src/model: fix mdoc_or_fallback for MClasses and MProperties
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class Model
34 # All known classes
35 var mclasses = new Array[MClass]
36
37 # All known properties
38 var mproperties = new Array[MProperty]
39
40 # Hierarchy of class definition.
41 #
42 # Each classdef is associated with its super-classdefs in regard to
43 # its module of definition.
44 var mclassdef_hierarchy = new POSet[MClassDef]
45
46 # Class-type hierarchy restricted to the introduction.
47 #
48 # The idea is that what is true on introduction is always true whatever
49 # the module considered.
50 # Therefore, this hierarchy is used for a fast positive subtype check.
51 #
52 # This poset will evolve in a monotonous way:
53 # * Two non connected nodes will remain unconnected
54 # * New nodes can appear with new edges
55 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
56
57 # Global overlapped class-type hierarchy.
58 # The hierarchy when all modules are combined.
59 # Therefore, this hierarchy is used for a fast negative subtype check.
60 #
61 # This poset will evolve in an anarchic way. Loops can even be created.
62 #
63 # FIXME decide what to do on loops
64 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
65
66 # Collections of classes grouped by their short name
67 private var mclasses_by_name = new MultiHashMap[String, MClass]
68
69 # Return all class named `name`.
70 #
71 # If such a class does not exist, null is returned
72 # (instead of an empty array)
73 #
74 # Visibility or modules are not considered
75 fun get_mclasses_by_name(name: String): nullable Array[MClass]
76 do
77 return mclasses_by_name.get_or_null(name)
78 end
79
80 # Collections of properties grouped by their short name
81 private var mproperties_by_name = new MultiHashMap[String, MProperty]
82
83 # Return all properties named `name`.
84 #
85 # If such a property does not exist, null is returned
86 # (instead of an empty array)
87 #
88 # Visibility or modules are not considered
89 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
90 do
91 return mproperties_by_name.get_or_null(name)
92 end
93
94 # The only null type
95 var null_type = new MNullType(self)
96
97 # Build an ordered tree with from `concerns`
98 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
99 var seen = new HashSet[MConcern]
100 var res = new ConcernsTree
101
102 var todo = new Array[MConcern]
103 todo.add_all mconcerns
104
105 while not todo.is_empty do
106 var c = todo.pop
107 if seen.has(c) then continue
108 var pc = c.parent_concern
109 if pc == null then
110 res.add(null, c)
111 else
112 res.add(pc, c)
113 todo.add(pc)
114 end
115 seen.add(c)
116 end
117
118 return res
119 end
120 end
121
122 # An OrderedTree bound to MEntity.
123 #
124 # We introduce a new class so it can be easily refined by tools working
125 # with a Model.
126 class MEntityTree
127 super OrderedTree[MEntity]
128 end
129
130 # A MEntityTree borned to MConcern.
131 #
132 # TODO remove when nitdoc is fully merged with model_collect
133 class ConcernsTree
134 super OrderedTree[MConcern]
135 end
136
137 redef class MModule
138 # All the classes introduced in the module
139 var intro_mclasses = new Array[MClass]
140
141 # All the class definitions of the module
142 # (introduction and refinement)
143 var mclassdefs = new Array[MClassDef]
144
145 # Does the current module has a given class `mclass`?
146 # Return true if the mmodule introduces, refines or imports a class.
147 # Visibility is not considered.
148 fun has_mclass(mclass: MClass): Bool
149 do
150 return self.in_importation <= mclass.intro_mmodule
151 end
152
153 # Full hierarchy of introduced ans imported classes.
154 #
155 # Create a new hierarchy got by flattening the classes for the module
156 # and its imported modules.
157 # Visibility is not considered.
158 #
159 # Note: this function is expensive and is usually used for the main
160 # module of a program only. Do not use it to do you own subtype
161 # functions.
162 fun flatten_mclass_hierarchy: POSet[MClass]
163 do
164 var res = self.flatten_mclass_hierarchy_cache
165 if res != null then return res
166 res = new POSet[MClass]
167 for m in self.in_importation.greaters do
168 for cd in m.mclassdefs do
169 var c = cd.mclass
170 res.add_node(c)
171 for s in cd.supertypes do
172 res.add_edge(c, s.mclass)
173 end
174 end
175 end
176 self.flatten_mclass_hierarchy_cache = res
177 return res
178 end
179
180 # Sort a given array of classes using the linearization order of the module
181 # The most general is first, the most specific is last
182 fun linearize_mclasses(mclasses: Array[MClass])
183 do
184 self.flatten_mclass_hierarchy.sort(mclasses)
185 end
186
187 # Sort a given array of class definitions using the linearization order of the module
188 # the refinement link is stronger than the specialisation link
189 # The most general is first, the most specific is last
190 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
191 do
192 var sorter = new MClassDefSorter(self)
193 sorter.sort(mclassdefs)
194 end
195
196 # Sort a given array of property definitions using the linearization order of the module
197 # the refinement link is stronger than the specialisation link
198 # The most general is first, the most specific is last
199 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
200 do
201 var sorter = new MPropDefSorter(self)
202 sorter.sort(mpropdefs)
203 end
204
205 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
206
207 # The primitive type `Object`, the root of the class hierarchy
208 var object_type: MClassType = self.get_primitive_class("Object").mclass_type is lazy
209
210 # The type `Pointer`, super class to all extern classes
211 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
212
213 # The primitive type `Bool`
214 var bool_type: MClassType = self.get_primitive_class("Bool").mclass_type is lazy
215
216 # The primitive type `Int`
217 var int_type: MClassType = self.get_primitive_class("Int").mclass_type is lazy
218
219 # The primitive type `Byte`
220 var byte_type: MClassType = self.get_primitive_class("Byte").mclass_type is lazy
221
222 # The primitive type `Int8`
223 var int8_type: MClassType = self.get_primitive_class("Int8").mclass_type is lazy
224
225 # The primitive type `Int16`
226 var int16_type: MClassType = self.get_primitive_class("Int16").mclass_type is lazy
227
228 # The primitive type `UInt16`
229 var uint16_type: MClassType = self.get_primitive_class("UInt16").mclass_type is lazy
230
231 # The primitive type `Int32`
232 var int32_type: MClassType = self.get_primitive_class("Int32").mclass_type is lazy
233
234 # The primitive type `UInt32`
235 var uint32_type: MClassType = self.get_primitive_class("UInt32").mclass_type is lazy
236
237 # The primitive type `Char`
238 var char_type: MClassType = self.get_primitive_class("Char").mclass_type is lazy
239
240 # The primitive type `Float`
241 var float_type: MClassType = self.get_primitive_class("Float").mclass_type is lazy
242
243 # The primitive type `String`
244 var string_type: MClassType = self.get_primitive_class("String").mclass_type is lazy
245
246 # The primitive type `NativeString`
247 var native_string_type: MClassType = self.get_primitive_class("NativeString").mclass_type is lazy
248
249 # A primitive type of `Array`
250 fun array_type(elt_type: MType): MClassType do return array_class.get_mtype([elt_type])
251
252 # The primitive class `Array`
253 var array_class: MClass = self.get_primitive_class("Array") is lazy
254
255 # A primitive type of `NativeArray`
256 fun native_array_type(elt_type: MType): MClassType do return native_array_class.get_mtype([elt_type])
257
258 # The primitive class `NativeArray`
259 var native_array_class: MClass = self.get_primitive_class("NativeArray") is lazy
260
261 # The primitive type `Sys`, the main type of the program, if any
262 fun sys_type: nullable MClassType
263 do
264 var clas = self.model.get_mclasses_by_name("Sys")
265 if clas == null then return null
266 return get_primitive_class("Sys").mclass_type
267 end
268
269 # The primitive type `Finalizable`
270 # Used to tag classes that need to be finalized.
271 fun finalizable_type: nullable MClassType
272 do
273 var clas = self.model.get_mclasses_by_name("Finalizable")
274 if clas == null then return null
275 return get_primitive_class("Finalizable").mclass_type
276 end
277
278 # Force to get the primitive class named `name` or abort
279 fun get_primitive_class(name: String): MClass
280 do
281 var cla = self.model.get_mclasses_by_name(name)
282 # Filter classes by introducing module
283 if cla != null then cla = [for c in cla do if self.in_importation <= c.intro_mmodule then c]
284 if cla == null or cla.is_empty then
285 if name == "Bool" and self.model.get_mclasses_by_name("Object") != null then
286 # Bool is injected because it is needed by engine to code the result
287 # of the implicit casts.
