model: add new type `MNotNullType` to force that null is excluded from a type.
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class Model
34 # All known classes
35 var mclasses = new Array[MClass]
36
37 # All known properties
38 var mproperties = new Array[MProperty]
39
40 # Hierarchy of class definition.
41 #
42 # Each classdef is associated with its super-classdefs in regard to
43 # its module of definition.
44 var mclassdef_hierarchy = new POSet[MClassDef]
45
46 # Class-type hierarchy restricted to the introduction.
47 #
48 # The idea is that what is true on introduction is always true whatever
49 # the module considered.
50 # Therefore, this hierarchy is used for a fast positive subtype check.
51 #
52 # This poset will evolve in a monotonous way:
53 # * Two non connected nodes will remain unconnected
54 # * New nodes can appear with new edges
55 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
56
57 # Global overlapped class-type hierarchy.
58 # The hierarchy when all modules are combined.
59 # Therefore, this hierarchy is used for a fast negative subtype check.
60 #
61 # This poset will evolve in an anarchic way. Loops can even be created.
62 #
63 # FIXME decide what to do on loops
64 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
65
66 # Collections of classes grouped by their short name
67 private var mclasses_by_name = new MultiHashMap[String, MClass]
68
69 # Return all class named `name`.
70 #
71 # If such a class does not exist, null is returned
72 # (instead of an empty array)
73 #
74 # Visibility or modules are not considered
75 fun get_mclasses_by_name(name: String): nullable Array[MClass]
76 do
77 return mclasses_by_name.get_or_null(name)
78 end
79
80 # Collections of properties grouped by their short name
81 private var mproperties_by_name = new MultiHashMap[String, MProperty]
82
83 # Return all properties named `name`.
84 #
85 # If such a property does not exist, null is returned
86 # (instead of an empty array)
87 #
88 # Visibility or modules are not considered
89 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
90 do
91 return mproperties_by_name.get_or_null(name)
92 end
93
94 # The only null type
95 var null_type = new MNullType(self)
96
97 # Build an ordered tree with from `concerns`
98 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
99 var seen = new HashSet[MConcern]
100 var res = new ConcernsTree
101
102 var todo = new Array[MConcern]
103 todo.add_all mconcerns
104
105 while not todo.is_empty do
106 var c = todo.pop
107 if seen.has(c) then continue
108 var pc = c.parent_concern
109 if pc == null then
110 res.add(null, c)
111 else
112 res.add(pc, c)
113 todo.add(pc)
114 end
115 seen.add(c)
116 end
117
118 return res
119 end
120 end
121
122 # An OrderedTree that can be easily refined for display purposes
123 class ConcernsTree
124 super OrderedTree[MConcern]
125 end
126
127 redef class MModule
128 # All the classes introduced in the module
129 var intro_mclasses = new Array[MClass]
130
131 # All the class definitions of the module
132 # (introduction and refinement)
133 var mclassdefs = new Array[MClassDef]
134
135 # Does the current module has a given class `mclass`?
136 # Return true if the mmodule introduces, refines or imports a class.
137 # Visibility is not considered.
138 fun has_mclass(mclass: MClass): Bool
139 do
140 return self.in_importation <= mclass.intro_mmodule
141 end
142
143 # Full hierarchy of introduced ans imported classes.
144 #
145 # Create a new hierarchy got by flattening the classes for the module
146 # and its imported modules.
147 # Visibility is not considered.
148 #
149 # Note: this function is expensive and is usually used for the main
150 # module of a program only. Do not use it to do you own subtype
151 # functions.
152 fun flatten_mclass_hierarchy: POSet[MClass]
153 do
154 var res = self.flatten_mclass_hierarchy_cache
155 if res != null then return res
156 res = new POSet[MClass]
157 for m in self.in_importation.greaters do
158 for cd in m.mclassdefs do
159 var c = cd.mclass
160 res.add_node(c)
161 for s in cd.supertypes do
162 res.add_edge(c, s.mclass)
163 end
164 end
165 end
166 self.flatten_mclass_hierarchy_cache = res
167 return res
168 end
169
170 # Sort a given array of classes using the linearization order of the module
171 # The most general is first, the most specific is last
172 fun linearize_mclasses(mclasses: Array[MClass])
173 do
174 self.flatten_mclass_hierarchy.sort(mclasses)
175 end
176
177 # Sort a given array of class definitions using the linearization order of the module
178 # the refinement link is stronger than the specialisation link
179 # The most general is first, the most specific is last
180 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
181 do
182 var sorter = new MClassDefSorter(self)
183 sorter.sort(mclassdefs)
184 end
185
186 # Sort a given array of property definitions using the linearization order of the module
187 # the refinement link is stronger than the specialisation link
188 # The most general is first, the most specific is last
189 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
190 do
191 var sorter = new MPropDefSorter(self)
192 sorter.sort(mpropdefs)
193 end
194
195 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
196
197 # The primitive type `Object`, the root of the class hierarchy
198 var object_type: MClassType = self.get_primitive_class("Object").mclass_type is lazy
199
200 # The type `Pointer`, super class to all extern classes
201 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
202
203 # The primitive type `Bool`
204 var bool_type: MClassType = self.get_primitive_class("Bool").mclass_type is lazy
205
206 # The primitive type `Int`
207 var int_type: MClassType = self.get_primitive_class("Int").mclass_type is lazy
208
209 # The primitive type `Char`
210 var char_type: MClassType = self.get_primitive_class("Char").mclass_type is lazy
211
212 # The primitive type `Float`
213 var float_type: MClassType = self.get_primitive_class("Float").mclass_type is lazy
214
215 # The primitive type `String`
216 var string_type: MClassType = self.get_primitive_class("String").mclass_type is lazy
217
218 # The primitive type `NativeString`
219 var native_string_type: MClassType = self.get_primitive_class("NativeString").mclass_type is lazy
220
221 # A primitive type of `Array`
222 fun array_type(elt_type: MType): MClassType do return array_class.get_mtype([elt_type])
223
224 # The primitive class `Array`
225 var array_class: MClass = self.get_primitive_class("Array") is lazy
226
227 # A primitive type of `NativeArray`
228 fun native_array_type(elt_type: MType): MClassType do return native_array_class.get_mtype([elt_type])
229
230 # The primitive class `NativeArray`
231 var native_array_class: MClass = self.get_primitive_class("NativeArray") is lazy
232
233 # The primitive type `Sys`, the main type of the program, if any
234 fun sys_type: nullable MClassType
235 do
236 var clas = self.model.get_mclasses_by_name("Sys")
237 if clas == null then return null
238 return get_primitive_class("Sys").mclass_type
239 end
240
241 # The primitive type `Finalizable`
242 # Used to tag classes that need to be finalized.
243 fun finalizable_type: nullable MClassType
244 do
245 var clas = self.model.get_mclasses_by_name("Finalizable")
246 if clas == null then return null
247 return get_primitive_class("Finalizable").mclass_type
248 end
249
250 # Force to get the primitive class named `name` or abort
251 fun get_primitive_class(name: String): MClass
252 do
253 var cla = self.model.get_mclasses_by_name(name)
254 if cla == null then
255 if name == "Bool" and self.model.get_mclasses_by_name("Object") != null then
256 # Bool is injected because it is needed by engine to code the result
257 # of the implicit casts.
258 var c = new MClass(self, name, null, enum_kind, public_visibility)
259 var cladef = new MClassDef(self, c.mclass_type, new Location(null, 0,0,0,0))
260 cladef.set_supertypes([object_type])
261 cladef.add_in_hierarchy
262 return c
263 end
264 print("Fatal Error: no primitive class {name}")
265 exit(1)
266 end
267 if cla.length != 1 then
268 var msg = "Fatal Error: more than one primitive class {name}:"
269 for c in cla do msg += " {c.full_name}"
270 print msg
271 #exit(1)
272 end
273 return cla.first
274 end
275
276 # Try to get the primitive method named `name` on the type `recv`
277 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
278 do
279 var props = self.model.get_mproperties_by_name(name)
280 if props == null then return null
281 var res: nullable MMethod = null
282 for mprop in props do
283 assert mprop isa MMethod
284 var intro = mprop.intro_mclassdef
285 for mclassdef in recv.mclassdefs do
286 if not self.in_importation.greaters.has(mclassdef.mmodule) then continue
287 if not mclassdef.in_hierarchy.greaters.has(intro) then continue
288 if res == null then
289 res = mprop
290 else if res != mprop then
291 print("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
292 abort
293 end
294 end
295 end
296 return res
297 end
298 end
299
300 private class MClassDefSorter
301 super Comparator
302 redef type COMPARED: MClassDef
303 var mmodule: MModule
304 redef fun compare(a, b)
305 do
306 var ca = a.mclass
307 var cb = b.mclass
308 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
309 return mmodule.model.mclassdef_hierarchy.compare(a, b)
310 end
311 end
312
313 private class MPropDefSorter
314 super Comparator
315 redef type COMPARED: MPropDef
316 var mmodule: MModule
317 redef fun compare(pa, pb)
318 do
319 var a = pa.mclassdef
320 var b = pb.mclassdef
321 var ca = a.mclass
322 var cb = b.mclass
323 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
324 return mmodule.model.mclassdef_hierarchy.compare(a, b)
325 end
326 end
327
328 # A named class
329 #
330 # `MClass` are global to the model; it means that a `MClass` is not bound to a
331 # specific `MModule`.
