model: promote `full_name` to MEntity
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class Model
34 # All known classes
35 var mclasses = new Array[MClass]
36
37 # All known properties
38 var mproperties = new Array[MProperty]
39
40 # Hierarchy of class definition.
41 #
42 # Each classdef is associated with its super-classdefs in regard to
43 # its module of definition.
44 var mclassdef_hierarchy = new POSet[MClassDef]
45
46 # Class-type hierarchy restricted to the introduction.
47 #
48 # The idea is that what is true on introduction is always true whatever
49 # the module considered.
50 # Therefore, this hierarchy is used for a fast positive subtype check.
51 #
52 # This poset will evolve in a monotonous way:
53 # * Two non connected nodes will remain unconnected
54 # * New nodes can appear with new edges
55 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
56
57 # Global overlapped class-type hierarchy.
58 # The hierarchy when all modules are combined.
59 # Therefore, this hierarchy is used for a fast negative subtype check.
60 #
61 # This poset will evolve in an anarchic way. Loops can even be created.
62 #
63 # FIXME decide what to do on loops
64 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
65
66 # Collections of classes grouped by their short name
67 private var mclasses_by_name = new MultiHashMap[String, MClass]
68
69 # Return all class named `name`.
70 #
71 # If such a class does not exist, null is returned
72 # (instead of an empty array)
73 #
74 # Visibility or modules are not considered
75 fun get_mclasses_by_name(name: String): nullable Array[MClass]
76 do
77 if mclasses_by_name.has_key(name) then
78 return mclasses_by_name[name]
79 else
80 return null
81 end
82 end
83
84 # Collections of properties grouped by their short name
85 private var mproperties_by_name = new MultiHashMap[String, MProperty]
86
87 # Return all properties named `name`.
88 #
89 # If such a property does not exist, null is returned
90 # (instead of an empty array)
91 #
92 # Visibility or modules are not considered
93 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
94 do
95 if not mproperties_by_name.has_key(name) then
96 return null
97 else
98 return mproperties_by_name[name]
99 end
100 end
101
102 # The only null type
103 var null_type = new MNullType(self)
104
105 # Build an ordered tree with from `concerns`
106 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
107 var seen = new HashSet[MConcern]
108 var res = new ConcernsTree
109
110 var todo = new Array[MConcern]
111 todo.add_all mconcerns
112
113 while not todo.is_empty do
114 var c = todo.pop
115 if seen.has(c) then continue
116 var pc = c.parent_concern
117 if pc == null then
118 res.add(null, c)
119 else
120 res.add(pc, c)
121 todo.add(pc)
122 end
123 seen.add(c)
124 end
125
126 return res
127 end
128 end
129
130 # An OrderedTree that can be easily refined for display purposes
131 class ConcernsTree
132 super OrderedTree[MConcern]
133 end
134
135 redef class MModule
136 # All the classes introduced in the module
137 var intro_mclasses = new Array[MClass]
138
139 # All the class definitions of the module
140 # (introduction and refinement)
141 var mclassdefs = new Array[MClassDef]
142
143 # Does the current module has a given class `mclass`?
144 # Return true if the mmodule introduces, refines or imports a class.
145 # Visibility is not considered.
146 fun has_mclass(mclass: MClass): Bool
147 do
148 return self.in_importation <= mclass.intro_mmodule
149 end
150
151 # Full hierarchy of introduced ans imported classes.
152 #
153 # Create a new hierarchy got by flattening the classes for the module
154 # and its imported modules.
155 # Visibility is not considered.
156 #
157 # Note: this function is expensive and is usually used for the main
158 # module of a program only. Do not use it to do you own subtype
159 # functions.
160 fun flatten_mclass_hierarchy: POSet[MClass]
161 do
162 var res = self.flatten_mclass_hierarchy_cache
163 if res != null then return res
164 res = new POSet[MClass]
165 for m in self.in_importation.greaters do
166 for cd in m.mclassdefs do
167 var c = cd.mclass
168 res.add_node(c)
169 for s in cd.supertypes do
170 res.add_edge(c, s.mclass)
171 end
172 end
173 end
174 self.flatten_mclass_hierarchy_cache = res
175 return res
176 end
177
178 # Sort a given array of classes using the linearization order of the module
179 # The most general is first, the most specific is last
180 fun linearize_mclasses(mclasses: Array[MClass])
181 do
182 self.flatten_mclass_hierarchy.sort(mclasses)
183 end
184
185 # Sort a given array of class definitions using the linearization order of the module
186 # the refinement link is stronger than the specialisation link
187 # The most general is first, the most specific is last
188 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
189 do
190 var sorter = new MClassDefSorter(self)
191 sorter.sort(mclassdefs)
192 end
193
194 # Sort a given array of property definitions using the linearization order of the module
195 # the refinement link is stronger than the specialisation link
196 # The most general is first, the most specific is last
197 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
198 do
199 var sorter = new MPropDefSorter(self)
200 sorter.sort(mpropdefs)
201 end
202
203 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
204
205 # The primitive type `Object`, the root of the class hierarchy
206 fun object_type: MClassType
207 do
208 var res = self.object_type_cache
209 if res != null then return res
210 res = self.get_primitive_class("Object").mclass_type
211 self.object_type_cache = res
212 return res
213 end
214
215 private var object_type_cache: nullable MClassType
216
217 # The type `Pointer`, super class to all extern classes
218 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
219
220 # The primitive type `Bool`
221 fun bool_type: MClassType
222 do
223 var res = self.bool_type_cache
224 if res != null then return res
225 res = self.get_primitive_class("Bool").mclass_type
226 self.bool_type_cache = res
227 return res
228 end
229
230 private var bool_type_cache: nullable MClassType
231
232 # The primitive type `Sys`, the main type of the program, if any
233 fun sys_type: nullable MClassType
234 do
235 var clas = self.model.get_mclasses_by_name("Sys")
236 if clas == null then return null
237 return get_primitive_class("Sys").mclass_type
238 end
239
240 # The primitive type `Finalizable`
241 # Used to tag classes that need to be finalized.
242 fun finalizable_type: nullable MClassType
243 do
244 var clas = self.model.get_mclasses_by_name("Finalizable")
245 if clas == null then return null
246 return get_primitive_class("Finalizable").mclass_type
247 end
248
249 # Force to get the primitive class named `name` or abort
250 fun get_primitive_class(name: String): MClass
251 do
252 var cla = self.model.get_mclasses_by_name(name)
253 if cla == null then
254 if name == "Bool" and self.model.get_mclasses_by_name("Object") != null then
255 # Bool is injected because it is needed by engine to code the result
256 # of the implicit casts.