288 var loc = model.no_location
289 var c = new MClass(self, name, loc, null, enum_kind, public_visibility)
290 var cladef = new MClassDef(self, c.mclass_type, loc)
291 cladef.set_supertypes([object_type])
292 cladef.add_in_hierarchy
293 return c
294 end
295 print("Fatal Error: no primitive class {name} in {self}")
296 exit(1)
297 abort
298 end
299 if cla.length != 1 then
300 var msg = "Fatal Error: more than one primitive class {name} in {self}:"
301 for c in cla do msg += " {c.full_name}"
302 print msg
303 #exit(1)
304 end
305 return cla.first
306 end
307
308 # Try to get the primitive method named `name` on the type `recv`
309 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
310 do
311 var props = self.model.get_mproperties_by_name(name)
312 if props == null then return null
313 var res: nullable MMethod = null
314 var recvtype = recv.intro.bound_mtype
315 for mprop in props do
316 assert mprop isa MMethod
317 if not recvtype.has_mproperty(self, mprop) then continue
318 if res == null then
319 res = mprop
320 else if res != mprop then
321 print("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
322 abort
323 end
324 end
325 return res
326 end
327 end
328
329 private class MClassDefSorter
330 super Comparator
331 redef type COMPARED: MClassDef
332 var mmodule: MModule
333 redef fun compare(a, b)
334 do
335 var ca = a.mclass
336 var cb = b.mclass
337 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
338 return mmodule.model.mclassdef_hierarchy.compare(a, b)
339 end
340 end
341
342 private class MPropDefSorter
343 super Comparator
344 redef type COMPARED: MPropDef
345 var mmodule: MModule
346 redef fun compare(pa, pb)
347 do
348 var a = pa.mclassdef
349 var b = pb.mclassdef
350 var ca = a.mclass
351 var cb = b.mclass
352 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
353 return mmodule.model.mclassdef_hierarchy.compare(a, b)
354 end
355 end
356
357 # A named class
358 #
359 # `MClass` are global to the model; it means that a `MClass` is not bound to a
360 # specific `MModule`.
361 #
362 # This characteristic helps the reasoning about classes in a program since a
363 # single `MClass` object always denote the same class.
364 #
365 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
366 # These do not really have properties nor belong to a hierarchy since the property and the
367 # hierarchy of a class depends of the refinement in the modules.
368 #
369 # Most services on classes require the precision of a module, and no one can asks what are
370 # the super-classes of a class nor what are properties of a class without precising what is
371 # the module considered.
372 #
373 # For instance, during the typing of a source-file, the module considered is the module of the file.
374 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
375 # *is the method `foo` exists in the class `Bar` in the current module?*
376 #
377 # During some global analysis, the module considered may be the main module of the program.
378 class MClass
379 super MEntity
380
381 # The module that introduce the class
382 # While classes are not bound to a specific module,
383 # the introducing module is used for naming an visibility
384 var intro_mmodule: MModule
385
386 # The short name of the class
387 # In Nit, the name of a class cannot evolve in refinements
388 redef var name
389
390 redef var location
391
392 # The canonical name of the class
393 #
394 # It is the name of the class prefixed by the full_name of the `intro_mmodule`
395 # Example: `"owner::module::MyClass"`
396 redef var full_name is lazy do
397 return "{self.intro_mmodule.namespace_for(visibility)}::{name}"
398 end
399
400 redef var c_name is lazy do
401 return "{intro_mmodule.c_namespace_for(visibility)}__{name.to_cmangle}"
402 end
403
404 # The number of generic formal parameters
405 # 0 if the class is not generic
406 var arity: Int is noinit
407
408 # Each generic formal parameters in order.
409 # is empty if the class is not generic
410 var mparameters = new Array[MParameterType]
411
412 # A string version of the signature a generic class.
413 #
414 # eg. `Map[K: nullable Object, V: nullable Object]`
415 #
416 # If the class in non generic the name is just given.
417 #
418 # eg. `Object`
419 fun signature_to_s: String
420 do
421 if arity == 0 then return name
422 var res = new FlatBuffer
423 res.append name
424 res.append "["
425 for i in [0..arity[ do
426 if i > 0 then res.append ", "
427 res.append mparameters[i].name
428 res.append ": "
429 res.append intro.bound_mtype.arguments[i].to_s
430 end
431 res.append "]"
432 return res.to_s
433 end
434
435 # Initialize `mparameters` from their names.
436 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
437 autoinit
438 do
439 if parameter_names == null then
440 self.arity = 0
441 else
442 self.arity = parameter_names.length
443 end
444
445 # Create the formal parameter types
446 if arity > 0 then
447 assert parameter_names != null
448 var mparametertypes = new Array[MParameterType]
449 for i in [0..arity[ do
450 var mparametertype = new MParameterType(self, i, parameter_names[i])
451 mparametertypes.add(mparametertype)
452 end
453 self.mparameters = mparametertypes
454 var mclass_type = new MGenericType(self, mparametertypes)
455 self.mclass_type = mclass_type
456 self.get_mtype_cache[mparametertypes] = mclass_type
457 else
458 self.mclass_type = new MClassType(self)
459 end
460 end
461
462 # The kind of the class (interface, abstract class, etc.)
463 # In Nit, the kind of a class cannot evolve in refinements
464 var kind: MClassKind
465
466 # The visibility of the class
467 # In Nit, the visibility of a class cannot evolve in refinements
468 var visibility: MVisibility
469
470 init
471 do
472 intro_mmodule.intro_mclasses.add(self)
473 var model = intro_mmodule.model
474 model.mclasses_by_name.add_one(name, self)
475 model.mclasses.add(self)
476 end
477
478 redef fun model do return intro_mmodule.model
479
480 # All class definitions (introduction and refinements)
481 var mclassdefs = new Array[MClassDef]
482
483 # Alias for `name`
484 redef fun to_s do return self.name
485
486 # The definition that introduces the class.
487 #
488 # Warning: such a definition may not exist in the early life of the object.
489 # In this case, the method will abort.
490 #
491 # Use `try_intro` instead
492 var intro: MClassDef is noinit
493
494 # The definition that introduces the class or null if not yet known.
495 #
496 # See `intro`
497 fun try_intro: nullable MClassDef do
498 if isset _intro then return _intro else return null
499 end
500
501 # Return the class `self` in the class hierarchy of the module `mmodule`.
502 #
503 # SEE: `MModule::flatten_mclass_hierarchy`
504 # REQUIRE: `mmodule.has_mclass(self)`
505 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
506 do
507 return mmodule.flatten_mclass_hierarchy[self]
508 end
509
510 # The principal static type of the class.
511 #
512 # For non-generic class, mclass_type is the only `MClassType` based
513 # on self.
514 #
515 # For a generic class, the arguments are the formal parameters.
516 # i.e.: for the class Array[E:Object], the `mclass_type` is Array[E].
517 # If you want Array[Object] the see `MClassDef::bound_mtype`
518 #
519 # For generic classes, the mclass_type is also the way to get a formal
520 # generic parameter type.
521 #
522 # To get other types based on a generic class, see `get_mtype`.
523 #
524 # ENSURE: `mclass_type.mclass == self`
525 var mclass_type: MClassType is noinit
526
527 # Return a generic type based on the class
528 # Is the class is not generic, then the result is `mclass_type`
529 #
530 # REQUIRE: `mtype_arguments.length == self.arity`
531 fun get_mtype(mtype_arguments: Array[MType]): MClassType
532 do
533 assert mtype_arguments.length == self.arity
534 if self.arity == 0 then return self.mclass_type
535 var res = get_mtype_cache.get_or_null(mtype_arguments)
536 if res != null then return res
537 res = new MGenericType(self, mtype_arguments)
538 self.get_mtype_cache[mtype_arguments.to_a] = res
539 return res
540 end
541
542 private var get_mtype_cache = new HashMap[Array[MType], MGenericType]
543
544 # Is there a `new` factory to allow the pseudo instantiation?
545 var has_new_factory = false is writable
546
547 # Is `self` a standard or abstract class kind?
548 var is_class: Bool is lazy do return kind == concrete_kind or kind == abstract_kind
549
550 # Is `self` an interface kind?
551 var is_interface: Bool is lazy do return kind == interface_kind
552
553 # Is `self` an enum kind?
554 var is_enum: Bool is lazy do return kind == enum_kind
555
556 # Is `self` and abstract class?
557 var is_abstract: Bool is lazy do return kind == abstract_kind
558
559 redef fun mdoc_or_fallback do return intro.mdoc_or_fallback
560 end
561
562
563 # A definition (an introduction or a refinement) of a class in a module
564 #
565 # A `MClassDef` is associated with an explicit (or almost) definition of a
566 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
567 # a specific class and a specific module, and contains declarations like super-classes
568 # or properties.
569 #
570 # It is the class definitions that are the backbone of most things in the model:
571 # ClassDefs are defined with regard with other classdefs.
572 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
573 #
574 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
575 class MClassDef
576 super MEntity
577
578 # The module where the definition is
579 var mmodule: MModule
580
581 # The associated `MClass`
582 var mclass: MClass is noinit
583
584 # The bounded type associated to the mclassdef
585 #
586 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
587 # are the same type.
588 #
589 # Example:
590 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
591 # If you want Array[E], then see `mclass.mclass_type`
592 #
593 # ENSURE: `bound_mtype.mclass == self.mclass`
594 var bound_mtype: MClassType
595
596 redef var location: Location
597
598 # Internal name combining the module and the class
599 # Example: "mymodule$MyClass"
600 redef var to_s is noinit
601
602 init
603 do
604 self.mclass = bound_mtype.mclass
605 mmodule.mclassdefs.add(self)
606 mclass.mclassdefs.add(self)
607 if mclass.intro_mmodule == mmodule then
608 assert not isset mclass._intro
609 mclass.intro = self
610 end
611 self.to_s = "{mmodule}${mclass}"
612 end
613
614 # Actually the name of the `mclass`
615 redef fun name do return mclass.name
616
617 # The module and class name separated by a '$'.
618 #
619 # The short-name of the class is used for introduction.
620 # Example: "my_module$MyClass"
621 #
622 # The full-name of the class is used for refinement.