332 #
333 # This characteristic helps the reasoning about classes in a program since a
334 # single `MClass` object always denote the same class.
335 #
336 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
337 # These do not really have properties nor belong to a hierarchy since the property and the
338 # hierarchy of a class depends of the refinement in the modules.
339 #
340 # Most services on classes require the precision of a module, and no one can asks what are
341 # the super-classes of a class nor what are properties of a class without precising what is
342 # the module considered.
343 #
344 # For instance, during the typing of a source-file, the module considered is the module of the file.
345 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
346 # *is the method `foo` exists in the class `Bar` in the current module?*
347 #
348 # During some global analysis, the module considered may be the main module of the program.
349 class MClass
350 super MEntity
351
352 # The module that introduce the class
353 # While classes are not bound to a specific module,
354 # the introducing module is used for naming an visibility
355 var intro_mmodule: MModule
356
357 # The short name of the class
358 # In Nit, the name of a class cannot evolve in refinements
359 redef var name: String
360
361 # The canonical name of the class
362 #
363 # It is the name of the class prefixed by the full_name of the `intro_mmodule`
364 # Example: `"owner::module::MyClass"`
365 redef var full_name is lazy do
366 return "{self.intro_mmodule.namespace_for(visibility)}::{name}"
367 end
368
369 redef var c_name is lazy do
370 return "{intro_mmodule.c_namespace_for(visibility)}__{name.to_cmangle}"
371 end
372
373 # The number of generic formal parameters
374 # 0 if the class is not generic
375 var arity: Int is noinit
376
377 # Each generic formal parameters in order.
378 # is empty if the class is not generic
379 var mparameters = new Array[MParameterType]
380
381 # Initialize `mparameters` from their names.
382 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
383 autoinit
384 do
385 if parameter_names == null then
386 self.arity = 0
387 else
388 self.arity = parameter_names.length
389 end
390
391 # Create the formal parameter types
392 if arity > 0 then
393 assert parameter_names != null
394 var mparametertypes = new Array[MParameterType]
395 for i in [0..arity[ do
396 var mparametertype = new MParameterType(self, i, parameter_names[i])
397 mparametertypes.add(mparametertype)
398 end
399 self.mparameters = mparametertypes
400 var mclass_type = new MGenericType(self, mparametertypes)
401 self.mclass_type = mclass_type
402 self.get_mtype_cache[mparametertypes] = mclass_type
403 else
404 self.mclass_type = new MClassType(self)
405 end
406 end
407
408 # The kind of the class (interface, abstract class, etc.)
409 # In Nit, the kind of a class cannot evolve in refinements
410 var kind: MClassKind
411
412 # The visibility of the class
413 # In Nit, the visibility of a class cannot evolve in refinements
414 var visibility: MVisibility
415
416 init
417 do
418 intro_mmodule.intro_mclasses.add(self)
419 var model = intro_mmodule.model
420 model.mclasses_by_name.add_one(name, self)
421 model.mclasses.add(self)
422 end
423
424 redef fun model do return intro_mmodule.model
425
426 # All class definitions (introduction and refinements)
427 var mclassdefs = new Array[MClassDef]
428
429 # Alias for `name`
430 redef fun to_s do return self.name
431
432 # The definition that introduces the class.
433 #
434 # Warning: such a definition may not exist in the early life of the object.
435 # In this case, the method will abort.
436 var intro: MClassDef is noinit
437
438 # Return the class `self` in the class hierarchy of the module `mmodule`.
439 #
440 # SEE: `MModule::flatten_mclass_hierarchy`
441 # REQUIRE: `mmodule.has_mclass(self)`
442 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
443 do
444 return mmodule.flatten_mclass_hierarchy[self]
445 end
446
447 # The principal static type of the class.
448 #
449 # For non-generic class, mclass_type is the only `MClassType` based
450 # on self.
451 #
452 # For a generic class, the arguments are the formal parameters.
453 # i.e.: for the class Array[E:Object], the `mclass_type` is Array[E].
454 # If you want Array[Object] the see `MClassDef::bound_mtype`
455 #
456 # For generic classes, the mclass_type is also the way to get a formal
457 # generic parameter type.
458 #
459 # To get other types based on a generic class, see `get_mtype`.
460 #
461 # ENSURE: `mclass_type.mclass == self`
462 var mclass_type: MClassType is noinit
463
464 # Return a generic type based on the class
465 # Is the class is not generic, then the result is `mclass_type`
466 #
467 # REQUIRE: `mtype_arguments.length == self.arity`
468 fun get_mtype(mtype_arguments: Array[MType]): MClassType
469 do
470 assert mtype_arguments.length == self.arity
471 if self.arity == 0 then return self.mclass_type
472 var res = get_mtype_cache.get_or_null(mtype_arguments)
473 if res != null then return res
474 res = new MGenericType(self, mtype_arguments)
475 self.get_mtype_cache[mtype_arguments.to_a] = res
476 return res
477 end
478
479 private var get_mtype_cache = new HashMap[Array[MType], MGenericType]
480
481 # Is there a `new` factory to allow the pseudo instantiation?
482 var has_new_factory = false is writable
483 end
484
485
486 # A definition (an introduction or a refinement) of a class in a module
487 #
488 # A `MClassDef` is associated with an explicit (or almost) definition of a
489 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
490 # a specific class and a specific module, and contains declarations like super-classes
491 # or properties.
492 #
493 # It is the class definitions that are the backbone of most things in the model:
494 # ClassDefs are defined with regard with other classdefs.
495 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
496 #
497 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
498 class MClassDef
499 super MEntity
500
501 # The module where the definition is
502 var mmodule: MModule
503
504 # The associated `MClass`
505 var mclass: MClass is noinit
506
507 # The bounded type associated to the mclassdef
508 #
509 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
510 # are the same type.
511 #
512 # Example:
513 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
514 # If you want Array[E], then see `mclass.mclass_type`
515 #
516 # ENSURE: `bound_mtype.mclass == self.mclass`
517 var bound_mtype: MClassType
518
519 # The origin of the definition
520 var location: Location
521
522 # Internal name combining the module and the class
523 # Example: "mymodule#MyClass"
524 redef var to_s: String is noinit
525
526 init
527 do
528 self.mclass = bound_mtype.mclass
529 mmodule.mclassdefs.add(self)
530 mclass.mclassdefs.add(self)
531 if mclass.intro_mmodule == mmodule then
532 assert not isset mclass._intro
533 mclass.intro = self
534 end
535 self.to_s = "{mmodule}#{mclass}"
536 end
537
538 # Actually the name of the `mclass`
539 redef fun name do return mclass.name
540
541 # The module and class name separated by a '#'.
542 #
543 # The short-name of the class is used for introduction.
544 # Example: "my_module#MyClass"
545 #
546 # The full-name of the class is used for refinement.
