model: get_primitive_class filter classes by module
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class Model
34 # All known classes
35 var mclasses = new Array[MClass]
36
37 # All known properties
38 var mproperties = new Array[MProperty]
39
40 # Hierarchy of class definition.
41 #
42 # Each classdef is associated with its super-classdefs in regard to
43 # its module of definition.
44 var mclassdef_hierarchy = new POSet[MClassDef]
45
46 # Class-type hierarchy restricted to the introduction.
47 #
48 # The idea is that what is true on introduction is always true whatever
49 # the module considered.
50 # Therefore, this hierarchy is used for a fast positive subtype check.
51 #
52 # This poset will evolve in a monotonous way:
53 # * Two non connected nodes will remain unconnected
54 # * New nodes can appear with new edges
55 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
56
57 # Global overlapped class-type hierarchy.
58 # The hierarchy when all modules are combined.
59 # Therefore, this hierarchy is used for a fast negative subtype check.
60 #
61 # This poset will evolve in an anarchic way. Loops can even be created.
62 #
63 # FIXME decide what to do on loops
64 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
65
66 # Collections of classes grouped by their short name
67 private var mclasses_by_name = new MultiHashMap[String, MClass]
68
69 # Return all class named `name`.
70 #
71 # If such a class does not exist, null is returned
72 # (instead of an empty array)
73 #
74 # Visibility or modules are not considered
75 fun get_mclasses_by_name(name: String): nullable Array[MClass]
76 do
77 return mclasses_by_name.get_or_null(name)
78 end
79
80 # Collections of properties grouped by their short name
81 private var mproperties_by_name = new MultiHashMap[String, MProperty]
82
83 # Return all properties named `name`.
84 #
85 # If such a property does not exist, null is returned
86 # (instead of an empty array)
87 #
88 # Visibility or modules are not considered
89 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
90 do
91 return mproperties_by_name.get_or_null(name)
92 end
93
94 # The only null type
95 var null_type = new MNullType(self)
96
97 # Build an ordered tree with from `concerns`
98 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
99 var seen = new HashSet[MConcern]
100 var res = new ConcernsTree
101
102 var todo = new Array[MConcern]
103 todo.add_all mconcerns
104
105 while not todo.is_empty do
106 var c = todo.pop
107 if seen.has(c) then continue
108 var pc = c.parent_concern
109 if pc == null then
110 res.add(null, c)
111 else
112 res.add(pc, c)
113 todo.add(pc)
114 end
115 seen.add(c)
116 end
117
118 return res
119 end
120 end
121
122 # An OrderedTree that can be easily refined for display purposes
123 class ConcernsTree
124 super OrderedTree[MConcern]
125 end
126
127 redef class MModule
128 # All the classes introduced in the module
129 var intro_mclasses = new Array[MClass]
130
131 # All the class definitions of the module
132 # (introduction and refinement)
133 var mclassdefs = new Array[MClassDef]
134
135 # Does the current module has a given class `mclass`?
136 # Return true if the mmodule introduces, refines or imports a class.
137 # Visibility is not considered.
138 fun has_mclass(mclass: MClass): Bool
139 do
140 return self.in_importation <= mclass.intro_mmodule
141 end
142
143 # Full hierarchy of introduced ans imported classes.
144 #
145 # Create a new hierarchy got by flattening the classes for the module
146 # and its imported modules.
147 # Visibility is not considered.
148 #
149 # Note: this function is expensive and is usually used for the main
150 # module of a program only. Do not use it to do you own subtype
151 # functions.
152 fun flatten_mclass_hierarchy: POSet[MClass]
153 do
154 var res = self.flatten_mclass_hierarchy_cache
155 if res != null then return res
156 res = new POSet[MClass]
157 for m in self.in_importation.greaters do
158 for cd in m.mclassdefs do
159 var c = cd.mclass
160 res.add_node(c)
161 for s in cd.supertypes do
162 res.add_edge(c, s.mclass)
163 end
164 end
165 end
166 self.flatten_mclass_hierarchy_cache = res
167 return res
168 end
169
170 # Sort a given array of classes using the linearization order of the module
171 # The most general is first, the most specific is last
172 fun linearize_mclasses(mclasses: Array[MClass])
173 do
174 self.flatten_mclass_hierarchy.sort(mclasses)
175 end
176
177 # Sort a given array of class definitions using the linearization order of the module
178 # the refinement link is stronger than the specialisation link
179 # The most general is first, the most specific is last
180 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
181 do
182 var sorter = new MClassDefSorter(self)
183 sorter.sort(mclassdefs)
184 end
185
186 # Sort a given array of property definitions using the linearization order of the module
187 # the refinement link is stronger than the specialisation link
188 # The most general is first, the most specific is last
189 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
190 do
191 var sorter = new MPropDefSorter(self)
192 sorter.sort(mpropdefs)
193 end
194
195 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
196
197 # The primitive type `Object`, the root of the class hierarchy
198 var object_type: MClassType = self.get_primitive_class("Object").mclass_type is lazy
199
200 # The type `Pointer`, super class to all extern classes
201 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
202
203 # The primitive type `Bool`
204 var bool_type: MClassType = self.get_primitive_class("Bool").mclass_type is lazy
205
206 # The primitive type `Int`
207 var int_type: MClassType = self.get_primitive_class("Int").mclass_type is lazy
208
209 # The primitive type `Char`
210 var char_type: MClassType = self.get_primitive_class("Char").mclass_type is lazy
211
212 # The primitive type `Float`
213 var float_type: MClassType = self.get_primitive_class("Float").mclass_type is lazy
214
215 # The primitive type `String`
216 var string_type: MClassType = self.get_primitive_class("String").mclass_type is lazy
217
218 # The primitive type `NativeString`
219 var native_string_type: MClassType = self.get_primitive_class("NativeString").mclass_type is lazy
220
221 # A primitive type of `Array`
222 fun array_type(elt_type: MType): MClassType do return array_class.get_mtype([elt_type])
223
224 # The primitive class `Array`
225 var array_class: MClass = self.get_primitive_class("Array") is lazy
226
227 # A primitive type of `NativeArray`
228 fun native_array_type(elt_type: MType): MClassType do return native_array_class.get_mtype([elt_type])
229
230 # The primitive class `NativeArray`
231 var native_array_class: MClass = self.get_primitive_class("NativeArray") is lazy
232
233 # The primitive type `Sys`, the main type of the program, if any
234 fun sys_type: nullable MClassType
235 do
236 var clas = self.model.get_mclasses_by_name("Sys")
237 if clas == null then return null
238 return get_primitive_class("Sys").mclass_type
239 end
240
241 # The primitive type `Finalizable`
242 # Used to tag classes that need to be finalized.