623 # Example: "my_module$intro_module::MyClass"
624 redef var full_name is lazy do
625 if is_intro then
626 # public gives 'p$A'
627 # private gives 'p::m$A'
628 return "{mmodule.namespace_for(mclass.visibility)}${mclass.name}"
629 else if mclass.intro_mmodule.mpackage != mmodule.mpackage then
630 # public gives 'q::n$p::A'
631 # private gives 'q::n$p::m::A'
632 return "{mmodule.full_name}${mclass.full_name}"
633 else if mclass.visibility > private_visibility then
634 # public gives 'p::n$A'
635 return "{mmodule.full_name}${mclass.name}"
636 else
637 # private gives 'p::n$::m::A' (redundant p is omitted)
638 return "{mmodule.full_name}$::{mclass.intro_mmodule.name}::{mclass.name}"
639 end
640 end
641
642 redef var c_name is lazy do
643 if is_intro then
644 return "{mmodule.c_namespace_for(mclass.visibility)}___{mclass.c_name}"
645 else if mclass.intro_mmodule.mpackage == mmodule.mpackage and mclass.visibility > private_visibility then
646 return "{mmodule.c_name}___{mclass.name.to_cmangle}"
647 else
648 return "{mmodule.c_name}___{mclass.c_name}"
649 end
650 end
651
652 redef fun model do return mmodule.model
653
654 # All declared super-types
655 # FIXME: quite ugly but not better idea yet
656 var supertypes = new Array[MClassType]
657
658 # Register some super-types for the class (ie "super SomeType")
659 #
660 # The hierarchy must not already be set
661 # REQUIRE: `self.in_hierarchy == null`
662 fun set_supertypes(supertypes: Array[MClassType])
663 do
664 assert unique_invocation: self.in_hierarchy == null
665 var mmodule = self.mmodule
666 var model = mmodule.model
667 var mtype = self.bound_mtype
668
669 for supertype in supertypes do
670 self.supertypes.add(supertype)
671
672 # Register in full_type_specialization_hierarchy
673 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
674 # Register in intro_type_specialization_hierarchy
675 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
676 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
677 end
678 end
679
680 end
681
682 # Collect the super-types (set by set_supertypes) to build the hierarchy
683 #
684 # This function can only invoked once by class
685 # REQUIRE: `self.in_hierarchy == null`
686 # ENSURE: `self.in_hierarchy != null`
687 fun add_in_hierarchy
688 do
689 assert unique_invocation: self.in_hierarchy == null
690 var model = mmodule.model
691 var res = model.mclassdef_hierarchy.add_node(self)
692 self.in_hierarchy = res
693 var mtype = self.bound_mtype
694
695 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
696 # The simpliest way is to attach it to collect_mclassdefs
697 for mclassdef in mtype.collect_mclassdefs(mmodule) do
698 res.poset.add_edge(self, mclassdef)
699 end
700 end
701
702 # The view of the class definition in `mclassdef_hierarchy`
703 var in_hierarchy: nullable POSetElement[MClassDef] = null
704
705 # Is the definition the one that introduced `mclass`?
706 fun is_intro: Bool do return isset mclass._intro and mclass.intro == self
707
708 # All properties introduced by the classdef
709 var intro_mproperties = new Array[MProperty]
710
711 # All property definitions in the class (introductions and redefinitions)
712 var mpropdefs = new Array[MPropDef]
713 end
714
715 # A global static type
716 #
717 # MType are global to the model; it means that a `MType` is not bound to a
718 # specific `MModule`.
719 # This characteristic helps the reasoning about static types in a program
720 # since a single `MType` object always denote the same type.
721 #
722 # However, because a `MType` is global, it does not really have properties
723 # nor have subtypes to a hierarchy since the property and the class hierarchy
724 # depends of a module.
725 # Moreover, virtual types an formal generic parameter types also depends on
726 # a receiver to have sense.
727 #
728 # Therefore, most method of the types require a module and an anchor.
729 # The module is used to know what are the classes and the specialization
730 # links.
731 # The anchor is used to know what is the bound of the virtual types and formal
732 # generic parameter types.
733 #
734 # MType are not directly usable to get properties. See the `anchor_to` method
735 # and the `MClassType` class.
736 #
737 # FIXME: the order of the parameters is not the best. We mus pick on from:
738 # * foo(mmodule, anchor, othertype)
739 # * foo(othertype, anchor, mmodule)
740 # * foo(anchor, mmodule, othertype)
741 # * foo(othertype, mmodule, anchor)
742 abstract class MType
743 super MEntity
744
745 redef fun name do return to_s
746
747 # Return true if `self` is an subtype of `sup`.
748 # The typing is done using the standard typing policy of Nit.
749 #
750 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
751 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
752 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
753 do
754 var sub = self
755 if sub == sup then return true
756
757 #print "1.is {sub} a {sup}? ===="
758
759 if anchor == null then
760 assert not sub.need_anchor
761 assert not sup.need_anchor
762 else
763 # First, resolve the formal types to the simplest equivalent forms in the receiver
764 assert sub.can_resolve_for(anchor, null, mmodule)
765 sub = sub.lookup_fixed(mmodule, anchor)
766 assert sup.can_resolve_for(anchor, null, mmodule)
767 sup = sup.lookup_fixed(mmodule, anchor)
768 end
769
770 # Does `sup` accept null or not?
771 # Discard the nullable marker if it exists
772 var sup_accept_null = false
773 if sup isa MNullableType then
774 sup_accept_null = true
775 sup = sup.mtype
776 else if sup isa MNotNullType then
777 sup = sup.mtype
778 else if sup isa MNullType then
779 sup_accept_null = true
780 end
781
782 # Can `sub` provide null or not?
783 # Thus we can match with `sup_accept_null`
784 # Also discard the nullable marker if it exists
785 var sub_reject_null = false
786 if sub isa MNullableType then
787 if not sup_accept_null then return false
788 sub = sub.mtype
789 else if sub isa MNotNullType then
790 sub_reject_null = true
791 sub = sub.mtype
792 else if sub isa MNullType then
793 return sup_accept_null
794 end
795 # Now the case of direct null and nullable is over.
796
797 # If `sub` is a formal type, then it is accepted if its bound is accepted
798 while sub isa MFormalType do
799 #print "3.is {sub} a {sup}?"
800
801 # A unfixed formal type can only accept itself
802 if sub == sup then return true
803
804 assert anchor != null
805 sub = sub.lookup_bound(mmodule, anchor)
806 if sub_reject_null then sub = sub.as_notnull
807
808 #print "3.is {sub} a {sup}?"
809
810 # Manage the second layer of null/nullable
811 if sub isa MNullableType then
812 if not sup_accept_null and not sub_reject_null then return false
813 sub = sub.mtype
814 else if sub isa MNotNullType then
815 sub_reject_null = true
816 sub = sub.mtype
817 else if sub isa MNullType then
818 return sup_accept_null
819 end
820 end
821 #print "4.is {sub} a {sup}? <- no more resolution"
822
823 if sub isa MBottomType then
824 return true
825 end
826
827 assert sub isa MClassType else print "{sub} <? {sub}" # It is the only remaining type
828
829 # Handle sup-type when the sub-type is class-based (other cases must have be identified before).
830 if sup isa MFormalType or sup isa MNullType or sup isa MBottomType then
831 # These types are not super-types of Class-based types.
832 return false
833 end
834
835 assert sup isa MClassType else print "got {sup} {sub.inspect}" # It is the only remaining type
836
837 # Now both are MClassType, we need to dig
838
839 if sub == sup then return true
840
841 if anchor == null then anchor = sub # UGLY: any anchor will work
842 var resolved_sub = sub.anchor_to(mmodule, anchor)
843 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
844 if res == false then return false
845 if not sup isa MGenericType then return true
846 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
847 assert sub2.mclass == sup.mclass
848 for i in [0..sup.mclass.arity[ do
849 var sub_arg = sub2.arguments[i]
850 var sup_arg = sup.arguments[i]
851 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
852 if res == false then return false
853 end
854 return true
855 end
856
857 # The base class type on which self is based
858 #
859 # This base type is used to get property (an internally to perform
860 # unsafe type comparison).
861 #
862 # Beware: some types (like null) are not based on a class thus this
863 # method will crash
864 #
865 # Basically, this function transform the virtual types and parameter
866 # types to their bounds.
867 #
868 # Example
869 #
870 # class A end
871 # class B super A end
872 # class X end
873 # class Y super X end
874 # class G[T: A]
875 # type U: X
876 # end
877 # class H
878 # super G[B]
879 # redef type U: Y
880 # end
881 #
882 # Map[T,U] anchor_to H #-> Map[B,Y]
883 #
884 # Explanation of the example:
885 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
886 # because "redef type U: Y". Therefore, Map[T, U] is bound to
887 # Map[B, Y]
888 #
889 # ENSURE: `not self.need_anchor implies result == self`
890 # ENSURE: `not result.need_anchor`
891 fun anchor_to(mmodule: MModule, anchor: MClassType): MType
892 do
893 if not need_anchor then return self
894 assert not anchor.need_anchor
895 # Just resolve to the anchor and clear all the virtual types
896 var res = self.resolve_for(anchor, null, mmodule, true)
897 assert not res.need_anchor
898 return res
899 end
900
901 # Does `self` contain a virtual type or a formal generic parameter type?
902 # In order to remove those types, you usually want to use `anchor_to`.
903 fun need_anchor: Bool do return true
904
905 # Return the supertype when adapted to a class.
906 #
907 # In Nit, for each super-class of a type, there is a equivalent super-type.