547 # Example: "my_module#intro_module::MyClass"
548 redef var full_name is lazy do
549 if is_intro then
550 # public gives 'p#A'
551 # private gives 'p::m#A'
552 return "{mmodule.namespace_for(mclass.visibility)}#{mclass.name}"
553 else if mclass.intro_mmodule.mproject != mmodule.mproject then
554 # public gives 'q::n#p::A'
555 # private gives 'q::n#p::m::A'
556 return "{mmodule.full_name}#{mclass.full_name}"
557 else if mclass.visibility > private_visibility then
558 # public gives 'p::n#A'
559 return "{mmodule.full_name}#{mclass.name}"
560 else
561 # private gives 'p::n#::m::A' (redundant p is omitted)
562 return "{mmodule.full_name}#::{mclass.intro_mmodule.name}::{mclass.name}"
563 end
564 end
565
566 redef var c_name is lazy do
567 if is_intro then
568 return "{mmodule.c_namespace_for(mclass.visibility)}___{mclass.c_name}"
569 else if mclass.intro_mmodule.mproject == mmodule.mproject and mclass.visibility > private_visibility then
570 return "{mmodule.c_name}___{mclass.name.to_cmangle}"
571 else
572 return "{mmodule.c_name}___{mclass.c_name}"
573 end
574 end
575
576 redef fun model do return mmodule.model
577
578 # All declared super-types
579 # FIXME: quite ugly but not better idea yet
580 var supertypes = new Array[MClassType]
581
582 # Register some super-types for the class (ie "super SomeType")
583 #
584 # The hierarchy must not already be set
585 # REQUIRE: `self.in_hierarchy == null`
586 fun set_supertypes(supertypes: Array[MClassType])
587 do
588 assert unique_invocation: self.in_hierarchy == null
589 var mmodule = self.mmodule
590 var model = mmodule.model
591 var mtype = self.bound_mtype
592
593 for supertype in supertypes do
594 self.supertypes.add(supertype)
595
596 # Register in full_type_specialization_hierarchy
597 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
598 # Register in intro_type_specialization_hierarchy
599 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
600 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
601 end
602 end
603
604 end
605
606 # Collect the super-types (set by set_supertypes) to build the hierarchy
607 #
608 # This function can only invoked once by class
609 # REQUIRE: `self.in_hierarchy == null`
610 # ENSURE: `self.in_hierarchy != null`
611 fun add_in_hierarchy
612 do
613 assert unique_invocation: self.in_hierarchy == null
614 var model = mmodule.model
615 var res = model.mclassdef_hierarchy.add_node(self)
616 self.in_hierarchy = res
617 var mtype = self.bound_mtype
618
619 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
620 # The simpliest way is to attach it to collect_mclassdefs
621 for mclassdef in mtype.collect_mclassdefs(mmodule) do
622 res.poset.add_edge(self, mclassdef)
623 end
624 end
625
626 # The view of the class definition in `mclassdef_hierarchy`
627 var in_hierarchy: nullable POSetElement[MClassDef] = null
628
629 # Is the definition the one that introduced `mclass`?
630 fun is_intro: Bool do return mclass.intro == self
631
632 # All properties introduced by the classdef
633 var intro_mproperties = new Array[MProperty]
634
635 # All property definitions in the class (introductions and redefinitions)
636 var mpropdefs = new Array[MPropDef]
637 end
638
639 # A global static type
640 #
641 # MType are global to the model; it means that a `MType` is not bound to a
642 # specific `MModule`.
643 # This characteristic helps the reasoning about static types in a program
644 # since a single `MType` object always denote the same type.
645 #
646 # However, because a `MType` is global, it does not really have properties
647 # nor have subtypes to a hierarchy since the property and the class hierarchy
648 # depends of a module.
649 # Moreover, virtual types an formal generic parameter types also depends on
650 # a receiver to have sense.
651 #
652 # Therefore, most method of the types require a module and an anchor.
653 # The module is used to know what are the classes and the specialization
654 # links.
655 # The anchor is used to know what is the bound of the virtual types and formal
656 # generic parameter types.
657 #
658 # MType are not directly usable to get properties. See the `anchor_to` method
659 # and the `MClassType` class.
660 #
661 # FIXME: the order of the parameters is not the best. We mus pick on from:
662 # * foo(mmodule, anchor, othertype)
663 # * foo(othertype, anchor, mmodule)
664 # * foo(anchor, mmodule, othertype)
665 # * foo(othertype, mmodule, anchor)
666 abstract class MType
667 super MEntity
668
669 redef fun name do return to_s
670
671 # Return true if `self` is an subtype of `sup`.
672 # The typing is done using the standard typing policy of Nit.
673 #
674 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
675 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
676 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
677 do
678 var sub = self
679 if sub == sup then return true
680
681 #print "1.is {sub} a {sup}? ===="
682
683 if anchor == null then
684 assert not sub.need_anchor
685 assert not sup.need_anchor
686 else
687 # First, resolve the formal types to the simplest equivalent forms in the receiver
688 assert sub.can_resolve_for(anchor, null, mmodule)
689 sub = sub.lookup_fixed(mmodule, anchor)
690 assert sup.can_resolve_for(anchor, null, mmodule)
691 sup = sup.lookup_fixed(mmodule, anchor)
692 end
693
694 # Does `sup` accept null or not?
695 # Discard the nullable marker if it exists
696 var sup_accept_null = false
697 if sup isa MNullableType then
698 sup_accept_null = true
699 sup = sup.mtype
700 else if sup isa MNotNullType then
701 sup = sup.mtype
702 else if sup isa MNullType then
703 sup_accept_null = true
704 end
705
706 # Can `sub` provide null or not?
707 # Thus we can match with `sup_accept_null`
708 # Also discard the nullable marker if it exists
709 var sub_reject_null = false
710 if sub isa MNullableType then
711 if not sup_accept_null then return false
712 sub = sub.mtype
713 else if sub isa MNotNullType then
714 sub_reject_null = true
715 sub = sub.mtype
716 else if sub isa MNullType then
717 return sup_accept_null
718 end
719 # Now the case of direct null and nullable is over.
720
721 # If `sub` is a formal type, then it is accepted if its bound is accepted
722 while sub isa MFormalType do
723 #print "3.is {sub} a {sup}?"
724
725 # A unfixed formal type can only accept itself
726 if sub == sup then return true
727
728 assert anchor != null
729 sub = sub.lookup_bound(mmodule, anchor)
730 if sub_reject_null then sub = sub.as_notnull
731
732 #print "3.is {sub} a {sup}?"
733
734 # Manage the second layer of null/nullable
735 if sub isa MNullableType then
736 if not sup_accept_null and not sub_reject_null then return false
737 sub = sub.mtype
738 else if sub isa MNotNullType then
739 sub_reject_null = true
740 sub = sub.mtype
741 else if sub isa MNullType then
742 return sup_accept_null
743 end
744 end
745 #print "4.is {sub} a {sup}? <- no more resolution"
746
747 assert sub isa MClassType else print "{sub} <? {sub}" # It is the only remaining type
748
749 # A unfixed formal type can only accept itself
750 if sup isa MFormalType then
751 return false
752 end
753
754 if sup isa MNullType then
755 # `sup` accepts only null
756 return false
757 end
758
759 assert sup isa MClassType # It is the only remaining type
760
761 # Now both are MClassType, we need to dig
762
763 if sub == sup then return true
764
765 if anchor == null then anchor = sub # UGLY: any anchor will work
766 var resolved_sub = sub.anchor_to(mmodule, anchor)
767 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
768 if res == false then return false
769 if not sup isa MGenericType then return true
770 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
771 assert sub2.mclass == sup.mclass
772 for i in [0..sup.mclass.arity[ do
773 var sub_arg = sub2.arguments[i]
774 var sup_arg = sup.arguments[i]
775 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
776 if res == false then return false
777 end
778 return true
779 end
780
781 # The base class type on which self is based
782 #
783 # This base type is used to get property (an internally to perform
784 # unsafe type comparison).
785 #
786 # Beware: some types (like null) are not based on a class thus this
787 # method will crash
788 #
789 # Basically, this function transform the virtual types and parameter
790 # types to their bounds.
791 #
792 # Example
793 #
794 # class A end
795 # class B super A end
796 # class X end
797 # class Y super X end
798 # class G[T: A]
799 # type U: X
800 # end
801 # class H
802 # super G[B]
803 # redef type U: Y
804 # end
805 #
806 # Map[T,U] anchor_to H #-> Map[B,Y]
807 #
808 # Explanation of the example:
809 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
810 # because "redef type U: Y". Therefore, Map[T, U] is bound to
811 # Map[B, Y]
812 #
813 # ENSURE: `not self.need_anchor implies result == self`
814 # ENSURE: `not result.need_anchor`
815 fun anchor_to(mmodule: MModule, anchor: MClassType): MType
816 do
817 if not need_anchor then return self
818 assert not anchor.need_anchor
819 # Just resolve to the anchor and clear all the virtual types
820 var res = self.resolve_for(anchor, null, mmodule, true)
821 assert not res.need_anchor
822 return res
823 end
824
825 # Does `self` contain a virtual type or a formal generic parameter type?
826 # In order to remove those types, you usually want to use `anchor_to`.
827 fun need_anchor: Bool do return true
828
829 # Return the supertype when adapted to a class.
830 #
831 # In Nit, for each super-class of a type, there is a equivalent super-type.
832 #
833 # Example:
834 #
835 # ~~~nitish
836 # class G[T, U] end
837 # class H[V] super G[V, Bool] end
838 #
839 # H[Int] supertype_to G #-> G[Int, Bool]
840 # ~~~
841 #
842 # REQUIRE: `super_mclass` is a super-class of `self`
843 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
844 # ENSURE: `result.mclass = super_mclass`
845 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
846 do
847 if super_mclass.arity == 0 then return super_mclass.mclass_type
848 if self isa MClassType and self.mclass == super_mclass then return self
849 var resolved_self
850 if self.need_anchor then
851 assert anchor != null
852 resolved_self = self.anchor_to(mmodule, anchor)
853 else
854 resolved_self = self
855 end
856 var supertypes = resolved_self.collect_mtypes(mmodule)
857 for supertype in supertypes do
858 if supertype.mclass == super_mclass then
859 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
860 return supertype.resolve_for(self, anchor, mmodule, false)
861 end
862 end
863 abort
864 end
865
866 # Replace formals generic types in self with resolved values in `mtype`
867 # If `cleanup_virtual` is true, then virtual types are also replaced
868 # with their bounds.