257 var c = new MClass(self, name, null, enum_kind, public_visibility)
258 var cladef = new MClassDef(self, c.mclass_type, new Location(null, 0,0,0,0))
259 cladef.set_supertypes([object_type])
260 cladef.add_in_hierarchy
261 return c
262 end
263 print("Fatal Error: no primitive class {name}")
264 exit(1)
265 end
266 if cla.length != 1 then
267 var msg = "Fatal Error: more than one primitive class {name}:"
268 for c in cla do msg += " {c.full_name}"
269 print msg
270 #exit(1)
271 end
272 return cla.first
273 end
274
275 # Try to get the primitive method named `name` on the type `recv`
276 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
277 do
278 var props = self.model.get_mproperties_by_name(name)
279 if props == null then return null
280 var res: nullable MMethod = null
281 for mprop in props do
282 assert mprop isa MMethod
283 var intro = mprop.intro_mclassdef
284 for mclassdef in recv.mclassdefs do
285 if not self.in_importation.greaters.has(mclassdef.mmodule) then continue
286 if not mclassdef.in_hierarchy.greaters.has(intro) then continue
287 if res == null then
288 res = mprop
289 else if res != mprop then
290 print("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
291 abort
292 end
293 end
294 end
295 return res
296 end
297 end
298
299 private class MClassDefSorter
300 super Comparator
301 redef type COMPARED: MClassDef
302 var mmodule: MModule
303 redef fun compare(a, b)
304 do
305 var ca = a.mclass
306 var cb = b.mclass
307 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
308 return mmodule.model.mclassdef_hierarchy.compare(a, b)
309 end
310 end
311
312 private class MPropDefSorter
313 super Comparator
314 redef type COMPARED: MPropDef
315 var mmodule: MModule
316 redef fun compare(pa, pb)
317 do
318 var a = pa.mclassdef
319 var b = pb.mclassdef
320 var ca = a.mclass
321 var cb = b.mclass
322 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
323 return mmodule.model.mclassdef_hierarchy.compare(a, b)
324 end
325 end
326
327 # A named class
328 #
329 # `MClass` are global to the model; it means that a `MClass` is not bound to a
330 # specific `MModule`.
331 #
332 # This characteristic helps the reasoning about classes in a program since a
333 # single `MClass` object always denote the same class.
334 #
335 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
336 # These do not really have properties nor belong to a hierarchy since the property and the
337 # hierarchy of a class depends of the refinement in the modules.
338 #
339 # Most services on classes require the precision of a module, and no one can asks what are
340 # the super-classes of a class nor what are properties of a class without precising what is
341 # the module considered.
342 #
343 # For instance, during the typing of a source-file, the module considered is the module of the file.
344 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
345 # *is the method `foo` exists in the class `Bar` in the current module?*
346 #
347 # During some global analysis, the module considered may be the main module of the program.
348 class MClass
349 super MEntity
350
351 # The module that introduce the class
352 # While classes are not bound to a specific module,
353 # the introducing module is used for naming an visibility
354 var intro_mmodule: MModule
355
356 # The short name of the class
357 # In Nit, the name of a class cannot evolve in refinements
358 redef var name: String
359
360 # The canonical name of the class
361 #
362 # It is the name of the class prefixed by the full_name of the `intro_mmodule`
363 # Example: `"owner::module::MyClass"`
364 redef var full_name is lazy do return "{self.intro_mmodule.full_name}::{name}"
365
366 # The number of generic formal parameters
367 # 0 if the class is not generic
368 var arity: Int is noinit
369
370 # Each generic formal parameters in order.
371 # is empty if the class is not generic
372 var mparameters = new Array[MParameterType]
373
374 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
375 autoinit
376 do
377 if parameter_names == null then
378 self.arity = 0
379 else
380 self.arity = parameter_names.length
381 end
382
383 # Create the formal parameter types
384 if arity > 0 then
385 assert parameter_names != null
386 var mparametertypes = new Array[MParameterType]
387 for i in [0..arity[ do
388 var mparametertype = new MParameterType(self, i, parameter_names[i])
389 mparametertypes.add(mparametertype)
390 end
391 self.mparameters = mparametertypes
392 var mclass_type = new MGenericType(self, mparametertypes)
393 self.mclass_type = mclass_type
394 self.get_mtype_cache[mparametertypes] = mclass_type
395 else
396 self.mclass_type = new MClassType(self)
397 end
398 end
399
400 # The kind of the class (interface, abstract class, etc.)
401 # In Nit, the kind of a class cannot evolve in refinements
402 var kind: MClassKind
403
404 # The visibility of the class
405 # In Nit, the visibility of a class cannot evolve in refinements
406 var visibility: MVisibility
407
408 init
409 do
410 intro_mmodule.intro_mclasses.add(self)
411 var model = intro_mmodule.model
412 model.mclasses_by_name.add_one(name, self)
413 model.mclasses.add(self)
414 end
415
416 redef fun model do return intro_mmodule.model
417
418 # All class definitions (introduction and refinements)
419 var mclassdefs = new Array[MClassDef]
420
421 # Alias for `name`
422 redef fun to_s do return self.name
423
424 # The definition that introduces the class.
425 #
426 # Warning: such a definition may not exist in the early life of the object.
427 # In this case, the method will abort.
428 var intro: MClassDef is noinit
429
430 # Return the class `self` in the class hierarchy of the module `mmodule`.
431 #
432 # SEE: `MModule::flatten_mclass_hierarchy`
433 # REQUIRE: `mmodule.has_mclass(self)`
434 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
435 do
436 return mmodule.flatten_mclass_hierarchy[self]
437 end
438
439 # The principal static type of the class.
440 #
441 # For non-generic class, mclass_type is the only `MClassType` based
442 # on self.
443 #
444 # For a generic class, the arguments are the formal parameters.
445 # i.e.: for the class Array[E:Object], the `mclass_type` is Array[E].
446 # If you want Array[Object] the see `MClassDef::bound_mtype`
447 #
448 # For generic classes, the mclass_type is also the way to get a formal
449 # generic parameter type.
450 #
451 # To get other types based on a generic class, see `get_mtype`.
452 #
453 # ENSURE: `mclass_type.mclass == self`
454 var mclass_type: MClassType is noinit
455
456 # Return a generic type based on the class
457 # Is the class is not generic, then the result is `mclass_type`
458 #
459 # REQUIRE: `mtype_arguments.length == self.arity`
460 fun get_mtype(mtype_arguments: Array[MType]): MClassType
461 do
462 assert mtype_arguments.length == self.arity
463 if self.arity == 0 then return self.mclass_type
464 var res = get_mtype_cache.get_or_null(mtype_arguments)
465 if res != null then return res
466 res = new MGenericType(self, mtype_arguments)
467 self.get_mtype_cache[mtype_arguments.to_a] = res
468 return res
469 end
470
471 private var get_mtype_cache = new HashMap[Array[MType], MGenericType]
472 end
473
474
475 # A definition (an introduction or a refinement) of a class in a module
476 #
477 # A `MClassDef` is associated with an explicit (or almost) definition of a
478 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
479 # a specific class and a specific module, and contains declarations like super-classes
480 # or properties.
481 #
482 # It is the class definitions that are the backbone of most things in the model:
483 # ClassDefs are defined with regard with other classdefs.
484 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
485 #
486 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
487 class MClassDef
488 super MEntity
489
490 # The module where the definition is
491 var mmodule: MModule
492
493 # The associated `MClass`
494 var mclass: MClass is noinit
495
496 # The bounded type associated to the mclassdef
497 #
498 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
499 # are the same type.