908 #
909 # Example:
910 #
911 # ~~~nitish
912 # class G[T, U] end
913 # class H[V] super G[V, Bool] end
914 #
915 # H[Int] supertype_to G #-> G[Int, Bool]
916 # ~~~
917 #
918 # REQUIRE: `super_mclass` is a super-class of `self`
919 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
920 # ENSURE: `result.mclass = super_mclass`
921 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
922 do
923 if super_mclass.arity == 0 then return super_mclass.mclass_type
924 if self isa MClassType and self.mclass == super_mclass then return self
925 var resolved_self
926 if self.need_anchor then
927 assert anchor != null
928 resolved_self = self.anchor_to(mmodule, anchor)
929 else
930 resolved_self = self
931 end
932 var supertypes = resolved_self.collect_mtypes(mmodule)
933 for supertype in supertypes do
934 if supertype.mclass == super_mclass then
935 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
936 return supertype.resolve_for(self, anchor, mmodule, false)
937 end
938 end
939 abort
940 end
941
942 # Replace formals generic types in self with resolved values in `mtype`
943 # If `cleanup_virtual` is true, then virtual types are also replaced
944 # with their bounds.
945 #
946 # This function returns self if `need_anchor` is false.
947 #
948 # ## Example 1
949 #
950 # ~~~
951 # class G[E] end
952 # class H[F] super G[F] end
953 # class X[Z] end
954 # ~~~
955 #
956 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
957 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
958 #
959 # Explanation of the example:
960 # * Array[E].need_anchor is true because there is a formal generic parameter type E
961 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
962 # * Since "H[F] super G[F]", E is in fact F for H
963 # * More specifically, in H[Int], E is Int
964 # * So, in H[Int], Array[E] is Array[Int]
965 #
966 # This function is mainly used to inherit a signature.
967 # Because, unlike `anchor_to`, we do not want a full resolution of
968 # a type but only an adapted version of it.
969 #
970 # ## Example 2
971 #
972 # ~~~
973 # class A[E]
974 # fun foo(e:E):E is abstract
975 # end
976 # class B super A[Int] end
977 # ~~~
978 #
979 # The signature on foo is (e: E): E
980 # If we resolve the signature for B, we get (e:Int):Int
981 #
982 # ## Example 3
983 #
984 # ~~~nitish
985 # class A[E]
986 # fun foo(e:E):E is abstract
987 # end
988 # class C[F]
989 # var a: A[Array[F]]
990 # fun bar do a.foo(x) # <- x is here
991 # end
992 # ~~~
993 #
994 # The first question is: is foo available on `a`?
995 #
996 # The static type of a is `A[Array[F]]`, that is an open type.
997 # in order to find a method `foo`, whe must look at a resolved type.
998 #
999 # A[Array[F]].anchor_to(C[nullable Object]) #-> A[Array[nullable Object]]
1000 #
1001 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
1002 #
1003 # The next question is: what is the accepted types for `x`?
1004 #
1005 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
1006 #
1007 # E.resolve_for(A[Array[F]],C[nullable Object]) #-> Array[F]
1008 #
1009 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
1010 #
1011 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
1012 # two function instead of one seems also to be a bad idea.
1013 #
1014 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
1015 # ENSURE: `not self.need_anchor implies result == self`
1016 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
1017
1018 # Resolve formal type to its verbatim bound.
1019 # If the type is not formal, just return self
1020 #
1021 # The result is returned exactly as declared in the "type" property (verbatim).
1022 # So it could be another formal type.
1023 #
1024 # In case of conflicts or inconsistencies in the model, the method returns a `MBottomType`.
1025 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self
1026
1027 # Resolve the formal type to its simplest equivalent form.
1028 #
1029 # Formal types are either free or fixed.
1030 # When it is fixed, it means that it is equivalent with a simpler type.
1031 # When a formal type is free, it means that it is only equivalent with itself.
1032 # This method return the most simple equivalent type of `self`.
1033 #
1034 # This method is mainly used for subtype test in order to sanely compare fixed.
1035 #
1036 # By default, return self.
1037 # See the redefinitions for specific behavior in each kind of type.
1038 #
1039 # In case of conflicts or inconsistencies in the model, the method returns a `MBottomType`.
1040 fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self
1041
1042 # Can the type be resolved?
1043 #
1044 # In order to resolve open types, the formal types must make sence.
1045 #
1046 # ## Example
1047 #
1048 # class A[E]
1049 # end
1050 # class B[F]
1051 # end
1052 #
1053 # ~~~nitish
1054 # E.can_resolve_for(A[Int]) #-> true, E make sense in A
1055 #
1056 # E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
1057 #
1058 # B[E].can_resolve_for(A[F], B[Object]) #-> true,
1059 # # B[E] is a red hearing only the E is important,
1060 # # E make sense in A
1061 # ~~~
1062 #
1063 # REQUIRE: `anchor != null implies not anchor.need_anchor`
1064 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
1065 # ENSURE: `not self.need_anchor implies result == true`
1066 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
1067
1068 # Return the nullable version of the type
1069 # If the type is already nullable then self is returned
1070 fun as_nullable: MType
1071 do
1072 var res = self.as_nullable_cache
1073 if res != null then return res
1074 res = new MNullableType(self)
1075 self.as_nullable_cache = res
1076 return res
1077 end
1078
1079 # Remove the base type of a decorated (proxy) type.
1080 # Is the type is not decorated, then self is returned.
1081 #
1082 # Most of the time it is used to return the not nullable version of a nullable type.
1083 # In this case, this just remove the `nullable` notation, but the result can still contains null.
1084 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
1085 # If you really want to exclude the `null` value, then use `as_notnull`
1086 fun undecorate: MType
1087 do
1088 return self
1089 end
1090
1091 # Returns the not null version of the type.
1092 # That is `self` minus the `null` value.
1093 #
1094 # For most types, this return `self`.
1095 # For formal types, this returns a special `MNotNullType`
1096 fun as_notnull: MType do return self
1097
1098 private var as_nullable_cache: nullable MType = null
1099
1100
1101 # The depth of the type seen as a tree.
1102 #
1103 # * A -> 1
1104 # * G[A] -> 2
1105 # * H[A, B] -> 2
1106 # * H[G[A], B] -> 3
1107 #
1108 # Formal types have a depth of 1.
1109 fun depth: Int
1110 do
1111 return 1
1112 end
1113
1114 # The length of the type seen as a tree.
1115 #
1116 # * A -> 1
1117 # * G[A] -> 2
1118 # * H[A, B] -> 3
1119 # * H[G[A], B] -> 4
1120 #
1121 # Formal types have a length of 1.
1122 fun length: Int
1123 do
1124 return 1
1125 end
1126
1127 # Compute all the classdefs inherited/imported.
1128 # The returned set contains:
1129 # * the class definitions from `mmodule` and its imported modules
1130 # * the class definitions of this type and its super-types
1131 #
1132 # This function is used mainly internally.
1133 #
1134 # REQUIRE: `not self.need_anchor`
1135 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
1136
1137 # Compute all the super-classes.
1138 # This function is used mainly internally.
1139 #
1140 # REQUIRE: `not self.need_anchor`
1141 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
1142
1143 # Compute all the declared super-types.
1144 # Super-types are returned as declared in the classdefs (verbatim).
1145 # This function is used mainly internally.
1146 #
1147 # REQUIRE: `not self.need_anchor`
1148 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
1149
1150 # Is the property in self for a given module
1151 # This method does not filter visibility or whatever
1152 #
1153 # REQUIRE: `not self.need_anchor`
1154 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
1155 do
1156 assert not self.need_anchor
1157 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
1158 end
1159 end
1160
1161 # A type based on a class.
1162 #
1163 # `MClassType` have properties (see `has_mproperty`).
1164 class MClassType
1165 super MType
1166
1167 # The associated class
1168 var mclass: MClass
1169
1170 redef fun model do return self.mclass.intro_mmodule.model
1171
1172 redef fun location do return mclass.location
1173
1174 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1175
1176 # The formal arguments of the type
1177 # ENSURE: `result.length == self.mclass.arity`
1178 var arguments = new Array[MType]
1179
1180 redef fun to_s do return mclass.to_s
1181
1182 redef fun full_name do return mclass.full_name
1183
1184 redef fun c_name do return mclass.c_name
1185
1186 redef fun need_anchor do return false
1187
1188 redef fun anchor_to(mmodule: MModule, anchor: MClassType): MClassType
1189 do
1190 return super.as(MClassType)
1191 end
1192
1193 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1194
1195 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1196
1197 redef fun collect_mclassdefs(mmodule)
1198 do
1199 assert not self.need_anchor
1200 var cache = self.collect_mclassdefs_cache
1201 if not cache.has_key(mmodule) then
1202 self.collect_things(mmodule)
1203 end
1204 return cache[mmodule]
1205 end
1206
1207 redef fun collect_mclasses(mmodule)
1208 do
1209 if collect_mclasses_last_module == mmodule then return collect_mclasses_last_module_cache
1210 assert not self.need_anchor
1211 var cache = self.collect_mclasses_cache
1212 if not cache.has_key(mmodule) then
1213 self.collect_things(mmodule)
1214 end
1215 var res = cache[mmodule]
1216 collect_mclasses_last_module = mmodule
1217 collect_mclasses_last_module_cache = res
1218 return res
1219 end
1220
1221 private var collect_mclasses_last_module: nullable MModule = null
1222 private var collect_mclasses_last_module_cache: Set[MClass] is noinit
1223
1224 redef fun collect_mtypes(mmodule)
1225 do
1226 assert not self.need_anchor
1227 var cache = self.collect_mtypes_cache
1228 if not cache.has_key(mmodule) then
1229 self.collect_things(mmodule)
1230 end
1231 return cache[mmodule]
1232 end
1233
1234 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1235 private fun collect_things(mmodule: MModule)
1236 do
1237 var res = new HashSet[MClassDef]
1238 var seen = new HashSet[MClass]
1239 var types = new HashSet[MClassType]
1240 seen.add(self.mclass)
1241 var todo = [self.mclass]
1242 while not todo.is_empty do
1243 var mclass = todo.pop
1244 #print "process {mclass}"
1245 for mclassdef in mclass.mclassdefs do
1246 if not mmodule.in_importation <= mclassdef.mmodule then continue
1247 #print " process {mclassdef}"
1248 res.add(mclassdef)
1249 for supertype in mclassdef.supertypes do
1250 types.add(supertype)
1251 var superclass = supertype.mclass
1252 if seen.has(superclass) then continue
1253 #print " add {superclass}"
1254 seen.add(superclass)
1255 todo.add(superclass)
1256 end
1257 end
1258 end
1259 collect_mclassdefs_cache[mmodule] = res
1260 collect_mclasses_cache[mmodule] = seen
1261 collect_mtypes_cache[mmodule] = types
1262 end
1263
1264 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1265 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1266 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1267
1268 end
1269
1270 # A type based on a generic class.
