model: introduce `MVirtualType::is_fixed` used indirectly by is_subtype
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import poset
29 import location
30 import mmodule
31 import mdoc
32 import ordered_tree
33 private import more_collections
34
35 redef class Model
36 # All known classes
37 var mclasses: Array[MClass] = new Array[MClass]
38
39 # All known properties
40 var mproperties: Array[MProperty] = new Array[MProperty]
41
42 # Hierarchy of class definition.
43 #
44 # Each classdef is associated with its super-classdefs in regard to
45 # its module of definition.
46 var mclassdef_hierarchy: POSet[MClassDef] = new POSet[MClassDef]
47
48 # Class-type hierarchy restricted to the introduction.
49 #
50 # The idea is that what is true on introduction is always true whatever
51 # the module considered.
52 # Therefore, this hierarchy is used for a fast positive subtype check.
53 #
54 # This poset will evolve in a monotonous way:
55 # * Two non connected nodes will remain unconnected
56 # * New nodes can appear with new edges
57 private var intro_mtype_specialization_hierarchy: POSet[MClassType] = new POSet[MClassType]
58
59 # Global overlapped class-type hierarchy.
60 # The hierarchy when all modules are combined.
61 # Therefore, this hierarchy is used for a fast negative subtype check.
62 #
63 # This poset will evolve in an anarchic way. Loops can even be created.
64 #
65 # FIXME decide what to do on loops
66 private var full_mtype_specialization_hierarchy: POSet[MClassType] = new POSet[MClassType]
67
68 # Collections of classes grouped by their short name
69 private var mclasses_by_name: MultiHashMap[String, MClass] = new MultiHashMap[String, MClass]
70
71 # Return all class named `name`.
72 #
73 # If such a class does not exist, null is returned
74 # (instead of an empty array)
75 #
76 # Visibility or modules are not considered
77 fun get_mclasses_by_name(name: String): nullable Array[MClass]
78 do
79 if mclasses_by_name.has_key(name) then
80 return mclasses_by_name[name]
81 else
82 return null
83 end
84 end
85
86 # Collections of properties grouped by their short name
87 private var mproperties_by_name: MultiHashMap[String, MProperty] = new MultiHashMap[String, MProperty]
88
89 # Return all properties named `name`.
90 #
91 # If such a property does not exist, null is returned
92 # (instead of an empty array)
93 #
94 # Visibility or modules are not considered
95 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
96 do
97 if not mproperties_by_name.has_key(name) then
98 return null
99 else
100 return mproperties_by_name[name]
101 end
102 end
103
104 # The only null type
105 var null_type: MNullType = new MNullType(self)
106
107 # Build an ordered tree with from `concerns`
108 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
109 var seen = new HashSet[MConcern]
110 var res = new ConcernsTree
111
112 var todo = new Array[MConcern]
113 todo.add_all mconcerns
114
115 while not todo.is_empty do
116 var c = todo.pop
117 if seen.has(c) then continue
118 var pc = c.parent_concern
119 if pc == null then
120 res.add(null, c)
121 else
122 res.add(pc, c)
123 todo.add(pc)
124 end
125 seen.add(c)
126 end
127
128 return res
129 end
130 end
131
132 # An OrderedTree that can be easily refined for display purposes
133 class ConcernsTree
134 super OrderedTree[MConcern]
135 end
136
137 redef class MModule
138 # All the classes introduced in the module
139 var intro_mclasses: Array[MClass] = new Array[MClass]
140
141 # All the class definitions of the module
142 # (introduction and refinement)
143 var mclassdefs: Array[MClassDef] = new Array[MClassDef]
144
145 # Does the current module has a given class `mclass`?
146 # Return true if the mmodule introduces, refines or imports a class.
147 # Visibility is not considered.
148 fun has_mclass(mclass: MClass): Bool
149 do
150 return self.in_importation <= mclass.intro_mmodule
151 end
152
153 # Full hierarchy of introduced ans imported classes.
154 #
155 # Create a new hierarchy got by flattening the classes for the module
156 # and its imported modules.
157 # Visibility is not considered.
158 #
159 # Note: this function is expensive and is usually used for the main
160 # module of a program only. Do not use it to do you own subtype
161 # functions.
162 fun flatten_mclass_hierarchy: POSet[MClass]
163 do
164 var res = self.flatten_mclass_hierarchy_cache
165 if res != null then return res
166 res = new POSet[MClass]
167 for m in self.in_importation.greaters do
168 for cd in m.mclassdefs do
169 var c = cd.mclass
170 res.add_node(c)
171 for s in cd.supertypes do
172 res.add_edge(c, s.mclass)
173 end
174 end
175 end
176 self.flatten_mclass_hierarchy_cache = res
177 return res
178 end
179
180 # Sort a given array of classes using the linerarization order of the module
181 # The most general is first, the most specific is last
182 fun linearize_mclasses(mclasses: Array[MClass])
183 do
184 self.flatten_mclass_hierarchy.sort(mclasses)
185 end
186
187 # Sort a given array of class definitions using the linerarization order of the module
188 # the refinement link is stronger than the specialisation link
189 # The most general is first, the most specific is last
190 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
191 do
192 var sorter = new MClassDefSorter(self)
193 sorter.sort(mclassdefs)
194 end
195
196 # Sort a given array of property definitions using the linerarization order of the module
197 # the refinement link is stronger than the specialisation link
198 # The most general is first, the most specific is last
199 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
200 do
201 var sorter = new MPropDefSorter(self)
202 sorter.sort(mpropdefs)
203 end
204
205 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
206
207 # The primitive type `Object`, the root of the class hierarchy
208 fun object_type: MClassType
209 do
210 var res = self.object_type_cache
211 if res != null then return res
212 res = self.get_primitive_class("Object").mclass_type
213 self.object_type_cache = res
214 return res
215 end
216
217 private var object_type_cache: nullable MClassType
218
219 # The primitive type `Bool`
220 fun bool_type: MClassType
221 do
222 var res = self.bool_type_cache
223 if res != null then return res
224 res = self.get_primitive_class("Bool").mclass_type
225 self.bool_type_cache = res
226 return res
227 end
228
229 private var bool_type_cache: nullable MClassType
230
231 # The primitive type `Sys`, the main type of the program, if any
232 fun sys_type: nullable MClassType
233 do
234 var clas = self.model.get_mclasses_by_name("Sys")
235 if clas == null then return null
236 return get_primitive_class("Sys").mclass_type
237 end
238
239 # Force to get the primitive class named `name` or abort
240 fun get_primitive_class(name: String): MClass
241 do
242 var cla = self.model.get_mclasses_by_name(name)
243 if cla == null then
244 if name == "Bool" then
245 var c = new MClass(self, name, 0, enum_kind, public_visibility)
246 var cladef = new MClassDef(self, c.mclass_type, new Location(null, 0,0,0,0), new Array[String])
247 return c
248 end
249 print("Fatal Error: no primitive class {name}")
250 exit(1)
251 end
252 if cla.length != 1 then
253 var msg = "Fatal Error: more than one primitive class {name}:"
254 for c in cla do msg += " {c.full_name}"
255 print msg
256 exit(1)
257 end
258 return cla.first
259 end
260
261 # Try to get the primitive method named `name` on the type `recv`
262 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
263 do
264 var props = self.model.get_mproperties_by_name(name)
265 if props == null then return null
266 var res: nullable MMethod = null
267 for mprop in props do
268 assert mprop isa MMethod
269 var intro = mprop.intro_mclassdef
270 for mclassdef in recv.mclassdefs do
271 if not self.in_importation.greaters.has(mclassdef.mmodule) then continue
272 if not mclassdef.in_hierarchy.greaters.has(intro) then continue
273 if res == null then
274 res = mprop
275 else if res != mprop then
276 print("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
277 abort
278 end
279 end
280 end
281 return res
282 end
283 end
284
285 private class MClassDefSorter
286 super AbstractSorter[MClassDef]
287 var mmodule: MModule
288 redef fun compare(a, b)
289 do
290 var ca = a.mclass
291 var cb = b.mclass
292 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
293 return mmodule.model.mclassdef_hierarchy.compare(a, b)
294 end
295 end
296
297 private class MPropDefSorter
298 super AbstractSorter[MPropDef]
299 var mmodule: MModule
300 redef fun compare(pa, pb)
301 do
302 var a = pa.mclassdef
303 var b = pb.mclassdef
304 var ca = a.mclass
305 var cb = b.mclass
306 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
307 return mmodule.model.mclassdef_hierarchy.compare(a, b)
308 end
309 end
310
311 # A named class
312 #
313 # `MClass` are global to the model; it means that a `MClass` is not bound to a
314 # specific `MModule`.