500 #
501 # Example:
502 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
503 # If you want Array[E], then see `mclass.mclass_type`
504 #
505 # ENSURE: `bound_mtype.mclass == self.mclass`
506 var bound_mtype: MClassType
507
508 # The origin of the definition
509 var location: Location
510
511 # Internal name combining the module and the class
512 # Example: "mymodule#MyClass"
513 redef var to_s: String is noinit
514
515 init
516 do
517 self.mclass = bound_mtype.mclass
518 mmodule.mclassdefs.add(self)
519 mclass.mclassdefs.add(self)
520 if mclass.intro_mmodule == mmodule then
521 assert not isset mclass._intro
522 mclass.intro = self
523 end
524 self.to_s = "{mmodule}#{mclass}"
525 end
526
527 # Actually the name of the `mclass`
528 redef fun name do return mclass.name
529
530 redef fun model do return mmodule.model
531
532 # All declared super-types
533 # FIXME: quite ugly but not better idea yet
534 var supertypes = new Array[MClassType]
535
536 # Register some super-types for the class (ie "super SomeType")
537 #
538 # The hierarchy must not already be set
539 # REQUIRE: `self.in_hierarchy == null`
540 fun set_supertypes(supertypes: Array[MClassType])
541 do
542 assert unique_invocation: self.in_hierarchy == null
543 var mmodule = self.mmodule
544 var model = mmodule.model
545 var mtype = self.bound_mtype
546
547 for supertype in supertypes do
548 self.supertypes.add(supertype)
549
550 # Register in full_type_specialization_hierarchy
551 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
552 # Register in intro_type_specialization_hierarchy
553 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
554 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
555 end
556 end
557
558 end
559
560 # Collect the super-types (set by set_supertypes) to build the hierarchy
561 #
562 # This function can only invoked once by class
563 # REQUIRE: `self.in_hierarchy == null`
564 # ENSURE: `self.in_hierarchy != null`
565 fun add_in_hierarchy
566 do
567 assert unique_invocation: self.in_hierarchy == null
568 var model = mmodule.model
569 var res = model.mclassdef_hierarchy.add_node(self)
570 self.in_hierarchy = res
571 var mtype = self.bound_mtype
572
573 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
574 # The simpliest way is to attach it to collect_mclassdefs
575 for mclassdef in mtype.collect_mclassdefs(mmodule) do
576 res.poset.add_edge(self, mclassdef)
577 end
578 end
579
580 # The view of the class definition in `mclassdef_hierarchy`
581 var in_hierarchy: nullable POSetElement[MClassDef] = null
582
583 # Is the definition the one that introduced `mclass`?
584 fun is_intro: Bool do return mclass.intro == self
585
586 # All properties introduced by the classdef
587 var intro_mproperties = new Array[MProperty]
588
589 # All property definitions in the class (introductions and redefinitions)
590 var mpropdefs = new Array[MPropDef]
591 end
592
593 # A global static type
594 #
595 # MType are global to the model; it means that a `MType` is not bound to a
596 # specific `MModule`.
597 # This characteristic helps the reasoning about static types in a program
598 # since a single `MType` object always denote the same type.
599 #
600 # However, because a `MType` is global, it does not really have properties
601 # nor have subtypes to a hierarchy since the property and the class hierarchy
602 # depends of a module.
603 # Moreover, virtual types an formal generic parameter types also depends on
604 # a receiver to have sense.
605 #
606 # Therefore, most method of the types require a module and an anchor.
607 # The module is used to know what are the classes and the specialization
608 # links.
609 # The anchor is used to know what is the bound of the virtual types and formal
610 # generic parameter types.
611 #
612 # MType are not directly usable to get properties. See the `anchor_to` method
613 # and the `MClassType` class.
614 #
615 # FIXME: the order of the parameters is not the best. We mus pick on from:
616 # * foo(mmodule, anchor, othertype)
617 # * foo(othertype, anchor, mmodule)
618 # * foo(anchor, mmodule, othertype)
619 # * foo(othertype, mmodule, anchor)
620 abstract class MType
621 super MEntity
622
623 redef fun name do return to_s
624
625 # Return true if `self` is an subtype of `sup`.
626 # The typing is done using the standard typing policy of Nit.
627 #
628 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
629 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
630 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
631 do
632 var sub = self
633 if sub == sup then return true
634
635 #print "1.is {sub} a {sup}? ===="
636
637 if anchor == null then
638 assert not sub.need_anchor
639 assert not sup.need_anchor
640 else
641 # First, resolve the formal types to the simplest equivalent forms in the receiver
642 assert sub.can_resolve_for(anchor, null, mmodule)
643 sub = sub.lookup_fixed(mmodule, anchor)
644 assert sup.can_resolve_for(anchor, null, mmodule)
645 sup = sup.lookup_fixed(mmodule, anchor)
646 end
647
648 # Does `sup` accept null or not?
649 # Discard the nullable marker if it exists
650 var sup_accept_null = false
651 if sup isa MNullableType then
652 sup_accept_null = true
653 sup = sup.mtype
654 else if sup isa MNullType then
655 sup_accept_null = true
656 end
657
658 # Can `sub` provide null or not?
659 # Thus we can match with `sup_accept_null`
660 # Also discard the nullable marker if it exists
661 if sub isa MNullableType then
662 if not sup_accept_null then return false
663 sub = sub.mtype
664 else if sub isa MNullType then
665 return sup_accept_null
666 end
667 # Now the case of direct null and nullable is over.
668
669 # If `sub` is a formal type, then it is accepted if its bound is accepted
670 while sub isa MParameterType or sub isa MVirtualType do
671 #print "3.is {sub} a {sup}?"
672
673 # A unfixed formal type can only accept itself
674 if sub == sup then return true
675
676 assert anchor != null
677 sub = sub.lookup_bound(mmodule, anchor)
678
679 #print "3.is {sub} a {sup}?"
680
681 # Manage the second layer of null/nullable
682 if sub isa MNullableType then
683 if not sup_accept_null then return false
684 sub = sub.mtype
685 else if sub isa MNullType then
686 return sup_accept_null
687 end
688 end
689 #print "4.is {sub} a {sup}? <- no more resolution"
690
691 assert sub isa MClassType # It is the only remaining type
692
693 # A unfixed formal type can only accept itself
694 if sup isa MParameterType or sup isa MVirtualType then
695 return false
696 end
697
698 if sup isa MNullType then
699 # `sup` accepts only null
700 return false
701 end
702
703 assert sup isa MClassType # It is the only remaining type
704
705 # Now both are MClassType, we need to dig
706
707 if sub == sup then return true
708
709 if anchor == null then anchor = sub # UGLY: any anchor will work
710 var resolved_sub = sub.anchor_to(mmodule, anchor)
711 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
712 if res == false then return false
713 if not sup isa MGenericType then return true
714 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
715 assert sub2.mclass == sup.mclass
716 for i in [0..sup.mclass.arity[ do
717 var sub_arg = sub2.arguments[i]
718 var sup_arg = sup.arguments[i]
719 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
720 if res == false then return false
721 end
722 return true
723 end
724
725 # The base class type on which self is based
726 #
727 # This base type is used to get property (an internally to perform
728 # unsafe type comparison).
729 #
730 # Beware: some types (like null) are not based on a class thus this
731 # method will crash
732 #
733 # Basically, this function transform the virtual types and parameter
734 # types to their bounds.
735 #
736 # Example
737 #
738 # class A end
739 # class B super A end
740 # class X end
741 # class Y super X end
742 # class G[T: A]
743 # type U: X
744 # end
745 # class H
746 # super G[B]
747 # redef type U: Y
748 # end
749 #
750 # Map[T,U] anchor_to H #-> Map[B,Y]
751 #
752 # Explanation of the example:
753 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
754 # because "redef type U: Y". Therefore, Map[T, U] is bound to
755 # Map[B, Y]
756 #
757 # ENSURE: `not self.need_anchor implies result == self`
758 # ENSURE: `not result.need_anchor`
759 fun anchor_to(mmodule: MModule, anchor: MClassType): MType
760 do
761 if not need_anchor then return self
762 assert not anchor.need_anchor
763 # Just resolve to the anchor and clear all the virtual types
764 var res = self.resolve_for(anchor, null, mmodule, true)
765 assert not res.need_anchor
766 return res
767 end
768
769 # Does `self` contain a virtual type or a formal generic parameter type?
770 # In order to remove those types, you usually want to use `anchor_to`.
771 fun need_anchor: Bool do return true
772
773 # Return the supertype when adapted to a class.
774 #
775 # In Nit, for each super-class of a type, there is a equivalent super-type.