1271 # A generic type a just a class with additional formal generic arguments.
1272 class MGenericType
1273 super MClassType
1274
1275 redef var arguments
1276
1277 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1278
1279 init
1280 do
1281 assert self.mclass.arity == arguments.length
1282
1283 self.need_anchor = false
1284 for t in arguments do
1285 if t.need_anchor then
1286 self.need_anchor = true
1287 break
1288 end
1289 end
1290
1291 self.to_s = "{mclass}[{arguments.join(", ")}]"
1292 end
1293
1294 # The short-name of the class, then the full-name of each type arguments within brackets.
1295 # Example: `"Map[String, List[Int]]"`
1296 redef var to_s is noinit
1297
1298 # The full-name of the class, then the full-name of each type arguments within brackets.
1299 # Example: `"core::Map[core::String, core::List[core::Int]]"`
1300 redef var full_name is lazy do
1301 var args = new Array[String]
1302 for t in arguments do
1303 args.add t.full_name
1304 end
1305 return "{mclass.full_name}[{args.join(", ")}]"
1306 end
1307
1308 redef var c_name is lazy do
1309 var res = mclass.c_name
1310 # Note: because the arity is known, a prefix notation is enough
1311 for t in arguments do
1312 res += "__"
1313 res += t.c_name
1314 end
1315 return res.to_s
1316 end
1317
1318 redef var need_anchor is noinit
1319
1320 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1321 do
1322 if not need_anchor then return self
1323 assert can_resolve_for(mtype, anchor, mmodule)
1324 var types = new Array[MType]
1325 for t in arguments do
1326 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1327 end
1328 return mclass.get_mtype(types)
1329 end
1330
1331 redef fun can_resolve_for(mtype, anchor, mmodule)
1332 do
1333 if not need_anchor then return true
1334 for t in arguments do
1335 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1336 end
1337 return true
1338 end
1339
1340
1341 redef fun depth
1342 do
1343 var dmax = 0
1344 for a in self.arguments do
1345 var d = a.depth
1346 if d > dmax then dmax = d
1347 end
1348 return dmax + 1
1349 end
1350
1351 redef fun length
1352 do
1353 var res = 1
1354 for a in self.arguments do
1355 res += a.length
1356 end
1357 return res
1358 end
1359 end
1360
1361 # A formal type (either virtual of parametric).
1362 #
1363 # The main issue with formal types is that they offer very little information on their own
1364 # and need a context (anchor and mmodule) to be useful.
1365 abstract class MFormalType
1366 super MType
1367
1368 redef var as_notnull = new MNotNullType(self) is lazy
1369 end
1370
1371 # A virtual formal type.
1372 class MVirtualType
1373 super MFormalType
1374
1375 # The property associated with the type.
1376 # Its the definitions of this property that determine the bound or the virtual type.
1377 var mproperty: MVirtualTypeProp
1378
1379 redef fun location do return mproperty.location
1380
1381 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1382
1383 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1384 do
1385 return lookup_single_definition(mmodule, resolved_receiver).bound or else new MBottomType(model)
1386 end
1387
1388 private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef
1389 do
1390 assert not resolved_receiver.need_anchor
1391 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1392 if props.is_empty then
1393 abort
1394 else if props.length == 1 then
1395 return props.first
1396 end
1397 var types = new ArraySet[MType]
1398 var res = props.first
1399 for p in props do
1400 types.add(p.bound.as(not null))
1401 if not res.is_fixed then res = p
1402 end
1403 if types.length == 1 then
1404 return res
1405 end
1406 abort
1407 end
1408
1409 # A VT is fixed when:
1410 # * the VT is (re-)defined with the annotation `is fixed`
1411 # * the VT is (indirectly) bound to an enum class (see `enum_kind`) since there is no subtype possible
1412 # * the receiver is an enum class since there is no subtype possible
1413 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1414 do
1415 assert not resolved_receiver.need_anchor
1416 resolved_receiver = resolved_receiver.undecorate
1417 assert resolved_receiver isa MClassType # It is the only remaining type
1418
1419 var prop = lookup_single_definition(mmodule, resolved_receiver)
1420 var res = prop.bound
1421 if res == null then return new MBottomType(model)
1422
1423 # Recursively lookup the fixed result
1424 res = res.lookup_fixed(mmodule, resolved_receiver)
1425
1426 # 1. For a fixed VT, return the resolved bound
1427 if prop.is_fixed then return res
1428
1429 # 2. For a enum boud, return the bound
1430 if res isa MClassType and res.mclass.kind == enum_kind then return res
1431
1432 # 3. for a enum receiver return the bound
1433 if resolved_receiver.mclass.kind == enum_kind then return res
1434
1435 return self
1436 end
1437
1438 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1439 do
1440 if not cleanup_virtual then return self
1441 assert can_resolve_for(mtype, anchor, mmodule)
1442 # self is a virtual type declared (or inherited) in mtype
1443 # The point of the function it to get the bound of the virtual type that make sense for mtype
1444 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1445 #print "{class_name}: {self}/{mtype}/{anchor}?"
1446 var resolved_receiver
1447 if mtype.need_anchor then
1448 assert anchor != null
1449 resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true)
1450 else
1451 resolved_receiver = mtype
1452 end
1453 # Now, we can get the bound
1454 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1455 # The bound is exactly as declared in the "type" property, so we must resolve it again
1456 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1457
1458 return res
1459 end
1460
1461 redef fun can_resolve_for(mtype, anchor, mmodule)
1462 do
1463 if mtype.need_anchor then
1464 assert anchor != null
1465 mtype = mtype.anchor_to(mmodule, anchor)
1466 end
1467 return mtype.has_mproperty(mmodule, mproperty)
1468 end
1469
1470 redef fun to_s do return self.mproperty.to_s
1471
1472 redef fun full_name do return self.mproperty.full_name
1473
1474 redef fun c_name do return self.mproperty.c_name
1475 end
1476
1477 # The type associated to a formal parameter generic type of a class
1478 #
1479 # Each parameter type is associated to a specific class.
1480 # It means that all refinements of a same class "share" the parameter type,
1481 # but that a generic subclass has its own parameter types.
1482 #
1483 # However, in the sense of the meta-model, a parameter type of a class is
1484 # a valid type in a subclass. The "in the sense of the meta-model" is
1485 # important because, in the Nit language, the programmer cannot refers
1486 # directly to the parameter types of the super-classes.
1487 #
1488 # Example:
1489 #
1490 # class A[E]
1491 # fun e: E is abstract
1492 # end
1493 # class B[F]
1494 # super A[Array[F]]
1495 # end
1496 #
1497 # In the class definition B[F], `F` is a valid type but `E` is not.
1498 # However, `self.e` is a valid method call, and the signature of `e` is
1499 # declared `e: E`.
1500 #
1501 # Note that parameter types are shared among class refinements.
1502 # Therefore parameter only have an internal name (see `to_s` for details).
1503 class MParameterType
1504 super MFormalType
1505
1506 # The generic class where the parameter belong
1507 var mclass: MClass
1508
1509 redef fun model do return self.mclass.intro_mmodule.model
1510
1511 redef fun location do return mclass.location
1512
1513 # The position of the parameter (0 for the first parameter)
1514 # FIXME: is `position` a better name?
1515 var rank: Int
1516
1517 redef var name
1518
1519 redef fun to_s do return name
1520
1521 redef var full_name is lazy do return "{mclass.full_name}::{name}"
1522
1523 redef var c_name is lazy do return mclass.c_name + "__" + "#{name}".to_cmangle
1524
1525 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1526 do
1527 assert not resolved_receiver.need_anchor
1528 resolved_receiver = resolved_receiver.undecorate
1529 assert resolved_receiver isa MClassType # It is the only remaining type
1530 var goalclass = self.mclass
1531 if resolved_receiver.mclass == goalclass then
1532 return resolved_receiver.arguments[self.rank]
1533 end
1534 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1535 for t in supertypes do
1536 if t.mclass == goalclass then
1537 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1538 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1539 var res = t.arguments[self.rank]
1540 return res
1541 end
1542 end
1543 abort
1544 end
1545
1546 # A PT is fixed when:
1547 # * Its bound is a enum class (see `enum_kind`).
1548 # The PT is just useless, but it is still a case.
