all: add `nitish` tag for code-blocks skipped by nitunit
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class Model
34 # All known classes
35 var mclasses = new Array[MClass]
36
37 # All known properties
38 var mproperties = new Array[MProperty]
39
40 # Hierarchy of class definition.
41 #
42 # Each classdef is associated with its super-classdefs in regard to
43 # its module of definition.
44 var mclassdef_hierarchy = new POSet[MClassDef]
45
46 # Class-type hierarchy restricted to the introduction.
47 #
48 # The idea is that what is true on introduction is always true whatever
49 # the module considered.
50 # Therefore, this hierarchy is used for a fast positive subtype check.
51 #
52 # This poset will evolve in a monotonous way:
53 # * Two non connected nodes will remain unconnected
54 # * New nodes can appear with new edges
55 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
56
57 # Global overlapped class-type hierarchy.
58 # The hierarchy when all modules are combined.
59 # Therefore, this hierarchy is used for a fast negative subtype check.
60 #
61 # This poset will evolve in an anarchic way. Loops can even be created.
62 #
63 # FIXME decide what to do on loops
64 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
65
66 # Collections of classes grouped by their short name
67 private var mclasses_by_name = new MultiHashMap[String, MClass]
68
69 # Return all class named `name`.
70 #
71 # If such a class does not exist, null is returned
72 # (instead of an empty array)
73 #
74 # Visibility or modules are not considered
75 fun get_mclasses_by_name(name: String): nullable Array[MClass]
76 do
77 if mclasses_by_name.has_key(name) then
78 return mclasses_by_name[name]
79 else
80 return null
81 end
82 end
83
84 # Collections of properties grouped by their short name
85 private var mproperties_by_name = new MultiHashMap[String, MProperty]
86
87 # Return all properties named `name`.
88 #
89 # If such a property does not exist, null is returned
90 # (instead of an empty array)
91 #
92 # Visibility or modules are not considered
93 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
94 do
95 if not mproperties_by_name.has_key(name) then
96 return null
97 else
98 return mproperties_by_name[name]
99 end
100 end
101
102 # The only null type
103 var null_type = new MNullType(self)
104
105 # Build an ordered tree with from `concerns`
106 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
107 var seen = new HashSet[MConcern]
108 var res = new ConcernsTree
109
110 var todo = new Array[MConcern]
111 todo.add_all mconcerns
112
113 while not todo.is_empty do
114 var c = todo.pop
115 if seen.has(c) then continue
116 var pc = c.parent_concern
117 if pc == null then
118 res.add(null, c)
119 else
120 res.add(pc, c)
121 todo.add(pc)
122 end
123 seen.add(c)
124 end
125
126 return res
127 end
128 end
129
130 # An OrderedTree that can be easily refined for display purposes
131 class ConcernsTree
132 super OrderedTree[MConcern]
133 end
134
135 redef class MModule
136 # All the classes introduced in the module
137 var intro_mclasses = new Array[MClass]
138
139 # All the class definitions of the module
140 # (introduction and refinement)
141 var mclassdefs = new Array[MClassDef]
142
143 # Does the current module has a given class `mclass`?
144 # Return true if the mmodule introduces, refines or imports a class.
145 # Visibility is not considered.
146 fun has_mclass(mclass: MClass): Bool
147 do
148 return self.in_importation <= mclass.intro_mmodule
149 end
150
151 # Full hierarchy of introduced ans imported classes.
152 #
153 # Create a new hierarchy got by flattening the classes for the module
154 # and its imported modules.
155 # Visibility is not considered.
156 #
157 # Note: this function is expensive and is usually used for the main
158 # module of a program only. Do not use it to do you own subtype
159 # functions.
160 fun flatten_mclass_hierarchy: POSet[MClass]
161 do
162 var res = self.flatten_mclass_hierarchy_cache
163 if res != null then return res
164 res = new POSet[MClass]
165 for m in self.in_importation.greaters do
166 for cd in m.mclassdefs do
167 var c = cd.mclass
168 res.add_node(c)
169 for s in cd.supertypes do
170 res.add_edge(c, s.mclass)
171 end
172 end
173 end
174 self.flatten_mclass_hierarchy_cache = res
175 return res
176 end
177
178 # Sort a given array of classes using the linearization order of the module
179 # The most general is first, the most specific is last
180 fun linearize_mclasses(mclasses: Array[MClass])
181 do
182 self.flatten_mclass_hierarchy.sort(mclasses)
183 end
184
185 # Sort a given array of class definitions using the linearization order of the module
186 # the refinement link is stronger than the specialisation link
187 # The most general is first, the most specific is last
188 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
189 do
190 var sorter = new MClassDefSorter(self)
191 sorter.sort(mclassdefs)
192 end
193
194 # Sort a given array of property definitions using the linearization order of the module
195 # the refinement link is stronger than the specialisation link
196 # The most general is first, the most specific is last
197 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
198 do
199 var sorter = new MPropDefSorter(self)
200 sorter.sort(mpropdefs)
201 end
202
203 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
204
205 # The primitive type `Object`, the root of the class hierarchy
206 fun object_type: MClassType
207 do
208 var res = self.object_type_cache
209 if res != null then return res
210 res = self.get_primitive_class("Object").mclass_type
211 self.object_type_cache = res
212 return res
213 end
214
215 private var object_type_cache: nullable MClassType
216
217 # The type `Pointer`, super class to all extern classes
218 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
219
220 # The primitive type `Bool`
221 fun bool_type: MClassType
222 do
223 var res = self.bool_type_cache
224 if res != null then return res
225 res = self.get_primitive_class("Bool").mclass_type
226 self.bool_type_cache = res
227 return res
228 end
229
230 private var bool_type_cache: nullable MClassType
231
232 # The primitive type `Sys`, the main type of the program, if any
233 fun sys_type: nullable MClassType
234 do
235 var clas = self.model.get_mclasses_by_name("Sys")
236 if clas == null then return null
237 return get_primitive_class("Sys").mclass_type
238 end
239
240 # The primitive type `Finalizable`
241 # Used to tag classes that need to be finalized.
242 fun finalizable_type: nullable MClassType
243 do
244 var clas = self.model.get_mclasses_by_name("Finalizable")
245 if clas == null then return null
246 return get_primitive_class("Finalizable").mclass_type
247 end
248
249 # Force to get the primitive class named `name` or abort
250 fun get_primitive_class(name: String): MClass
251 do
252 var cla = self.model.get_mclasses_by_name(name)
253 if cla == null then
254 if name == "Bool" then
255 var c = new MClass(self, name, null, enum_kind, public_visibility)
256 var cladef = new MClassDef(self, c.mclass_type, new Location(null, 0,0,0,0))
257 return c
258 end
259 print("Fatal Error: no primitive class {name}")
260 exit(1)
261 end
262 if cla.length != 1 then
263 var msg = "Fatal Error: more than one primitive class {name}:"
264 for c in cla do msg += " {c.full_name}"
265 print msg
266 exit(1)
267 end
268 return cla.first
269 end
270
271 # Try to get the primitive method named `name` on the type `recv`
272 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
273 do
274 var props = self.model.get_mproperties_by_name(name)
275 if props == null then return null
276 var res: nullable MMethod = null
277 for mprop in props do
278 assert mprop isa MMethod
279 var intro = mprop.intro_mclassdef
280 for mclassdef in recv.mclassdefs do
281 if not self.in_importation.greaters.has(mclassdef.mmodule) then continue
282 if not mclassdef.in_hierarchy.greaters.has(intro) then continue
283 if res == null then
284 res = mprop
285 else if res != mprop then
286 print("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
287 abort
288 end
289 end
290 end
291 return res
292 end
293 end
294
295 private class MClassDefSorter
296 super Comparator
297 redef type COMPARED: MClassDef
298 var mmodule: MModule
299 redef fun compare(a, b)
300 do
301 var ca = a.mclass
302 var cb = b.mclass
303 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
304 return mmodule.model.mclassdef_hierarchy.compare(a, b)
305 end
306 end
307
308 private class MPropDefSorter
309 super Comparator
310 redef type COMPARED: MPropDef
311 var mmodule: MModule
312 redef fun compare(pa, pb)
313 do
314 var a = pa.mclassdef
315 var b = pb.mclassdef
316 var ca = a.mclass
317 var cb = b.mclass
318 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
319 return mmodule.model.mclassdef_hierarchy.compare(a, b)
320 end
321 end
322
323 # A named class
324 #
325 # `MClass` are global to the model; it means that a `MClass` is not bound to a
326 # specific `MModule`.