776 #
777 # Example:
778 #
779 # ~~~nitish
780 # class G[T, U] end
781 # class H[V] super G[V, Bool] end
782 #
783 # H[Int] supertype_to G #-> G[Int, Bool]
784 # ~~~
785 #
786 # REQUIRE: `super_mclass` is a super-class of `self`
787 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
788 # ENSURE: `result.mclass = super_mclass`
789 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
790 do
791 if super_mclass.arity == 0 then return super_mclass.mclass_type
792 if self isa MClassType and self.mclass == super_mclass then return self
793 var resolved_self
794 if self.need_anchor then
795 assert anchor != null
796 resolved_self = self.anchor_to(mmodule, anchor)
797 else
798 resolved_self = self
799 end
800 var supertypes = resolved_self.collect_mtypes(mmodule)
801 for supertype in supertypes do
802 if supertype.mclass == super_mclass then
803 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
804 return supertype.resolve_for(self, anchor, mmodule, false)
805 end
806 end
807 abort
808 end
809
810 # Replace formals generic types in self with resolved values in `mtype`
811 # If `cleanup_virtual` is true, then virtual types are also replaced
812 # with their bounds.
813 #
814 # This function returns self if `need_anchor` is false.
815 #
816 # ## Example 1
817 #
818 # ~~~
819 # class G[E] end
820 # class H[F] super G[F] end
821 # class X[Z] end
822 # ~~~
823 #
824 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
825 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
826 #
827 # Explanation of the example:
828 # * Array[E].need_anchor is true because there is a formal generic parameter type E
829 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
830 # * Since "H[F] super G[F]", E is in fact F for H
831 # * More specifically, in H[Int], E is Int
832 # * So, in H[Int], Array[E] is Array[Int]
833 #
834 # This function is mainly used to inherit a signature.
835 # Because, unlike `anchor_to`, we do not want a full resolution of
836 # a type but only an adapted version of it.
837 #
838 # ## Example 2
839 #
840 # ~~~
841 # class A[E]
842 # fun foo(e:E):E is abstract
843 # end
844 # class B super A[Int] end
845 # ~~~
846 #
847 # The signature on foo is (e: E): E
848 # If we resolve the signature for B, we get (e:Int):Int
849 #
850 # ## Example 3
851 #
852 # ~~~nitish
853 # class A[E]
854 # fun foo(e:E):E is abstract
855 # end
856 # class C[F]
857 # var a: A[Array[F]]
858 # fun bar do a.foo(x) # <- x is here
859 # end
860 # ~~~
861 #
862 # The first question is: is foo available on `a`?
863 #
864 # The static type of a is `A[Array[F]]`, that is an open type.
865 # in order to find a method `foo`, whe must look at a resolved type.
866 #
867 # A[Array[F]].anchor_to(C[nullable Object]) #-> A[Array[nullable Object]]
868 #
869 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
870 #
871 # The next question is: what is the accepted types for `x`?
872 #
873 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
874 #
875 # E.resolve_for(A[Array[F]],C[nullable Object]) #-> Array[F]
876 #
877 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
878 #
879 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
880 # two function instead of one seems also to be a bad idea.
881 #
882 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
883 # ENSURE: `not self.need_anchor implies result == self`
884 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
885
886 # Resolve formal type to its verbatim bound.
887 # If the type is not formal, just return self
888 #
889 # The result is returned exactly as declared in the "type" property (verbatim).
890 # So it could be another formal type.
891 #
892 # In case of conflict, the method aborts.
893 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self
894
895 # Resolve the formal type to its simplest equivalent form.
896 #
897 # Formal types are either free or fixed.
898 # When it is fixed, it means that it is equivalent with a simpler type.
899 # When a formal type is free, it means that it is only equivalent with itself.
900 # This method return the most simple equivalent type of `self`.
901 #
902 # This method is mainly used for subtype test in order to sanely compare fixed.
903 #
904 # By default, return self.
905 # See the redefinitions for specific behavior in each kind of type.
906 fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self
907
908 # Can the type be resolved?
909 #
910 # In order to resolve open types, the formal types must make sence.
911 #
912 # ## Example
913 #
914 # class A[E]
915 # end
916 # class B[F]
917 # end
918 #
919 # ~~~nitish
920 # E.can_resolve_for(A[Int]) #-> true, E make sense in A
921 #
922 # E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
923 #
924 # B[E].can_resolve_for(A[F], B[Object]) #-> true,
925 # # B[E] is a red hearing only the E is important,
926 # # E make sense in A
927 # ~~~
928 #
929 # REQUIRE: `anchor != null implies not anchor.need_anchor`
930 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
931 # ENSURE: `not self.need_anchor implies result == true`
932 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
933
934 # Return the nullable version of the type
935 # If the type is already nullable then self is returned
936 fun as_nullable: MType
937 do
938 var res = self.as_nullable_cache
939 if res != null then return res
940 res = new MNullableType(self)
941 self.as_nullable_cache = res
942 return res
943 end
944
945 # Return the not nullable version of the type
946 # Is the type is already not nullable, then self is returned.
947 #
948 # Note: this just remove the `nullable` notation, but the result can still contains null.
949 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
950 fun as_notnullable: MType
951 do
952 return self
953 end
954
955 private var as_nullable_cache: nullable MType = null
956
957
958 # The depth of the type seen as a tree.
959 #
960 # * A -> 1
961 # * G[A] -> 2
962 # * H[A, B] -> 2
963 # * H[G[A], B] -> 3
964 #
965 # Formal types have a depth of 1.
966 fun depth: Int
967 do
968 return 1
969 end
970
971 # The length of the type seen as a tree.
972 #
973 # * A -> 1
974 # * G[A] -> 2
975 # * H[A, B] -> 3
976 # * H[G[A], B] -> 4
977 #
978 # Formal types have a length of 1.
979 fun length: Int
980 do
981 return 1
982 end
983
984 # Compute all the classdefs inherited/imported.
985 # The returned set contains:
986 # * the class definitions from `mmodule` and its imported modules
987 # * the class definitions of this type and its super-types
988 #
989 # This function is used mainly internally.
990 #
991 # REQUIRE: `not self.need_anchor`
992 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
993
994 # Compute all the super-classes.
995 # This function is used mainly internally.
996 #
997 # REQUIRE: `not self.need_anchor`
998 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
999
1000 # Compute all the declared super-types.
1001 # Super-types are returned as declared in the classdefs (verbatim).
1002 # This function is used mainly internally.
1003 #
1004 # REQUIRE: `not self.need_anchor`
1005 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
1006
1007 # Is the property in self for a given module
1008 # This method does not filter visibility or whatever
1009 #
1010 # REQUIRE: `not self.need_anchor`
1011 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
1012 do
1013 assert not self.need_anchor
1014 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
1015 end
1016 end
1017
1018 # A type based on a class.
1019 #
1020 # `MClassType` have properties (see `has_mproperty`).