869 #
870 # This function returns self if `need_anchor` is false.
871 #
872 # ## Example 1
873 #
874 # ~~~
875 # class G[E] end
876 # class H[F] super G[F] end
877 # class X[Z] end
878 # ~~~
879 #
880 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
881 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
882 #
883 # Explanation of the example:
884 # * Array[E].need_anchor is true because there is a formal generic parameter type E
885 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
886 # * Since "H[F] super G[F]", E is in fact F for H
887 # * More specifically, in H[Int], E is Int
888 # * So, in H[Int], Array[E] is Array[Int]
889 #
890 # This function is mainly used to inherit a signature.
891 # Because, unlike `anchor_to`, we do not want a full resolution of
892 # a type but only an adapted version of it.
893 #
894 # ## Example 2
895 #
896 # ~~~
897 # class A[E]
898 # fun foo(e:E):E is abstract
899 # end
900 # class B super A[Int] end
901 # ~~~
902 #
903 # The signature on foo is (e: E): E
904 # If we resolve the signature for B, we get (e:Int):Int
905 #
906 # ## Example 3
907 #
908 # ~~~nitish
909 # class A[E]
910 # fun foo(e:E):E is abstract
911 # end
912 # class C[F]
913 # var a: A[Array[F]]
914 # fun bar do a.foo(x) # <- x is here
915 # end
916 # ~~~
917 #
918 # The first question is: is foo available on `a`?
919 #
920 # The static type of a is `A[Array[F]]`, that is an open type.
921 # in order to find a method `foo`, whe must look at a resolved type.
922 #
923 # A[Array[F]].anchor_to(C[nullable Object]) #-> A[Array[nullable Object]]
924 #
925 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
926 #
927 # The next question is: what is the accepted types for `x`?
928 #
929 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
930 #
931 # E.resolve_for(A[Array[F]],C[nullable Object]) #-> Array[F]
932 #
933 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
934 #
935 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
936 # two function instead of one seems also to be a bad idea.
937 #
938 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
939 # ENSURE: `not self.need_anchor implies result == self`
940 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
941
942 # Resolve formal type to its verbatim bound.
943 # If the type is not formal, just return self
944 #
945 # The result is returned exactly as declared in the "type" property (verbatim).
946 # So it could be another formal type.
947 #
948 # In case of conflict, the method aborts.
949 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self
950
951 # Resolve the formal type to its simplest equivalent form.
952 #
953 # Formal types are either free or fixed.
954 # When it is fixed, it means that it is equivalent with a simpler type.
955 # When a formal type is free, it means that it is only equivalent with itself.
956 # This method return the most simple equivalent type of `self`.
957 #
958 # This method is mainly used for subtype test in order to sanely compare fixed.
959 #
960 # By default, return self.
961 # See the redefinitions for specific behavior in each kind of type.
962 fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self
963
964 # Can the type be resolved?
965 #
966 # In order to resolve open types, the formal types must make sence.
967 #
968 # ## Example
969 #
970 # class A[E]
971 # end
972 # class B[F]
973 # end
974 #
975 # ~~~nitish
976 # E.can_resolve_for(A[Int]) #-> true, E make sense in A
977 #
978 # E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
979 #
980 # B[E].can_resolve_for(A[F], B[Object]) #-> true,
981 # # B[E] is a red hearing only the E is important,
982 # # E make sense in A
983 # ~~~
984 #
985 # REQUIRE: `anchor != null implies not anchor.need_anchor`
986 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
987 # ENSURE: `not self.need_anchor implies result == true`
988 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
989
990 # Return the nullable version of the type
991 # If the type is already nullable then self is returned
992 fun as_nullable: MType
993 do
994 var res = self.as_nullable_cache
995 if res != null then return res
996 res = new MNullableType(self)
997 self.as_nullable_cache = res
998 return res
999 end
1000
1001 # Return the not nullable version of the type
1002 # Is the type is already not nullable, then self is returned.
1003 #
1004 # Note: this just remove the `nullable` notation, but the result can still contains null.
1005 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
1006 fun as_notnullable: MType
1007 do
1008 return self
1009 end
1010
1011 # Returns the not null version of the type.
1012 # That is `self` minus the `null` value.
1013 #
1014 # For most types, this return `self`.
1015 # For formal types, this returns a special `MNotNullType`
1016 fun as_notnull: MType do return self
1017
1018 private var as_nullable_cache: nullable MType = null
1019
1020
1021 # The depth of the type seen as a tree.
1022 #
1023 # * A -> 1
1024 # * G[A] -> 2
1025 # * H[A, B] -> 2
1026 # * H[G[A], B] -> 3
1027 #
1028 # Formal types have a depth of 1.
1029 fun depth: Int
1030 do
1031 return 1
1032 end
1033
1034 # The length of the type seen as a tree.
1035 #
1036 # * A -> 1
1037 # * G[A] -> 2
1038 # * H[A, B] -> 3
1039 # * H[G[A], B] -> 4
1040 #
1041 # Formal types have a length of 1.
1042 fun length: Int
1043 do
1044 return 1
1045 end
1046
1047 # Compute all the classdefs inherited/imported.
1048 # The returned set contains:
1049 # * the class definitions from `mmodule` and its imported modules
1050 # * the class definitions of this type and its super-types
1051 #
1052 # This function is used mainly internally.
1053 #
1054 # REQUIRE: `not self.need_anchor`
1055 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
1056
1057 # Compute all the super-classes.
1058 # This function is used mainly internally.
1059 #
1060 # REQUIRE: `not self.need_anchor`
1061 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
1062
1063 # Compute all the declared super-types.
1064 # Super-types are returned as declared in the classdefs (verbatim).
1065 # This function is used mainly internally.
1066 #
1067 # REQUIRE: `not self.need_anchor`
1068 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
1069
1070 # Is the property in self for a given module
1071 # This method does not filter visibility or whatever
1072 #
1073 # REQUIRE: `not self.need_anchor`
1074 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
1075 do
1076 assert not self.need_anchor
1077 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
1078 end
1079 end
1080
1081 # A type based on a class.
1082 #
1083 # `MClassType` have properties (see `has_mproperty`).
1084 class MClassType
1085 super MType
1086
1087 # The associated class
1088 var mclass: MClass
1089
1090 redef fun model do return self.mclass.intro_mmodule.model
1091
1092 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1093
1094 # The formal arguments of the type
1095 # ENSURE: `result.length == self.mclass.arity`
1096 var arguments = new Array[MType]
1097
1098 redef fun to_s do return mclass.to_s
1099
1100 redef fun full_name do return mclass.full_name
1101
1102 redef fun c_name do return mclass.c_name
1103
1104 redef fun need_anchor do return false
1105
1106 redef fun anchor_to(mmodule: MModule, anchor: MClassType): MClassType
1107 do
1108 return super.as(MClassType)
1109 end
1110
1111 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1112
1113 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1114
1115 redef fun collect_mclassdefs(mmodule)
1116 do
1117 assert not self.need_anchor
1118 var cache = self.collect_mclassdefs_cache
1119 if not cache.has_key(mmodule) then
1120 self.collect_things(mmodule)
1121 end
1122 return cache[mmodule]
1123 end
1124
1125 redef fun collect_mclasses(mmodule)
1126 do
1127 if collect_mclasses_last_module == mmodule then return collect_mclasses_last_module_cache
1128 assert not self.need_anchor
1129 var cache = self.collect_mclasses_cache
1130 if not cache.has_key(mmodule) then
1131 self.collect_things(mmodule)
1132 end
1133 var res = cache[mmodule]
1134 collect_mclasses_last_module = mmodule
1135 collect_mclasses_last_module_cache = res
1136 return res
1137 end
1138
1139 private var collect_mclasses_last_module: nullable MModule = null
1140 private var collect_mclasses_last_module_cache: Set[MClass] is noinit
1141
1142 redef fun collect_mtypes(mmodule)
1143 do
1144 assert not self.need_anchor
1145 var cache = self.collect_mtypes_cache
1146 if not cache.has_key(mmodule) then
1147 self.collect_things(mmodule)
1148 end
1149 return cache[mmodule]
1150 end
1151
1152 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1153 private fun collect_things(mmodule: MModule)
1154 do
1155 var res = new HashSet[MClassDef]
1156 var seen = new HashSet[MClass]
1157 var types = new HashSet[MClassType]
1158 seen.add(self.mclass)
1159 var todo = [self.mclass]
1160 while not todo.is_empty do
1161 var mclass = todo.pop
1162 #print "process {mclass}"
1163 for mclassdef in mclass.mclassdefs do
1164 if not mmodule.in_importation <= mclassdef.mmodule then continue
1165 #print " process {mclassdef}"
1166 res.add(mclassdef)
1167 for supertype in mclassdef.supertypes do
1168 types.add(supertype)
1169 var superclass = supertype.mclass
1170 if seen.has(superclass) then continue
1171 #print " add {superclass}"
1172 seen.add(superclass)
1173 todo.add(superclass)
1174 end
1175 end
1176 end
1177 collect_mclassdefs_cache[mmodule] = res
1178 collect_mclasses_cache[mmodule] = seen
1179 collect_mtypes_cache[mmodule] = types
1180 end
1181
1182 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1183 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1184 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1185
1186 end
1187
1188 # A type based on a generic class.