327 #
328 # This characteristic helps the reasoning about classes in a program since a
329 # single `MClass` object always denote the same class.
330 #
331 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
332 # These do not really have properties nor belong to a hierarchy since the property and the
333 # hierarchy of a class depends of the refinement in the modules.
334 #
335 # Most services on classes require the precision of a module, and no one can asks what are
336 # the super-classes of a class nor what are properties of a class without precising what is
337 # the module considered.
338 #
339 # For instance, during the typing of a source-file, the module considered is the module of the file.
340 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
341 # *is the method `foo` exists in the class `Bar` in the current module?*
342 #
343 # During some global analysis, the module considered may be the main module of the program.
344 class MClass
345 super MEntity
346
347 # The module that introduce the class
348 # While classes are not bound to a specific module,
349 # the introducing module is used for naming an visibility
350 var intro_mmodule: MModule
351
352 # The short name of the class
353 # In Nit, the name of a class cannot evolve in refinements
354 redef var name: String
355
356 # The canonical name of the class
357 # Example: `"owner::module::MyClass"`
358 fun full_name: String
359 do
360 return "{self.intro_mmodule.full_name}::{name}"
361 end
362
363 # The number of generic formal parameters
364 # 0 if the class is not generic
365 var arity: Int is noinit
366
367 # Each generic formal parameters in order.
368 # is empty if the class is not generic
369 var mparameters = new Array[MParameterType]
370
371 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
372 autoinit
373 do
374 if parameter_names == null then
375 self.arity = 0
376 else
377 self.arity = parameter_names.length
378 end
379
380 # Create the formal parameter types
381 if arity > 0 then
382 assert parameter_names != null
383 var mparametertypes = new Array[MParameterType]
384 for i in [0..arity[ do
385 var mparametertype = new MParameterType(self, i, parameter_names[i])
386 mparametertypes.add(mparametertype)
387 end
388 self.mparameters = mparametertypes
389 var mclass_type = new MGenericType(self, mparametertypes)
390 self.mclass_type = mclass_type
391 self.get_mtype_cache.add(mclass_type)
392 else
393 self.mclass_type = new MClassType(self)
394 end
395 end
396
397 # The kind of the class (interface, abstract class, etc.)
398 # In Nit, the kind of a class cannot evolve in refinements
399 var kind: MClassKind
400
401 # The visibility of the class
402 # In Nit, the visibility of a class cannot evolve in refinements
403 var visibility: MVisibility
404
405 init
406 do
407 intro_mmodule.intro_mclasses.add(self)
408 var model = intro_mmodule.model
409 model.mclasses_by_name.add_one(name, self)
410 model.mclasses.add(self)
411 end
412
413 redef fun model do return intro_mmodule.model
414
415 # All class definitions (introduction and refinements)
416 var mclassdefs = new Array[MClassDef]
417
418 # Alias for `name`
419 redef fun to_s do return self.name
420
421 # The definition that introduces the class.
422 #
423 # Warning: such a definition may not exist in the early life of the object.
424 # In this case, the method will abort.
425 var intro: MClassDef is noinit
426
427 # Return the class `self` in the class hierarchy of the module `mmodule`.
428 #
429 # SEE: `MModule::flatten_mclass_hierarchy`
430 # REQUIRE: `mmodule.has_mclass(self)`
431 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
432 do
433 return mmodule.flatten_mclass_hierarchy[self]
434 end
435
436 # The principal static type of the class.
437 #
438 # For non-generic class, mclass_type is the only `MClassType` based
439 # on self.
440 #
441 # For a generic class, the arguments are the formal parameters.
442 # i.e.: for the class Array[E:Object], the `mclass_type` is Array[E].
443 # If you want Array[Object] the see `MClassDef::bound_mtype`
444 #
445 # For generic classes, the mclass_type is also the way to get a formal
446 # generic parameter type.
447 #
448 # To get other types based on a generic class, see `get_mtype`.
449 #
450 # ENSURE: `mclass_type.mclass == self`
451 var mclass_type: MClassType is noinit
452
453 # Return a generic type based on the class
454 # Is the class is not generic, then the result is `mclass_type`
455 #
456 # REQUIRE: `mtype_arguments.length == self.arity`
457 fun get_mtype(mtype_arguments: Array[MType]): MClassType
458 do
459 assert mtype_arguments.length == self.arity
460 if self.arity == 0 then return self.mclass_type
461 for t in self.get_mtype_cache do
462 if t.arguments == mtype_arguments then
463 return t
464 end
465 end
466 var res = new MGenericType(self, mtype_arguments)
467 self.get_mtype_cache.add res
468 return res
469 end
470
471 private var get_mtype_cache = new Array[MGenericType]
472 end
473
474
475 # A definition (an introduction or a refinement) of a class in a module
476 #
477 # A `MClassDef` is associated with an explicit (or almost) definition of a
478 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
479 # a specific class and a specific module, and contains declarations like super-classes
480 # or properties.
481 #
482 # It is the class definitions that are the backbone of most things in the model:
483 # ClassDefs are defined with regard with other classdefs.
484 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
485 #
486 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
487 class MClassDef
488 super MEntity
489
490 # The module where the definition is
491 var mmodule: MModule
492
493 # The associated `MClass`
494 var mclass: MClass is noinit
495
496 # The bounded type associated to the mclassdef
497 #
498 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
499 # are the same type.