243 fun finalizable_type: nullable MClassType
244 do
245 var clas = self.model.get_mclasses_by_name("Finalizable")
246 if clas == null then return null
247 return get_primitive_class("Finalizable").mclass_type
248 end
249
250 # Force to get the primitive class named `name` or abort
251 fun get_primitive_class(name: String): MClass
252 do
253 var cla = self.model.get_mclasses_by_name(name)
254 # Filter classes by introducing module
255 if cla != null then cla = [for c in cla do if self.in_importation <= c.intro_mmodule then c]
256 if cla == null or cla.is_empty then
257 if name == "Bool" and self.model.get_mclasses_by_name("Object") != null then
258 # Bool is injected because it is needed by engine to code the result
259 # of the implicit casts.
260 var c = new MClass(self, name, null, enum_kind, public_visibility)
261 var cladef = new MClassDef(self, c.mclass_type, new Location(null, 0,0,0,0))
262 cladef.set_supertypes([object_type])
263 cladef.add_in_hierarchy
264 return c
265 end
266 print("Fatal Error: no primitive class {name} in {self}")
267 exit(1)
268 end
269 if cla.length != 1 then
270 var msg = "Fatal Error: more than one primitive class {name} in {self}:"
271 for c in cla do msg += " {c.full_name}"
272 print msg
273 #exit(1)
274 end
275 return cla.first
276 end
277
278 # Try to get the primitive method named `name` on the type `recv`
279 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
280 do
281 var props = self.model.get_mproperties_by_name(name)
282 if props == null then return null
283 var res: nullable MMethod = null
284 for mprop in props do
285 assert mprop isa MMethod
286 var intro = mprop.intro_mclassdef
287 for mclassdef in recv.mclassdefs do
288 if not self.in_importation.greaters.has(mclassdef.mmodule) then continue
289 if not mclassdef.in_hierarchy.greaters.has(intro) then continue
290 if res == null then
291 res = mprop
292 else if res != mprop then
293 print("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
294 abort
295 end
296 end
297 end
298 return res
299 end
300 end
301
302 private class MClassDefSorter
303 super Comparator
304 redef type COMPARED: MClassDef
305 var mmodule: MModule
306 redef fun compare(a, b)
307 do
308 var ca = a.mclass
309 var cb = b.mclass
310 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
311 return mmodule.model.mclassdef_hierarchy.compare(a, b)
312 end
313 end
314
315 private class MPropDefSorter
316 super Comparator
317 redef type COMPARED: MPropDef
318 var mmodule: MModule
319 redef fun compare(pa, pb)
320 do
321 var a = pa.mclassdef
322 var b = pb.mclassdef
323 var ca = a.mclass
324 var cb = b.mclass
325 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
326 return mmodule.model.mclassdef_hierarchy.compare(a, b)
327 end
328 end
329
330 # A named class
331 #
332 # `MClass` are global to the model; it means that a `MClass` is not bound to a
333 # specific `MModule`.
334 #
335 # This characteristic helps the reasoning about classes in a program since a
336 # single `MClass` object always denote the same class.
337 #
338 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
339 # These do not really have properties nor belong to a hierarchy since the property and the
340 # hierarchy of a class depends of the refinement in the modules.
341 #
342 # Most services on classes require the precision of a module, and no one can asks what are
343 # the super-classes of a class nor what are properties of a class without precising what is
344 # the module considered.
345 #
346 # For instance, during the typing of a source-file, the module considered is the module of the file.
347 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
348 # *is the method `foo` exists in the class `Bar` in the current module?*
349 #
350 # During some global analysis, the module considered may be the main module of the program.
351 class MClass
352 super MEntity
353
354 # The module that introduce the class
355 # While classes are not bound to a specific module,
356 # the introducing module is used for naming an visibility
357 var intro_mmodule: MModule
358
359 # The short name of the class
360 # In Nit, the name of a class cannot evolve in refinements
361 redef var name: String
362
363 # The canonical name of the class
364 #
365 # It is the name of the class prefixed by the full_name of the `intro_mmodule`
366 # Example: `"owner::module::MyClass"`
367 redef var full_name is lazy do
368 return "{self.intro_mmodule.namespace_for(visibility)}::{name}"
369 end
370
371 redef var c_name is lazy do
372 return "{intro_mmodule.c_namespace_for(visibility)}__{name.to_cmangle}"
373 end
374
375 # The number of generic formal parameters
376 # 0 if the class is not generic
377 var arity: Int is noinit
378
379 # Each generic formal parameters in order.