315 #
316 # This characteristic helps the reasoning about classes in a program since a
317 # single `MClass` object always denote the same class.
318 #
319 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
320 # These do not really have properties nor belong to a hierarchy since the property and the
321 # hierarchy of a class depends of the refinement in the modules.
322 #
323 # Most services on classes require the precision of a module, and no one can asks what are
324 # the super-classes of a class nor what are properties of a class without precising what is
325 # the module considered.
326 #
327 # For instance, during the typing of a source-file, the module considered is the module of the file.
328 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
329 # *is the method `foo` exists in the class `Bar` in the current module?*
330 #
331 # During some global analysis, the module considered may be the main module of the program.
332 class MClass
333 super MEntity
334
335 # The module that introduce the class
336 # While classes are not bound to a specific module,
337 # the introducing module is used for naming an visibility
338 var intro_mmodule: MModule
339
340 # The short name of the class
341 # In Nit, the name of a class cannot evolve in refinements
342 redef var name: String
343
344 # The canonical name of the class
345 # Example: `"owner::module::MyClass"`
346 fun full_name: String
347 do
348 return "{self.intro_mmodule.full_name}::{name}"
349 end
350
351 # The number of generic formal parameters
352 # 0 if the class is not generic
353 var arity: Int
354
355 # The kind of the class (interface, abstract class, etc.)
356 # In Nit, the kind of a class cannot evolve in refinements
357 var kind: MClassKind
358
359 # The visibility of the class
360 # In Nit, the visibility of a class cannot evolve in refinements
361 var visibility: MVisibility
362
363 init(intro_mmodule: MModule, name: String, arity: Int, kind: MClassKind, visibility: MVisibility)
364 do
365 self.intro_mmodule = intro_mmodule
366 self.name = name
367 self.arity = arity
368 self.kind = kind
369 self.visibility = visibility
370 intro_mmodule.intro_mclasses.add(self)
371 var model = intro_mmodule.model
372 model.mclasses_by_name.add_one(name, self)
373 model.mclasses.add(self)
374
375 # Create the formal parameter types
376 if arity > 0 then
377 var mparametertypes = new Array[MParameterType]
378 for i in [0..arity[ do
379 var mparametertype = new MParameterType(self, i)
380 mparametertypes.add(mparametertype)
381 end
382 var mclass_type = new MGenericType(self, mparametertypes)
383 self.mclass_type = mclass_type
384 self.get_mtype_cache.add(mclass_type)
385 else
386 self.mclass_type = new MClassType(self)
387 end
388 end
389
390 redef fun model do return intro_mmodule.model
391
392 # All class definitions (introduction and refinements)
393 var mclassdefs: Array[MClassDef] = new Array[MClassDef]
394
395 # Alias for `name`
396 redef fun to_s do return self.name
397
398 # The definition that introduced the class
399 # Warning: the introduction is the first `MClassDef` object associated
400 # to self. If self is just created without having any associated
401 # definition, this method will abort
402 fun intro: MClassDef
403 do
404 assert has_a_first_definition: not mclassdefs.is_empty
405 return mclassdefs.first
406 end
407
408 # Return the class `self` in the class hierarchy of the module `mmodule`.
409 #
410 # SEE: `MModule::flatten_mclass_hierarchy`
411 # REQUIRE: `mmodule.has_mclass(self)`
412 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
413 do
414 return mmodule.flatten_mclass_hierarchy[self]
415 end
416
417 # The principal static type of the class.
418 #
419 # For non-generic class, mclass_type is the only `MClassType` based
420 # on self.
421 #
422 # For a generic class, the arguments are the formal parameters.
423 # i.e.: for the class Array[E:Object], the `mclass_type` is Array[E].
424 # If you want Array[Object] the see `MClassDef::bound_mtype`
425 #
426 # For generic classes, the mclass_type is also the way to get a formal
427 # generic parameter type.
428 #
429 # To get other types based on a generic class, see `get_mtype`.
430 #
431 # ENSURE: `mclass_type.mclass == self`
432 var mclass_type: MClassType
433
434 # Return a generic type based on the class
435 # Is the class is not generic, then the result is `mclass_type`
436 #
437 # REQUIRE: `mtype_arguments.length == self.arity`
438 fun get_mtype(mtype_arguments: Array[MType]): MClassType
439 do
440 assert mtype_arguments.length == self.arity
441 if self.arity == 0 then return self.mclass_type
442 for t in self.get_mtype_cache do
443 if t.arguments == mtype_arguments then
444 return t
445 end
446 end
447 var res = new MGenericType(self, mtype_arguments)
448 self.get_mtype_cache.add res
449 return res
450 end
451
452 private var get_mtype_cache: Array[MGenericType] = new Array[MGenericType]
453 end
454
455
456 # A definition (an introduction or a refinement) of a class in a module
457 #
458 # A `MClassDef` is associated with an explicit (or almost) definition of a
459 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
460 # a specific class and a specific module, and contains declarations like super-classes
461 # or properties.
462 #
463 # It is the class definitions that are the backbone of most things in the model:
464 # ClassDefs are defined with regard with other classdefs.
465 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
466 #
467 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
468 class MClassDef
469 super MEntity
470
471 # The module where the definition is
472 var mmodule: MModule
473
474 # The associated `MClass`
475 var mclass: MClass
476
477 # The bounded type associated to the mclassdef
478 #
479 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
480 # are the same type.