500 #
501 # Example:
502 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
503 # If you want Array[E], then see `mclass.mclass_type`
504 #
505 # ENSURE: `bound_mtype.mclass == self.mclass`
506 var bound_mtype: MClassType
507
508 # The origin of the definition
509 var location: Location
510
511 # Internal name combining the module and the class
512 # Example: "mymodule#MyClass"
513 redef var to_s: String is noinit
514
515 init
516 do
517 self.mclass = bound_mtype.mclass
518 mmodule.mclassdefs.add(self)
519 mclass.mclassdefs.add(self)
520 if mclass.intro_mmodule == mmodule then
521 assert not isset mclass._intro
522 mclass.intro = self
523 end
524 self.to_s = "{mmodule}#{mclass}"
525 end
526
527 # Actually the name of the `mclass`
528 redef fun name do return mclass.name
529
530 redef fun model do return mmodule.model
531
532 # All declared super-types
533 # FIXME: quite ugly but not better idea yet
534 var supertypes = new Array[MClassType]
535
536 # Register some super-types for the class (ie "super SomeType")
537 #
538 # The hierarchy must not already be set
539 # REQUIRE: `self.in_hierarchy == null`
540 fun set_supertypes(supertypes: Array[MClassType])
541 do
542 assert unique_invocation: self.in_hierarchy == null
543 var mmodule = self.mmodule
544 var model = mmodule.model
545 var mtype = self.bound_mtype
546
547 for supertype in supertypes do
548 self.supertypes.add(supertype)
549
550 # Register in full_type_specialization_hierarchy
551 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
552 # Register in intro_type_specialization_hierarchy
553 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
554 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
555 end
556 end
557
558 end
559
560 # Collect the super-types (set by set_supertypes) to build the hierarchy
561 #
562 # This function can only invoked once by class
563 # REQUIRE: `self.in_hierarchy == null`
564 # ENSURE: `self.in_hierarchy != null`
565 fun add_in_hierarchy
566 do
567 assert unique_invocation: self.in_hierarchy == null
568 var model = mmodule.model
569 var res = model.mclassdef_hierarchy.add_node(self)
570 self.in_hierarchy = res
571 var mtype = self.bound_mtype
572
573 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
574 # The simpliest way is to attach it to collect_mclassdefs
575 for mclassdef in mtype.collect_mclassdefs(mmodule) do
576 res.poset.add_edge(self, mclassdef)
577 end
578 end
579
580 # The view of the class definition in `mclassdef_hierarchy`
581 var in_hierarchy: nullable POSetElement[MClassDef] = null
582
583 # Is the definition the one that introduced `mclass`?
584 fun is_intro: Bool do return mclass.intro == self
585
586 # All properties introduced by the classdef
587 var intro_mproperties = new Array[MProperty]
588
589 # All property definitions in the class (introductions and redefinitions)
590 var mpropdefs = new Array[MPropDef]
591 end
592
593 # A global static type
594 #
595 # MType are global to the model; it means that a `MType` is not bound to a
596 # specific `MModule`.
597 # This characteristic helps the reasoning about static types in a program
598 # since a single `MType` object always denote the same type.
599 #
600 # However, because a `MType` is global, it does not really have properties
601 # nor have subtypes to a hierarchy since the property and the class hierarchy
602 # depends of a module.
603 # Moreover, virtual types an formal generic parameter types also depends on
604 # a receiver to have sense.
605 #
606 # Therefore, most method of the types require a module and an anchor.
607 # The module is used to know what are the classes and the specialization
608 # links.
609 # The anchor is used to know what is the bound of the virtual types and formal
610 # generic parameter types.
611 #
612 # MType are not directly usable to get properties. See the `anchor_to` method
613 # and the `MClassType` class.
614 #
615 # FIXME: the order of the parameters is not the best. We mus pick on from:
616 # * foo(mmodule, anchor, othertype)
617 # * foo(othertype, anchor, mmodule)
618 # * foo(anchor, mmodule, othertype)
619 # * foo(othertype, mmodule, anchor)
620 abstract class MType
621 super MEntity
622
623 redef fun name do return to_s
624
625 # Return true if `self` is an subtype of `sup`.
626 # The typing is done using the standard typing policy of Nit.
627 #
628 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
629 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
630 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
631 do
632 var sub = self
633 if sub == sup then return true
634 if anchor == null then
635 assert not sub.need_anchor
636 assert not sup.need_anchor
637 else
638 assert sub.can_resolve_for(anchor, null, mmodule)
639 assert sup.can_resolve_for(anchor, null, mmodule)
640 end
641
642 # First, resolve the formal types to a common version in the receiver
643 # The trick here is that fixed formal type will be associated to the bound
644 # And unfixed formal types will be associated to a canonical formal type.
645 if sub isa MParameterType or sub isa MVirtualType then
646 assert anchor != null
647 sub = sub.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, false)
648 end
649 if sup isa MParameterType or sup isa MVirtualType then
650 assert anchor != null
651 sup = sup.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, false)
652 end
653
654 # Does `sup` accept null or not?
655 # Discard the nullable marker if it exists
656 var sup_accept_null = false
657 if sup isa MNullableType then
658 sup_accept_null = true
659 sup = sup.mtype
660 else if sup isa MNullType then
661 sup_accept_null = true
662 end
663
664 # Can `sub` provide null or not?
665 # Thus we can match with `sup_accept_null`
666 # Also discard the nullable marker if it exists
667 if sub isa MNullableType then
668 if not sup_accept_null then return false
669 sub = sub.mtype
670 else if sub isa MNullType then
671 return sup_accept_null
672 end
673 # Now the case of direct null and nullable is over.
674
675 # A unfixed formal type can only accept itself
676 if sup isa MParameterType or sup isa MVirtualType then
677 return sub == sup
678 end
679
680 # If `sub` is a formal type, then it is accepted if its bound is accepted
681 if sub isa MParameterType or sub isa MVirtualType then
682 assert anchor != null
683 sub = sub.anchor_to(mmodule, anchor)
684
685 # Manage the second layer of null/nullable
686 if sub isa MNullableType then
687 if not sup_accept_null then return false
688 sub = sub.mtype
689 else if sub isa MNullType then
690 return sup_accept_null
691 end
692 end
693
694 assert sub isa MClassType # It is the only remaining type
695
696 if sup isa MNullType then
697 # `sup` accepts only null
698 return false
699 end
700
701 assert sup isa MClassType # It is the only remaining type
702
703 # Now both are MClassType, we need to dig
704
705 if sub == sup then return true
706
707 if anchor == null then anchor = sub # UGLY: any anchor will work
708 var resolved_sub = sub.anchor_to(mmodule, anchor)
709 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
710 if res == false then return false
711 if not sup isa MGenericType then return true
712 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
713 assert sub2.mclass == sup.mclass
714 for i in [0..sup.mclass.arity[ do
715 var sub_arg = sub2.arguments[i]
716 var sup_arg = sup.arguments[i]
717 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
718 if res == false then return false
719 end
720 return true
721 end
722
723 # The base class type on which self is based
724 #
725 # This base type is used to get property (an internally to perform
726 # unsafe type comparison).
727 #
728 # Beware: some types (like null) are not based on a class thus this
729 # method will crash
730 #
731 # Basically, this function transform the virtual types and parameter
732 # types to their bounds.
733 #
734 # Example
735 #
736 # class A end
737 # class B super A end
738 # class X end
739 # class Y super X end
740 # class G[T: A]
741 # type U: X
742 # end
743 # class H
744 # super G[B]
745 # redef type U: Y
746 # end
747 #
748 # Map[T,U] anchor_to H #-> Map[B,Y]
749 #
750 # Explanation of the example:
751 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
752 # because "redef type U: Y". Therefore, Map[T, U] is bound to
753 # Map[B, Y]
754 #
755 # ENSURE: `not self.need_anchor implies result == self`
756 # ENSURE: `not result.need_anchor`
757 fun anchor_to(mmodule: MModule, anchor: MClassType): MType
758 do
759 if not need_anchor then return self
760 assert not anchor.need_anchor
761 # Just resolve to the anchor and clear all the virtual types
762 var res = self.resolve_for(anchor, null, mmodule, true)
763 assert not res.need_anchor
764 return res
765 end
766
767 # Does `self` contain a virtual type or a formal generic parameter type?
768 # In order to remove those types, you usually want to use `anchor_to`.