380 # is empty if the class is not generic
381 var mparameters = new Array[MParameterType]
382
383 # Initialize `mparameters` from their names.
384 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
385 autoinit
386 do
387 if parameter_names == null then
388 self.arity = 0
389 else
390 self.arity = parameter_names.length
391 end
392
393 # Create the formal parameter types
394 if arity > 0 then
395 assert parameter_names != null
396 var mparametertypes = new Array[MParameterType]
397 for i in [0..arity[ do
398 var mparametertype = new MParameterType(self, i, parameter_names[i])
399 mparametertypes.add(mparametertype)
400 end
401 self.mparameters = mparametertypes
402 var mclass_type = new MGenericType(self, mparametertypes)
403 self.mclass_type = mclass_type
404 self.get_mtype_cache[mparametertypes] = mclass_type
405 else
406 self.mclass_type = new MClassType(self)
407 end
408 end
409
410 # The kind of the class (interface, abstract class, etc.)
411 # In Nit, the kind of a class cannot evolve in refinements
412 var kind: MClassKind
413
414 # The visibility of the class
415 # In Nit, the visibility of a class cannot evolve in refinements
416 var visibility: MVisibility
417
418 init
419 do
420 intro_mmodule.intro_mclasses.add(self)
421 var model = intro_mmodule.model
422 model.mclasses_by_name.add_one(name, self)
423 model.mclasses.add(self)
424 end
425
426 redef fun model do return intro_mmodule.model
427
428 # All class definitions (introduction and refinements)
429 var mclassdefs = new Array[MClassDef]
430
431 # Alias for `name`
432 redef fun to_s do return self.name
433
434 # The definition that introduces the class.
435 #
436 # Warning: such a definition may not exist in the early life of the object.
437 # In this case, the method will abort.
438 #
439 # Use `try_intro` instead
440 var intro: MClassDef is noinit
441
442 # The definition that introduces the class or null if not yet known.
443 #
444 # See `intro`
445 fun try_intro: nullable MClassDef do
446 if isset _intro then return _intro else return null
447 end
448
449 # Return the class `self` in the class hierarchy of the module `mmodule`.
450 #
451 # SEE: `MModule::flatten_mclass_hierarchy`
452 # REQUIRE: `mmodule.has_mclass(self)`
453 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
454 do
455 return mmodule.flatten_mclass_hierarchy[self]
456 end
457
458 # The principal static type of the class.
459 #
460 # For non-generic class, mclass_type is the only `MClassType` based
461 # on self.
462 #
463 # For a generic class, the arguments are the formal parameters.
464 # i.e.: for the class Array[E:Object], the `mclass_type` is Array[E].
465 # If you want Array[Object] the see `MClassDef::bound_mtype`
466 #
467 # For generic classes, the mclass_type is also the way to get a formal
468 # generic parameter type.
469 #
470 # To get other types based on a generic class, see `get_mtype`.
471 #
472 # ENSURE: `mclass_type.mclass == self`
473 var mclass_type: MClassType is noinit
474
475 # Return a generic type based on the class
476 # Is the class is not generic, then the result is `mclass_type`
477 #
478 # REQUIRE: `mtype_arguments.length == self.arity`
479 fun get_mtype(mtype_arguments: Array[MType]): MClassType
480 do
481 assert mtype_arguments.length == self.arity
482 if self.arity == 0 then return self.mclass_type
483 var res = get_mtype_cache.get_or_null(mtype_arguments)
484 if res != null then return res
485 res = new MGenericType(self, mtype_arguments)
486 self.get_mtype_cache[mtype_arguments.to_a] = res
487 return res
488 end
489
490 private var get_mtype_cache = new HashMap[Array[MType], MGenericType]
491
492 # Is there a `new` factory to allow the pseudo instantiation?
493 var has_new_factory = false is writable
494 end
495
496
497 # A definition (an introduction or a refinement) of a class in a module
498 #
499 # A `MClassDef` is associated with an explicit (or almost) definition of a
500 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
501 # a specific class and a specific module, and contains declarations like super-classes
502 # or properties.
503 #
504 # It is the class definitions that are the backbone of most things in the model:
505 # ClassDefs are defined with regard with other classdefs.
506 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
507 #
508 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
509 class MClassDef
510 super MEntity
511
512 # The module where the definition is
513 var mmodule: MModule
514
515 # The associated `MClass`
516 var mclass: MClass is noinit
517
518 # The bounded type associated to the mclassdef
519 #
520 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
521 # are the same type.
522 #
523 # Example:
524 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
525 # If you want Array[E], then see `mclass.mclass_type`
526 #
527 # ENSURE: `bound_mtype.mclass == self.mclass`
528 var bound_mtype: MClassType
529
530 # The origin of the definition
531 var location: Location
532
533 # Internal name combining the module and the class
534 # Example: "mymodule#MyClass"
535 redef var to_s: String is noinit
536
537 init
538 do
539 self.mclass = bound_mtype.mclass
540 mmodule.mclassdefs.add(self)
541 mclass.mclassdefs.add(self)
542 if mclass.intro_mmodule == mmodule then
543 assert not isset mclass._intro
544 mclass.intro = self
545 end
546 self.to_s = "{mmodule}#{mclass}"
547 end
548
549 # Actually the name of the `mclass`
550 redef fun name do return mclass.name
551
552 # The module and class name separated by a '#'.