481 #
482 # Example:
483 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
484 # If you want Array[E], then see `mclass.mclass_type`
485 #
486 # ENSURE: `bound_mtype.mclass == self.mclass`
487 var bound_mtype: MClassType
488
489 # Name of each formal generic parameter (in order of declaration)
490 var parameter_names: Array[String]
491
492 # The origin of the definition
493 var location: Location
494
495 # Internal name combining the module and the class
496 # Example: "mymodule#MyClass"
497 redef var to_s: String
498
499 init(mmodule: MModule, bound_mtype: MClassType, location: Location, parameter_names: Array[String])
500 do
501 assert bound_mtype.mclass.arity == parameter_names.length
502 self.bound_mtype = bound_mtype
503 self.mmodule = mmodule
504 self.mclass = bound_mtype.mclass
505 self.location = location
506 mmodule.mclassdefs.add(self)
507 mclass.mclassdefs.add(self)
508 self.parameter_names = parameter_names
509 self.to_s = "{mmodule}#{mclass}"
510 end
511
512 # Actually the name of the `mclass`
513 redef fun name do return mclass.name
514
515 redef fun model do return mmodule.model
516
517 # All declared super-types
518 # FIXME: quite ugly but not better idea yet
519 var supertypes: Array[MClassType] = new Array[MClassType]
520
521 # Register some super-types for the class (ie "super SomeType")
522 #
523 # The hierarchy must not already be set
524 # REQUIRE: `self.in_hierarchy == null`
525 fun set_supertypes(supertypes: Array[MClassType])
526 do
527 assert unique_invocation: self.in_hierarchy == null
528 var mmodule = self.mmodule
529 var model = mmodule.model
530 var mtype = self.bound_mtype
531
532 for supertype in supertypes do
533 self.supertypes.add(supertype)
534
535 # Register in full_type_specialization_hierarchy
536 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
537 # Register in intro_type_specialization_hierarchy
538 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
539 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
540 end
541 end
542
543 end
544
545 # Collect the super-types (set by set_supertypes) to build the hierarchy
546 #
547 # This function can only invoked once by class
548 # REQUIRE: `self.in_hierarchy == null`
549 # ENSURE: `self.in_hierarchy != null`
550 fun add_in_hierarchy
551 do
552 assert unique_invocation: self.in_hierarchy == null
553 var model = mmodule.model
554 var res = model.mclassdef_hierarchy.add_node(self)
555 self.in_hierarchy = res
556 var mtype = self.bound_mtype
557
558 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
559 # The simpliest way is to attach it to collect_mclassdefs
560 for mclassdef in mtype.collect_mclassdefs(mmodule) do
561 res.poset.add_edge(self, mclassdef)
562 end
563 end
564
565 # The view of the class definition in `mclassdef_hierarchy`
566 var in_hierarchy: nullable POSetElement[MClassDef] = null
567
568 # Is the definition the one that introduced `mclass`?
569 fun is_intro: Bool do return mclass.intro == self
570
571 # All properties introduced by the classdef
572 var intro_mproperties: Array[MProperty] = new Array[MProperty]
573
574 # All property definitions in the class (introductions and redefinitions)
575 var mpropdefs: Array[MPropDef] = new Array[MPropDef]
576 end
577
578 # A global static type
579 #
580 # MType are global to the model; it means that a `MType` is not bound to a
581 # specific `MModule`.
582 # This characteristic helps the reasoning about static types in a program
583 # since a single `MType` object always denote the same type.
584 #
585 # However, because a `MType` is global, it does not really have properties
586 # nor have subtypes to a hierarchy since the property and the class hierarchy
587 # depends of a module.
588 # Moreover, virtual types an formal generic parameter types also depends on
589 # a receiver to have sense.
590 #
591 # Therefore, most method of the types require a module and an anchor.
592 # The module is used to know what are the classes and the specialization
593 # links.
594 # The anchor is used to know what is the bound of the virtual types and formal
595 # generic parameter types.
596 #
597 # MType are not directly usable to get properties. See the `anchor_to` method
598 # and the `MClassType` class.
599 #
600 # FIXME: the order of the parameters is not the best. We mus pick on from:
601 # * foo(mmodule, anchor, othertype)
602 # * foo(othertype, anchor, mmodule)
603 # * foo(anchor, mmodule, othertype)
604 # * foo(othertype, mmodule, anchor)
605 abstract class MType
606 super MEntity
607
608 redef fun name do return to_s
609
610 # Return true if `self` is an subtype of `sup`.
611 # The typing is done using the standard typing policy of Nit.
612 #
613 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
614 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
615 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
616 do
617 var sub = self
618 if sub == sup then return true
619 if anchor == null then
620 assert not sub.need_anchor
621 assert not sup.need_anchor
622 else
623 assert sub.can_resolve_for(anchor, null, mmodule)
624 assert sup.can_resolve_for(anchor, null, mmodule)
625 end
626
627 # First, resolve the formal types to a common version in the receiver
628 # The trick here is that fixed formal type will be associed to the bound
629 # And unfixed formal types will be associed to a canonical formal type.
630 if sub isa MParameterType or sub isa MVirtualType then
631 assert anchor != null
632 sub = sub.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, false)
633 end
634 if sup isa MParameterType or sup isa MVirtualType then
635 assert anchor != null
636 sup = sup.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, false)
637 end
638
639 # Does `sup` accept null or not?
640 # Discard the nullable marker if it exists
641 var sup_accept_null = false
642 if sup isa MNullableType then
643 sup_accept_null = true
644 sup = sup.mtype
645 else if sup isa MNullType then
646 sup_accept_null = true
647 end
648
649 # Can `sub` provide null or not?
650 # Thus we can match with `sup_accept_null`
651 # Also discard the nullable marker if it exists
652 if sub isa MNullableType then
653 if not sup_accept_null then return false
654 sub = sub.mtype
655 else if sub isa MNullType then
656 return sup_accept_null
657 end
658 # Now the case of direct null and nullable is over.
659
660 # A unfixed formal type can only accept itself
661 if sup isa MParameterType or sup isa MVirtualType then
662 return sub == sup
663 end
664
665 # If `sub` is a formal type, then it is accepted if its bound is accepted
666 if sub isa MParameterType or sub isa MVirtualType then
667 assert anchor != null
668 sub = sub.anchor_to(mmodule, anchor)
669
670 # Manage the second layer of null/nullable
671 if sub isa MNullableType then
672 if not sup_accept_null then return false
673 sub = sub.mtype
674 else if sub isa MNullType then
675 return sup_accept_null
676 end
677 end
678
679 assert sub isa MClassType # It is the only remaining type
680
681 if sup isa MNullType then
682 # `sup` accepts only null
683 return false
684 end
685
686 assert sup isa MClassType # It is the only remaining type
687
688 # Now both are MClassType, we need to dig
689
690 if sub == sup then return true
691
692 if anchor == null then anchor = sub # UGLY: any anchor will work
693 var resolved_sub = sub.anchor_to(mmodule, anchor)
694 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
695 if res == false then return false
696 if not sup isa MGenericType then return true
697 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
698 assert sub2.mclass == sup.mclass
699 for i in [0..sup.mclass.arity[ do
700 var sub_arg = sub2.arguments[i]
701 var sup_arg = sup.arguments[i]
702 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
703 if res == false then return false
704 end
705 return true
706 end
707
708 # The base class type on which self is based
709 #
710 # This base type is used to get property (an internally to perform
711 # unsafe type comparison).
712 #
713 # Beware: some types (like null) are not based on a class thus this
714 # method will crash
715 #
716 # Basically, this function transform the virtual types and parameter
717 # types to their bounds.
718 #
719 # Example
720 # class A end
721 # class B super A end
722 # class X end
723 # class Y super X end
724 # class G[T: A]
725 # type U: X
726 # end
727 # class H
728 # super G[B]
729 # redef type U: Y
730 # end
731 # Map[T,U] anchor_to H #-> Map[B,Y]
732 #
733 # Explanation of the example:
734 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
735 # because "redef type U: Y". Therefore, Map[T, U] is bound to
736 # Map[B, Y]
737 #
738 # ENSURE: `not self.need_anchor implies result == self`
739 # ENSURE: `not result.need_anchor`
740 fun anchor_to(mmodule: MModule, anchor: MClassType): MType
741 do
742 if not need_anchor then return self
743 assert not anchor.need_anchor
744 # Just resolve to the anchor and clear all the virtual types
745 var res = self.resolve_for(anchor, null, mmodule, true)
746 assert not res.need_anchor
747 return res
748 end
749
750 # Does `self` contain a virtual type or a formal generic parameter type?
751 # In order to remove those types, you usually want to use `anchor_to`.
752 fun need_anchor: Bool do return true
753
754 # Return the supertype when adapted to a class.
755 #
756 # In Nit, for each super-class of a type, there is a equivalent super-type.