1021 class MClassType
1022 super MType
1023
1024 # The associated class
1025 var mclass: MClass
1026
1027 redef fun model do return self.mclass.intro_mmodule.model
1028
1029 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1030
1031 # The formal arguments of the type
1032 # ENSURE: `result.length == self.mclass.arity`
1033 var arguments = new Array[MType]
1034
1035 redef fun to_s do return mclass.to_s
1036
1037 redef fun need_anchor do return false
1038
1039 redef fun anchor_to(mmodule: MModule, anchor: MClassType): MClassType
1040 do
1041 return super.as(MClassType)
1042 end
1043
1044 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1045
1046 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1047
1048 redef fun collect_mclassdefs(mmodule)
1049 do
1050 assert not self.need_anchor
1051 var cache = self.collect_mclassdefs_cache
1052 if not cache.has_key(mmodule) then
1053 self.collect_things(mmodule)
1054 end
1055 return cache[mmodule]
1056 end
1057
1058 redef fun collect_mclasses(mmodule)
1059 do
1060 if collect_mclasses_last_module == mmodule then return collect_mclasses_last_module_cache
1061 assert not self.need_anchor
1062 var cache = self.collect_mclasses_cache
1063 if not cache.has_key(mmodule) then
1064 self.collect_things(mmodule)
1065 end
1066 var res = cache[mmodule]
1067 collect_mclasses_last_module = mmodule
1068 collect_mclasses_last_module_cache = res
1069 return res
1070 end
1071
1072 private var collect_mclasses_last_module: nullable MModule = null
1073 private var collect_mclasses_last_module_cache: Set[MClass] is noinit
1074
1075 redef fun collect_mtypes(mmodule)
1076 do
1077 assert not self.need_anchor
1078 var cache = self.collect_mtypes_cache
1079 if not cache.has_key(mmodule) then
1080 self.collect_things(mmodule)
1081 end
1082 return cache[mmodule]
1083 end
1084
1085 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1086 private fun collect_things(mmodule: MModule)
1087 do
1088 var res = new HashSet[MClassDef]
1089 var seen = new HashSet[MClass]
1090 var types = new HashSet[MClassType]
1091 seen.add(self.mclass)
1092 var todo = [self.mclass]
1093 while not todo.is_empty do
1094 var mclass = todo.pop
1095 #print "process {mclass}"
1096 for mclassdef in mclass.mclassdefs do
1097 if not mmodule.in_importation <= mclassdef.mmodule then continue
1098 #print " process {mclassdef}"
1099 res.add(mclassdef)
1100 for supertype in mclassdef.supertypes do
1101 types.add(supertype)
1102 var superclass = supertype.mclass
1103 if seen.has(superclass) then continue
1104 #print " add {superclass}"
1105 seen.add(superclass)
1106 todo.add(superclass)
1107 end
1108 end
1109 end
1110 collect_mclassdefs_cache[mmodule] = res
1111 collect_mclasses_cache[mmodule] = seen
1112 collect_mtypes_cache[mmodule] = types
1113 end
1114
1115 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1116 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1117 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1118
1119 end
1120
1121 # A type based on a generic class.
1122 # A generic type a just a class with additional formal generic arguments.
1123 class MGenericType
1124 super MClassType
1125
1126 redef var arguments
1127
1128 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1129
1130 init
1131 do
1132 assert self.mclass.arity == arguments.length
1133
1134 self.need_anchor = false
1135 for t in arguments do
1136 if t.need_anchor then
1137 self.need_anchor = true
1138 break
1139 end
1140 end
1141
1142 self.to_s = "{mclass}[{arguments.join(", ")}]"
1143 end
1144
1145 # Recursively print the type of the arguments within brackets.
1146 # Example: `"Map[String, List[Int]]"`
1147 redef var to_s: String is noinit
1148
1149 redef var need_anchor: Bool is noinit
1150
1151 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1152 do
1153 if not need_anchor then return self
1154 assert can_resolve_for(mtype, anchor, mmodule)
1155 var types = new Array[MType]
1156 for t in arguments do
1157 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1158 end
1159 return mclass.get_mtype(types)
1160 end
1161
1162 redef fun can_resolve_for(mtype, anchor, mmodule)
1163 do
1164 if not need_anchor then return true
1165 for t in arguments do
1166 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1167 end
1168 return true
1169 end
1170
1171
1172 redef fun depth
1173 do
1174 var dmax = 0
1175 for a in self.arguments do
1176 var d = a.depth
1177 if d > dmax then dmax = d
1178 end
1179 return dmax + 1
1180 end
1181
1182 redef fun length
1183 do
1184 var res = 1
1185 for a in self.arguments do
1186 res += a.length
1187 end
1188 return res
1189 end
1190 end
1191
1192 # A virtual formal type.
1193 class MVirtualType
1194 super MType
1195
1196 # The property associated with the type.
1197 # Its the definitions of this property that determine the bound or the virtual type.
1198 var mproperty: MVirtualTypeProp
1199
1200 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1201
1202 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1203 do
1204 return lookup_single_definition(mmodule, resolved_receiver).bound.as(not null)
1205 end
1206
1207 private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef
1208 do
1209 assert not resolved_receiver.need_anchor
1210 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1211 if props.is_empty then
1212 abort
1213 else if props.length == 1 then
1214 return props.first
1215 end
1216 var types = new ArraySet[MType]
1217 var res = props.first
1218 for p in props do
1219 types.add(p.bound.as(not null))
1220 if not res.is_fixed then res = p
1221 end
1222 if types.length == 1 then
1223 return res
1224 end
1225 abort
1226 end
1227
1228 # A VT is fixed when:
1229 # * the VT is (re-)defined with the annotation `is fixed`
1230 # * the VT is (indirectly) bound to an enum class (see `enum_kind`) since there is no subtype possible
1231 # * the receiver is an enum class since there is no subtype possible
1232 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1233 do
1234 assert not resolved_receiver.need_anchor
1235 resolved_receiver = resolved_receiver.as_notnullable
1236 assert resolved_receiver isa MClassType # It is the only remaining type
1237
1238 var prop = lookup_single_definition(mmodule, resolved_receiver)
1239 var res = prop.bound.as(not null)
1240
1241 # Recursively lookup the fixed result
1242 res = res.lookup_fixed(mmodule, resolved_receiver)
1243
1244 # 1. For a fixed VT, return the resolved bound
1245 if prop.is_fixed then return res
1246
1247 # 2. For a enum boud, return the bound
1248 if res isa MClassType and res.mclass.kind == enum_kind then return res
1249
1250 # 3. for a enum receiver return the bound
1251 if resolved_receiver.mclass.kind == enum_kind then return res
1252
1253 return self
1254 end
1255
1256 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1257 do
1258 if not cleanup_virtual then return self
1259 assert can_resolve_for(mtype, anchor, mmodule)
1260 # self is a virtual type declared (or inherited) in mtype
1261 # The point of the function it to get the bound of the virtual type that make sense for mtype
1262 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1263 #print "{class_name}: {self}/{mtype}/{anchor}?"
1264 var resolved_receiver
1265 if mtype.need_anchor then
1266 assert anchor != null
1267 resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true)
1268 else
1269 resolved_receiver = mtype
1270 end
1271 # Now, we can get the bound
1272 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1273 # The bound is exactly as declared in the "type" property, so we must resolve it again
1274 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1275
1276 return res
1277 end
1278
1279 redef fun can_resolve_for(mtype, anchor, mmodule)
1280 do
1281 if mtype.need_anchor then
1282 assert anchor != null
1283 mtype = mtype.anchor_to(mmodule, anchor)
1284 end
1285 return mtype.has_mproperty(mmodule, mproperty)
1286 end
1287
1288 redef fun to_s do return self.mproperty.to_s
1289 end
1290
1291 # The type associated to a formal parameter generic type of a class
1292 #
1293 # Each parameter type is associated to a specific class.
1294 # It means that all refinements of a same class "share" the parameter type,
1295 # but that a generic subclass has its own parameter types.
1296 #
1297 # However, in the sense of the meta-model, a parameter type of a class is
1298 # a valid type in a subclass. The "in the sense of the meta-model" is
1299 # important because, in the Nit language, the programmer cannot refers
1300 # directly to the parameter types of the super-classes.
1301 #
1302 # Example:
1303 #
1304 # class A[E]
1305 # fun e: E is abstract
1306 # end
1307 # class B[F]
1308 # super A[Array[F]]
1309 # end
1310 #
1311 # In the class definition B[F], `F` is a valid type but `E` is not.