553 #
554 # The short-name of the class is used for introduction.
555 # Example: "my_module#MyClass"
556 #
557 # The full-name of the class is used for refinement.
558 # Example: "my_module#intro_module::MyClass"
559 redef var full_name is lazy do
560 if is_intro then
561 # public gives 'p#A'
562 # private gives 'p::m#A'
563 return "{mmodule.namespace_for(mclass.visibility)}#{mclass.name}"
564 else if mclass.intro_mmodule.mproject != mmodule.mproject then
565 # public gives 'q::n#p::A'
566 # private gives 'q::n#p::m::A'
567 return "{mmodule.full_name}#{mclass.full_name}"
568 else if mclass.visibility > private_visibility then
569 # public gives 'p::n#A'
570 return "{mmodule.full_name}#{mclass.name}"
571 else
572 # private gives 'p::n#::m::A' (redundant p is omitted)
573 return "{mmodule.full_name}#::{mclass.intro_mmodule.name}::{mclass.name}"
574 end
575 end
576
577 redef var c_name is lazy do
578 if is_intro then
579 return "{mmodule.c_namespace_for(mclass.visibility)}___{mclass.c_name}"
580 else if mclass.intro_mmodule.mproject == mmodule.mproject and mclass.visibility > private_visibility then
581 return "{mmodule.c_name}___{mclass.name.to_cmangle}"
582 else
583 return "{mmodule.c_name}___{mclass.c_name}"
584 end
585 end
586
587 redef fun model do return mmodule.model
588
589 # All declared super-types
590 # FIXME: quite ugly but not better idea yet
591 var supertypes = new Array[MClassType]
592
593 # Register some super-types for the class (ie "super SomeType")
594 #
595 # The hierarchy must not already be set
596 # REQUIRE: `self.in_hierarchy == null`
597 fun set_supertypes(supertypes: Array[MClassType])
598 do
599 assert unique_invocation: self.in_hierarchy == null
600 var mmodule = self.mmodule
601 var model = mmodule.model
602 var mtype = self.bound_mtype
603
604 for supertype in supertypes do
605 self.supertypes.add(supertype)
606
607 # Register in full_type_specialization_hierarchy
608 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
609 # Register in intro_type_specialization_hierarchy
610 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
611 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
612 end
613 end
614
615 end
616
617 # Collect the super-types (set by set_supertypes) to build the hierarchy
618 #
619 # This function can only invoked once by class
620 # REQUIRE: `self.in_hierarchy == null`
621 # ENSURE: `self.in_hierarchy != null`
622 fun add_in_hierarchy
623 do
624 assert unique_invocation: self.in_hierarchy == null
625 var model = mmodule.model
626 var res = model.mclassdef_hierarchy.add_node(self)
627 self.in_hierarchy = res
628 var mtype = self.bound_mtype
629
630 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
631 # The simpliest way is to attach it to collect_mclassdefs
632 for mclassdef in mtype.collect_mclassdefs(mmodule) do
633 res.poset.add_edge(self, mclassdef)
634 end
635 end
636
637 # The view of the class definition in `mclassdef_hierarchy`
638 var in_hierarchy: nullable POSetElement[MClassDef] = null
639
640 # Is the definition the one that introduced `mclass`?
641 fun is_intro: Bool do return isset mclass._intro and mclass.intro == self
642
643 # All properties introduced by the classdef
644 var intro_mproperties = new Array[MProperty]
645
646 # All property definitions in the class (introductions and redefinitions)
647 var mpropdefs = new Array[MPropDef]
648 end
649
650 # A global static type
651 #
652 # MType are global to the model; it means that a `MType` is not bound to a
653 # specific `MModule`.
654 # This characteristic helps the reasoning about static types in a program
655 # since a single `MType` object always denote the same type.
656 #
657 # However, because a `MType` is global, it does not really have properties
658 # nor have subtypes to a hierarchy since the property and the class hierarchy
659 # depends of a module.
660 # Moreover, virtual types an formal generic parameter types also depends on
661 # a receiver to have sense.
662 #
663 # Therefore, most method of the types require a module and an anchor.
664 # The module is used to know what are the classes and the specialization
665 # links.
666 # The anchor is used to know what is the bound of the virtual types and formal
667 # generic parameter types.
668 #
669 # MType are not directly usable to get properties. See the `anchor_to` method
670 # and the `MClassType` class.
671 #
672 # FIXME: the order of the parameters is not the best. We mus pick on from:
673 # * foo(mmodule, anchor, othertype)
674 # * foo(othertype, anchor, mmodule)
675 # * foo(anchor, mmodule, othertype)
676 # * foo(othertype, mmodule, anchor)
677 abstract class MType
678 super MEntity
679
680 redef fun name do return to_s
681
682 # Return true if `self` is an subtype of `sup`.
683 # The typing is done using the standard typing policy of Nit.
684 #
685 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
686 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
687 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
688 do
689 var sub = self
690 if sub == sup then return true
691
692 #print "1.is {sub} a {sup}? ===="
693
694 if anchor == null then
695 assert not sub.need_anchor
696 assert not sup.need_anchor
697 else
698 # First, resolve the formal types to the simplest equivalent forms in the receiver
699 assert sub.can_resolve_for(anchor, null, mmodule)
700 sub = sub.lookup_fixed(mmodule, anchor)
701 assert sup.can_resolve_for(anchor, null, mmodule)
702 sup = sup.lookup_fixed(mmodule, anchor)
703 end
704
705 # Does `sup` accept null or not?