757 #
758 # Example:
759 # class G[T, U] end
760 # class H[V] super G[V, Bool] end
761 # H[Int] supertype_to G #-> G[Int, Bool]
762 #
763 # REQUIRE: `super_mclass` is a super-class of `self`
764 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
765 # ENSURE: `result.mclass = super_mclass`
766 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
767 do
768 if super_mclass.arity == 0 then return super_mclass.mclass_type
769 if self isa MClassType and self.mclass == super_mclass then return self
770 var resolved_self
771 if self.need_anchor then
772 assert anchor != null
773 resolved_self = self.anchor_to(mmodule, anchor)
774 else
775 resolved_self = self
776 end
777 var supertypes = resolved_self.collect_mtypes(mmodule)
778 for supertype in supertypes do
779 if supertype.mclass == super_mclass then
780 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
781 return supertype.resolve_for(self, anchor, mmodule, false)
782 end
783 end
784 abort
785 end
786
787 # Replace formals generic types in self with resolved values in `mtype`
788 # If `cleanup_virtual` is true, then virtual types are also replaced
789 # with their bounds.
790 #
791 # This function returns self if `need_anchor` is false.
792 #
793 # ## Example 1
794 #
795 # class G[E] end
796 # class H[F] super G[F] end
797 # class X[Z] end
798 #
799 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
800 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
801 #
802 # Explanation of the example:
803 # * Array[E].need_anchor is true because there is a formal generic parameter type E
804 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
805 # * Since "H[F] super G[F]", E is in fact F for H
806 # * More specifically, in H[Int], E is Int
807 # * So, in H[Int], Array[E] is Array[Int]
808 #
809 # This function is mainly used to inherit a signature.
810 # Because, unlike `anchor_to`, we do not want a full resolution of
811 # a type but only an adapted version of it.
812 #
813 # ## Example 2
814 #
815 # class A[E]
816 # fun foo(e:E):E is abstract
817 # end
818 # class B super A[Int] end
819 #
820 # The signature on foo is (e: E): E
821 # If we resolve the signature for B, we get (e:Int):Int
822 #
823 # ## Example 3
824 #
825 # class A[E]
826 # fun foo(e:E) is abstract
827 # end
828 # class B[F]
829 # var a: A[Array[F]]
830 # fun bar do a.foo(x) # <- x is here
831 # end
832 #
833 # The first question is: is foo available on `a`?
834 #
835 # The static type of a is `A[Array[F]]`, that is an open type.
836 # in order to find a method `foo`, whe must look at a resolved type.
837 #
838 # A[Array[F]].anchor_to(B[nullable Object]) #-> A[Array[nullable Object]]
839 #
840 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
841 #
842 # The next question is: what is the accepted types for `x`?
843 #
844 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
845 #
846 # E.resolve_for(A[Array[F]],B[nullable Object]) #-> Array[F]
847 #
848 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
849 #
850 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
851 # two function instead of one seems also to be a bad idea.
852 #
853 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
854 # ENSURE: `not self.need_anchor implies result == self`
855 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
856
857 # Can the type be resolved?
858 #
859 # In order to resolve open types, the formal types must make sence.
860 #
861 # ## Example
862 #
863 # class A[E]
864 # end
865 # class B[F]
866 # end
867 #
868 # * E.can_resolve_for(A[Int]) #-> true, E make sense in A
869 # * E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
870 # * B[E].can_resolve_for(A[F], B[Object]) #-> true,
871 # B[E] is a red hearing only the E is important,
872 # E make sense in A
873 #
874 # REQUIRE: `anchor != null implies not anchor.need_anchor`
875 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
876 # ENSURE: `not self.need_anchor implies result == true`
877 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
878
879 # Return the nullable version of the type
880 # If the type is already nullable then self is returned
881 fun as_nullable: MType
882 do
883 var res = self.as_nullable_cache
884 if res != null then return res
885 res = new MNullableType(self)
886 self.as_nullable_cache = res
887 return res
888 end
889
890 private var as_nullable_cache: nullable MType = null
891
892
893 # The deph of the type seen as a tree.
894 #
895 # * A -> 1
896 # * G[A] -> 2
897 # * H[A, B] -> 2
898 # * H[G[A], B] -> 3
899 #
900 # Formal types have a depth of 1.
901 fun depth: Int
902 do
903 return 1
904 end
905
906 # The length of the type seen as a tree.
907 #
908 # * A -> 1
909 # * G[A] -> 2
910 # * H[A, B] -> 3
911 # * H[G[A], B] -> 4
912 #
913 # Formal types have a length of 1.
914 fun length: Int
915 do
916 return 1
917 end
918
919 # Compute all the classdefs inherited/imported.
920 # The returned set contains:
921 # * the class definitions from `mmodule` and its imported modules
922 # * the class definitions of this type and its super-types
923 #
924 # This function is used mainly internally.
925 #
926 # REQUIRE: `not self.need_anchor`
927 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
928
929 # Compute all the super-classes.
930 # This function is used mainly internally.
931 #
932 # REQUIRE: `not self.need_anchor`
933 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
934
935 # Compute all the declared super-types.
936 # Super-types are returned as declared in the classdefs (verbatim).
937 # This function is used mainly internally.
938 #
939 # REQUIRE: `not self.need_anchor`
940 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
941
942 # Is the property in self for a given module
943 # This method does not filter visibility or whatever
944 #
945 # REQUIRE: `not self.need_anchor`
946 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
947 do
948 assert not self.need_anchor
949 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
950 end
951 end
952
953 # A type based on a class.
954 #
955 # `MClassType` have properties (see `has_mproperty`).
956 class MClassType
957 super MType
958
959 # The associated class
960 var mclass: MClass
961
962 redef fun model do return self.mclass.intro_mmodule.model
963
964 private init(mclass: MClass)
965 do
966 self.mclass = mclass
967 end
968
969 # The formal arguments of the type
970 # ENSURE: `result.length == self.mclass.arity`
971 var arguments: Array[MType] = new Array[MType]
972
973 redef fun to_s do return mclass.to_s
974
975 redef fun need_anchor do return false
976
977 redef fun anchor_to(mmodule: MModule, anchor: MClassType): MClassType
978 do
979 return super.as(MClassType)
980 end
981
982 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
983
984 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
985
986 redef fun collect_mclassdefs(mmodule)
987 do
988 assert not self.need_anchor
989 var cache = self.collect_mclassdefs_cache
990 if not cache.has_key(mmodule) then
991 self.collect_things(mmodule)
992 end
993 return cache[mmodule]
994 end
995
996 redef fun collect_mclasses(mmodule)
997 do
998 assert not self.need_anchor
999 var cache = self.collect_mclasses_cache
1000 if not cache.has_key(mmodule) then
1001 self.collect_things(mmodule)
1002 end
1003 return cache[mmodule]
1004 end
1005
1006 redef fun collect_mtypes(mmodule)
1007 do
1008 assert not self.need_anchor
1009 var cache = self.collect_mtypes_cache
1010 if not cache.has_key(mmodule) then
1011 self.collect_things(mmodule)
1012 end
1013 return cache[mmodule]
1014 end
1015
1016 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1017 private fun collect_things(mmodule: MModule)
1018 do
1019 var res = new HashSet[MClassDef]
1020 var seen = new HashSet[MClass]
1021 var types = new HashSet[MClassType]
1022 seen.add(self.mclass)
1023 var todo = [self.mclass]
1024 while not todo.is_empty do
1025 var mclass = todo.pop
1026 #print "process {mclass}"
1027 for mclassdef in mclass.mclassdefs do
1028 if not mmodule.in_importation <= mclassdef.mmodule then continue
1029 #print " process {mclassdef}"
1030 res.add(mclassdef)
1031 for supertype in mclassdef.supertypes do
1032 types.add(supertype)
1033 var superclass = supertype.mclass
1034 if seen.has(superclass) then continue
1035 #print " add {superclass}"
1036 seen.add(superclass)
1037 todo.add(superclass)
1038 end
1039 end
1040 end
1041 collect_mclassdefs_cache[mmodule] = res
1042 collect_mclasses_cache[mmodule] = seen
1043 collect_mtypes_cache[mmodule] = types
1044 end
1045
1046 private var collect_mclassdefs_cache: HashMap[MModule, Set[MClassDef]] = new HashMap[MModule, Set[MClassDef]]
1047 private var collect_mclasses_cache: HashMap[MModule, Set[MClass]] = new HashMap[MModule, Set[MClass]]
1048 private var collect_mtypes_cache: HashMap[MModule, Set[MClassType]] = new HashMap[MModule, Set[MClassType]]
1049
1050 end
1051
1052 # A type based on a generic class.