1312 # However, `self.e` is a valid method call, and the signature of `e` is
1313 # declared `e: E`.
1314 #
1315 # Note that parameter types are shared among class refinements.
1316 # Therefore parameter only have an internal name (see `to_s` for details).
1317 class MParameterType
1318 super MType
1319
1320 # The generic class where the parameter belong
1321 var mclass: MClass
1322
1323 redef fun model do return self.mclass.intro_mmodule.model
1324
1325 # The position of the parameter (0 for the first parameter)
1326 # FIXME: is `position` a better name?
1327 var rank: Int
1328
1329 redef var name
1330
1331 redef fun to_s do return name
1332
1333 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1334 do
1335 assert not resolved_receiver.need_anchor
1336 resolved_receiver = resolved_receiver.as_notnullable
1337 assert resolved_receiver isa MClassType # It is the only remaining type
1338 var goalclass = self.mclass
1339 if resolved_receiver.mclass == goalclass then
1340 return resolved_receiver.arguments[self.rank]
1341 end
1342 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1343 for t in supertypes do
1344 if t.mclass == goalclass then
1345 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1346 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1347 var res = t.arguments[self.rank]
1348 return res
1349 end
1350 end
1351 abort
1352 end
1353
1354 # A PT is fixed when:
1355 # * Its bound is a enum class (see `enum_kind`).
1356 # The PT is just useless, but it is still a case.
1357 # * More usually, the `resolved_receiver` is a subclass of `self.mclass`,
1358 # so it is necessarily fixed in a `super` clause, either with a normal type
1359 # or with another PT.
1360 # See `resolve_for` for examples about related issues.
1361 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1362 do
1363 assert not resolved_receiver.need_anchor
1364 resolved_receiver = resolved_receiver.as_notnullable
1365 assert resolved_receiver isa MClassType # It is the only remaining type
1366 var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false)
1367 return res
1368 end
1369
1370 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1371 do
1372 assert can_resolve_for(mtype, anchor, mmodule)
1373 #print "{class_name}: {self}/{mtype}/{anchor}?"
1374
1375 if mtype isa MGenericType and mtype.mclass == self.mclass then
1376 var res = mtype.arguments[self.rank]
1377 if anchor != null and res.need_anchor then
1378 # Maybe the result can be resolved more if are bound to a final class
1379 var r2 = res.anchor_to(mmodule, anchor)
1380 if r2 isa MClassType and r2.mclass.kind == enum_kind then return r2
1381 end
1382 return res
1383 end
1384
1385 # self is a parameter type of mtype (or of a super-class of mtype)
1386 # The point of the function it to get the bound of the virtual type that make sense for mtype
1387 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1388 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1389 var resolved_receiver
1390 if mtype.need_anchor then
1391 assert anchor != null
1392 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1393 else
1394 resolved_receiver = mtype
1395 end
1396 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1397 if resolved_receiver isa MParameterType then
1398 assert resolved_receiver.mclass == anchor.mclass
1399 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1400 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1401 end
1402 assert resolved_receiver isa MClassType # It is the only remaining type
1403
1404 # Eh! The parameter is in the current class.
1405 # So we return the corresponding argument, no mater what!
1406 if resolved_receiver.mclass == self.mclass then
1407 var res = resolved_receiver.arguments[self.rank]
1408 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1409 return res
1410 end
1411
1412 if resolved_receiver.need_anchor then
1413 assert anchor != null
1414 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1415 end
1416 # Now, we can get the bound
1417 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1418 # The bound is exactly as declared in the "type" property, so we must resolve it again
1419 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1420
1421 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1422
1423 return res
1424 end
1425
1426 redef fun can_resolve_for(mtype, anchor, mmodule)
1427 do
1428 if mtype.need_anchor then
1429 assert anchor != null
1430 mtype = mtype.anchor_to(mmodule, anchor)
1431 end
1432 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1433 end
1434 end
1435
1436 # A type prefixed with "nullable"
1437 class MNullableType
1438 super MType
1439
1440 # The base type of the nullable type
1441 var mtype: MType
1442
1443 redef fun model do return self.mtype.model
1444
1445 init
1446 do
1447 self.to_s = "nullable {mtype}"
1448 end
1449
1450 redef var to_s: String is noinit
1451
1452 redef fun need_anchor do return mtype.need_anchor
1453 redef fun as_nullable do return self
1454 redef fun as_notnullable do return mtype
1455 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1456 do
1457 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1458 return res.as_nullable
1459 end
1460
1461 redef fun can_resolve_for(mtype, anchor, mmodule)
1462 do
1463 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1464 end
1465
1466 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable`
1467 redef fun lookup_fixed(mmodule, resolved_receiver)
1468 do
1469 var t = mtype.lookup_fixed(mmodule, resolved_receiver)
1470 if t == mtype then return self
1471 return t.as_nullable
1472 end
1473
1474 redef fun depth do return self.mtype.depth
1475
1476 redef fun length do return self.mtype.length
1477
1478 redef fun collect_mclassdefs(mmodule)
1479 do
1480 assert not self.need_anchor
1481 return self.mtype.collect_mclassdefs(mmodule)
1482 end
1483
1484 redef fun collect_mclasses(mmodule)
1485 do
1486 assert not self.need_anchor
1487 return self.mtype.collect_mclasses(mmodule)
1488 end
1489
1490 redef fun collect_mtypes(mmodule)
1491 do
1492 assert not self.need_anchor
1493 return self.mtype.collect_mtypes(mmodule)
1494 end
1495 end
1496
1497 # The type of the only value null
1498 #
1499 # The is only one null type per model, see `MModel::null_type`.
1500 class MNullType
1501 super MType
1502 redef var model: Model
1503 redef fun to_s do return "null"
1504 redef fun as_nullable do return self
1505 redef fun need_anchor do return false
1506 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1507 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1508
1509 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1510
1511 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1512
1513 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1514 end
1515
1516 # A signature of a method
1517 class MSignature
1518 super MType
1519
1520 # The each parameter (in order)
1521 var mparameters: Array[MParameter]
1522
1523 # The return type (null for a procedure)
1524 var return_mtype: nullable MType
1525
1526 redef fun depth
1527 do
1528 var dmax = 0
1529 var t = self.return_mtype
1530 if t != null then dmax = t.depth
1531 for p in mparameters do
1532 var d = p.mtype.depth
1533 if d > dmax then dmax = d
1534 end
1535 return dmax + 1
1536 end
1537
1538 redef fun length
1539 do
1540 var res = 1
1541 var t = self.return_mtype
1542 if t != null then res += t.length
1543 for p in mparameters do
1544 res += p.mtype.length
1545 end
1546 return res
1547 end
1548
1549 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1550 init
1551 do
1552 var vararg_rank = -1
1553 for i in [0..mparameters.length[ do
1554 var parameter = mparameters[i]
1555 if parameter.is_vararg then
1556 assert vararg_rank == -1
1557 vararg_rank = i
1558 end
1559 end
1560 self.vararg_rank = vararg_rank
1561 end
1562
1563 # The rank of the ellipsis (`...`) for vararg (starting from 0).
1564 # value is -1 if there is no vararg.
1565 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1566 var vararg_rank: Int is noinit
1567
1568 # The number or parameters
1569 fun arity: Int do return mparameters.length
1570
1571 redef fun to_s
1572 do
1573 var b = new FlatBuffer
1574 if not mparameters.is_empty then
1575 b.append("(")
1576 for i in [0..mparameters.length[ do
1577 var mparameter = mparameters[i]
1578 if i > 0 then b.append(", ")
1579 b.append(mparameter.name)
1580 b.append(": ")
1581 b.append(mparameter.mtype.to_s)
1582 if mparameter.is_vararg then
1583 b.append("...")