706 # Discard the nullable marker if it exists
707 var sup_accept_null = false
708 if sup isa MNullableType then
709 sup_accept_null = true
710 sup = sup.mtype
711 else if sup isa MNullType then
712 sup_accept_null = true
713 end
714
715 # Can `sub` provide null or not?
716 # Thus we can match with `sup_accept_null`
717 # Also discard the nullable marker if it exists
718 if sub isa MNullableType then
719 if not sup_accept_null then return false
720 sub = sub.mtype
721 else if sub isa MNullType then
722 return sup_accept_null
723 end
724 # Now the case of direct null and nullable is over.
725
726 # If `sub` is a formal type, then it is accepted if its bound is accepted
727 while sub isa MParameterType or sub isa MVirtualType do
728 #print "3.is {sub} a {sup}?"
729
730 # A unfixed formal type can only accept itself
731 if sub == sup then return true
732
733 assert anchor != null
734 sub = sub.lookup_bound(mmodule, anchor)
735
736 #print "3.is {sub} a {sup}?"
737
738 # Manage the second layer of null/nullable
739 if sub isa MNullableType then
740 if not sup_accept_null then return false
741 sub = sub.mtype
742 else if sub isa MNullType then
743 return sup_accept_null
744 end
745 end
746 #print "4.is {sub} a {sup}? <- no more resolution"
747
748 assert sub isa MClassType # It is the only remaining type
749
750 # A unfixed formal type can only accept itself
751 if sup isa MParameterType or sup isa MVirtualType then
752 return false
753 end
754
755 if sup isa MNullType then
756 # `sup` accepts only null
757 return false
758 end
759
760 assert sup isa MClassType # It is the only remaining type
761
762 # Now both are MClassType, we need to dig
763
764 if sub == sup then return true
765
766 if anchor == null then anchor = sub # UGLY: any anchor will work
767 var resolved_sub = sub.anchor_to(mmodule, anchor)
768 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
769 if res == false then return false
770 if not sup isa MGenericType then return true
771 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
772 assert sub2.mclass == sup.mclass
773 for i in [0..sup.mclass.arity[ do
774 var sub_arg = sub2.arguments[i]
775 var sup_arg = sup.arguments[i]
776 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
777 if res == false then return false
778 end
779 return true
780 end
781
782 # The base class type on which self is based
783 #
784 # This base type is used to get property (an internally to perform
785 # unsafe type comparison).
786 #
787 # Beware: some types (like null) are not based on a class thus this
788 # method will crash
789 #
790 # Basically, this function transform the virtual types and parameter
791 # types to their bounds.
792 #
793 # Example
794 #
795 # class A end
796 # class B super A end
797 # class X end
798 # class Y super X end
799 # class G[T: A]
800 # type U: X
801 # end
802 # class H
803 # super G[B]
804 # redef type U: Y
805 # end
806 #
807 # Map[T,U] anchor_to H #-> Map[B,Y]
808 #
809 # Explanation of the example:
810 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
811 # because "redef type U: Y". Therefore, Map[T, U] is bound to
812 # Map[B, Y]
813 #
814 # ENSURE: `not self.need_anchor implies result == self`
815 # ENSURE: `not result.need_anchor`
816 fun anchor_to(mmodule: MModule, anchor: MClassType): MType
817 do
818 if not need_anchor then return self
819 assert not anchor.need_anchor
820 # Just resolve to the anchor and clear all the virtual types
821 var res = self.resolve_for(anchor, null, mmodule, true)
822 assert not res.need_anchor
823 return res
824 end
825
826 # Does `self` contain a virtual type or a formal generic parameter type?
827 # In order to remove those types, you usually want to use `anchor_to`.
828 fun need_anchor: Bool do return true
829
830 # Return the supertype when adapted to a class.
831 #
832 # In Nit, for each super-class of a type, there is a equivalent super-type.
833 #
834 # Example:
835 #
836 # ~~~nitish
837 # class G[T, U] end
838 # class H[V] super G[V, Bool] end
839 #
840 # H[Int] supertype_to G #-> G[Int, Bool]
841 # ~~~
842 #
843 # REQUIRE: `super_mclass` is a super-class of `self`
844 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
845 # ENSURE: `result.mclass = super_mclass`
846 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
847 do
848 if super_mclass.arity == 0 then return super_mclass.mclass_type
849 if self isa MClassType and self.mclass == super_mclass then return self
850 var resolved_self
851 if self.need_anchor then
852 assert anchor != null
853 resolved_self = self.anchor_to(mmodule, anchor)
854 else
855 resolved_self = self
856 end
857 var supertypes = resolved_self.collect_mtypes(mmodule)
858 for supertype in supertypes do
859 if supertype.mclass == super_mclass then
860 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
861 return supertype.resolve_for(self, anchor, mmodule, false)
862 end
863 end
864 abort
865 end
866
867 # Replace formals generic types in self with resolved values in `mtype`
868 # If `cleanup_virtual` is true, then virtual types are also replaced
869 # with their bounds.
870 #
871 # This function returns self if `need_anchor` is false.
872 #
873 # ## Example 1
874 #
875 # ~~~
876 # class G[E] end
877 # class H[F] super G[F] end
878 # class X[Z] end
879 # ~~~
880 #
881 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
882 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
883 #
884 # Explanation of the example:
885 # * Array[E].need_anchor is true because there is a formal generic parameter type E
886 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
887 # * Since "H[F] super G[F]", E is in fact F for H
888 # * More specifically, in H[Int], E is Int
889 # * So, in H[Int], Array[E] is Array[Int]
890 #
891 # This function is mainly used to inherit a signature.