1053 # A generic type a just a class with additional formal generic arguments.
1054 class MGenericType
1055 super MClassType
1056
1057 private init(mclass: MClass, arguments: Array[MType])
1058 do
1059 super(mclass)
1060 assert self.mclass.arity == arguments.length
1061 self.arguments = arguments
1062
1063 self.need_anchor = false
1064 for t in arguments do
1065 if t.need_anchor then
1066 self.need_anchor = true
1067 break
1068 end
1069 end
1070
1071 self.to_s = "{mclass}[{arguments.join(", ")}]"
1072 end
1073
1074 # Recursively print the type of the arguments within brackets.
1075 # Example: `"Map[String, List[Int]]"`
1076 redef var to_s: String
1077
1078 redef var need_anchor: Bool
1079
1080 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1081 do
1082 if not need_anchor then return self
1083 assert can_resolve_for(mtype, anchor, mmodule)
1084 var types = new Array[MType]
1085 for t in arguments do
1086 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1087 end
1088 return mclass.get_mtype(types)
1089 end
1090
1091 redef fun can_resolve_for(mtype, anchor, mmodule)
1092 do
1093 if not need_anchor then return true
1094 for t in arguments do
1095 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1096 end
1097 return true
1098 end
1099
1100
1101 redef fun depth
1102 do
1103 var dmax = 0
1104 for a in self.arguments do
1105 var d = a.depth
1106 if d > dmax then dmax = d
1107 end
1108 return dmax + 1
1109 end
1110
1111 redef fun length
1112 do
1113 var res = 1
1114 for a in self.arguments do
1115 res += a.length
1116 end
1117 return res
1118 end
1119 end
1120
1121 # A virtual formal type.
1122 class MVirtualType
1123 super MType
1124
1125 # The property associated with the type.
1126 # Its the definitions of this property that determine the bound or the virtual type.
1127 var mproperty: MProperty
1128
1129 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1130
1131 # Lookup the bound for a given resolved_receiver
1132 # The result may be a other virtual type (or a parameter type)
1133 #
1134 # The result is returned exactly as declared in the "type" property (verbatim).
1135 #
1136 # In case of conflict, the method aborts.
1137 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1138 do
1139 assert not resolved_receiver.need_anchor
1140 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1141 if props.is_empty then
1142 abort
1143 else if props.length == 1 then
1144 return props.first.as(MVirtualTypeDef).bound.as(not null)
1145 end
1146 var types = new ArraySet[MType]
1147 for p in props do
1148 types.add(p.as(MVirtualTypeDef).bound.as(not null))
1149 end
1150 if types.length == 1 then
1151 return types.first
1152 end
1153 abort
1154 end
1155
1156 # Is the virtual type fixed for a given resolved_receiver?
1157 fun is_fixed(mmodule: MModule, resolved_receiver: MType): Bool
1158 do
1159 assert not resolved_receiver.need_anchor
1160 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1161 if props.is_empty then
1162 abort
1163 end
1164 for p in props do
1165 if p.as(MVirtualTypeDef).is_fixed then return true
1166 end
1167 return false
1168 end
1169
1170 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1171 do
1172 assert can_resolve_for(mtype, anchor, mmodule)
1173 # self is a virtual type declared (or inherited) in mtype
1174 # The point of the function it to get the bound of the virtual type that make sense for mtype
1175 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1176 #print "{class_name}: {self}/{mtype}/{anchor}?"
1177 var resolved_reciever
1178 if mtype.need_anchor then
1179 assert anchor != null
1180 resolved_reciever = mtype.resolve_for(anchor, null, mmodule, true)
1181 else
1182 resolved_reciever = mtype
1183 end
1184 # Now, we can get the bound
1185 var verbatim_bound = lookup_bound(mmodule, resolved_reciever)
1186 # The bound is exactly as declared in the "type" property, so we must resolve it again
1187 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1188 #print "{class_name}: {self}/{mtype}/{anchor} -> {self}/{resolved_reciever}/{anchor} -> {verbatim_bound}/{mtype}/{anchor} -> {res}"
1189
1190 # What to return here? There is a bunch a special cases:
1191 # If 'cleanup_virtual' we must return the resolved type, since we cannot return self
1192 if cleanup_virtual then return res
1193 # If the reciever is a intern class, then the virtual type cannot be redefined since there is no possible subclass. self is just fixed. so simply return the resolution
1194 if resolved_reciever isa MNullableType then resolved_reciever = resolved_reciever.mtype
1195 if resolved_reciever.as(MClassType).mclass.kind == enum_kind then return res
1196 # If the resolved type isa MVirtualType, it means that self was bound to it, and cannot be unbound. self is just fixed. so return the resolution.
1197 if res isa MVirtualType then return res
1198 # If we are final, just return the resolution
1199 if is_fixed(mmodule, resolved_reciever) then return res
1200 # It the resolved type isa intern class, then there is no possible valid redefinition is any potentiel subclass. self is just fixed. so simply return the resolution
1201 if res isa MClassType and res.mclass.kind == enum_kind then return res
1202 # TODO: Add 'fixed' virtual type in the specification.
1203 # TODO: What if bound to a MParameterType?
1204 # Note that Nullable types can always be redefined by the non nullable version, so there is no specific case on it.
1205
1206 # If anything apply, then `self' cannot be resolved, so return self
1207 return self
1208 end
1209
1210 redef fun can_resolve_for(mtype, anchor, mmodule)
1211 do
1212 if mtype.need_anchor then
1213 assert anchor != null
1214 mtype = mtype.anchor_to(mmodule, anchor)
1215 end
1216 return mtype.has_mproperty(mmodule, mproperty)
1217 end
1218
1219 redef fun to_s do return self.mproperty.to_s
1220
1221 init(mproperty: MProperty)
1222 do
1223 self.mproperty = mproperty
1224 end
1225 end
1226
1227 # The type associated the a formal parameter generic type of a class
1228 #
1229 # Each parameter type is associated to a specific class.
1230 # It's mean that all refinements of a same class "share" the parameter type,
1231 # but that a generic subclass has its on parameter types.
1232 #
1233 # However, in the sense of the meta-model, a parameter type of a class is
1234 # a valid type in a subclass. The "in the sense of the meta-model" is
1235 # important because, in the Nit language, the programmer cannot refers
1236 # directly to the parameter types of the super-classes.
1237 #
1238 # Example:
1239 # class A[E]
1240 # fun e: E is abstract
1241 # end
1242 # class B[F]
1243 # super A[Array[F]]
1244 # end
1245 # In the class definition B[F], `F` is a valid type but `E` is not.