1189 # A generic type a just a class with additional formal generic arguments.
1190 class MGenericType
1191 super MClassType
1192
1193 redef var arguments
1194
1195 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1196
1197 init
1198 do
1199 assert self.mclass.arity == arguments.length
1200
1201 self.need_anchor = false
1202 for t in arguments do
1203 if t.need_anchor then
1204 self.need_anchor = true
1205 break
1206 end
1207 end
1208
1209 self.to_s = "{mclass}[{arguments.join(", ")}]"
1210 end
1211
1212 # The short-name of the class, then the full-name of each type arguments within brackets.
1213 # Example: `"Map[String, List[Int]]"`
1214 redef var to_s: String is noinit
1215
1216 # The full-name of the class, then the full-name of each type arguments within brackets.
1217 # Example: `"standard::Map[standard::String, standard::List[standard::Int]]"`
1218 redef var full_name is lazy do
1219 var args = new Array[String]
1220 for t in arguments do
1221 args.add t.full_name
1222 end
1223 return "{mclass.full_name}[{args.join(", ")}]"
1224 end
1225
1226 redef var c_name is lazy do
1227 var res = mclass.c_name
1228 # Note: because the arity is known, a prefix notation is enough
1229 for t in arguments do
1230 res += "__"
1231 res += t.c_name
1232 end
1233 return res.to_s
1234 end
1235
1236 redef var need_anchor: Bool is noinit
1237
1238 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1239 do
1240 if not need_anchor then return self
1241 assert can_resolve_for(mtype, anchor, mmodule)
1242 var types = new Array[MType]
1243 for t in arguments do
1244 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1245 end
1246 return mclass.get_mtype(types)
1247 end
1248
1249 redef fun can_resolve_for(mtype, anchor, mmodule)
1250 do
1251 if not need_anchor then return true
1252 for t in arguments do
1253 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1254 end
1255 return true
1256 end
1257
1258
1259 redef fun depth
1260 do
1261 var dmax = 0
1262 for a in self.arguments do
1263 var d = a.depth
1264 if d > dmax then dmax = d
1265 end
1266 return dmax + 1
1267 end
1268
1269 redef fun length
1270 do
1271 var res = 1
1272 for a in self.arguments do
1273 res += a.length
1274 end
1275 return res
1276 end
1277 end
1278
1279 # A formal type (either virtual of parametric).
1280 #
1281 # The main issue with formal types is that they offer very little information on their own
1282 # and need a context (anchor and mmodule) to be useful.
1283 abstract class MFormalType
1284 super MType
1285
1286 redef var as_notnull = new MNotNullType(self) is lazy
1287 end
1288
1289 # A virtual formal type.
1290 class MVirtualType
1291 super MFormalType
1292
1293 # The property associated with the type.
1294 # Its the definitions of this property that determine the bound or the virtual type.
1295 var mproperty: MVirtualTypeProp
1296
1297 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1298
1299 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1300 do
1301 return lookup_single_definition(mmodule, resolved_receiver).bound.as(not null)
1302 end
1303
1304 private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef
1305 do
1306 assert not resolved_receiver.need_anchor
1307 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1308 if props.is_empty then
1309 abort
1310 else if props.length == 1 then
1311 return props.first
1312 end
1313 var types = new ArraySet[MType]
1314 var res = props.first
1315 for p in props do
1316 types.add(p.bound.as(not null))
1317 if not res.is_fixed then res = p
1318 end
1319 if types.length == 1 then
1320 return res
1321 end
1322 abort
1323 end
1324
1325 # A VT is fixed when:
1326 # * the VT is (re-)defined with the annotation `is fixed`
1327 # * the VT is (indirectly) bound to an enum class (see `enum_kind`) since there is no subtype possible
1328 # * the receiver is an enum class since there is no subtype possible
1329 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1330 do
1331 assert not resolved_receiver.need_anchor
1332 resolved_receiver = resolved_receiver.as_notnullable
1333 assert resolved_receiver isa MClassType # It is the only remaining type
1334
1335 var prop = lookup_single_definition(mmodule, resolved_receiver)
1336 var res = prop.bound.as(not null)
1337
1338 # Recursively lookup the fixed result
1339 res = res.lookup_fixed(mmodule, resolved_receiver)
1340
1341 # 1. For a fixed VT, return the resolved bound
1342 if prop.is_fixed then return res
1343
1344 # 2. For a enum boud, return the bound
1345 if res isa MClassType and res.mclass.kind == enum_kind then return res
1346
1347 # 3. for a enum receiver return the bound
1348 if resolved_receiver.mclass.kind == enum_kind then return res
1349
1350 return self
1351 end
1352
1353 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1354 do
1355 if not cleanup_virtual then return self
1356 assert can_resolve_for(mtype, anchor, mmodule)
1357 # self is a virtual type declared (or inherited) in mtype
1358 # The point of the function it to get the bound of the virtual type that make sense for mtype
1359 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1360 #print "{class_name}: {self}/{mtype}/{anchor}?"
1361 var resolved_receiver
1362 if mtype.need_anchor then
1363 assert anchor != null
1364 resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true)
1365 else
1366 resolved_receiver = mtype
1367 end
1368 # Now, we can get the bound
1369 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1370 # The bound is exactly as declared in the "type" property, so we must resolve it again
1371 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1372
1373 return res
1374 end
1375
1376 redef fun can_resolve_for(mtype, anchor, mmodule)
1377 do
1378 if mtype.need_anchor then
1379 assert anchor != null
1380 mtype = mtype.anchor_to(mmodule, anchor)
1381 end
1382 return mtype.has_mproperty(mmodule, mproperty)
1383 end
1384
1385 redef fun to_s do return self.mproperty.to_s
1386
1387 redef fun full_name do return self.mproperty.full_name
1388
1389 redef fun c_name do return self.mproperty.c_name
1390 end
1391
1392 # The type associated to a formal parameter generic type of a class
1393 #
1394 # Each parameter type is associated to a specific class.
1395 # It means that all refinements of a same class "share" the parameter type,
1396 # but that a generic subclass has its own parameter types.
1397 #
1398 # However, in the sense of the meta-model, a parameter type of a class is
1399 # a valid type in a subclass. The "in the sense of the meta-model" is
1400 # important because, in the Nit language, the programmer cannot refers
1401 # directly to the parameter types of the super-classes.
1402 #
1403 # Example:
1404 #
1405 # class A[E]
1406 # fun e: E is abstract
1407 # end
1408 # class B[F]
1409 # super A[Array[F]]
1410 # end
1411 #
1412 # In the class definition B[F], `F` is a valid type but `E` is not.
1413 # However, `self.e` is a valid method call, and the signature of `e` is
1414 # declared `e: E`.
1415 #
1416 # Note that parameter types are shared among class refinements.
1417 # Therefore parameter only have an internal name (see `to_s` for details).
1418 class MParameterType
1419 super MFormalType
1420
1421 # The generic class where the parameter belong
1422 var mclass: MClass
1423
1424 redef fun model do return self.mclass.intro_mmodule.model
1425
1426 # The position of the parameter (0 for the first parameter)
1427 # FIXME: is `position` a better name?
1428 var rank: Int
1429
1430 redef var name
1431
1432 redef fun to_s do return name
1433
1434 redef var full_name is lazy do return "{mclass.full_name}::{name}"
1435
1436 redef var c_name is lazy do return mclass.c_name + "__" + "#{name}".to_cmangle
1437
1438 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1439 do
1440 assert not resolved_receiver.need_anchor
1441 resolved_receiver = resolved_receiver.as_notnullable
1442 assert resolved_receiver isa MClassType # It is the only remaining type
1443 var goalclass = self.mclass
1444 if resolved_receiver.mclass == goalclass then
1445 return resolved_receiver.arguments[self.rank]
1446 end
1447 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1448 for t in supertypes do
1449 if t.mclass == goalclass then
1450 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1451 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1452 var res = t.arguments[self.rank]
1453 return res
1454 end
1455 end
1456 abort
1457 end
1458
1459 # A PT is fixed when:
1460 # * Its bound is a enum class (see `enum_kind`).