1549 # * More usually, the `resolved_receiver` is a subclass of `self.mclass`,
1550 # so it is necessarily fixed in a `super` clause, either with a normal type
1551 # or with another PT.
1552 # See `resolve_for` for examples about related issues.
1553 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1554 do
1555 assert not resolved_receiver.need_anchor
1556 resolved_receiver = resolved_receiver.undecorate
1557 assert resolved_receiver isa MClassType # It is the only remaining type
1558 var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false)
1559 return res
1560 end
1561
1562 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1563 do
1564 assert can_resolve_for(mtype, anchor, mmodule)
1565 #print "{class_name}: {self}/{mtype}/{anchor}?"
1566
1567 if mtype isa MGenericType and mtype.mclass == self.mclass then
1568 var res = mtype.arguments[self.rank]
1569 if anchor != null and res.need_anchor then
1570 # Maybe the result can be resolved more if are bound to a final class
1571 var r2 = res.anchor_to(mmodule, anchor)
1572 if r2 isa MClassType and r2.mclass.kind == enum_kind then return r2
1573 end
1574 return res
1575 end
1576
1577 # self is a parameter type of mtype (or of a super-class of mtype)
1578 # The point of the function it to get the bound of the virtual type that make sense for mtype
1579 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1580 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1581 var resolved_receiver
1582 if mtype.need_anchor then
1583 assert anchor != null
1584 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1585 else
1586 resolved_receiver = mtype
1587 end
1588 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1589 if resolved_receiver isa MParameterType then
1590 assert anchor != null
1591 assert resolved_receiver.mclass == anchor.mclass
1592 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1593 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1594 end
1595 assert resolved_receiver isa MClassType # It is the only remaining type
1596
1597 # Eh! The parameter is in the current class.
1598 # So we return the corresponding argument, no mater what!
1599 if resolved_receiver.mclass == self.mclass then
1600 var res = resolved_receiver.arguments[self.rank]
1601 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1602 return res
1603 end
1604
1605 if resolved_receiver.need_anchor then
1606 assert anchor != null
1607 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1608 end
1609 # Now, we can get the bound
1610 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1611 # The bound is exactly as declared in the "type" property, so we must resolve it again
1612 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1613
1614 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1615
1616 return res
1617 end
1618
1619 redef fun can_resolve_for(mtype, anchor, mmodule)
1620 do
1621 if mtype.need_anchor then
1622 assert anchor != null
1623 mtype = mtype.anchor_to(mmodule, anchor)
1624 end
1625 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1626 end
1627 end
1628
1629 # A type that decorates another type.
1630 #
1631 # The point of this class is to provide a common implementation of sevices that just forward to the original type.
1632 # Specific decorator are expected to redefine (or to extend) the default implementation as this suit them.
1633 abstract class MProxyType
1634 super MType
1635 # The base type
1636 var mtype: MType
1637
1638 redef fun location do return mtype.location
1639
1640 redef fun model do return self.mtype.model
1641 redef fun need_anchor do return mtype.need_anchor
1642 redef fun as_nullable do return mtype.as_nullable
1643 redef fun as_notnull do return mtype.as_notnull
1644 redef fun undecorate do return mtype.undecorate
1645 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1646 do
1647 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1648 return res
1649 end
1650
1651 redef fun can_resolve_for(mtype, anchor, mmodule)
1652 do
1653 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1654 end
1655
1656 redef fun lookup_fixed(mmodule, resolved_receiver)
1657 do
1658 var t = mtype.lookup_fixed(mmodule, resolved_receiver)
1659 return t
1660 end
1661
1662 redef fun depth do return self.mtype.depth
1663
1664 redef fun length do return self.mtype.length
1665
1666 redef fun collect_mclassdefs(mmodule)
1667 do
1668 assert not self.need_anchor
1669 return self.mtype.collect_mclassdefs(mmodule)
1670 end
1671
1672 redef fun collect_mclasses(mmodule)
1673 do
1674 assert not self.need_anchor
1675 return self.mtype.collect_mclasses(mmodule)
1676 end
1677
1678 redef fun collect_mtypes(mmodule)
1679 do
1680 assert not self.need_anchor
1681 return self.mtype.collect_mtypes(mmodule)
1682 end
1683 end
1684
1685 # A type prefixed with "nullable"
1686 class MNullableType
1687 super MProxyType
1688
1689 init
1690 do
1691 self.to_s = "nullable {mtype}"
1692 end
1693
1694 redef var to_s is noinit
1695
1696 redef var full_name is lazy do return "nullable {mtype.full_name}"
1697
1698 redef var c_name is lazy do return "nullable__{mtype.c_name}"
1699
1700 redef fun as_nullable do return self
1701 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1702 do
1703 var res = super
1704 return res.as_nullable
1705 end
1706
1707 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable`
1708 redef fun lookup_fixed(mmodule, resolved_receiver)
1709 do
1710 var t = super
1711 if t == mtype then return self
1712 return t.as_nullable
1713 end
1714 end
1715
1716 # A non-null version of a formal type.
1717 #
1718 # When a formal type in bounded to a nullable type, this is the type of the not null version of it.
1719 class MNotNullType
1720 super MProxyType
1721
1722 redef fun to_s do return "not null {mtype}"
1723 redef var full_name is lazy do return "not null {mtype.full_name}"
1724 redef var c_name is lazy do return "notnull__{mtype.c_name}"
1725
1726 redef fun as_notnull do return self
1727
1728 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1729 do
1730 var res = super
1731 return res.as_notnull
1732 end
1733
1734 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_notnull`
1735 redef fun lookup_fixed(mmodule, resolved_receiver)
1736 do
1737 var t = super
1738 if t == mtype then return self
1739 return t.as_notnull
1740 end
1741 end
1742
1743 # The type of the only value null
1744 #
1745 # The is only one null type per model, see `MModel::null_type`.
1746 class MNullType
1747 super MType
1748 redef var model
1749 redef fun to_s do return "null"
1750 redef fun full_name do return "null"
1751 redef fun c_name do return "null"
1752 redef fun as_nullable do return self
1753
1754 redef var as_notnull = new MBottomType(model) is lazy
1755 redef fun need_anchor do return false
1756 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1757 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1758
1759 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1760
1761 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1762
1763 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1764 end
1765
1766 # The special universal most specific type.
1767 #
1768 # This type is intended to be only used internally for type computation or analysis and should not be exposed to the user.
1769 # The bottom type can de used to denote things that are absurd, dead, or the absence of knowledge.
1770 #
1771 # Semantically it is the singleton `null.as_notnull`.
1772 class MBottomType
1773 super MType
1774 redef var model
1775 redef fun to_s do return "bottom"
1776 redef fun full_name do return "bottom"
1777 redef fun c_name do return "bottom"
1778 redef fun as_nullable do return model.null_type
1779 redef fun as_notnull do return self
1780 redef fun need_anchor do return false
1781 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1782 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1783
1784 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1785
1786 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1787
1788 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1789 end
1790
1791 # A signature of a method
1792 class MSignature
1793 super MType
1794
1795 # The each parameter (in order)
1796 var mparameters: Array[MParameter]
1797
1798 # Returns a parameter named `name`, if any.
1799 fun mparameter_by_name(name: String): nullable MParameter
1800 do
1801 for p in mparameters do
1802 if p.name == name then return p
1803 end
1804 return null
1805 end
1806
1807 # The return type (null for a procedure)
1808 var return_mtype: nullable MType
1809
1810 redef fun depth
1811 do
1812 var dmax = 0
1813 var t = self.return_mtype
1814 if t != null then dmax = t.depth
1815 for p in mparameters do
1816 var d = p.mtype.depth
1817 if d > dmax then dmax = d
1818 end
1819 return dmax + 1
1820 end
1821
1822 redef fun length
1823 do
1824 var res = 1
1825 var t = self.return_mtype
1826 if t != null then res += t.length
1827 for p in mparameters do
1828 res += p.mtype.length
1829 end
1830 return res
1831 end
1832
1833 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1834 init
1835 do
1836 var vararg_rank = -1
1837 for i in [0..mparameters.length[ do
1838 var parameter = mparameters[i]
1839 if parameter.is_vararg then
1840 if vararg_rank >= 0 then
1841 # If there is more than one vararg,
1842 # consider that additional arguments cannot be mapped.
1843 vararg_rank = -1
1844 break
1845 end
1846 vararg_rank = i
1847 end
1848 end
1849 self.vararg_rank = vararg_rank
1850 end
1851
1852 # The rank of the main ellipsis (`...`) for vararg (starting from 0).
1853 # value is -1 if there is no vararg.
1854 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1855 #
1856 # From a model POV, a signature can contain more than one vararg parameter,
1857 # the `vararg_rank` just indicates the one that will receive the additional arguments.
1858 # However, currently, if there is more that one vararg parameter, no one will be the main one,
1859 # and additional arguments will be refused.
1860 var vararg_rank: Int is noinit
1861
1862 # The number of parameters
1863 fun arity: Int do return mparameters.length
1864
1865 redef fun to_s
1866 do
1867 var b = new FlatBuffer
1868 if not mparameters.is_empty then
1869 b.append("(")
1870 for i in [0..mparameters.length[ do
1871 var mparameter = mparameters[i]
1872 if i > 0 then b.append(", ")
1873 b.append(mparameter.name)
1874 b.append(": ")
1875 b.append(mparameter.mtype.to_s)
1876 if mparameter.is_vararg then
1877 b.append("...")