1246 # However, `self.e` is a valid method call, and the signature of `e` is
1247 # declared `e: E`.
1248 #
1249 # Note that parameter types are shared among class refinements.
1250 # Therefore parameter only have an internal name (see `to_s` for details).
1251 # TODO: Add a `name_for` to get better messages.
1252 class MParameterType
1253 super MType
1254
1255 # The generic class where the parameter belong
1256 var mclass: MClass
1257
1258 redef fun model do return self.mclass.intro_mmodule.model
1259
1260 # The position of the parameter (0 for the first parameter)
1261 # FIXME: is `position` a better name?
1262 var rank: Int
1263
1264 # Internal name of the parameter type
1265 # Names of parameter types changes in each class definition
1266 # Therefore, this method return an internal name.
1267 # Example: return "G#1" for the second parameter of the class G
1268 # FIXME: add a way to get the real name in a classdef
1269 redef fun to_s do return "{mclass}#{rank}"
1270
1271 # Resolve the bound for a given resolved_receiver
1272 # The result may be a other virtual type (or a parameter type)
1273 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1274 do
1275 assert not resolved_receiver.need_anchor
1276 var goalclass = self.mclass
1277 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1278 for t in supertypes do
1279 if t.mclass == goalclass then
1280 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1281 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1282 var res = t.arguments[self.rank]
1283 return res
1284 end
1285 end
1286 abort
1287 end
1288
1289 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1290 do
1291 assert can_resolve_for(mtype, anchor, mmodule)
1292 #print "{class_name}: {self}/{mtype}/{anchor}?"
1293
1294 if mtype isa MGenericType and mtype.mclass == self.mclass then
1295 return mtype.arguments[self.rank]
1296 end
1297
1298 # self is a parameter type of mtype (or of a super-class of mtype)
1299 # The point of the function it to get the bound of the virtual type that make sense for mtype
1300 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1301 # FIXME: What happend here is far from clear. Thus this part must be validated and clarified
1302 var resolved_receiver
1303 if mtype.need_anchor then
1304 assert anchor != null
1305 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1306 else
1307 resolved_receiver = mtype
1308 end
1309 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1310 if resolved_receiver isa MParameterType then
1311 assert resolved_receiver.mclass == anchor.mclass
1312 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1313 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1314 end
1315 assert resolved_receiver isa MClassType
1316
1317 # Eh! The parameter is in the current class.
1318 # So we return the corresponding argument, no mater what!
1319 if resolved_receiver.mclass == self.mclass then
1320 var res = resolved_receiver.arguments[self.rank]
1321 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1322 return res
1323 end
1324
1325 if resolved_receiver.need_anchor then
1326 assert anchor != null
1327 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1328 end
1329 # Now, we can get the bound
1330 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1331 # The bound is exactly as declared in the "type" property, so we must resolve it again
1332 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1333
1334 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1335
1336 return res
1337 end
1338
1339 redef fun can_resolve_for(mtype, anchor, mmodule)
1340 do
1341 if mtype.need_anchor then
1342 assert anchor != null
1343 mtype = mtype.anchor_to(mmodule, anchor)
1344 end
1345 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1346 end
1347
1348 init(mclass: MClass, rank: Int)
1349 do
1350 self.mclass = mclass
1351 self.rank = rank
1352 end
1353 end
1354
1355 # A type prefixed with "nullable"
1356 class MNullableType
1357 super MType
1358
1359 # The base type of the nullable type
1360 var mtype: MType
1361
1362 redef fun model do return self.mtype.model
1363
1364 init(mtype: MType)
1365 do
1366 self.mtype = mtype
1367 self.to_s = "nullable {mtype}"
1368 end
1369
1370 redef var to_s: String
1371
1372 redef fun need_anchor do return mtype.need_anchor
1373 redef fun as_nullable do return self
1374 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1375 do
1376 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1377 return res.as_nullable
1378 end
1379
1380 redef fun can_resolve_for(mtype, anchor, mmodule)
1381 do
1382 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1383 end
1384
1385 redef fun depth do return self.mtype.depth
1386
1387 redef fun length do return self.mtype.length
1388
1389 redef fun collect_mclassdefs(mmodule)
1390 do
1391 assert not self.need_anchor
1392 return self.mtype.collect_mclassdefs(mmodule)
1393 end
1394
1395 redef fun collect_mclasses(mmodule)
1396 do
1397 assert not self.need_anchor
1398 return self.mtype.collect_mclasses(mmodule)
1399 end
1400
1401 redef fun collect_mtypes(mmodule)
1402 do
1403 assert not self.need_anchor
1404 return self.mtype.collect_mtypes(mmodule)
1405 end
1406 end
1407
1408 # The type of the only value null
1409 #
1410 # The is only one null type per model, see `MModel::null_type`.
1411 class MNullType
1412 super MType
1413 redef var model: Model
1414 protected init(model: Model)
1415 do
1416 self.model = model
1417 end
1418 redef fun to_s do return "null"
1419 redef fun as_nullable do return self
1420 redef fun need_anchor do return false
1421 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1422 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1423
1424 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1425
1426 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1427
1428 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1429 end
1430
1431 # A signature of a method
1432 class MSignature
1433 super MType
1434
1435 # The each parameter (in order)
1436 var mparameters: Array[MParameter]
1437
1438 # The return type (null for a procedure)
1439 var return_mtype: nullable MType
1440
1441 redef fun depth
1442 do
1443 var dmax = 0
1444 var t = self.return_mtype
1445 if t != null then dmax = t.depth
1446 for p in mparameters do
1447 var d = p.mtype.depth
1448 if d > dmax then dmax = d
1449 end
1450 return dmax + 1
1451 end
1452
1453 redef fun length
1454 do
1455 var res = 1
1456 var t = self.return_mtype
1457 if t != null then res += t.length
1458 for p in mparameters do
1459 res += p.mtype.length
1460 end
1461 return res
1462 end
1463
1464 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1465 init(mparameters: Array[MParameter], return_mtype: nullable MType)
1466 do
1467 var vararg_rank = -1
1468 for i in [0..mparameters.length[ do
1469 var parameter = mparameters[i]
1470 if parameter.is_vararg then
1471 assert vararg_rank == -1
1472 vararg_rank = i
1473 end
1474 end
1475 self.mparameters = mparameters
1476 self.return_mtype = return_mtype
1477 self.vararg_rank = vararg_rank
1478 end
1479
1480 # The rank of the ellipsis (`...`) for vararg (starting from 0).
1481 # value is -1 if there is no vararg.
1482 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1483 var vararg_rank: Int
1484
1485 # The number or parameters
1486 fun arity: Int do return mparameters.length
1487
1488 redef fun to_s
1489 do
1490 var b = new FlatBuffer
1491 if not mparameters.is_empty then
1492 b.append("(")
1493 for i in [0..mparameters.length[ do
1494 var mparameter = mparameters[i]
1495 if i > 0 then b.append(", ")
1496 b.append(mparameter.name)
1497 b.append(": ")
1498 b.append(mparameter.mtype.to_s)
1499 if mparameter.is_vararg then
1500 b.append("...")
1501 end
1502 end
1503 b.append(")")
1504 end
1505 var ret = self.return_mtype
1506 if ret != null then
1507 b.append(": ")
1508 b.append(ret.to_s)
1509 end
1510 return b.to_s
1511 end
1512
1513 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
1514 do
1515 var params = new Array[MParameter]
1516 for p in self.mparameters do
1517 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1518 end
1519 var ret = self.return_mtype
1520 if ret != null then
1521 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1522 end
1523 var res = new MSignature(params, ret)
1524 return res
1525 end
1526 end
1527
1528 # A parameter in a signature
1529 class MParameter
1530 super MEntity
1531
1532 # The name of the parameter
1533 redef var name: String
1534
1535 # The static type of the parameter
1536 var mtype: MType
1537
1538 # Is the parameter a vararg?