769 fun need_anchor: Bool do return true
770
771 # Return the supertype when adapted to a class.
772 #
773 # In Nit, for each super-class of a type, there is a equivalent super-type.
774 #
775 # Example:
776 #
777 # ~~~nitish
778 # class G[T, U] end
779 # class H[V] super G[V, Bool] end
780 #
781 # H[Int] supertype_to G #-> G[Int, Bool]
782 # ~~~
783 #
784 # REQUIRE: `super_mclass` is a super-class of `self`
785 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
786 # ENSURE: `result.mclass = super_mclass`
787 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
788 do
789 if super_mclass.arity == 0 then return super_mclass.mclass_type
790 if self isa MClassType and self.mclass == super_mclass then return self
791 var resolved_self
792 if self.need_anchor then
793 assert anchor != null
794 resolved_self = self.anchor_to(mmodule, anchor)
795 else
796 resolved_self = self
797 end
798 var supertypes = resolved_self.collect_mtypes(mmodule)
799 for supertype in supertypes do
800 if supertype.mclass == super_mclass then
801 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
802 return supertype.resolve_for(self, anchor, mmodule, false)
803 end
804 end
805 abort
806 end
807
808 # Replace formals generic types in self with resolved values in `mtype`
809 # If `cleanup_virtual` is true, then virtual types are also replaced
810 # with their bounds.
811 #
812 # This function returns self if `need_anchor` is false.
813 #
814 # ## Example 1
815 #
816 # ~~~
817 # class G[E] end
818 # class H[F] super G[F] end
819 # class X[Z] end
820 # ~~~
821 #
822 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
823 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
824 #
825 # Explanation of the example:
826 # * Array[E].need_anchor is true because there is a formal generic parameter type E
827 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
828 # * Since "H[F] super G[F]", E is in fact F for H
829 # * More specifically, in H[Int], E is Int
830 # * So, in H[Int], Array[E] is Array[Int]
831 #
832 # This function is mainly used to inherit a signature.
833 # Because, unlike `anchor_to`, we do not want a full resolution of
834 # a type but only an adapted version of it.
835 #
836 # ## Example 2
837 #
838 # ~~~
839 # class A[E]
840 # fun foo(e:E):E is abstract
841 # end
842 # class B super A[Int] end
843 # ~~~
844 #
845 # The signature on foo is (e: E): E
846 # If we resolve the signature for B, we get (e:Int):Int
847 #
848 # ## Example 3
849 #
850 # ~~~nitish
851 # class A[E]
852 # fun foo(e:E):E is abstract
853 # end
854 # class C[F]
855 # var a: A[Array[F]]
856 # fun bar do a.foo(x) # <- x is here
857 # end
858 # ~~~
859 #
860 # The first question is: is foo available on `a`?
861 #
862 # The static type of a is `A[Array[F]]`, that is an open type.
863 # in order to find a method `foo`, whe must look at a resolved type.
864 #
865 # A[Array[F]].anchor_to(C[nullable Object]) #-> A[Array[nullable Object]]
866 #
867 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
868 #
869 # The next question is: what is the accepted types for `x`?
870 #
871 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
872 #
873 # E.resolve_for(A[Array[F]],C[nullable Object]) #-> Array[F]
874 #
875 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
876 #
877 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
878 # two function instead of one seems also to be a bad idea.
879 #
880 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
881 # ENSURE: `not self.need_anchor implies result == self`
882 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
883
884 # Can the type be resolved?
885 #
886 # In order to resolve open types, the formal types must make sence.
887 #
888 # ## Example
889 #
890 # class A[E]
891 # end
892 # class B[F]
893 # end
894 #
895 # ~~~nitish
896 # E.can_resolve_for(A[Int]) #-> true, E make sense in A
897 #
898 # E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
899 #
900 # B[E].can_resolve_for(A[F], B[Object]) #-> true,
901 # # B[E] is a red hearing only the E is important,
902 # # E make sense in A
903 # ~~~
904 #
905 # REQUIRE: `anchor != null implies not anchor.need_anchor`
906 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
907 # ENSURE: `not self.need_anchor implies result == true`
908 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
909
910 # Return the nullable version of the type
911 # If the type is already nullable then self is returned
912 fun as_nullable: MType
913 do
914 var res = self.as_nullable_cache
915 if res != null then return res
916 res = new MNullableType(self)
917 self.as_nullable_cache = res
918 return res
919 end
920
921 # Return the not nullable version of the type
922 # Is the type is already not nullable, then self is returned.
923 #
924 # Note: this just remove the `nullable` notation, but the result can still contains null.
925 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
926 fun as_notnullable: MType
927 do
928 return self
929 end
930
931 private var as_nullable_cache: nullable MType = null
932
933
934 # The depth of the type seen as a tree.
935 #
936 # * A -> 1
937 # * G[A] -> 2
938 # * H[A, B] -> 2
939 # * H[G[A], B] -> 3
940 #
941 # Formal types have a depth of 1.
942 fun depth: Int
943 do
944 return 1
945 end
946
947 # The length of the type seen as a tree.
948 #
949 # * A -> 1
950 # * G[A] -> 2
951 # * H[A, B] -> 3
952 # * H[G[A], B] -> 4
953 #
954 # Formal types have a length of 1.
955 fun length: Int
956 do
957 return 1
958 end
959
960 # Compute all the classdefs inherited/imported.
961 # The returned set contains:
962 # * the class definitions from `mmodule` and its imported modules
963 # * the class definitions of this type and its super-types
964 #
965 # This function is used mainly internally.
966 #
967 # REQUIRE: `not self.need_anchor`
968 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
969
970 # Compute all the super-classes.
971 # This function is used mainly internally.
972 #
973 # REQUIRE: `not self.need_anchor`
974 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
975
976 # Compute all the declared super-types.
977 # Super-types are returned as declared in the classdefs (verbatim).
978 # This function is used mainly internally.
979 #
980 # REQUIRE: `not self.need_anchor`
981 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
982
983 # Is the property in self for a given module
984 # This method does not filter visibility or whatever
985 #
986 # REQUIRE: `not self.need_anchor`
987 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
988 do
989 assert not self.need_anchor
990 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
991 end
992 end
993
994 # A type based on a class.
995 #
996 # `MClassType` have properties (see `has_mproperty`).