1461 # The PT is just useless, but it is still a case.
1462 # * More usually, the `resolved_receiver` is a subclass of `self.mclass`,
1463 # so it is necessarily fixed in a `super` clause, either with a normal type
1464 # or with another PT.
1465 # See `resolve_for` for examples about related issues.
1466 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1467 do
1468 assert not resolved_receiver.need_anchor
1469 resolved_receiver = resolved_receiver.as_notnullable
1470 assert resolved_receiver isa MClassType # It is the only remaining type
1471 var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false)
1472 return res
1473 end
1474
1475 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1476 do
1477 assert can_resolve_for(mtype, anchor, mmodule)
1478 #print "{class_name}: {self}/{mtype}/{anchor}?"
1479
1480 if mtype isa MGenericType and mtype.mclass == self.mclass then
1481 var res = mtype.arguments[self.rank]
1482 if anchor != null and res.need_anchor then
1483 # Maybe the result can be resolved more if are bound to a final class
1484 var r2 = res.anchor_to(mmodule, anchor)
1485 if r2 isa MClassType and r2.mclass.kind == enum_kind then return r2
1486 end
1487 return res
1488 end
1489
1490 # self is a parameter type of mtype (or of a super-class of mtype)
1491 # The point of the function it to get the bound of the virtual type that make sense for mtype
1492 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1493 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1494 var resolved_receiver
1495 if mtype.need_anchor then
1496 assert anchor != null
1497 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1498 else
1499 resolved_receiver = mtype
1500 end
1501 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1502 if resolved_receiver isa MParameterType then
1503 assert resolved_receiver.mclass == anchor.mclass
1504 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1505 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1506 end
1507 assert resolved_receiver isa MClassType # It is the only remaining type
1508
1509 # Eh! The parameter is in the current class.
1510 # So we return the corresponding argument, no mater what!
1511 if resolved_receiver.mclass == self.mclass then
1512 var res = resolved_receiver.arguments[self.rank]
1513 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1514 return res
1515 end
1516
1517 if resolved_receiver.need_anchor then
1518 assert anchor != null
1519 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1520 end
1521 # Now, we can get the bound
1522 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1523 # The bound is exactly as declared in the "type" property, so we must resolve it again
1524 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1525
1526 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1527
1528 return res
1529 end
1530
1531 redef fun can_resolve_for(mtype, anchor, mmodule)
1532 do
1533 if mtype.need_anchor then
1534 assert anchor != null
1535 mtype = mtype.anchor_to(mmodule, anchor)
1536 end
1537 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1538 end
1539 end
1540
1541 # A type that decorates another type.
1542 #
1543 # The point of this class is to provide a common implementation of sevices that just forward to the original type.
1544 # Specific decorator are expected to redefine (or to extend) the default implementation as this suit them.
1545 abstract class MProxyType
1546 super MType
1547 # The base type
1548 var mtype: MType
1549
1550 redef fun model do return self.mtype.model
1551 redef fun need_anchor do return mtype.need_anchor
1552 redef fun as_nullable do return mtype.as_nullable
1553 redef fun as_notnull do return mtype.as_notnull
1554 redef fun as_notnullable do return mtype.as_notnullable
1555 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1556 do
1557 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1558 return res
1559 end
1560
1561 redef fun can_resolve_for(mtype, anchor, mmodule)
1562 do
1563 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1564 end
1565
1566 redef fun lookup_fixed(mmodule, resolved_receiver)
1567 do
1568 var t = mtype.lookup_fixed(mmodule, resolved_receiver)
1569 return t
1570 end
1571
1572 redef fun depth do return self.mtype.depth
1573
1574 redef fun length do return self.mtype.length
1575
1576 redef fun collect_mclassdefs(mmodule)
1577 do
1578 assert not self.need_anchor
1579 return self.mtype.collect_mclassdefs(mmodule)
1580 end
1581
1582 redef fun collect_mclasses(mmodule)
1583 do
1584 assert not self.need_anchor
1585 return self.mtype.collect_mclasses(mmodule)
1586 end
1587
1588 redef fun collect_mtypes(mmodule)
1589 do
1590 assert not self.need_anchor
1591 return self.mtype.collect_mtypes(mmodule)
1592 end
1593 end
1594
1595 # A type prefixed with "nullable"
1596 class MNullableType
1597 super MProxyType
1598
1599 init
1600 do
1601 self.to_s = "nullable {mtype}"
1602 end
1603
1604 redef var to_s: String is noinit
1605
1606 redef var full_name is lazy do return "nullable {mtype.full_name}"
1607
1608 redef var c_name is lazy do return "nullable__{mtype.c_name}"
1609
1610 redef fun as_nullable do return self
1611 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1612 do
1613 var res = super
1614 return res.as_nullable
1615 end
1616
1617 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable`
1618 redef fun lookup_fixed(mmodule, resolved_receiver)
1619 do
1620 var t = super
1621 if t == mtype then return self
1622 return t.as_nullable
1623 end
1624 end
1625
1626 # A non-null version of a formal type.
1627 #
1628 # When a formal type in bounded to a nullable type, this is the type of the not null version of it.
1629 class MNotNullType
1630 super MProxyType
1631
1632 redef fun to_s do return "not null {mtype}"
1633 redef var full_name is lazy do return "not null {mtype.full_name}"
1634 redef var c_name is lazy do return "notnull__{mtype.c_name}"
1635
1636 redef fun as_notnull do return self
1637
1638 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1639 do
1640 var res = super
1641 return res.as_notnull
1642 end
1643
1644 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_notnull`
1645 redef fun lookup_fixed(mmodule, resolved_receiver)
1646 do
1647 var t = super
1648 if t == mtype then return self
1649 return t.as_notnull
1650 end
1651 end
1652
1653 # The type of the only value null
1654 #
1655 # The is only one null type per model, see `MModel::null_type`.
1656 class MNullType
1657 super MType
1658 redef var model: Model
1659 redef fun to_s do return "null"
1660 redef fun full_name do return "null"
1661 redef fun c_name do return "null"
1662 redef fun as_nullable do return self
1663
1664 # Aborts on `null`
1665 redef fun as_notnull do abort # sorry...
1666 redef fun need_anchor do return false
1667 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1668 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1669
1670 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1671
1672 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1673
1674 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1675 end
1676
1677 # A signature of a method
1678 class MSignature
1679 super MType
1680
1681 # The each parameter (in order)
1682 var mparameters: Array[MParameter]
1683
1684 # The return type (null for a procedure)
1685 var return_mtype: nullable MType
1686
1687 redef fun depth
1688 do
1689 var dmax = 0
1690 var t = self.return_mtype
1691 if t != null then dmax = t.depth
1692 for p in mparameters do
1693 var d = p.mtype.depth
1694 if d > dmax then dmax = d
1695 end
1696 return dmax + 1
1697 end
1698
1699 redef fun length
1700 do
1701 var res = 1
1702 var t = self.return_mtype
1703 if t != null then res += t.length
1704 for p in mparameters do
1705 res += p.mtype.length
1706 end
1707 return res
1708 end
1709
1710 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1711 init
1712 do
1713 var vararg_rank = -1
1714 for i in [0..mparameters.length[ do
1715 var parameter = mparameters[i]
1716 if parameter.is_vararg then
1717 assert vararg_rank == -1
1718 vararg_rank = i
1719 end
1720 end
1721 self.vararg_rank = vararg_rank
1722 end
1723
1724 # The rank of the ellipsis (`...`) for vararg (starting from 0).
1725 # value is -1 if there is no vararg.
1726 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1727 var vararg_rank: Int is noinit
1728
1729 # The number or parameters
1730 fun arity: Int do return mparameters.length
1731
1732 redef fun to_s
1733 do
1734 var b = new FlatBuffer
1735 if not mparameters.is_empty then
1736 b.append("(")
1737 for i in [0..mparameters.length[ do
1738 var mparameter = mparameters[i]
1739 if i > 0 then b.append(", ")
1740 b.append(mparameter.name)
1741 b.append(": ")
1742 b.append(mparameter.mtype.to_s)
1743 if mparameter.is_vararg then
1744 b.append("...")
1745 end
1746 end
1747 b.append(")")
1748 end
1749 var ret = self.return_mtype
1750 if ret != null then
1751 b.append(": ")
1752 b.append(ret.to_s)
1753 end
1754 return b.to_s
1755 end
1756
1757 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
1758 do
1759 var params = new Array[MParameter]
1760 for p in self.mparameters do
1761 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1762 end
1763 var ret = self.return_mtype
1764 if ret != null then
1765 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1766 end
1767 var res = new MSignature(params, ret)
1768 return res
1769 end
1770 end
1771
1772 # A parameter in a signature
1773 class MParameter
1774 super MEntity
1775
1776 # The name of the parameter
1777 redef var name: String
1778
1779 # The static type of the parameter
1780 var mtype: MType
1781
1782 # Is the parameter a vararg?