1584 end
1585 end
1586 b.append(")")
1587 end
1588 var ret = self.return_mtype
1589 if ret != null then
1590 b.append(": ")
1591 b.append(ret.to_s)
1592 end
1593 return b.to_s
1594 end
1595
1596 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
1597 do
1598 var params = new Array[MParameter]
1599 for p in self.mparameters do
1600 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1601 end
1602 var ret = self.return_mtype
1603 if ret != null then
1604 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1605 end
1606 var res = new MSignature(params, ret)
1607 return res
1608 end
1609 end
1610
1611 # A parameter in a signature
1612 class MParameter
1613 super MEntity
1614
1615 # The name of the parameter
1616 redef var name: String
1617
1618 # The static type of the parameter
1619 var mtype: MType
1620
1621 # Is the parameter a vararg?
1622 var is_vararg: Bool
1623
1624 redef fun to_s
1625 do
1626 if is_vararg then
1627 return "{name}: {mtype}..."
1628 else
1629 return "{name}: {mtype}"
1630 end
1631 end
1632
1633 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
1634 do
1635 if not self.mtype.need_anchor then return self
1636 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1637 var res = new MParameter(self.name, newtype, self.is_vararg)
1638 return res
1639 end
1640
1641 redef fun model do return mtype.model
1642 end
1643
1644 # A service (global property) that generalize method, attribute, etc.
1645 #
1646 # `MProperty` are global to the model; it means that a `MProperty` is not bound
1647 # to a specific `MModule` nor a specific `MClass`.
1648 #
1649 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
1650 # and the other in subclasses and in refinements.
1651 #
1652 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
1653 # of any dynamic type).
1654 # For instance, a call site "x.foo" is associated to a `MProperty`.
1655 abstract class MProperty
1656 super MEntity
1657
1658 # The associated MPropDef subclass.
1659 # The two specialization hierarchy are symmetric.
1660 type MPROPDEF: MPropDef
1661
1662 # The classdef that introduce the property
1663 # While a property is not bound to a specific module, or class,
1664 # the introducing mclassdef is used for naming and visibility
1665 var intro_mclassdef: MClassDef
1666
1667 # The (short) name of the property
1668 redef var name: String
1669
1670 # The canonical name of the property.
1671 #
1672 # It is the short-`name` prefixed by the short-name of the class and the full-name of the module.
1673 # Example: "my_project::my_module::MyClass::my_method"
1674 redef var full_name is lazy do
1675 return "{intro_mclassdef.mmodule.full_name}::{intro_mclassdef.mclass.name}::{name}"
1676 end
1677
1678 # The visibility of the property
1679 var visibility: MVisibility
1680
1681 init
1682 do
1683 intro_mclassdef.intro_mproperties.add(self)
1684 var model = intro_mclassdef.mmodule.model
1685 model.mproperties_by_name.add_one(name, self)
1686 model.mproperties.add(self)
1687 end
1688
1689 # All definitions of the property.
1690 # The first is the introduction,
1691 # The other are redefinitions (in refinements and in subclasses)
1692 var mpropdefs = new Array[MPROPDEF]
1693
1694 # The definition that introduces the property.
1695 #
1696 # Warning: such a definition may not exist in the early life of the object.
1697 # In this case, the method will abort.
1698 var intro: MPROPDEF is noinit
1699
1700 redef fun model do return intro.model
1701
1702 # Alias for `name`
1703 redef fun to_s do return name
1704
1705 # Return the most specific property definitions defined or inherited by a type.
1706 # The selection knows that refinement is stronger than specialization;
1707 # however, in case of conflict more than one property are returned.
1708 # If mtype does not know mproperty then an empty array is returned.
1709 #
1710 # If you want the really most specific property, then look at `lookup_first_definition`
1711 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1712 do
1713 assert not mtype.need_anchor
1714 mtype = mtype.as_notnullable
1715
1716 var cache = self.lookup_definitions_cache[mmodule, mtype]
1717 if cache != null then return cache
1718
1719 #print "select prop {mproperty} for {mtype} in {self}"
1720 # First, select all candidates
1721 var candidates = new Array[MPROPDEF]
1722 for mpropdef in self.mpropdefs do
1723 # If the definition is not imported by the module, then skip
1724 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1725 # If the definition is not inherited by the type, then skip
1726 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1727 # Else, we keep it
1728 candidates.add(mpropdef)
1729 end
1730 # Fast track for only one candidate
1731 if candidates.length <= 1 then
1732 self.lookup_definitions_cache[mmodule, mtype] = candidates
1733 return candidates
1734 end
1735
1736 # Second, filter the most specific ones
1737 return select_most_specific(mmodule, candidates)
1738 end
1739
1740 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
1741
1742 # Return the most specific property definitions inherited by a type.
1743 # The selection knows that refinement is stronger than specialization;
1744 # however, in case of conflict more than one property are returned.
1745 # If mtype does not know mproperty then an empty array is returned.
1746 #
1747 # If you want the really most specific property, then look at `lookup_next_definition`
1748 #
1749 # FIXME: Move to `MPropDef`?
1750 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1751 do
1752 assert not mtype.need_anchor
1753 mtype = mtype.as_notnullable
1754
1755 # First, select all candidates
1756 var candidates = new Array[MPROPDEF]
1757 for mpropdef in self.mpropdefs do
1758 # If the definition is not imported by the module, then skip
1759 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1760 # If the definition is not inherited by the type, then skip
1761 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1762 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
1763 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
1764 # Else, we keep it
1765 candidates.add(mpropdef)
1766 end
1767 # Fast track for only one candidate
1768 if candidates.length <= 1 then return candidates
1769
1770 # Second, filter the most specific ones
1771 return select_most_specific(mmodule, candidates)
1772 end
1773
1774 # Return an array containing olny the most specific property definitions
1775 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
1776 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
1777 do
1778 var res = new Array[MPROPDEF]
1779 for pd1 in candidates do
1780 var cd1 = pd1.mclassdef
1781 var c1 = cd1.mclass
1782 var keep = true
1783 for pd2 in candidates do
1784 if pd2 == pd1 then continue # do not compare with self!
1785 var cd2 = pd2.mclassdef
1786 var c2 = cd2.mclass
1787 if c2.mclass_type == c1.mclass_type then
1788 if cd2.mmodule.in_importation < cd1.mmodule then
1789 # cd2 refines cd1; therefore we skip pd1
1790 keep = false
1791 break
1792 end
1793 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
1794 # cd2 < cd1; therefore we skip pd1
1795 keep = false
1796 break
1797 end
1798 end
1799 if keep then
1800 res.add(pd1)
1801 end
1802 end
1803 if res.is_empty then
1804 print "All lost! {candidates.join(", ")}"
1805 # FIXME: should be abort!
1806 end
1807 return res
1808 end
1809
1810 # Return the most specific definition in the linearization of `mtype`.
1811 #
1812 # If you want to know the next properties in the linearization,
1813 # look at `MPropDef::lookup_next_definition`.