1539 var is_vararg: Bool
1540
1541 init(name: String, mtype: MType, is_vararg: Bool) do
1542 self.name = name
1543 self.mtype = mtype
1544 self.is_vararg = is_vararg
1545 end
1546
1547 redef fun to_s
1548 do
1549 if is_vararg then
1550 return "{name}: {mtype}..."
1551 else
1552 return "{name}: {mtype}"
1553 end
1554 end
1555
1556 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
1557 do
1558 if not self.mtype.need_anchor then return self
1559 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1560 var res = new MParameter(self.name, newtype, self.is_vararg)
1561 return res
1562 end
1563
1564 redef fun model do return mtype.model
1565 end
1566
1567 # A service (global property) that generalize method, attribute, etc.
1568 #
1569 # `MProperty` are global to the model; it means that a `MProperty` is not bound
1570 # to a specific `MModule` nor a specific `MClass`.
1571 #
1572 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
1573 # and the other in subclasses and in refinements.
1574 #
1575 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
1576 # of any dynamic type).
1577 # For instance, a call site "x.foo" is associated to a `MProperty`.
1578 abstract class MProperty
1579 super MEntity
1580
1581 # The associated MPropDef subclass.
1582 # The two specialization hierarchy are symmetric.
1583 type MPROPDEF: MPropDef
1584
1585 # The classdef that introduce the property
1586 # While a property is not bound to a specific module, or class,
1587 # the introducing mclassdef is used for naming and visibility
1588 var intro_mclassdef: MClassDef
1589
1590 # The (short) name of the property
1591 redef var name: String
1592
1593 # The canonical name of the property
1594 # Example: "owner::my_module::MyClass::my_method"
1595 fun full_name: String
1596 do
1597 return "{self.intro_mclassdef.mmodule.full_name}::{self.intro_mclassdef.mclass.name}::{name}"
1598 end
1599
1600 # The visibility of the property
1601 var visibility: MVisibility
1602
1603 init(intro_mclassdef: MClassDef, name: String, visibility: MVisibility)
1604 do
1605 self.intro_mclassdef = intro_mclassdef
1606 self.name = name
1607 self.visibility = visibility
1608 intro_mclassdef.intro_mproperties.add(self)
1609 var model = intro_mclassdef.mmodule.model
1610 model.mproperties_by_name.add_one(name, self)
1611 model.mproperties.add(self)
1612 end
1613
1614 # All definitions of the property.
1615 # The first is the introduction,
1616 # The other are redefinitions (in refinements and in subclasses)
1617 var mpropdefs: Array[MPROPDEF] = new Array[MPROPDEF]
1618
1619 # The definition that introduced the property
1620 # Warning: the introduction is the first `MPropDef` object
1621 # associated to self. If self is just created without having any
1622 # associated definition, this method will abort
1623 fun intro: MPROPDEF do return mpropdefs.first
1624
1625 redef fun model do return intro.model
1626
1627 # Alias for `name`
1628 redef fun to_s do return name
1629
1630 # Return the most specific property definitions defined or inherited by a type.
1631 # The selection knows that refinement is stronger than specialization;
1632 # however, in case of conflict more than one property are returned.
1633 # If mtype does not know mproperty then an empty array is returned.
1634 #
1635 # If you want the really most specific property, then look at `lookup_first_definition`
1636 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1637 do
1638 assert not mtype.need_anchor
1639 if mtype isa MNullableType then mtype = mtype.mtype
1640
1641 var cache = self.lookup_definitions_cache[mmodule, mtype]
1642 if cache != null then return cache
1643
1644 #print "select prop {mproperty} for {mtype} in {self}"
1645 # First, select all candidates
1646 var candidates = new Array[MPROPDEF]
1647 for mpropdef in self.mpropdefs do
1648 # If the definition is not imported by the module, then skip
1649 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1650 # If the definition is not inherited by the type, then skip
1651 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1652 # Else, we keep it
1653 candidates.add(mpropdef)
1654 end
1655 # Fast track for only one candidate
1656 if candidates.length <= 1 then
1657 self.lookup_definitions_cache[mmodule, mtype] = candidates
1658 return candidates
1659 end
1660
1661 # Second, filter the most specific ones
1662 return select_most_specific(mmodule, candidates)
1663 end
1664
1665 private var lookup_definitions_cache: HashMap2[MModule, MType, Array[MPROPDEF]] = new HashMap2[MModule, MType, Array[MPROPDEF]]
1666
1667 # Return the most specific property definitions inherited by a type.
1668 # The selection knows that refinement is stronger than specialization;
1669 # however, in case of conflict more than one property are returned.
1670 # If mtype does not know mproperty then an empty array is returned.
1671 #
1672 # If you want the really most specific property, then look at `lookup_next_definition`
1673 #
1674 # FIXME: Move to `MPropDef`?
1675 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1676 do
1677 assert not mtype.need_anchor
1678 if mtype isa MNullableType then mtype = mtype.mtype
1679
1680 # First, select all candidates
1681 var candidates = new Array[MPROPDEF]
1682 for mpropdef in self.mpropdefs do
1683 # If the definition is not imported by the module, then skip
1684 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1685 # If the definition is not inherited by the type, then skip
1686 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1687 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
1688 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
1689 # Else, we keep it
1690 candidates.add(mpropdef)
1691 end
1692 # Fast track for only one candidate
1693 if candidates.length <= 1 then return candidates
1694
1695 # Second, filter the most specific ones
1696 return select_most_specific(mmodule, candidates)
1697 end
1698
1699 # Return an array containing olny the most specific property definitions
1700 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
1701 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
1702 do
1703 var res = new Array[MPROPDEF]
1704 for pd1 in candidates do
1705 var cd1 = pd1.mclassdef
1706 var c1 = cd1.mclass
1707 var keep = true
1708 for pd2 in candidates do
1709 if pd2 == pd1 then continue # do not compare with self!
1710 var cd2 = pd2.mclassdef
1711 var c2 = cd2.mclass
1712 if c2.mclass_type == c1.mclass_type then
1713 if cd2.mmodule.in_importation < cd1.mmodule then
1714 # cd2 refines cd1; therefore we skip pd1
1715 keep = false
1716 break
1717 end
1718 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
1719 # cd2 < cd1; therefore we skip pd1
1720 keep = false
1721 break
1722 end
1723 end
1724 if keep then
1725 res.add(pd1)
1726 end
1727 end
1728 if res.is_empty then
1729 print "All lost! {candidates.join(", ")}"
1730 # FIXME: should be abort!
1731 end
1732 return res
1733 end
1734
1735 # Return the most specific definition in the linearization of `mtype`.
1736 #
1737 # If you want to know the next properties in the linearization,
1738 # look at `MPropDef::lookup_next_definition`.
