getter is for
2387 #
2388 # Return `null` is this method is not a getter.
2389 var getter_for: nullable MAttribute = null is writable
2390
2391 # Is this method a setter (auto or not)?
2392 #
2393 # See `setter_for`.
2394 fun is_setter: Bool do return setter_for != null
2395
2396 # The attribute this setter is for
2397 #
2398 # Return `null` is this method is not a setter.
2399 var setter_for: nullable MAttribute = null is writable
2400
2401 # Is this method a getter or a setter?
2402 fun is_accessor: Bool do return is_getter or is_setter
2403 end
2404
2405 # A global attribute
2406 class MAttribute
2407 super MProperty
2408
2409 redef type MPROPDEF: MAttributeDef
2410
2411 # Does this attribute have a getter (auto or not)?
2412 #
2413 # See `getter`.
2414 fun has_getter: Bool do return getter != null
2415
2416 # The getter of this attribute (if any)
2417 var getter: nullable MProperty = null is writable
2418
2419 # Does this attribute have a setter (auto or not)?
2420 #
2421 # See `setter`.
2422 fun has_setter: Bool do return setter != null
2423
2424 # The setter of this attribute (if any)
2425 var setter: nullable MProperty = null is writable
2426 end
2427
2428 # A global virtual type
2429 class MVirtualTypeProp
2430 super MProperty
2431
2432 redef type MPROPDEF: MVirtualTypeDef
2433
2434 # The formal type associated to the virtual type property
2435 var mvirtualtype = new MVirtualType(self)
2436
2437 # Is `self` the special virtual type `SELF`?
2438 var is_selftype: Bool is lazy do return name == "SELF"
2439 end
2440
2441 # A definition of a property (local property)
2442 #
2443 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
2444 # specific class definition (which belong to a specific module)
2445 abstract class MPropDef
2446 super MEntity
2447
2448 # The associated `MProperty` subclass.
2449 # the two specialization hierarchy are symmetric
2450 type MPROPERTY: MProperty
2451
2452 # Self class
2453 type MPROPDEF: MPropDef
2454
2455 # The class definition where the property definition is
2456 var mclassdef: MClassDef
2457
2458 # The associated global property
2459 var mproperty: MPROPERTY
2460
2461 redef var location
2462
2463 redef fun visibility do return mproperty.visibility
2464
2465 init
2466 do
2467 mclassdef.mpropdefs.add(self)
2468 mproperty.mpropdefs.add(self)
2469 mclassdef.mpropdefs_by_property[mproperty] = self
2470 if mproperty.intro_mclassdef == mclassdef then
2471 assert not isset mproperty._intro
2472 mproperty.intro = self
2473 end
2474 self.to_s = "{mclassdef}${mproperty}"
2475 end
2476
2477 # Actually the name of the `mproperty`
2478 redef fun name do return mproperty.name
2479
2480 # The full-name of mpropdefs combine the information about the `classdef` and the `mproperty`.
2481 #
2482 # Therefore the combination of identifiers is awful,
2483 # the worst case being
2484 #
2485 # * a property "p::m::A::x"
2486 # * redefined in a refinement of a class "q::n::B"
2487 # * in a module "r::o"
2488 # * so "r::o$q::n::B$p::m::A::x"
2489 #
2490 # Fortunately, the full-name is simplified when entities are repeated.
2491 # For the previous case, the simplest form is "p$A$x".
2492 redef var full_name is lazy do
2493 var res = new FlatBuffer
2494
2495 # The first part is the mclassdef. Worst case is "r::o$q::n::B"
2496 res.append mclassdef.full_name
2497
2498 res.append "$"
2499
2500 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2501 # intro are unambiguous in a class
2502 res.append name
2503 else
2504 # Just try to simplify each part
2505 if mclassdef.mmodule.mpackage != mproperty.intro_mclassdef.mmodule.mpackage then
2506 # precise "p::m" only if "p" != "r"
2507 res.append mproperty.intro_mclassdef.mmodule.namespace_for(mproperty.visibility)
2508 res.append "::"
2509 else if mproperty.visibility <= private_visibility then
2510 # Same package ("p"=="q"), but private visibility,
2511 # does the module part ("::m") need to be displayed
2512 if mclassdef.mmodule.namespace_for(mclassdef.mclass.visibility) != mproperty.intro_mclassdef.mmodule.mpackage then
2513 res.append "::"
2514 res.append mproperty.intro_mclassdef.mmodule.name
2515 res.append "::"
2516 end
2517 end
2518 # precise "B" because it is not the same class than "A"
2519 res.append mproperty.intro_mclassdef.name
2520 res.append "::"
2521 # Always use the property name "x"
2522 res.append mproperty.name
2523 end
2524 return res.to_s
2525 end
2526
2527 redef var c_name is lazy do
2528 var res = new FlatBuffer
2529 res.append mclassdef.c_name
2530 res.append "___"
2531 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2532 res.append name.to_cmangle
2533 else
2534 if mclassdef.mmodule != mproperty.intro_mclassdef.mmodule then
2535 res.append mproperty.intro_mclassdef.mmodule.c_name
2536 res.append "__"
2537 end
2538 res.append mproperty.intro_mclassdef.name.to_cmangle
2539 res.append "__"
2540 res.append mproperty.name.to_cmangle
2541 end
2542 return res.to_s
2543 end
2544
2545 redef fun model do return mclassdef.model
2546
2547 # Internal name combining the module, the class and the property
2548 # Example: "mymodule$MyClass$mymethod"
2549 redef var to_s is noinit
2550
2551 # Is self the definition that introduce the property?