1814 #
1815 # FIXME: the linearization is still unspecified
1816 #
1817 # REQUIRE: `not mtype.need_anchor`
1818 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
1819 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
1820 do
1821 assert mtype.has_mproperty(mmodule, self)
1822 return lookup_all_definitions(mmodule, mtype).first
1823 end
1824
1825 # Return all definitions in a linearization order
1826 # Most specific first, most general last
1827 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1828 do
1829 assert not mtype.need_anchor
1830 mtype = mtype.as_notnullable
1831
1832 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
1833 if cache != null then return cache
1834
1835 #print "select prop {mproperty} for {mtype} in {self}"
1836 # First, select all candidates
1837 var candidates = new Array[MPROPDEF]
1838 for mpropdef in self.mpropdefs do
1839 # If the definition is not imported by the module, then skip
1840 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1841 # If the definition is not inherited by the type, then skip
1842 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1843 # Else, we keep it
1844 candidates.add(mpropdef)
1845 end
1846 # Fast track for only one candidate
1847 if candidates.length <= 1 then
1848 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
1849 return candidates
1850 end
1851
1852 mmodule.linearize_mpropdefs(candidates)
1853 candidates = candidates.reversed
1854 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
1855 return candidates
1856 end
1857
1858 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
1859 end
1860
1861 # A global method
1862 class MMethod
1863 super MProperty
1864
1865 redef type MPROPDEF: MMethodDef
1866
1867 # Is the property defined at the top_level of the module?
1868 # Currently such a property are stored in `Object`
1869 var is_toplevel: Bool = false is writable
1870
1871 # Is the property a constructor?
1872 # Warning, this property can be inherited by subclasses with or without being a constructor
1873 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
1874 var is_init: Bool = false is writable
1875
1876 # The constructor is a (the) root init with empty signature but a set of initializers
1877 var is_root_init: Bool = false is writable
1878
1879 # Is the property a 'new' constructor?
1880 var is_new: Bool = false is writable
1881
1882 # Is the property a legal constructor for a given class?
1883 # As usual, visibility is not considered.
1884 # FIXME not implemented
1885 fun is_init_for(mclass: MClass): Bool
1886 do
1887 return self.is_init
1888 end
1889 end
1890
1891 # A global attribute
1892 class MAttribute
1893 super MProperty
1894
1895 redef type MPROPDEF: MAttributeDef
1896
1897 end
1898
1899 # A global virtual type
1900 class MVirtualTypeProp
1901 super MProperty
1902
1903 redef type MPROPDEF: MVirtualTypeDef
1904
1905 # The formal type associated to the virtual type property
1906 var mvirtualtype = new MVirtualType(self)
1907 end
1908
1909 # A definition of a property (local property)
1910 #
1911 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
1912 # specific class definition (which belong to a specific module)
1913 abstract class MPropDef
1914 super MEntity
1915
1916 # The associated `MProperty` subclass.
1917 # the two specialization hierarchy are symmetric
1918 type MPROPERTY: MProperty
1919
1920 # Self class
1921 type MPROPDEF: MPropDef
1922
1923 # The class definition where the property definition is
1924 var mclassdef: MClassDef
1925
1926 # The associated global property
1927 var mproperty: MPROPERTY
1928
1929 # The origin of the definition
1930 var location: Location
1931
1932 init
1933 do
1934 mclassdef.mpropdefs.add(self)
1935 mproperty.mpropdefs.add(self)
1936 if mproperty.intro_mclassdef == mclassdef then
1937 assert not isset mproperty._intro
1938 mproperty.intro = self
1939 end
1940 self.to_s = "{mclassdef}#{mproperty}"
1941 end
1942
1943 # Actually the name of the `mproperty`
1944 redef fun name do return mproperty.name
1945
1946 redef fun model do return mclassdef.model
1947
1948 # Internal name combining the module, the class and the property
1949 # Example: "mymodule#MyClass#mymethod"
1950 redef var to_s: String is noinit
1951
1952 # Is self the definition that introduce the property?
1953 fun is_intro: Bool do return mproperty.intro == self
1954
1955 # Return the next definition in linearization of `mtype`.
1956 #
1957 # This method is used to determine what method is called by a super.
1958 #
1959 # REQUIRE: `not mtype.need_anchor`
1960 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
1961 do
1962 assert not mtype.need_anchor
1963
1964 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
1965 var i = mpropdefs.iterator
1966 while i.is_ok and i.item != self do i.next
1967 assert has_property: i.is_ok
1968 i.next
1969 assert has_next_property: i.is_ok
1970 return i.item
1971 end
1972 end
1973
1974 # A local definition of a method
1975 class MMethodDef
1976 super MPropDef
1977
1978 redef type MPROPERTY: MMethod
1979 redef type MPROPDEF: MMethodDef
1980
1981 # The signature attached to the property definition
1982 var msignature: nullable MSignature = null is writable
1983
1984 # The signature attached to the `new` call on a root-init
1985 # This is a concatenation of the signatures of the initializers
1986 #
1987 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
1988 var new_msignature: nullable MSignature = null is writable
1989
1990 # List of initialisers to call in root-inits
1991 #
1992 # They could be setters or attributes
1993 #
1994 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
1995 var initializers = new Array[MProperty]
1996
1997 # Is the method definition abstract?
1998 var is_abstract: Bool = false is writable
1999
2000 # Is the method definition intern?
2001 var is_intern = false is writable
2002
2003 # Is the method definition extern?
2004 var is_extern = false is writable
2005
2006 # An optional constant value returned in functions.
2007 #
2008 # Only some specific primitife value are accepted by engines.
2009 # Is used when there is no better implementation available.
2010 #
2011 # Currently used only for the implementation of the `--define`
2012 # command-line option.
2013 # SEE: module `mixin`.
2014 var constant_value: nullable Object = null is writable
2015 end
2016
2017 # A local definition of an attribute
2018 class MAttributeDef
2019 super MPropDef
2020
2021 redef type MPROPERTY: MAttribute
2022 redef type MPROPDEF: MAttributeDef
2023
2024 # The static type of the attribute
2025 var static_mtype: nullable MType = null is writable
2026 end
2027
2028 # A local definition of a virtual type
2029 class MVirtualTypeDef
2030 super MPropDef
2031
2032 redef type MPROPERTY: MVirtualTypeProp
2033 redef type MPROPDEF: MVirtualTypeDef
2034
2035 # The bound of the virtual type
2036 var bound: nullable MType = null is writable
2037
2038 # Is the bound fixed?
2039 var is_fixed = false is writable
2040 end
2041
2042 # A kind of class.
2043 #
2044 # * `abstract_kind`
2045 # * `concrete_kind`
2046 # * `interface_kind`
2047 # * `enum_kind`
2048 # * `extern_kind`
2049 #
2050 # Note this class is basically an enum.
2051 # FIXME: use a real enum once user-defined enums are available
2052 class MClassKind
2053 redef var to_s: String
2054
2055 # Is a constructor required?
2056 var need_init: Bool
2057
2058 # TODO: private init because enumeration.
2059
2060 # Can a class of kind `self` specializes a class of kine `other`?
2061 fun can_specialize(other: MClassKind): Bool
2062 do
2063 if other == interface_kind then return true # everybody can specialize interfaces
2064 if self == interface_kind or self == enum_kind then
2065 # no other case for interfaces
2066 return false
2067 else if self == extern_kind then
2068 # only compatible with themselves
2069 return self == other
2070 else if other == enum_kind or other == extern_kind then
2071 # abstract_kind and concrete_kind are incompatible
2072 return false
2073 end
2074 # remain only abstract_kind and concrete_kind
2075 return true
2076 end
2077 end
2078
2079 # The class kind `abstract`
2080 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", true)
2081 # The class kind `concrete`
2082 fun concrete_kind: MClassKind do return once new MClassKind("class", true)
2083 # The class kind `interface`
2084 fun interface_kind: MClassKind do return once new MClassKind("interface", false)
2085 # The class kind `enum`
2086 fun enum_kind: MClassKind do return once new MClassKind("enum", false)
2087 # The class kind `extern`
2088 fun extern_kind: MClassKind do return once new MClassKind("extern class", false)