1878 end
1879 end
1880 b.append(")")
1881 end
1882 var ret = self.return_mtype
1883 if ret != null then
1884 b.append(": ")
1885 b.append(ret.to_s)
1886 end
1887 return b.to_s
1888 end
1889
1890 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
1891 do
1892 var params = new Array[MParameter]
1893 for p in self.mparameters do
1894 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1895 end
1896 var ret = self.return_mtype
1897 if ret != null then
1898 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1899 end
1900 var res = new MSignature(params, ret)
1901 return res
1902 end
1903 end
1904
1905 # A parameter in a signature
1906 class MParameter
1907 super MEntity
1908
1909 # The name of the parameter
1910 redef var name
1911
1912 # The static type of the parameter
1913 var mtype: MType
1914
1915 # Is the parameter a vararg?
1916 var is_vararg: Bool
1917
1918 redef fun to_s
1919 do
1920 if is_vararg then
1921 return "{name}: {mtype}..."
1922 else
1923 return "{name}: {mtype}"
1924 end
1925 end
1926
1927 # Returns a new parameter with the `mtype` resolved.
1928 # See `MType::resolve_for` for details.
1929 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
1930 do
1931 if not self.mtype.need_anchor then return self
1932 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1933 var res = new MParameter(self.name, newtype, self.is_vararg)
1934 return res
1935 end
1936
1937 redef fun model do return mtype.model
1938 end
1939
1940 # A service (global property) that generalize method, attribute, etc.
1941 #
1942 # `MProperty` are global to the model; it means that a `MProperty` is not bound
1943 # to a specific `MModule` nor a specific `MClass`.
1944 #
1945 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
1946 # and the other in subclasses and in refinements.
1947 #
1948 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
1949 # of any dynamic type).
1950 # For instance, a call site "x.foo" is associated to a `MProperty`.
1951 abstract class MProperty
1952 super MEntity
1953
1954 # The associated MPropDef subclass.
1955 # The two specialization hierarchy are symmetric.
1956 type MPROPDEF: MPropDef
1957
1958 # The classdef that introduce the property
1959 # While a property is not bound to a specific module, or class,
1960 # the introducing mclassdef is used for naming and visibility
1961 var intro_mclassdef: MClassDef
1962
1963 # The (short) name of the property
1964 redef var name
1965
1966 redef var location
1967
1968 redef fun mdoc_or_fallback do return intro.mdoc_or_fallback
1969
1970 # The canonical name of the property.
1971 #
1972 # It is currently the short-`name` prefixed by the short-name of the class and the full-name of the module.
1973 # Example: "my_package::my_module::MyClass::my_method"
1974 #
1975 # The full-name of the module is needed because two distinct modules of the same package can
1976 # still refine the same class and introduce homonym properties.
1977 #
1978 # For public properties not introduced by refinement, the module name is not used.
1979 #
1980 # Example: `my_package::MyClass::My_method`
1981 redef var full_name is lazy do
1982 if intro_mclassdef.is_intro then
1983 return "{intro_mclassdef.mmodule.namespace_for(visibility)}::{intro_mclassdef.mclass.name}::{name}"
1984 else
1985 return "{intro_mclassdef.mmodule.full_name}::{intro_mclassdef.mclass.name}::{name}"
1986 end
1987 end
1988
1989 redef var c_name is lazy do
1990 # FIXME use `namespace_for`
1991 return "{intro_mclassdef.mmodule.c_name}__{intro_mclassdef.mclass.name.to_cmangle}__{name.to_cmangle}"
1992 end
1993
1994 # The visibility of the property
1995 var visibility: MVisibility
1996
1997 # Is the property usable as an initializer?
1998 var is_autoinit = false is writable
1999
2000 init
2001 do
2002 intro_mclassdef.intro_mproperties.add(self)
2003 var model = intro_mclassdef.mmodule.model
2004 model.mproperties_by_name.add_one(name, self)
2005 model.mproperties.add(self)
2006 end
2007
2008 # All definitions of the property.
2009 # The first is the introduction,
2010 # The other are redefinitions (in refinements and in subclasses)
2011 var mpropdefs = new Array[MPROPDEF]
2012
2013 # The definition that introduces the property.
2014 #
2015 # Warning: such a definition may not exist in the early life of the object.
2016 # In this case, the method will abort.
2017 var intro: MPROPDEF is noinit
2018
2019 redef fun model do return intro.model
2020
2021 # Alias for `name`
2022 redef fun to_s do return name
2023
2024 # Return the most specific property definitions defined or inherited by a type.
2025 # The selection knows that refinement is stronger than specialization;
2026 # however, in case of conflict more than one property are returned.
2027 # If mtype does not know mproperty then an empty array is returned.
2028 #
2029 # If you want the really most specific property, then look at `lookup_first_definition`
2030 #
2031 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2032 # ENSURE: `not mtype.has_mproperty(mmodule, self) == result.is_empty`
2033 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2034 do
2035 assert not mtype.need_anchor
2036 mtype = mtype.undecorate
2037
2038 var cache = self.lookup_definitions_cache[mmodule, mtype]
2039 if cache != null then return cache
2040
2041 #print "select prop {mproperty} for {mtype} in {self}"
2042 # First, select all candidates
2043 var candidates = new Array[MPROPDEF]
2044 for mpropdef in self.mpropdefs do
2045 # If the definition is not imported by the module, then skip
2046 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2047 # If the definition is not inherited by the type, then skip
2048 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2049 # Else, we keep it
2050 candidates.add(mpropdef)
2051 end
2052 # Fast track for only one candidate
2053 if candidates.length <= 1 then
2054 self.lookup_definitions_cache[mmodule, mtype] = candidates
2055 return candidates
2056 end
2057
2058 # Second, filter the most specific ones
2059 return select_most_specific(mmodule, candidates)
2060 end
2061
2062 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2063
2064 # Return the most specific property definitions inherited by a type.
2065 # The selection knows that refinement is stronger than specialization;
2066 # however, in case of conflict more than one property are returned.
2067 # If mtype does not know mproperty then an empty array is returned.
2068 #
2069 # If you want the really most specific property, then look at `lookup_next_definition`
2070 #
2071 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2072 # ENSURE: `not mtype.has_mproperty(mmodule, self) implies result.is_empty`
2073 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2074 do
2075 assert not mtype.need_anchor
2076 mtype = mtype.undecorate
2077
2078 # First, select all candidates
2079 var candidates = new Array[MPROPDEF]
2080 for mpropdef in self.mpropdefs do
2081 # If the definition is not imported by the module, then skip
2082 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2083 # If the definition is not inherited by the type, then skip
2084 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2085 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
2086 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
2087 # Else, we keep it
2088 candidates.add(mpropdef)
2089 end
2090 # Fast track for only one candidate
2091 if candidates.length <= 1 then return candidates
2092
2093 # Second, filter the most specific ones
2094 return select_most_specific(mmodule, candidates)
2095 end
2096
2097 # Return an array containing olny the most specific property definitions
2098 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
2099 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
2100 do
2101 var res = new Array[MPROPDEF]
2102 for pd1 in candidates do
2103 var cd1 = pd1.mclassdef
2104 var c1 = cd1.mclass
2105 var keep = true
2106 for pd2 in candidates do
2107 if pd2 == pd1 then continue # do not compare with self!
2108 var cd2 = pd2.mclassdef
2109 var c2 = cd2.mclass
2110 if c2.mclass_type == c1.mclass_type then
2111 if cd2.mmodule.in_importation < cd1.mmodule then
2112 # cd2 refines cd1; therefore we skip pd1
2113 keep = false
2114 break
2115 end
2116 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
2117 # cd2 < cd1; therefore we skip pd1
2118 keep = false
2119 break
2120 end
2121 end
2122 if keep then
2123 res.add(pd1)
2124 end
2125 end
2126 if res.is_empty then
2127 print "All lost! {candidates.join(", ")}"
2128 # FIXME: should be abort!
2129 end
2130 return res
2131 end
2132
2133 # Return the most specific definition in the linearization of `mtype`.
2134 #
2135 # If you want to know the next properties in the linearization,
2136 # look at `MPropDef::lookup_next_definition`.
2137 #
2138 # FIXME: the linearization is still unspecified
2139 #
2140 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2141 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2142 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
2143 do
2144 return lookup_all_definitions(mmodule, mtype).first
2145 end
2146
2147 # Return all definitions in a linearization order
2148 # Most specific first, most general last
2149 #
2150 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2151 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2152 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2153 do
2154 mtype = mtype.undecorate
2155
2156 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
2157 if cache != null then return cache
2158
2159 assert not mtype.need_anchor
2160 assert mtype.has_mproperty(mmodule, self)
2161
2162 #print "select prop {mproperty} for {mtype} in {self}"
2163 # First, select all candidates
2164 var candidates = new Array[MPROPDEF]
2165 for mpropdef in self.mpropdefs do
2166 # If the definition is not imported by the module, then skip
2167 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2168 # If the definition is not inherited by the type, then skip
2169 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2170 # Else, we keep it
2171 candidates.add(mpropdef)
2172 end
2173 # Fast track for only one candidate
2174 if candidates.length <= 1 then
2175 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2176 return candidates
2177 end
2178
2179 mmodule.linearize_mpropdefs(candidates)
2180 candidates = candidates.reversed
2181 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2182 return candidates
2183 end
2184
2185 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2186 end
2187
2188 # A global method
2189 class MMethod
2190 super MProperty
2191
2192 redef type MPROPDEF: MMethodDef
2193
2194 # Is the property defined at the top_level of the module?