892 # Because, unlike `anchor_to`, we do not want a full resolution of
893 # a type but only an adapted version of it.
894 #
895 # ## Example 2
896 #
897 # ~~~
898 # class A[E]
899 # fun foo(e:E):E is abstract
900 # end
901 # class B super A[Int] end
902 # ~~~
903 #
904 # The signature on foo is (e: E): E
905 # If we resolve the signature for B, we get (e:Int):Int
906 #
907 # ## Example 3
908 #
909 # ~~~nitish
910 # class A[E]
911 # fun foo(e:E):E is abstract
912 # end
913 # class C[F]
914 # var a: A[Array[F]]
915 # fun bar do a.foo(x) # <- x is here
916 # end
917 # ~~~
918 #
919 # The first question is: is foo available on `a`?
920 #
921 # The static type of a is `A[Array[F]]`, that is an open type.
922 # in order to find a method `foo`, whe must look at a resolved type.
923 #
924 # A[Array[F]].anchor_to(C[nullable Object]) #-> A[Array[nullable Object]]
925 #
926 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
927 #
928 # The next question is: what is the accepted types for `x`?
929 #
930 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
931 #
932 # E.resolve_for(A[Array[F]],C[nullable Object]) #-> Array[F]
933 #
934 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
935 #
936 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
937 # two function instead of one seems also to be a bad idea.
938 #
939 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
940 # ENSURE: `not self.need_anchor implies result == self`
941 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
942
943 # Resolve formal type to its verbatim bound.
944 # If the type is not formal, just return self
945 #
946 # The result is returned exactly as declared in the "type" property (verbatim).
947 # So it could be another formal type.
948 #
949 # In case of conflict, the method aborts.
950 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self
951
952 # Resolve the formal type to its simplest equivalent form.
953 #
954 # Formal types are either free or fixed.
955 # When it is fixed, it means that it is equivalent with a simpler type.
956 # When a formal type is free, it means that it is only equivalent with itself.
957 # This method return the most simple equivalent type of `self`.
958 #
959 # This method is mainly used for subtype test in order to sanely compare fixed.
960 #
961 # By default, return self.
962 # See the redefinitions for specific behavior in each kind of type.
963 fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self
964
965 # Can the type be resolved?
966 #
967 # In order to resolve open types, the formal types must make sence.
968 #
969 # ## Example
970 #
971 # class A[E]
972 # end
973 # class B[F]
974 # end
975 #
976 # ~~~nitish
977 # E.can_resolve_for(A[Int]) #-> true, E make sense in A
978 #
979 # E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
980 #
981 # B[E].can_resolve_for(A[F], B[Object]) #-> true,
982 # # B[E] is a red hearing only the E is important,
983 # # E make sense in A
984 # ~~~
985 #
986 # REQUIRE: `anchor != null implies not anchor.need_anchor`
987 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
988 # ENSURE: `not self.need_anchor implies result == true`
989 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
990
991 # Return the nullable version of the type
992 # If the type is already nullable then self is returned
993 fun as_nullable: MType
994 do
995 var res = self.as_nullable_cache
996 if res != null then return res
997 res = new MNullableType(self)
998 self.as_nullable_cache = res
999 return res
1000 end
1001
1002 # Return the not nullable version of the type
1003 # Is the type is already not nullable, then self is returned.
1004 #
1005 # Note: this just remove the `nullable` notation, but the result can still contains null.
1006 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
1007 fun as_notnullable: MType
1008 do
1009 return self
1010 end
1011
1012 private var as_nullable_cache: nullable MType = null
1013
1014
1015 # The depth of the type seen as a tree.
1016 #
1017 # * A -> 1
1018 # * G[A] -> 2
1019 # * H[A, B] -> 2
1020 # * H[G[A], B] -> 3
1021 #
1022 # Formal types have a depth of 1.
1023 fun depth: Int
1024 do
1025 return 1
1026 end
1027
1028 # The length of the type seen as a tree.
1029 #
1030 # * A -> 1
1031 # * G[A] -> 2
1032 # * H[A, B] -> 3
1033 # * H[G[A], B] -> 4
1034 #
1035 # Formal types have a length of 1.
1036 fun length: Int
1037 do
1038 return 1
1039 end
1040
1041 # Compute all the classdefs inherited/imported.
1042 # The returned set contains:
1043 # * the class definitions from `mmodule` and its imported modules
1044 # * the class definitions of this type and its super-types
1045 #
1046 # This function is used mainly internally.
1047 #
1048 # REQUIRE: `not self.need_anchor`
1049 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
1050
1051 # Compute all the super-classes.
1052 # This function is used mainly internally.
1053 #
1054 # REQUIRE: `not self.need_anchor`
1055 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
1056
1057 # Compute all the declared super-types.
1058 # Super-types are returned as declared in the classdefs (verbatim).
1059 # This function is used mainly internally.
1060 #
1061 # REQUIRE: `not self.need_anchor`
1062 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
1063
1064 # Is the property in self for a given module
1065 # This method does not filter visibility or whatever
1066 #
1067 # REQUIRE: `not self.need_anchor`
1068 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
1069 do
1070 assert not self.need_anchor
1071 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
1072 end
1073 end
1074
1075 # A type based on a class.