997 class MClassType
998 super MType
999
1000 # The associated class
1001 var mclass: MClass
1002
1003 redef fun model do return self.mclass.intro_mmodule.model
1004
1005 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1006
1007 # The formal arguments of the type
1008 # ENSURE: `result.length == self.mclass.arity`
1009 var arguments = new Array[MType]
1010
1011 redef fun to_s do return mclass.to_s
1012
1013 redef fun need_anchor do return false
1014
1015 redef fun anchor_to(mmodule: MModule, anchor: MClassType): MClassType
1016 do
1017 return super.as(MClassType)
1018 end
1019
1020 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1021
1022 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1023
1024 redef fun collect_mclassdefs(mmodule)
1025 do
1026 assert not self.need_anchor
1027 var cache = self.collect_mclassdefs_cache
1028 if not cache.has_key(mmodule) then
1029 self.collect_things(mmodule)
1030 end
1031 return cache[mmodule]
1032 end
1033
1034 redef fun collect_mclasses(mmodule)
1035 do
1036 assert not self.need_anchor
1037 var cache = self.collect_mclasses_cache
1038 if not cache.has_key(mmodule) then
1039 self.collect_things(mmodule)
1040 end
1041 return cache[mmodule]
1042 end
1043
1044 redef fun collect_mtypes(mmodule)
1045 do
1046 assert not self.need_anchor
1047 var cache = self.collect_mtypes_cache
1048 if not cache.has_key(mmodule) then
1049 self.collect_things(mmodule)
1050 end
1051 return cache[mmodule]
1052 end
1053
1054 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1055 private fun collect_things(mmodule: MModule)
1056 do
1057 var res = new HashSet[MClassDef]
1058 var seen = new HashSet[MClass]
1059 var types = new HashSet[MClassType]
1060 seen.add(self.mclass)
1061 var todo = [self.mclass]
1062 while not todo.is_empty do
1063 var mclass = todo.pop
1064 #print "process {mclass}"
1065 for mclassdef in mclass.mclassdefs do
1066 if not mmodule.in_importation <= mclassdef.mmodule then continue
1067 #print " process {mclassdef}"
1068 res.add(mclassdef)
1069 for supertype in mclassdef.supertypes do
1070 types.add(supertype)
1071 var superclass = supertype.mclass
1072 if seen.has(superclass) then continue
1073 #print " add {superclass}"
1074 seen.add(superclass)
1075 todo.add(superclass)
1076 end
1077 end
1078 end
1079 collect_mclassdefs_cache[mmodule] = res
1080 collect_mclasses_cache[mmodule] = seen
1081 collect_mtypes_cache[mmodule] = types
1082 end
1083
1084 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1085 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1086 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1087
1088 end
1089
1090 # A type based on a generic class.
1091 # A generic type a just a class with additional formal generic arguments.
1092 class MGenericType
1093 super MClassType
1094
1095 redef var arguments
1096
1097 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1098
1099 init
1100 do
1101 assert self.mclass.arity == arguments.length
1102
1103 self.need_anchor = false
1104 for t in arguments do
1105 if t.need_anchor then
1106 self.need_anchor = true
1107 break
1108 end
1109 end
1110
1111 self.to_s = "{mclass}[{arguments.join(", ")}]"
1112 end
1113
1114 # Recursively print the type of the arguments within brackets.
1115 # Example: `"Map[String, List[Int]]"`
1116 redef var to_s: String is noinit
1117
1118 redef var need_anchor: Bool is noinit
1119
1120 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1121 do
1122 if not need_anchor then return self
1123 assert can_resolve_for(mtype, anchor, mmodule)
1124 var types = new Array[MType]
1125 for t in arguments do
1126 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1127 end
1128 return mclass.get_mtype(types)
1129 end
1130
1131 redef fun can_resolve_for(mtype, anchor, mmodule)
1132 do
1133 if not need_anchor then return true
1134 for t in arguments do
1135 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1136 end
1137 return true
1138 end
1139
1140
1141 redef fun depth
1142 do
1143 var dmax = 0
1144 for a in self.arguments do
1145 var d = a.depth
1146 if d > dmax then dmax = d
1147 end
1148 return dmax + 1
1149 end
1150
1151 redef fun length
1152 do
1153 var res = 1
1154 for a in self.arguments do
1155 res += a.length
1156 end
1157 return res
1158 end
1159 end
1160
1161 # A virtual formal type.
1162 class MVirtualType
1163 super MType
1164
1165 # The property associated with the type.
1166 # Its the definitions of this property that determine the bound or the virtual type.
1167 var mproperty: MProperty
1168
1169 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1170
1171 # Lookup the bound for a given resolved_receiver
1172 # The result may be a other virtual type (or a parameter type)
1173 #
1174 # The result is returned exactly as declared in the "type" property (verbatim).
1175 #
1176 # In case of conflict, the method aborts.
1177 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1178 do
1179 assert not resolved_receiver.need_anchor
1180 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1181 if props.is_empty then
1182 abort
1183 else if props.length == 1 then
1184 return props.first.as(MVirtualTypeDef).bound.as(not null)
1185 end
1186 var types = new ArraySet[MType]
1187 for p in props do
1188 types.add(p.as(MVirtualTypeDef).bound.as(not null))
1189 end
1190 if types.length == 1 then
1191 return types.first
1192 end
1193 abort
1194 end
1195
1196 # Is the virtual type fixed for a given resolved_receiver?
1197 fun is_fixed(mmodule: MModule, resolved_receiver: MType): Bool
1198 do
1199 assert not resolved_receiver.need_anchor
1200 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1201 if props.is_empty then
1202 abort
1203 end
1204 for p in props do
1205 if p.as(MVirtualTypeDef).is_fixed then return true
1206 end
1207 return false
1208 end
1209
1210 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1211 do
1212 assert can_resolve_for(mtype, anchor, mmodule)
1213 # self is a virtual type declared (or inherited) in mtype
1214 # The point of the function it to get the bound of the virtual type that make sense for mtype
1215 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1216 #print "{class_name}: {self}/{mtype}/{anchor}?"
1217 var resolved_reciever
1218 if mtype.need_anchor then
1219 assert anchor != null
1220 resolved_reciever = mtype.resolve_for(anchor, null, mmodule, true)
1221 else
1222 resolved_reciever = mtype
1223 end
1224 # Now, we can get the bound
1225 var verbatim_bound = lookup_bound(mmodule, resolved_reciever)
1226 # The bound is exactly as declared in the "type" property, so we must resolve it again
1227 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1228 #print "{class_name}: {self}/{mtype}/{anchor} -> {self}/{resolved_receiver}/{anchor} -> {verbatim_bound}/{mtype}/{anchor} -> {res}"
1229
1230 # What to return here? There is a bunch a special cases:
1231 # If 'cleanup_virtual' we must return the resolved type, since we cannot return self
1232 if cleanup_virtual then return res
1233 # If the receiver is a intern class, then the virtual type cannot be redefined since there is no possible subclass. self is just fixed. so simply return the resolution
1234 if resolved_reciever isa MNullableType then resolved_reciever = resolved_reciever.mtype
1235 if resolved_reciever.as(MClassType).mclass.kind == enum_kind then return res
1236 # If the resolved type isa MVirtualType, it means that self was bound to it, and cannot be unbound. self is just fixed. so return the resolution.
1237 if res isa MVirtualType then return res
1238 # If we are final, just return the resolution
1239 if is_fixed(mmodule, resolved_reciever) then return res
1240 # If the resolved type isa intern class, then there is no possible valid redefinition in any potential subclass. self is just fixed. so simply return the resolution
1241 if res isa MClassType and res.mclass.kind == enum_kind then return res
1242 # TODO: What if bound to a MParameterType?
1243 # Note that Nullable types can always be redefined by the non nullable version, so there is no specific case on it.
1244
1245 # If anything apply, then `self' cannot be resolved, so return self
1246 return self
1247 end
1248
1249 redef fun can_resolve_for(mtype, anchor, mmodule)
1250 do
1251 if mtype.need_anchor then
1252 assert anchor != null
1253 mtype = mtype.anchor_to(mmodule, anchor)
1254 end
1255 return mtype.has_mproperty(mmodule, mproperty)
1256 end
1257
1258 redef fun to_s do return self.mproperty.to_s
1259 end
1260
1261 # The type associated to a formal parameter generic type of a class
1262 #
1263 # Each parameter type is associated to a specific class.
1264 # It means that all refinements of a same class "share" the parameter type,
1265 # but that a generic subclass has its own parameter types.