1739 #
1740 # FIXME: the linearisation is still unspecified
1741 #
1742 # REQUIRE: `not mtype.need_anchor`
1743 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
1744 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
1745 do
1746 assert mtype.has_mproperty(mmodule, self)
1747 return lookup_all_definitions(mmodule, mtype).first
1748 end
1749
1750 # Return all definitions in a linearisation order
1751 # Most speficic first, most general last
1752 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1753 do
1754 assert not mtype.need_anchor
1755 if mtype isa MNullableType then mtype = mtype.mtype
1756
1757 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
1758 if cache != null then return cache
1759
1760 #print "select prop {mproperty} for {mtype} in {self}"
1761 # First, select all candidates
1762 var candidates = new Array[MPROPDEF]
1763 for mpropdef in self.mpropdefs do
1764 # If the definition is not imported by the module, then skip
1765 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1766 # If the definition is not inherited by the type, then skip
1767 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1768 # Else, we keep it
1769 candidates.add(mpropdef)
1770 end
1771 # Fast track for only one candidate
1772 if candidates.length <= 1 then
1773 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
1774 return candidates
1775 end
1776
1777 mmodule.linearize_mpropdefs(candidates)
1778 candidates = candidates.reversed
1779 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
1780 return candidates
1781 end
1782
1783 private var lookup_all_definitions_cache: HashMap2[MModule, MType, Array[MPROPDEF]] = new HashMap2[MModule, MType, Array[MPROPDEF]]
1784 end
1785
1786 # A global method
1787 class MMethod
1788 super MProperty
1789
1790 redef type MPROPDEF: MMethodDef
1791
1792 init(intro_mclassdef: MClassDef, name: String, visibility: MVisibility)
1793 do
1794 super
1795 end
1796
1797 # Is the property defined at the top_level of the module?
1798 # Currently such a property are stored in `Object`
1799 var is_toplevel: Bool writable = false
1800
1801 # Is the property a constructor?
1802 # Warning, this property can be inherited by subclasses with or without being a constructor
1803 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
1804 var is_init: Bool writable = false
1805
1806 # The the property a 'new' contructor?
1807 var is_new: Bool writable = false
1808
1809 # Is the property a legal constructor for a given class?
1810 # As usual, visibility is not considered.
1811 # FIXME not implemented
1812 fun is_init_for(mclass: MClass): Bool
1813 do
1814 return self.is_init
1815 end
1816 end
1817
1818 # A global attribute
1819 class MAttribute
1820 super MProperty
1821
1822 redef type MPROPDEF: MAttributeDef
1823
1824 init(intro_mclassdef: MClassDef, name: String, visibility: MVisibility)
1825 do
1826 super
1827 end
1828 end
1829
1830 # A global virtual type
1831 class MVirtualTypeProp
1832 super MProperty
1833
1834 redef type MPROPDEF: MVirtualTypeDef
1835
1836 init(intro_mclassdef: MClassDef, name: String, visibility: MVisibility)
1837 do
1838 super
1839 end
1840
1841 # The formal type associated to the virtual type property
1842 var mvirtualtype: MVirtualType = new MVirtualType(self)
1843 end
1844
1845 # A definition of a property (local property)
1846 #
1847 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
1848 # specific class definition (which belong to a specific module)
1849 abstract class MPropDef
1850 super MEntity
1851
1852 # The associated `MProperty` subclass.
1853 # the two specialization hierarchy are symmetric
1854 type MPROPERTY: MProperty
1855
1856 # Self class
1857 type MPROPDEF: MPropDef
1858
1859 # The origin of the definition
1860 var location: Location
1861
1862 # The class definition where the property definition is
1863 var mclassdef: MClassDef
1864
1865 # The associated global property
1866 var mproperty: MPROPERTY
1867
1868 init(mclassdef: MClassDef, mproperty: MPROPERTY, location: Location)
1869 do
1870 self.mclassdef = mclassdef
1871 self.mproperty = mproperty
1872 self.location = location
1873 mclassdef.mpropdefs.add(self)
1874 mproperty.mpropdefs.add(self)
1875 self.to_s = "{mclassdef}#{mproperty}"
1876 end
1877
1878 # Actually the name of the `mproperty`
1879 redef fun name do return mproperty.name
1880
1881 redef fun model do return mclassdef.model
1882
1883 # Internal name combining the module, the class and the property
1884 # Example: "mymodule#MyClass#mymethod"
1885 redef var to_s: String
1886
1887 # Is self the definition that introduce the property?
1888 fun is_intro: Bool do return mproperty.intro == self
1889
1890 # Return the next definition in linearization of `mtype`.
1891 #
1892 # This method is used to determine what method is called by a super.
1893 #
1894 # REQUIRE: `not mtype.need_anchor`
1895 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
1896 do
1897 assert not mtype.need_anchor
1898
1899 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
1900 var i = mpropdefs.iterator
1901 while i.is_ok and i.item != self do i.next
1902 assert has_property: i.is_ok
1903 i.next
1904 assert has_next_property: i.is_ok
1905 return i.item
1906 end
1907 end
1908
1909 # A local definition of a method
1910 class MMethodDef
1911 super MPropDef
1912
1913 redef type MPROPERTY: MMethod
1914 redef type MPROPDEF: MMethodDef
1915
1916 init(mclassdef: MClassDef, mproperty: MPROPERTY, location: Location)
1917 do
1918 super
1919 end
1920
1921 # The signature attached to the property definition
1922 var msignature: nullable MSignature writable = null
1923
1924 # Is the method definition abstract?
1925 var is_abstract: Bool writable = false
1926
1927 # Is the method definition intern?
1928 var is_intern writable = false
1929
1930 # Is the method definition extern?
1931 var is_extern writable = false
1932 end
1933
1934 # A local definition of an attribute
1935 class MAttributeDef
1936 super MPropDef
1937
1938 redef type MPROPERTY: MAttribute
1939 redef type MPROPDEF: MAttributeDef
1940
1941 init(mclassdef: MClassDef, mproperty: MPROPERTY, location: Location)
1942 do
1943 super
1944 end
1945
1946 # The static type of the attribute
1947 var static_mtype: nullable MType writable = null
1948 end
1949
1950 # A local definition of a virtual type
1951 class MVirtualTypeDef
1952 super MPropDef
1953
1954 redef type MPROPERTY: MVirtualTypeProp
1955 redef type MPROPDEF: MVirtualTypeDef
1956
1957 init(mclassdef: MClassDef, mproperty: MPROPERTY, location: Location)
1958 do
1959 super
1960 end
1961
1962 # The bound of the virtual type
1963 var bound: nullable MType writable = null
1964
1965 # Is the bound fixed?
1966 var is_fixed writable = false
1967 end
1968
1969 # A kind of class.
1970 #
1971 # * `abstract_kind`
1972 # * `concrete_kind`
1973 # * `interface_kind`
1974 # * `enum_kind`
1975 # * `extern_kind`
1976 #
1977 # Note this class is basically an enum.
1978 # FIXME: use a real enum once user-defined enums are available
1979 class MClassKind
1980 redef var to_s: String
1981
1982 # Is a constructor required?
1983 var need_init: Bool
1984 private init(s: String, need_init: Bool)
1985 do
1986 self.to_s = s
1987 self.need_init = need_init
1988 end
1989
1990 # Can a class of kind `self` specializes a class of kine `other`?
1991 fun can_specialize(other: MClassKind): Bool
1992 do
1993 if other == interface_kind then return true # everybody can specialize interfaces
1994 if self == interface_kind or self == enum_kind then
1995 # no other case for interfaces
1996 return false
1997 else if self == extern_kind then
1998 # only compatible with themselve
1999 return self == other
2000 else if other == enum_kind or other == extern_kind then
2001 # abstract_kind and concrete_kind are incompatible
2002 return false
2003 end
2004 # remain only abstract_kind and concrete_kind
2005 return true
2006 end
2007 end
2008
2009 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", true)
2010 fun concrete_kind: MClassKind do return once new MClassKind("class", true)
2011 fun interface_kind: MClassKind do return once new MClassKind("interface", false)
2012 fun enum_kind: MClassKind do return once new MClassKind("enum", false)
2013 fun extern_kind: MClassKind do return once new MClassKind("extern class", false)