2552 fun is_intro: Bool do return isset mproperty._intro and mproperty.intro == self
2553
2554 # Return the next definition in linearization of `mtype`.
2555 #
2556 # This method is used to determine what method is called by a super.
2557 #
2558 # REQUIRE: `not mtype.need_anchor`
2559 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
2560 do
2561 assert not mtype.need_anchor
2562
2563 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
2564 var i = mpropdefs.iterator
2565 while i.is_ok and i.item != self do i.next
2566 assert has_property: i.is_ok
2567 i.next
2568 assert has_next_property: i.is_ok
2569 return i.item
2570 end
2571
2572 redef fun mdoc_or_fallback do return mdoc or else mproperty.mdoc_or_fallback
2573
2574 # Does self have the `before` annotation?
2575 var is_before = false is writable
2576
2577 # Does self have the `before_all` annotation?
2578 var is_before_all = false is writable
2579
2580 # Does self have the `after` annotation?
2581 var is_after = false is writable
2582
2583 # Does self have the `after_all` annotation?
2584 var is_after_all = false is writable
2585 end
2586
2587 # A local definition of a method
2588 class MMethodDef
2589 super MPropDef
2590
2591 redef type MPROPERTY: MMethod
2592 redef type MPROPDEF: MMethodDef
2593
2594 # The signature attached to the property definition
2595 var msignature: nullable MSignature = null is writable
2596
2597 # The signature attached to the `new` call on a root-init
2598 # This is a concatenation of the signatures of the initializers
2599 #
2600 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2601 var new_msignature: nullable MSignature = null is writable
2602
2603 # List of initialisers to call in root-inits
2604 #
2605 # They could be setters or attributes
2606 #
2607 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2608 var initializers = new Array[MProperty]
2609
2610 # Is the method definition abstract?
2611 var is_abstract: Bool = false is writable
2612
2613 # Is the method definition intern?
2614 var is_intern = false is writable
2615
2616 # Is the method definition extern?
2617 var is_extern = false is writable
2618
2619 # An optional constant value returned in functions.
2620 #
2621 # Only some specific primitife value are accepted by engines.
2622 # Is used when there is no better implementation available.
2623 #
2624 # Currently used only for the implementation of the `--define`
2625 # command-line option.
2626 # SEE: module `mixin`.
2627 var constant_value: nullable Object = null is writable
2628 end
2629
2630 # A local definition of an attribute
2631 class MAttributeDef
2632 super MPropDef
2633
2634 redef type MPROPERTY: MAttribute
2635 redef type MPROPDEF: MAttributeDef
2636
2637 # The static type of the attribute
2638 var static_mtype: nullable MType = null is writable
2639 end
2640
2641 # A local definition of a virtual type
2642 class MVirtualTypeDef
2643 super MPropDef
2644
2645 redef type MPROPERTY: MVirtualTypeProp
2646 redef type MPROPDEF: MVirtualTypeDef
2647
2648 # The bound of the virtual type
2649 var bound: nullable MType = null is writable
2650
2651 # Is the bound fixed?
2652 var is_fixed = false is writable
2653 end
2654
2655 # A kind of class.
2656 #
2657 # * `abstract_kind`
2658 # * `concrete_kind`
2659 # * `interface_kind`
2660 # * `enum_kind`
2661 # * `extern_kind`
2662 #
2663 # Note this class is basically an enum.
2664 # FIXME: use a real enum once user-defined enums are available
2665 class MClassKind
2666 redef var to_s
2667
2668 # Can a class of kind `self` define a membership predicate?