1266 #
1267 # However, in the sense of the meta-model, a parameter type of a class is
1268 # a valid type in a subclass. The "in the sense of the meta-model" is
1269 # important because, in the Nit language, the programmer cannot refers
1270 # directly to the parameter types of the super-classes.
1271 #
1272 # Example:
1273 #
1274 # class A[E]
1275 # fun e: E is abstract
1276 # end
1277 # class B[F]
1278 # super A[Array[F]]
1279 # end
1280 #
1281 # In the class definition B[F], `F` is a valid type but `E` is not.
1282 # However, `self.e` is a valid method call, and the signature of `e` is
1283 # declared `e: E`.
1284 #
1285 # Note that parameter types are shared among class refinements.
1286 # Therefore parameter only have an internal name (see `to_s` for details).
1287 class MParameterType
1288 super MType
1289
1290 # The generic class where the parameter belong
1291 var mclass: MClass
1292
1293 redef fun model do return self.mclass.intro_mmodule.model
1294
1295 # The position of the parameter (0 for the first parameter)
1296 # FIXME: is `position` a better name?
1297 var rank: Int
1298
1299 redef var name
1300
1301 redef fun to_s do return name
1302
1303 # Resolve the bound for a given resolved_receiver
1304 # The result may be a other virtual type (or a parameter type)
1305 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1306 do
1307 assert not resolved_receiver.need_anchor
1308 var goalclass = self.mclass
1309 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1310 for t in supertypes do
1311 if t.mclass == goalclass then
1312 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1313 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1314 var res = t.arguments[self.rank]
1315 return res
1316 end
1317 end
1318 abort
1319 end
1320
1321 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1322 do
1323 assert can_resolve_for(mtype, anchor, mmodule)
1324 #print "{class_name}: {self}/{mtype}/{anchor}?"
1325
1326 if mtype isa MGenericType and mtype.mclass == self.mclass then
1327 var res = mtype.arguments[self.rank]
1328 if anchor != null and res.need_anchor then
1329 # Maybe the result can be resolved more if are bound to a final class
1330 var r2 = res.anchor_to(mmodule, anchor)
1331 if r2 isa MClassType and r2.mclass.kind == enum_kind then return r2
1332 end
1333 return res
1334 end
1335
1336 # self is a parameter type of mtype (or of a super-class of mtype)
1337 # The point of the function it to get the bound of the virtual type that make sense for mtype
1338 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1339 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1340 var resolved_receiver
1341 if mtype.need_anchor then
1342 assert anchor != null
1343 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1344 else
1345 resolved_receiver = mtype
1346 end
1347 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1348 if resolved_receiver isa MParameterType then
1349 assert resolved_receiver.mclass == anchor.mclass
1350 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1351 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1352 end
1353 assert resolved_receiver isa MClassType
1354
1355 # Eh! The parameter is in the current class.
1356 # So we return the corresponding argument, no mater what!
1357 if resolved_receiver.mclass == self.mclass then
1358 var res = resolved_receiver.arguments[self.rank]
1359 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1360 return res
1361 end
1362
1363 if resolved_receiver.need_anchor then
1364 assert anchor != null
1365 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1366 end
1367 # Now, we can get the bound
1368 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1369 # The bound is exactly as declared in the "type" property, so we must resolve it again
1370 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1371
1372 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1373
1374 return res
1375 end
1376
1377 redef fun can_resolve_for(mtype, anchor, mmodule)
1378 do
1379 if mtype.need_anchor then
1380 assert anchor != null
1381 mtype = mtype.anchor_to(mmodule, anchor)
1382 end
1383 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1384 end
1385 end
1386
1387 # A type prefixed with "nullable"
1388 class MNullableType
1389 super MType
1390
1391 # The base type of the nullable type
1392 var mtype: MType
1393
1394 redef fun model do return self.mtype.model
1395
1396 init
1397 do
1398 self.to_s = "nullable {mtype}"
1399 end
1400
1401 redef var to_s: String is noinit
1402
1403 redef fun need_anchor do return mtype.need_anchor
1404 redef fun as_nullable do return self
1405 redef fun as_notnullable do return mtype
1406 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1407 do
1408 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1409 return res.as_nullable
1410 end
1411
1412 redef fun can_resolve_for(mtype, anchor, mmodule)
1413 do
1414 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1415 end
1416
1417 redef fun depth do return self.mtype.depth
1418
1419 redef fun length do return self.mtype.length
1420
1421 redef fun collect_mclassdefs(mmodule)
1422 do
1423 assert not self.need_anchor
1424 return self.mtype.collect_mclassdefs(mmodule)
1425 end
1426
1427 redef fun collect_mclasses(mmodule)
1428 do
1429 assert not self.need_anchor
1430 return self.mtype.collect_mclasses(mmodule)
1431 end
1432
1433 redef fun collect_mtypes(mmodule)
1434 do
1435 assert not self.need_anchor
1436 return self.mtype.collect_mtypes(mmodule)
1437 end
1438 end
1439
1440 # The type of the only value null
1441 #
1442 # The is only one null type per model, see `MModel::null_type`.
1443 class MNullType
1444 super MType
1445 redef var model: Model
1446 redef fun to_s do return "null"
1447 redef fun as_nullable do return self
1448 redef fun need_anchor do return false
1449 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1450 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1451
1452 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1453
1454 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1455
1456 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1457 end
1458
1459 # A signature of a method
1460 class MSignature
1461 super MType
1462
1463 # The each parameter (in order)
1464 var mparameters: Array[MParameter]
1465
1466 # The return type (null for a procedure)
1467 var return_mtype: nullable MType
1468
1469 redef fun depth
1470 do
1471 var dmax = 0
1472 var t = self.return_mtype
1473 if t != null then dmax = t.depth
1474 for p in mparameters do
1475 var d = p.mtype.depth
1476 if d > dmax then dmax = d
1477 end
1478 return dmax + 1
1479 end
1480
1481 redef fun length
1482 do
1483 var res = 1
1484 var t = self.return_mtype
1485 if t != null then res += t.length
1486 for p in mparameters do
1487 res += p.mtype.length
1488 end
1489 return res
1490 end
1491
1492 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1493 init
1494 do
1495 var vararg_rank = -1
1496 for i in [0..mparameters.length[ do
1497 var parameter = mparameters[i]
1498 if parameter.is_vararg then
1499 assert vararg_rank == -1
1500 vararg_rank = i
1501 end
1502 end
1503 self.vararg_rank = vararg_rank
1504 end
1505
1506 # The rank of the ellipsis (`...`) for vararg (starting from 0).
1507 # value is -1 if there is no vararg.
1508 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1509 var vararg_rank: Int is noinit
1510
1511 # The number or parameters
1512 fun arity: Int do return mparameters.length
1513
1514 redef fun to_s
1515 do
1516 var b = new FlatBuffer
1517 if not mparameters.is_empty then
1518 b.append("(")
1519 for i in [0..mparameters.length[ do
1520 var mparameter = mparameters[i]
1521 if i > 0 then b.append(", ")
1522 b.append(mparameter.name)
1523 b.append(": ")
1524 b.append(mparameter.mtype.to_s)
1525 if mparameter.is_vararg then
1526 b.append("...")