2195 # Currently such a property are stored in `Object`
2196 var is_toplevel: Bool = false is writable
2197
2198 # Is the property a constructor?
2199 # Warning, this property can be inherited by subclasses with or without being a constructor
2200 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
2201 var is_init: Bool = false is writable
2202
2203 # The constructor is a (the) root init with empty signature but a set of initializers
2204 var is_root_init: Bool = false is writable
2205
2206 # Is the property a 'new' constructor?
2207 var is_new: Bool = false is writable
2208
2209 # Is the property a legal constructor for a given class?
2210 # As usual, visibility is not considered.
2211 # FIXME not implemented
2212 fun is_init_for(mclass: MClass): Bool
2213 do
2214 return self.is_init
2215 end
2216
2217 # A specific method that is safe to call on null.
2218 # Currently, only `==`, `!=` and `is_same_instance` are safe
2219 fun is_null_safe: Bool do return name == "==" or name == "!=" or name == "is_same_instance"
2220 end
2221
2222 # A global attribute
2223 class MAttribute
2224 super MProperty
2225
2226 redef type MPROPDEF: MAttributeDef
2227
2228 end
2229
2230 # A global virtual type
2231 class MVirtualTypeProp
2232 super MProperty
2233
2234 redef type MPROPDEF: MVirtualTypeDef
2235
2236 # The formal type associated to the virtual type property
2237 var mvirtualtype = new MVirtualType(self)
2238 end
2239
2240 # A definition of a property (local property)
2241 #
2242 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
2243 # specific class definition (which belong to a specific module)
2244 abstract class MPropDef
2245 super MEntity
2246
2247 # The associated `MProperty` subclass.
2248 # the two specialization hierarchy are symmetric
2249 type MPROPERTY: MProperty
2250
2251 # Self class
2252 type MPROPDEF: MPropDef
2253
2254 # The class definition where the property definition is
2255 var mclassdef: MClassDef
2256
2257 # The associated global property
2258 var mproperty: MPROPERTY
2259
2260 redef var location: Location
2261
2262 init
2263 do
2264 mclassdef.mpropdefs.add(self)
2265 mproperty.mpropdefs.add(self)
2266 if mproperty.intro_mclassdef == mclassdef then
2267 assert not isset mproperty._intro
2268 mproperty.intro = self
2269 end
2270 self.to_s = "{mclassdef}${mproperty}"
2271 end
2272
2273 # Actually the name of the `mproperty`
2274 redef fun name do return mproperty.name
2275
2276 # The full-name of mpropdefs combine the information about the `classdef` and the `mproperty`.
2277 #
2278 # Therefore the combination of identifiers is awful,
2279 # the worst case being
2280 #
2281 # * a property "p::m::A::x"
2282 # * redefined in a refinement of a class "q::n::B"
2283 # * in a module "r::o"
2284 # * so "r::o$q::n::B$p::m::A::x"
2285 #
2286 # Fortunately, the full-name is simplified when entities are repeated.
2287 # For the previous case, the simplest form is "p$A$x".
2288 redef var full_name is lazy do
2289 var res = new FlatBuffer
2290
2291 # The first part is the mclassdef. Worst case is "r::o$q::n::B"
2292 res.append mclassdef.full_name
2293
2294 res.append "$"
2295
2296 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2297 # intro are unambiguous in a class
2298 res.append name
2299 else
2300 # Just try to simplify each part
2301 if mclassdef.mmodule.mpackage != mproperty.intro_mclassdef.mmodule.mpackage then
2302 # precise "p::m" only if "p" != "r"
2303 res.append mproperty.intro_mclassdef.mmodule.namespace_for(mproperty.visibility)
2304 res.append "::"
2305 else if mproperty.visibility <= private_visibility then
2306 # Same package ("p"=="q"), but private visibility,
2307 # does the module part ("::m") need to be displayed
2308 if mclassdef.mmodule.namespace_for(mclassdef.mclass.visibility) != mproperty.intro_mclassdef.mmodule.mpackage then
2309 res.append "::"
2310 res.append mproperty.intro_mclassdef.mmodule.name
2311 res.append "::"
2312 end
2313 end
2314 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2315 # precise "B" only if not the same class than "A"
2316 res.append mproperty.intro_mclassdef.name
2317 res.append "::"
2318 end
2319 # Always use the property name "x"
2320 res.append mproperty.name
2321 end
2322 return res.to_s
2323 end
2324
2325 redef var c_name is lazy do
2326 var res = new FlatBuffer
2327 res.append mclassdef.c_name
2328 res.append "___"
2329 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2330 res.append name.to_cmangle
2331 else
2332 if mclassdef.mmodule != mproperty.intro_mclassdef.mmodule then
2333 res.append mproperty.intro_mclassdef.mmodule.c_name
2334 res.append "__"
2335 end
2336 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2337 res.append mproperty.intro_mclassdef.name.to_cmangle
2338 res.append "__"
2339 end
2340 res.append mproperty.name.to_cmangle
2341 end
2342 return res.to_s
2343 end
2344
2345 redef fun model do return mclassdef.model
2346
2347 # Internal name combining the module, the class and the property
2348 # Example: "mymodule$MyClass$mymethod"
2349 redef var to_s is noinit
2350
2351 # Is self the definition that introduce the property?
2352 fun is_intro: Bool do return isset mproperty._intro and mproperty.intro == self
2353
2354 # Return the next definition in linearization of `mtype`.
2355 #
2356 # This method is used to determine what method is called by a super.
2357 #
2358 # REQUIRE: `not mtype.need_anchor`
2359 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
2360 do
2361 assert not mtype.need_anchor
2362
2363 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
2364 var i = mpropdefs.iterator
2365 while i.is_ok and i.item != self do i.next
2366 assert has_property: i.is_ok
2367 i.next
2368 assert has_next_property: i.is_ok
2369 return i.item
2370 end
2371 end
2372
2373 # A local definition of a method
2374 class MMethodDef
2375 super MPropDef
2376
2377 redef type MPROPERTY: MMethod
2378 redef type MPROPDEF: MMethodDef
2379
2380 # The signature attached to the property definition
2381 var msignature: nullable MSignature = null is writable
2382
2383 # The signature attached to the `new` call on a root-init
2384 # This is a concatenation of the signatures of the initializers
2385 #
2386 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2387 var new_msignature: nullable MSignature = null is writable
2388
2389 # List of initialisers to call in root-inits
2390 #
2391 # They could be setters or attributes
2392 #
2393 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2394 var initializers = new Array[MProperty]
2395
2396 # Is the method definition abstract?
2397 var is_abstract: Bool = false is writable
2398
2399 # Is the method definition intern?
2400 var is_intern = false is writable
2401
2402 # Is the method definition extern?
2403 var is_extern = false is writable
2404
2405 # An optional constant value returned in functions.
2406 #
2407 # Only some specific primitife value are accepted by engines.
2408 # Is used when there is no better implementation available.
2409 #
2410 # Currently used only for the implementation of the `--define`
2411 # command-line option.
2412 # SEE: module `mixin`.
2413 var constant_value: nullable Object = null is writable
2414 end
2415
2416 # A local definition of an attribute
2417 class MAttributeDef
2418 super MPropDef
2419
2420 redef type MPROPERTY: MAttribute
2421 redef type MPROPDEF: MAttributeDef
2422
2423 # The static type of the attribute
2424 var static_mtype: nullable MType = null is writable
2425 end
2426
2427 # A local definition of a virtual type
2428 class MVirtualTypeDef
2429 super MPropDef
2430
2431 redef type MPROPERTY: MVirtualTypeProp
2432 redef type MPROPDEF: MVirtualTypeDef
2433
2434 # The bound of the virtual type
2435 var bound: nullable MType = null is writable
2436
2437 # Is the bound fixed?
2438 var is_fixed = false is writable
2439 end
2440
2441 # A kind of class.
2442 #
2443 # * `abstract_kind`
2444 # * `concrete_kind`
2445 # * `interface_kind`
2446 # * `enum_kind`
2447 # * `extern_kind`
2448 #
2449 # Note this class is basically an enum.
2450 # FIXME: use a real enum once user-defined enums are available
2451 class MClassKind
2452 redef var to_s
2453
2454 # Is a constructor required?
2455 var need_init: Bool
2456
2457 # TODO: private init because enumeration.
2458
2459 # Can a class of kind `self` specializes a class of kine `other`?
2460 fun can_specialize(other: MClassKind): Bool
2461 do
2462 if other == interface_kind then return true # everybody can specialize interfaces
2463 if self == interface_kind or self == enum_kind then
2464 # no other case for interfaces
2465 return false
2466 else if self == extern_kind then
2467 # only compatible with themselves
2468 return self == other
2469 else if other == enum_kind or other == extern_kind then
2470 # abstract_kind and concrete_kind are incompatible
2471 return false
2472 end
2473 # remain only abstract_kind and concrete_kind
2474 return true
2475 end
2476 end
2477
2478 # The class kind `abstract`
2479 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", true)
2480 # The class kind `concrete`
2481 fun concrete_kind: MClassKind do return once new MClassKind("class", true)
2482 # The class kind `interface`
2483 fun interface_kind: MClassKind do return once new MClassKind("interface", false)
2484 # The class kind `enum`
2485 fun enum_kind: MClassKind do return once new MClassKind("enum", false)
2486 # The class kind `extern`
2487 fun extern_kind: MClassKind do return once new MClassKind("extern class", false)