1783 var is_vararg: Bool
1784
1785 redef fun to_s
1786 do
1787 if is_vararg then
1788 return "{name}: {mtype}..."
1789 else
1790 return "{name}: {mtype}"
1791 end
1792 end
1793
1794 # Returns a new parameter with the `mtype` resolved.
1795 # See `MType::resolve_for` for details.
1796 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
1797 do
1798 if not self.mtype.need_anchor then return self
1799 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1800 var res = new MParameter(self.name, newtype, self.is_vararg)
1801 return res
1802 end
1803
1804 redef fun model do return mtype.model
1805 end
1806
1807 # A service (global property) that generalize method, attribute, etc.
1808 #
1809 # `MProperty` are global to the model; it means that a `MProperty` is not bound
1810 # to a specific `MModule` nor a specific `MClass`.
1811 #
1812 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
1813 # and the other in subclasses and in refinements.
1814 #
1815 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
1816 # of any dynamic type).
1817 # For instance, a call site "x.foo" is associated to a `MProperty`.
1818 abstract class MProperty
1819 super MEntity
1820
1821 # The associated MPropDef subclass.
1822 # The two specialization hierarchy are symmetric.
1823 type MPROPDEF: MPropDef
1824
1825 # The classdef that introduce the property
1826 # While a property is not bound to a specific module, or class,
1827 # the introducing mclassdef is used for naming and visibility
1828 var intro_mclassdef: MClassDef
1829
1830 # The (short) name of the property
1831 redef var name: String
1832
1833 # The canonical name of the property.
1834 #
1835 # It is the short-`name` prefixed by the short-name of the class and the full-name of the module.
1836 # Example: "my_project::my_module::MyClass::my_method"
1837 redef var full_name is lazy do
1838 return "{intro_mclassdef.mmodule.namespace_for(visibility)}::{intro_mclassdef.mclass.name}::{name}"
1839 end
1840
1841 redef var c_name is lazy do
1842 # FIXME use `namespace_for`
1843 return "{intro_mclassdef.mmodule.c_name}__{intro_mclassdef.mclass.name.to_cmangle}__{name.to_cmangle}"
1844 end
1845
1846 # The visibility of the property
1847 var visibility: MVisibility
1848
1849 # Is the property usable as an initializer?
1850 var is_autoinit = false is writable
1851
1852 init
1853 do
1854 intro_mclassdef.intro_mproperties.add(self)
1855 var model = intro_mclassdef.mmodule.model
1856 model.mproperties_by_name.add_one(name, self)
1857 model.mproperties.add(self)
1858 end
1859
1860 # All definitions of the property.
1861 # The first is the introduction,
1862 # The other are redefinitions (in refinements and in subclasses)
1863 var mpropdefs = new Array[MPROPDEF]
1864
1865 # The definition that introduces the property.
1866 #
1867 # Warning: such a definition may not exist in the early life of the object.
1868 # In this case, the method will abort.
1869 var intro: MPROPDEF is noinit
1870
1871 redef fun model do return intro.model
1872
1873 # Alias for `name`
1874 redef fun to_s do return name
1875
1876 # Return the most specific property definitions defined or inherited by a type.
1877 # The selection knows that refinement is stronger than specialization;
1878 # however, in case of conflict more than one property are returned.
1879 # If mtype does not know mproperty then an empty array is returned.
1880 #
1881 # If you want the really most specific property, then look at `lookup_first_definition`
1882 #
1883 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
1884 # ENSURE: `not mtype.has_mproperty(mmodule, self) == result.is_empty`
1885 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1886 do
1887 assert not mtype.need_anchor
1888 mtype = mtype.as_notnullable
1889
1890 var cache = self.lookup_definitions_cache[mmodule, mtype]
1891 if cache != null then return cache
1892
1893 #print "select prop {mproperty} for {mtype} in {self}"
1894 # First, select all candidates
1895 var candidates = new Array[MPROPDEF]
1896 for mpropdef in self.mpropdefs do
1897 # If the definition is not imported by the module, then skip
1898 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1899 # If the definition is not inherited by the type, then skip
1900 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1901 # Else, we keep it
1902 candidates.add(mpropdef)
1903 end
1904 # Fast track for only one candidate
1905 if candidates.length <= 1 then
1906 self.lookup_definitions_cache[mmodule, mtype] = candidates
1907 return candidates
1908 end
1909
1910 # Second, filter the most specific ones
1911 return select_most_specific(mmodule, candidates)
1912 end
1913
1914 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
1915
1916 # Return the most specific property definitions inherited by a type.
1917 # The selection knows that refinement is stronger than specialization;
1918 # however, in case of conflict more than one property are returned.
1919 # If mtype does not know mproperty then an empty array is returned.
1920 #
1921 # If you want the really most specific property, then look at `lookup_next_definition`
1922 #
1923 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
1924 # ENSURE: `not mtype.has_mproperty(mmodule, self) implies result.is_empty`
1925 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1926 do
1927 assert not mtype.need_anchor
1928 mtype = mtype.as_notnullable
1929
1930 # First, select all candidates
1931 var candidates = new Array[MPROPDEF]
1932 for mpropdef in self.mpropdefs do
1933 # If the definition is not imported by the module, then skip
1934 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1935 # If the definition is not inherited by the type, then skip
1936 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1937 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
1938 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
1939 # Else, we keep it
1940 candidates.add(mpropdef)
1941 end
1942 # Fast track for only one candidate
1943 if candidates.length <= 1 then return candidates
1944
1945 # Second, filter the most specific ones
1946 return select_most_specific(mmodule, candidates)
1947 end
1948
1949 # Return an array containing olny the most specific property definitions
1950 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
1951 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
1952 do
1953 var res = new Array[MPROPDEF]
1954 for pd1 in candidates do
1955 var cd1 = pd1.mclassdef
1956 var c1 = cd1.mclass
1957 var keep = true
1958 for pd2 in candidates do
1959 if pd2 == pd1 then continue # do not compare with self!
1960 var cd2 = pd2.mclassdef
1961 var c2 = cd2.mclass
1962 if c2.mclass_type == c1.mclass_type then
1963 if cd2.mmodule.in_importation < cd1.mmodule then
1964 # cd2 refines cd1; therefore we skip pd1
1965 keep = false
1966 break
1967 end
1968 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
1969 # cd2 < cd1; therefore we skip pd1
1970 keep = false
1971 break
1972 end
1973 end
1974 if keep then
1975 res.add(pd1)
1976 end
1977 end
1978 if res.is_empty then
1979 print "All lost! {candidates.join(", ")}"
1980 # FIXME: should be abort!
1981 end
1982 return res
1983 end
1984
1985 # Return the most specific definition in the linearization of `mtype`.
1986 #
1987 # If you want to know the next properties in the linearization,
1988 # look at `MPropDef::lookup_next_definition`.
1989 #
1990 # FIXME: the linearization is still unspecified
1991 #
1992 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
1993 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
1994 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
1995 do
1996 return lookup_all_definitions(mmodule, mtype).first
1997 end
1998
1999 # Return all definitions in a linearization order
2000 # Most specific first, most general last
2001 #
2002 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2003 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2004 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2005 do
2006 mtype = mtype.as_notnullable
2007
2008 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
2009 if cache != null then return cache
2010
2011 assert not mtype.need_anchor
2012 assert mtype.has_mproperty(mmodule, self)
2013
2014 #print "select prop {mproperty} for {mtype} in {self}"
2015 # First, select all candidates
2016 var candidates = new Array[MPROPDEF]
2017 for mpropdef in self.mpropdefs do
2018 # If the definition is not imported by the module, then skip
2019 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2020 # If the definition is not inherited by the type, then skip
2021 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2022 # Else, we keep it
2023 candidates.add(mpropdef)
2024 end
2025 # Fast track for only one candidate
2026 if candidates.length <= 1 then
2027 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2028 return candidates
2029 end
2030
2031 mmodule.linearize_mpropdefs(candidates)
2032 candidates = candidates.reversed
2033 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2034 return candidates
2035 end
2036
2037 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2038 end
2039
2040 # A global method
2041 class MMethod
2042 super MProperty
2043
2044 redef type MPROPDEF: MMethodDef
2045
2046 # Is the property defined at the top_level of the module?
2047 # Currently such a property are stored in `Object`
2048 var is_toplevel: Bool = false is writable
2049
2050 # Is the property a constructor?
2051 # Warning, this property can be inherited by subclasses with or without being a constructor
2052 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
2053 var is_init: Bool = false is writable
2054
2055 # The constructor is a (the) root init with empty signature but a set of initializers
2056 var is_root_init: Bool = false is writable
2057
2058 # Is the property a 'new' constructor?