1527 end
1528 end
1529 b.append(")")
1530 end
1531 var ret = self.return_mtype
1532 if ret != null then
1533 b.append(": ")
1534 b.append(ret.to_s)
1535 end
1536 return b.to_s
1537 end
1538
1539 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
1540 do
1541 var params = new Array[MParameter]
1542 for p in self.mparameters do
1543 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1544 end
1545 var ret = self.return_mtype
1546 if ret != null then
1547 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1548 end
1549 var res = new MSignature(params, ret)
1550 return res
1551 end
1552 end
1553
1554 # A parameter in a signature
1555 class MParameter
1556 super MEntity
1557
1558 # The name of the parameter
1559 redef var name: String
1560
1561 # The static type of the parameter
1562 var mtype: MType
1563
1564 # Is the parameter a vararg?
1565 var is_vararg: Bool
1566
1567 redef fun to_s
1568 do
1569 if is_vararg then
1570 return "{name}: {mtype}..."
1571 else
1572 return "{name}: {mtype}"
1573 end
1574 end
1575
1576 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
1577 do
1578 if not self.mtype.need_anchor then return self
1579 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1580 var res = new MParameter(self.name, newtype, self.is_vararg)
1581 return res
1582 end
1583
1584 redef fun model do return mtype.model
1585 end
1586
1587 # A service (global property) that generalize method, attribute, etc.
1588 #
1589 # `MProperty` are global to the model; it means that a `MProperty` is not bound
1590 # to a specific `MModule` nor a specific `MClass`.
1591 #
1592 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
1593 # and the other in subclasses and in refinements.
1594 #
1595 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
1596 # of any dynamic type).
1597 # For instance, a call site "x.foo" is associated to a `MProperty`.
1598 abstract class MProperty
1599 super MEntity
1600
1601 # The associated MPropDef subclass.
1602 # The two specialization hierarchy are symmetric.
1603 type MPROPDEF: MPropDef
1604
1605 # The classdef that introduce the property
1606 # While a property is not bound to a specific module, or class,
1607 # the introducing mclassdef is used for naming and visibility
1608 var intro_mclassdef: MClassDef
1609
1610 # The (short) name of the property
1611 redef var name: String
1612
1613 # The canonical name of the property
1614 # Example: "owner::my_module::MyClass::my_method"
1615 fun full_name: String
1616 do
1617 return "{self.intro_mclassdef.mmodule.full_name}::{self.intro_mclassdef.mclass.name}::{name}"
1618 end
1619
1620 # The visibility of the property
1621 var visibility: MVisibility
1622
1623 init
1624 do
1625 intro_mclassdef.intro_mproperties.add(self)
1626 var model = intro_mclassdef.mmodule.model
1627 model.mproperties_by_name.add_one(name, self)
1628 model.mproperties.add(self)
1629 end
1630
1631 # All definitions of the property.
1632 # The first is the introduction,
1633 # The other are redefinitions (in refinements and in subclasses)
1634 var mpropdefs = new Array[MPROPDEF]
1635
1636 # The definition that introduces the property.
1637 #
1638 # Warning: such a definition may not exist in the early life of the object.
1639 # In this case, the method will abort.
1640 var intro: MPROPDEF is noinit
1641
1642 redef fun model do return intro.model
1643
1644 # Alias for `name`
1645 redef fun to_s do return name
1646
1647 # Return the most specific property definitions defined or inherited by a type.
1648 # The selection knows that refinement is stronger than specialization;
1649 # however, in case of conflict more than one property are returned.
1650 # If mtype does not know mproperty then an empty array is returned.
1651 #
1652 # If you want the really most specific property, then look at `lookup_first_definition`
1653 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1654 do
1655 assert not mtype.need_anchor
1656 mtype = mtype.as_notnullable
1657
1658 var cache = self.lookup_definitions_cache[mmodule, mtype]
1659 if cache != null then return cache
1660
1661 #print "select prop {mproperty} for {mtype} in {self}"
1662 # First, select all candidates
1663 var candidates = new Array[MPROPDEF]
1664 for mpropdef in self.mpropdefs do
1665 # If the definition is not imported by the module, then skip
1666 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1667 # If the definition is not inherited by the type, then skip
1668 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1669 # Else, we keep it
1670 candidates.add(mpropdef)
1671 end
1672 # Fast track for only one candidate
1673 if candidates.length <= 1 then
1674 self.lookup_definitions_cache[mmodule, mtype] = candidates
1675 return candidates
1676 end
1677
1678 # Second, filter the most specific ones
1679 return select_most_specific(mmodule, candidates)
1680 end
1681
1682 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
1683
1684 # Return the most specific property definitions inherited by a type.
1685 # The selection knows that refinement is stronger than specialization;
1686 # however, in case of conflict more than one property are returned.
1687 # If mtype does not know mproperty then an empty array is returned.
1688 #
1689 # If you want the really most specific property, then look at `lookup_next_definition`
1690 #
1691 # FIXME: Move to `MPropDef`?
1692 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1693 do
1694 assert not mtype.need_anchor
1695 mtype = mtype.as_notnullable
1696
1697 # First, select all candidates
1698 var candidates = new Array[MPROPDEF]
1699 for mpropdef in self.mpropdefs do
1700 # If the definition is not imported by the module, then skip
1701 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1702 # If the definition is not inherited by the type, then skip
1703 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1704 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
1705 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
1706 # Else, we keep it
1707 candidates.add(mpropdef)
1708 end
1709 # Fast track for only one candidate
1710 if candidates.length <= 1 then return candidates
1711
1712 # Second, filter the most specific ones
1713 return select_most_specific(mmodule, candidates)
1714 end
1715
1716 # Return an array containing olny the most specific property definitions
1717 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
1718 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
1719 do
1720 var res = new Array[MPROPDEF]
1721 for pd1 in candidates do
1722 var cd1 = pd1.mclassdef
1723 var c1 = cd1.mclass
1724 var keep = true
1725 for pd2 in candidates do
1726 if pd2 == pd1 then continue # do not compare with self!
1727 var cd2 = pd2.mclassdef
1728 var c2 = cd2.mclass
1729 if c2.mclass_type == c1.mclass_type then
1730 if cd2.mmodule.in_importation < cd1.mmodule then
1731 # cd2 refines cd1; therefore we skip pd1
1732 keep = false
1733 break
1734 end
1735 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
1736 # cd2 < cd1; therefore we skip pd1
1737 keep = false
1738 break
1739 end
1740 end
1741 if keep then
1742 res.add(pd1)
1743 end
1744 end
1745 if res.is_empty then
1746 print "All lost! {candidates.join(", ")}"
1747 # FIXME: should be abort!
1748 end
1749 return res
1750 end
1751
1752 # Return the most specific definition in the linearization of `mtype`.
1753 #
1754 # If you want to know the next properties in the linearization,
1755 # look at `MPropDef::lookup_next_definition`.
1756 #
1757 # FIXME: the linearization is still unspecified
1758 #
1759 # REQUIRE: `not mtype.need_anchor`
1760 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
1761 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
1762 do
1763 assert mtype.has_mproperty(mmodule, self)
1764 return lookup_all_definitions(mmodule, mtype).first
1765 end
1766
1767 # Return all definitions in a linearization order
1768 # Most specific first, most general last
1769 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1770 do
1771 assert not mtype.need_anchor
1772 mtype = mtype.as_notnullable
1773
1774 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
1775 if cache != null then return cache
1776
1777 #print "select prop {mproperty} for {mtype} in {self}"
1778 # First, select all candidates
1779 var candidates = new Array[MPROPDEF]
1780 for mpropdef in self.mpropdefs do
1781 # If the definition is not imported by the module, then skip
1782 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1783 # If the definition is not inherited by the type, then skip
1784 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1785 # Else, we keep it
1786 candidates.add(mpropdef)
1787 end
1788 # Fast track for only one candidate
1789 if candidates.length <= 1 then
1790 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
1791 return candidates
1792 end
1793
1794 mmodule.linearize_mpropdefs(candidates)
1795 candidates = candidates.reversed
1796 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
1797 return candidates
1798 end
1799
1800 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
1801 end
1802
1803 # A global method
1804 class MMethod
1805 super MProperty
1806
1807 redef type MPROPDEF: MMethodDef
1808
1809 # Is the property defined at the top_level of the module?