2669 var can_customize_isa: Bool
2670
2671 # Can a class of kind `self` define a constructor?
2672 var can_init: Bool
2673
2674 # Is a constructor required?
2675 var need_init: Bool
2676
2677 # TODO: private init because enumeration.
2678
2679 # Can a class of kind `self` specializes a class of kind `other`?
2680 fun can_specialize(other: MClassKind): Bool
2681 do
2682 if other == interface_kind then
2683 # everybody can specialize interfaces
2684 return true
2685 else if self == interface_kind or self == enum_kind then
2686 # no other case for interfaces and enums
2687 return false
2688 else if self == subset_kind then
2689 # A subset may specialize anything, except another subset.
2690 # TODO: Allow sub-subsets once we can handle them.
2691 return other != subset_kind
2692 else if self == extern_kind then
2693 # only compatible with themselves
2694 return self == other
2695 else
2696 # assert self == abstract_kind or self == concrete_kind
2697 return other == abstract_kind or other == concrete_kind
2698 end
2699 end
2700 end
2701
2702 # The class kind `abstract`
2703 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", false, true, true)
2704 # The class kind `concrete`
2705 fun concrete_kind: MClassKind do return once new MClassKind("class", false, true, true)
2706 # The class kind `interface`
2707 fun interface_kind: MClassKind do return once new MClassKind("interface", false, true, false)
2708 # The class kind `enum`
2709 fun enum_kind: MClassKind do return once new MClassKind("enum", false, true, false)
2710 # The class kind `extern`
2711 fun extern_kind: MClassKind do return once new MClassKind("extern class", false, true, false)
2712 # The class kind `subset`
2713 fun subset_kind: MClassKind do return once new MClassKind("subset", true, false, false)
2714
2715 # A standalone pre-constructed model used to test various model-related methods.
2716 #
2717 # When instantiated, a standalone model is already filled with entities that are exposed as attributes.
2718 class ModelStandalone
2719 super Model
2720
2721 redef var location = new Location.opaque_file("ModelStandalone")
2722
2723 # The first module
2724 var mmodule0 = new MModule(self, null, "module0", location)
2725
2726 # The root Object class
2727 var mclass_o = new MClass(mmodule0, "Object", location, null, interface_kind, public_visibility)
2728
2729 # The introduction of `mclass_o`
2730 var mclassdef_o = new MClassDef(mmodule0, mclass_o.mclass_type, location)
2731 end
2732
2733 # A standalone model with the common class diamond-hierarchy ABCD
2734 class ModelDiamond
2735 super ModelStandalone
2736
2737 # A, a simple subclass of Object
2738 var mclass_a = new MClass(mmodule0, "A", location, null, concrete_kind, public_visibility)
2739
2740 # The introduction of `mclass_a`
2741 var mclassdef_a: MClassDef do
2742 var res = new MClassDef(mmodule0, mclass_a.mclass_type, location)
2743 res.set_supertypes([mclass_o.mclass_type])
2744 res.add_in_hierarchy
2745 return res
2746 end
2747
2748 # B, a subclass of A (`mclass_a`)
2749 var mclass_b = new MClass(mmodule0, "B", location, null, concrete_kind, public_visibility)
2750
2751 # The introduction of `mclass_b`
2752 var mclassdef_b: MClassDef do
2753 var res = new MClassDef(mmodule0, mclass_b.mclass_type, location)
2754 res.set_supertypes([mclass_a.mclass_type])
2755 res.add_in_hierarchy
2756 return res
2757 end
2758
2759 # C, another subclass of A (`mclass_a`)
2760 var mclass_c = new MClass(mmodule0, "C", location, null, concrete_kind, public_visibility)
2761
2762 # The introduction of `mclass_c`
2763 var mclassdef_c: MClassDef do
2764 var res = new MClassDef(mmodule0, mclass_c.mclass_type, location)
2765 res.set_supertypes([mclass_a.mclass_type])
2766 res.add_in_hierarchy
2767 return res
2768 end
2769
2770 # D, a multiple subclass of B (`mclass_b`) and C (`mclass_c`)
2771 var mclass_d = new MClass(mmodule0, "D", location, null, concrete_kind, public_visibility)
2772
2773 # The introduction of `mclass_d`
2774 var mclassdef_d: MClassDef do
2775 var res = new MClassDef(mmodule0, mclass_d.mclass_type, location)
2776 res.set_supertypes([mclass_b.mclass_type, mclass_c.mclass_type])
2777 res.add_in_hierarchy
2778 return res
2779 end
2780 end