2059 var is_new: Bool = false is writable
2060
2061 # Is the property a legal constructor for a given class?
2062 # As usual, visibility is not considered.
2063 # FIXME not implemented
2064 fun is_init_for(mclass: MClass): Bool
2065 do
2066 return self.is_init
2067 end
2068 end
2069
2070 # A global attribute
2071 class MAttribute
2072 super MProperty
2073
2074 redef type MPROPDEF: MAttributeDef
2075
2076 end
2077
2078 # A global virtual type
2079 class MVirtualTypeProp
2080 super MProperty
2081
2082 redef type MPROPDEF: MVirtualTypeDef
2083
2084 # The formal type associated to the virtual type property
2085 var mvirtualtype = new MVirtualType(self)
2086 end
2087
2088 # A definition of a property (local property)
2089 #
2090 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
2091 # specific class definition (which belong to a specific module)
2092 abstract class MPropDef
2093 super MEntity
2094
2095 # The associated `MProperty` subclass.
2096 # the two specialization hierarchy are symmetric
2097 type MPROPERTY: MProperty
2098
2099 # Self class
2100 type MPROPDEF: MPropDef
2101
2102 # The class definition where the property definition is
2103 var mclassdef: MClassDef
2104
2105 # The associated global property
2106 var mproperty: MPROPERTY
2107
2108 # The origin of the definition
2109 var location: Location
2110
2111 init
2112 do
2113 mclassdef.mpropdefs.add(self)
2114 mproperty.mpropdefs.add(self)
2115 if mproperty.intro_mclassdef == mclassdef then
2116 assert not isset mproperty._intro
2117 mproperty.intro = self
2118 end
2119 self.to_s = "{mclassdef}#{mproperty}"
2120 end
2121
2122 # Actually the name of the `mproperty`
2123 redef fun name do return mproperty.name
2124
2125 # The full-name of mpropdefs combine the information about the `classdef` and the `mproperty`.
2126 #
2127 # Therefore the combination of identifiers is awful,
2128 # the worst case being
2129 #
2130 # * a property "p::m::A::x"
2131 # * redefined in a refinement of a class "q::n::B"
2132 # * in a module "r::o"
2133 # * so "r::o#q::n::B#p::m::A::x"
2134 #
2135 # Fortunately, the full-name is simplified when entities are repeated.
2136 # For the previous case, the simplest form is "p#A#x".
2137 redef var full_name is lazy do
2138 var res = new FlatBuffer
2139
2140 # The first part is the mclassdef. Worst case is "r::o#q::n::B"
2141 res.append mclassdef.full_name
2142
2143 res.append "#"
2144
2145 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2146 # intro are unambiguous in a class
2147 res.append name
2148 else
2149 # Just try to simplify each part
2150 if mclassdef.mmodule.mproject != mproperty.intro_mclassdef.mmodule.mproject then
2151 # precise "p::m" only if "p" != "r"
2152 res.append mproperty.intro_mclassdef.mmodule.full_name
2153 res.append "::"
2154 else if mproperty.visibility <= private_visibility then
2155 # Same project ("p"=="q"), but private visibility,
2156 # does the module part ("::m") need to be displayed
2157 if mclassdef.mmodule.namespace_for(mclassdef.mclass.visibility) != mproperty.intro_mclassdef.mmodule.mproject then
2158 res.append "::"
2159 res.append mproperty.intro_mclassdef.mmodule.name
2160 res.append "::"
2161 end
2162 end
2163 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2164 # precise "B" only if not the same class than "A"
2165 res.append mproperty.intro_mclassdef.name
2166 res.append "::"
2167 end
2168 # Always use the property name "x"
2169 res.append mproperty.name
2170 end
2171 return res.to_s
2172 end
2173
2174 redef var c_name is lazy do
2175 var res = new FlatBuffer
2176 res.append mclassdef.c_name
2177 res.append "___"
2178 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2179 res.append name.to_cmangle
2180 else
2181 if mclassdef.mmodule != mproperty.intro_mclassdef.mmodule then
2182 res.append mproperty.intro_mclassdef.mmodule.c_name
2183 res.append "__"
2184 end
2185 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2186 res.append mproperty.intro_mclassdef.name.to_cmangle
2187 res.append "__"
2188 end
2189 res.append mproperty.name.to_cmangle
2190 end
2191 return res.to_s
2192 end
2193
2194 redef fun model do return mclassdef.model
2195
2196 # Internal name combining the module, the class and the property
2197 # Example: "mymodule#MyClass#mymethod"
2198 redef var to_s: String is noinit
2199
2200 # Is self the definition that introduce the property?
2201 fun is_intro: Bool do return mproperty.intro == self
2202
2203 # Return the next definition in linearization of `mtype`.
2204 #
2205 # This method is used to determine what method is called by a super.
2206 #
2207 # REQUIRE: `not mtype.need_anchor`
2208 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
2209 do
2210 assert not mtype.need_anchor
2211
2212 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
2213 var i = mpropdefs.iterator
2214 while i.is_ok and i.item != self do i.next
2215 assert has_property: i.is_ok
2216 i.next
2217 assert has_next_property: i.is_ok
2218 return i.item
2219 end
2220 end
2221
2222 # A local definition of a method
2223 class MMethodDef
2224 super MPropDef
2225
2226 redef type MPROPERTY: MMethod
2227 redef type MPROPDEF: MMethodDef
2228
2229 # The signature attached to the property definition
2230 var msignature: nullable MSignature = null is writable
2231
2232 # The signature attached to the `new` call on a root-init
2233 # This is a concatenation of the signatures of the initializers
2234 #
2235 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2236 var new_msignature: nullable MSignature = null is writable
2237
2238 # List of initialisers to call in root-inits
2239 #
2240 # They could be setters or attributes
2241 #
2242 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2243 var initializers = new Array[MProperty]
2244
2245 # Is the method definition abstract?
2246 var is_abstract: Bool = false is writable
2247
2248 # Is the method definition intern?
2249 var is_intern = false is writable
2250
2251 # Is the method definition extern?
2252 var is_extern = false is writable
2253
2254 # An optional constant value returned in functions.
2255 #
2256 # Only some specific primitife value are accepted by engines.
2257 # Is used when there is no better implementation available.
2258 #
2259 # Currently used only for the implementation of the `--define`
2260 # command-line option.
2261 # SEE: module `mixin`.
2262 var constant_value: nullable Object = null is writable
2263 end
2264
2265 # A local definition of an attribute
2266 class MAttributeDef
2267 super MPropDef
2268
2269 redef type MPROPERTY: MAttribute
2270 redef type MPROPDEF: MAttributeDef
2271
2272 # The static type of the attribute
2273 var static_mtype: nullable MType = null is writable
2274 end
2275
2276 # A local definition of a virtual type
2277 class MVirtualTypeDef
2278 super MPropDef
2279
2280 redef type MPROPERTY: MVirtualTypeProp
2281 redef type MPROPDEF: MVirtualTypeDef
2282
2283 # The bound of the virtual type
2284 var bound: nullable MType = null is writable
2285
2286 # Is the bound fixed?
2287 var is_fixed = false is writable
2288 end
2289
2290 # A kind of class.
2291 #
2292 # * `abstract_kind`
2293 # * `concrete_kind`
2294 # * `interface_kind`
2295 # * `enum_kind`
2296 # * `extern_kind`
2297 #
2298 # Note this class is basically an enum.
2299 # FIXME: use a real enum once user-defined enums are available
2300 class MClassKind
2301 redef var to_s: String
2302
2303 # Is a constructor required?
2304 var need_init: Bool
2305
2306 # TODO: private init because enumeration.
2307
2308 # Can a class of kind `self` specializes a class of kine `other`?
2309 fun can_specialize(other: MClassKind): Bool
2310 do
2311 if other == interface_kind then return true # everybody can specialize interfaces
2312 if self == interface_kind or self == enum_kind then
2313 # no other case for interfaces
2314 return false
2315 else if self == extern_kind then
2316 # only compatible with themselves
2317 return self == other
2318 else if other == enum_kind or other == extern_kind then
2319 # abstract_kind and concrete_kind are incompatible
2320 return false
2321 end
2322 # remain only abstract_kind and concrete_kind
2323 return true
2324 end
2325 end
2326
2327 # The class kind `abstract`
2328 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", true)
2329 # The class kind `concrete`
2330 fun concrete_kind: MClassKind do return once new MClassKind("class", true)
2331 # The class kind `interface`
2332 fun interface_kind: MClassKind do return once new MClassKind("interface", false)
2333 # The class kind `enum`
2334 fun enum_kind: MClassKind do return once new MClassKind("enum", false)
2335 # The class kind `extern`
2336 fun extern_kind: MClassKind do return once new MClassKind("extern class", false)