1810 # Currently such a property are stored in `Object`
1811 var is_toplevel: Bool = false is writable
1812
1813 # Is the property a constructor?
1814 # Warning, this property can be inherited by subclasses with or without being a constructor
1815 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
1816 var is_init: Bool = false is writable
1817
1818 # The constructor is a (the) root init with empty signature but a set of initializers
1819 var is_root_init: Bool = false is writable
1820
1821 # Is the property a 'new' constructor?
1822 var is_new: Bool = false is writable
1823
1824 # Is the property a legal constructor for a given class?
1825 # As usual, visibility is not considered.
1826 # FIXME not implemented
1827 fun is_init_for(mclass: MClass): Bool
1828 do
1829 return self.is_init
1830 end
1831 end
1832
1833 # A global attribute
1834 class MAttribute
1835 super MProperty
1836
1837 redef type MPROPDEF: MAttributeDef
1838
1839 end
1840
1841 # A global virtual type
1842 class MVirtualTypeProp
1843 super MProperty
1844
1845 redef type MPROPDEF: MVirtualTypeDef
1846
1847 # The formal type associated to the virtual type property
1848 var mvirtualtype = new MVirtualType(self)
1849 end
1850
1851 # A definition of a property (local property)
1852 #
1853 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
1854 # specific class definition (which belong to a specific module)
1855 abstract class MPropDef
1856 super MEntity
1857
1858 # The associated `MProperty` subclass.
1859 # the two specialization hierarchy are symmetric
1860 type MPROPERTY: MProperty
1861
1862 # Self class
1863 type MPROPDEF: MPropDef
1864
1865 # The class definition where the property definition is
1866 var mclassdef: MClassDef
1867
1868 # The associated global property
1869 var mproperty: MPROPERTY
1870
1871 # The origin of the definition
1872 var location: Location
1873
1874 init
1875 do
1876 mclassdef.mpropdefs.add(self)
1877 mproperty.mpropdefs.add(self)
1878 if mproperty.intro_mclassdef == mclassdef then
1879 assert not isset mproperty._intro
1880 mproperty.intro = self
1881 end
1882 self.to_s = "{mclassdef}#{mproperty}"
1883 end
1884
1885 # Actually the name of the `mproperty`
1886 redef fun name do return mproperty.name
1887
1888 redef fun model do return mclassdef.model
1889
1890 # Internal name combining the module, the class and the property
1891 # Example: "mymodule#MyClass#mymethod"
1892 redef var to_s: String is noinit
1893
1894 # Is self the definition that introduce the property?
1895 fun is_intro: Bool do return mproperty.intro == self
1896
1897 # Return the next definition in linearization of `mtype`.
1898 #
1899 # This method is used to determine what method is called by a super.
1900 #
1901 # REQUIRE: `not mtype.need_anchor`
1902 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
1903 do
1904 assert not mtype.need_anchor
1905
1906 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
1907 var i = mpropdefs.iterator
1908 while i.is_ok and i.item != self do i.next
1909 assert has_property: i.is_ok
1910 i.next
1911 assert has_next_property: i.is_ok
1912 return i.item
1913 end
1914 end
1915
1916 # A local definition of a method
1917 class MMethodDef
1918 super MPropDef
1919
1920 redef type MPROPERTY: MMethod
1921 redef type MPROPDEF: MMethodDef
1922
1923 # The signature attached to the property definition
1924 var msignature: nullable MSignature = null is writable
1925
1926 # The signature attached to the `new` call on a root-init
1927 # This is a concatenation of the signatures of the initializers
1928 #
1929 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
1930 var new_msignature: nullable MSignature = null is writable
1931
1932 # List of initialisers to call in root-inits
1933 #
1934 # They could be setters or attributes
1935 #
1936 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
1937 var initializers = new Array[MProperty]
1938
1939 # Is the method definition abstract?
1940 var is_abstract: Bool = false is writable
1941
1942 # Is the method definition intern?
1943 var is_intern = false is writable
1944
1945 # Is the method definition extern?
1946 var is_extern = false is writable
1947
1948 # An optional constant value returned in functions.
1949 #
1950 # Only some specific primitife value are accepted by engines.
1951 # Is used when there is no better implementation available.
1952 #
1953 # Currently used only for the implementation of the `--define`
1954 # command-line option.
1955 # SEE: module `mixin`.
1956 var constant_value: nullable Object = null is writable
1957 end
1958
1959 # A local definition of an attribute
1960 class MAttributeDef
1961 super MPropDef
1962
1963 redef type MPROPERTY: MAttribute
1964 redef type MPROPDEF: MAttributeDef
1965
1966 # The static type of the attribute
1967 var static_mtype: nullable MType = null is writable
1968 end
1969
1970 # A local definition of a virtual type
1971 class MVirtualTypeDef
1972 super MPropDef
1973
1974 redef type MPROPERTY: MVirtualTypeProp
1975 redef type MPROPDEF: MVirtualTypeDef
1976
1977 # The bound of the virtual type
1978 var bound: nullable MType = null is writable
1979
1980 # Is the bound fixed?
1981 var is_fixed = false is writable
1982 end
1983
1984 # A kind of class.
1985 #
1986 # * `abstract_kind`
1987 # * `concrete_kind`
1988 # * `interface_kind`
1989 # * `enum_kind`
1990 # * `extern_kind`
1991 #
1992 # Note this class is basically an enum.
1993 # FIXME: use a real enum once user-defined enums are available
1994 class MClassKind
1995 redef var to_s: String
1996
1997 # Is a constructor required?
1998 var need_init: Bool
1999
2000 # TODO: private init because enumeration.
2001
2002 # Can a class of kind `self` specializes a class of kine `other`?
2003 fun can_specialize(other: MClassKind): Bool
2004 do
2005 if other == interface_kind then return true # everybody can specialize interfaces
2006 if self == interface_kind or self == enum_kind then
2007 # no other case for interfaces
2008 return false
2009 else if self == extern_kind then
2010 # only compatible with themselves
2011 return self == other
2012 else if other == enum_kind or other == extern_kind then
2013 # abstract_kind and concrete_kind are incompatible
2014 return false
2015 end
2016 # remain only abstract_kind and concrete_kind
2017 return true
2018 end
2019 end
2020
2021 # The class kind `abstract`
2022 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", true)
2023 # The class kind `concrete`
2024 fun concrete_kind: MClassKind do return once new MClassKind("class", true)
2025 # The class kind `interface`
2026 fun interface_kind: MClassKind do return once new MClassKind("interface", false)
2027 # The class kind `enum`
2028 fun enum_kind: MClassKind do return once new MClassKind("enum", false)
2029 # The class kind `extern`
2030 fun extern_kind: MClassKind do return once new MClassKind("extern class", false)