1076 #
1077 # `MClassType` have properties (see `has_mproperty`).
1078 class MClassType
1079 super MType
1080
1081 # The associated class
1082 var mclass: MClass
1083
1084 redef fun model do return self.mclass.intro_mmodule.model
1085
1086 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1087
1088 # The formal arguments of the type
1089 # ENSURE: `result.length == self.mclass.arity`
1090 var arguments = new Array[MType]
1091
1092 redef fun to_s do return mclass.to_s
1093
1094 redef fun full_name do return mclass.full_name
1095
1096 redef fun c_name do return mclass.c_name
1097
1098 redef fun need_anchor do return false
1099
1100 redef fun anchor_to(mmodule: MModule, anchor: MClassType): MClassType
1101 do
1102 return super.as(MClassType)
1103 end
1104
1105 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1106
1107 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1108
1109 redef fun collect_mclassdefs(mmodule)
1110 do
1111 assert not self.need_anchor
1112 var cache = self.collect_mclassdefs_cache
1113 if not cache.has_key(mmodule) then
1114 self.collect_things(mmodule)
1115 end
1116 return cache[mmodule]
1117 end
1118
1119 redef fun collect_mclasses(mmodule)
1120 do
1121 if collect_mclasses_last_module == mmodule then return collect_mclasses_last_module_cache
1122 assert not self.need_anchor
1123 var cache = self.collect_mclasses_cache
1124 if not cache.has_key(mmodule) then
1125 self.collect_things(mmodule)
1126 end
1127 var res = cache[mmodule]
1128 collect_mclasses_last_module = mmodule
1129 collect_mclasses_last_module_cache = res
1130 return res
1131 end
1132
1133 private var collect_mclasses_last_module: nullable MModule = null
1134 private var collect_mclasses_last_module_cache: Set[MClass] is noinit
1135
1136 redef fun collect_mtypes(mmodule)
1137 do
1138 assert not self.need_anchor
1139 var cache = self.collect_mtypes_cache
1140 if not cache.has_key(mmodule) then
1141 self.collect_things(mmodule)
1142 end
1143 return cache[mmodule]
1144 end
1145
1146 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1147 private fun collect_things(mmodule: MModule)
1148 do
1149 var res = new HashSet[MClassDef]
1150 var seen = new HashSet[MClass]
1151 var types = new HashSet[MClassType]
1152 seen.add(self.mclass)
1153 var todo = [self.mclass]
1154 while not todo.is_empty do
1155 var mclass = todo.pop
1156 #print "process {mclass}"
1157 for mclassdef in mclass.mclassdefs do
1158 if not mmodule.in_importation <= mclassdef.mmodule then continue
1159 #print " process {mclassdef}"
1160 res.add(mclassdef)
1161 for supertype in mclassdef.supertypes do
1162 types.add(supertype)
1163 var superclass = supertype.mclass
1164 if seen.has(superclass) then continue
1165 #print " add {superclass}"
1166 seen.add(superclass)
1167 todo.add(superclass)
1168 end
1169 end
1170 end
1171 collect_mclassdefs_cache[mmodule] = res
1172 collect_mclasses_cache[mmodule] = seen
1173 collect_mtypes_cache[mmodule] = types
1174 end
1175
1176 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1177 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1178 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1179
1180 end
1181
1182 # A type based on a generic class.
1183 # A generic type a just a class with additional formal generic arguments.
1184 class MGenericType
1185 super MClassType
1186
1187 redef var arguments
1188
1189 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1190
1191 init
1192 do
1193 assert self.mclass.arity == arguments.length
1194
1195 self.need_anchor = false
1196 for t in arguments do
1197 if t.need_anchor then
1198 self.need_anchor = true
1199 break
1200 end
1201 end
1202
1203 self.to_s = "{mclass}[{arguments.join(", ")}]"
1204 end
1205
1206 # The short-name of the class, then the full-name of each type arguments within brackets.
1207 # Example: `"Map[String, List[Int]]"`
1208 redef var to_s: String is noinit
1209
1210 # The full-name of the class, then the full-name of each type arguments within brackets.
1211 # Example: `"standard::Map[standard::String, standard::List[standard::Int]]"`
1212 redef var full_name is lazy do
1213 var args = new Array[String]
1214 for t in arguments do
1215 args.add t.full_name
1216 end
1217 return "{mclass.full_name}[{args.join(", ")}]"
1218 end
1219
1220 redef var c_name is lazy do
1221 var res = mclass.c_name
1222 # Note: because the arity is known, a prefix notation is enough
1223 for t in arguments do
1224 res += "__"
1225 res += t.c_name
1226 end
1227 return res.to_s
1228 end
1229
1230 redef var need_anchor: Bool is noinit
1231
1232 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1233 do
1234 if not need_anchor then return self
1235 assert can_resolve_for(mtype, anchor, mmodule)
1236 var types = new Array[MType]
1237 for t in arguments do
1238 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1239 end
1240 return mclass.get_mtype(types)
1241 end
1242
1243 redef fun can_resolve_for(mtype, anchor, mmodule)
1244 do
1245 if not need_anchor then return true
1246 for t in arguments do
1247 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1248 end
1249 return true
1250 end
1251
1252
1253 redef fun depth
1254 do
1255 var dmax = 0
1256 for a in self.arguments do
1257 var d = a.depth
1258 if d > dmax then dmax = d
1259 end
1260 return dmax + 1
1261 end
1262
1263 redef fun length
1264 do
1265 var res = 1
1266 for a in self.arguments do
1267 res += a.length
1268 end
1269 return res
1270 end
1271 end
1272
1273 # A virtual formal type.
1274 class MVirtualType
1275 super MType
1276
1277 # The property associated with the type.
1278 # Its the definitions of this property that determine the bound or the virtual type.
1279 var mproperty: MVirtualTypeProp
1280
1281 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1282
1283 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1284 do
1285 return lookup_single_definition(mmodule, resolved_receiver).bound.as(not null)
1286 end
1287
1288 private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef
1289 do
1290 assert not resolved_receiver.need_anchor
1291 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1292 if props.is_empty then
1293 abort
1294 else if props.length == 1 then
1295 return props.first
1296 end
1297 var types = new ArraySet[MType]
1298 var res = props.first
1299 for p in props do
1300 types.add(p.bound.as(not null))
1301 if not res.is_fixed then res = p
1302 end
1303 if types.length == 1 then
1304 return res
1305 end
1306 abort
1307 end
1308
1309 # A VT is fixed when:
1310 # * the VT is (re-)defined with the annotation `is fixed`
1311 # * the VT is (indirectly) bound to an enum class (see `enum_kind`) since there is no subtype possible
1312 # * the receiver is an enum class since there is no subtype possible
1313 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1314 do
1315 assert not resolved_receiver.need_anchor
1316 resolved_receiver = resolved_receiver.as_notnullable
1317 assert resolved_receiver isa MClassType # It is the only remaining type
1318
1319 var prop = lookup_single_definition(mmodule, resolved_receiver)
1320 var res = prop.bound.as(not null)
1321
1322 # Recursively lookup the fixed result
1323 res = res.lookup_fixed(mmodule, resolved_receiver)
1324
1325 # 1. For a fixed VT, return the resolved bound
1326 if prop.is_fixed then return res
1327
1328 # 2. For a enum boud, return the bound
1329 if res isa MClassType and res.mclass.kind == enum_kind then return res
1330
1331 # 3. for a enum receiver return the bound
1332 if resolved_receiver.mclass.kind == enum_kind then return res
1333
1334 return self
1335 end
1336
1337 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1338 do
1339 if not cleanup_virtual then return self
1340 assert can_resolve_for(mtype, anchor, mmodule)
1341 # self is a virtual type declared (or inherited) in mtype
1342 # The point of the function it to get the bound of the virtual type that make sense for mtype
1343 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1344 #print "{class_name}: {self}/{mtype}/{anchor}?"
1345 var resolved_receiver
1346 if mtype.need_anchor then
1347 assert anchor != null
1348 resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true)
1349 else
1350 resolved_receiver = mtype
1351 end
1352 # Now, we can get the bound
1353 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1354 # The bound is exactly as declared in the "type" property, so we must resolve it again
1355 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1356
1357 return res
1358 end
1359
1360 redef fun can_resolve_for(mtype, anchor, mmodule)
1361 do
1362 if mtype.need_anchor then
1363 assert anchor != null
1364 mtype = mtype.anchor_to(mmodule, anchor)
1365 end
1366 return mtype.has_mproperty(mmodule, mproperty)
1367 end
1368
1369 redef fun to_s do return self.mproperty.to_s
1370
1371 redef fun full_name do return self.mproperty.full_name
1372
1373 redef fun c_name do return self.mproperty.c_name
1374 end
1375
1376 # The type associated to a formal parameter generic type of a class
1377 #
1378 # Each parameter type is associated to a specific class.
1379 # It means that all refinements of a same class "share" the parameter type,
1380 # but that a generic subclass has its own parameter types.
1381 #
1382 # However, in the sense of the meta-model, a parameter type of a class is
1383 # a valid type in a subclass. The "in the sense of the meta-model" is
1384 # important because, in the Nit language, the programmer cannot refers
1385 # directly to the parameter types of the super-classes.
1386 #
1387 # Example:
1388 #
1389 # class A[E]
1390 # fun e: E is abstract
1391 # end
1392 # class B[F]
1393 # super A[Array[F]]
1394 # end
1395 #
1396 # In the class definition B[F], `F` is a valid type but `E` is not.
1397 # However, `self.e` is a valid method call, and the signature of `e` is
1398 # declared `e: E`.
1399 #
1400 # Note that parameter types are shared among class refinements.
1401 # Therefore parameter only have an internal name (see `to_s` for details).
1402 class MParameterType
1403 super MType
1404
1405 # The generic class where the parameter belong
1406 var mclass: MClass
1407
1408 redef fun model do return self.mclass.intro_mmodule.model
1409
1410 # The position of the parameter (0 for the first parameter)
1411 # FIXME: is `position` a better name?
1412 var rank: Int
1413
1414 redef var name
1415
1416 redef fun to_s do return name
1417
1418 redef var full_name is lazy do return "{mclass.full_name}::{name}"
1419
1420 redef var c_name is lazy do return mclass.c_name + "__" + "#{name}".to_cmangle
1421
1422 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1423 do
1424 assert not resolved_receiver.need_anchor
1425 resolved_receiver = resolved_receiver.as_notnullable
1426 assert resolved_receiver isa MClassType # It is the only remaining type
1427 var goalclass = self.mclass
1428 if resolved_receiver.mclass == goalclass then
1429 return resolved_receiver.arguments[self.rank]
1430 end
1431 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1432 for t in supertypes do
1433 if t.mclass == goalclass then
1434 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1435 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1436 var res = t.arguments[self.rank]
1437 return res
1438 end
1439 end
1440 abort
1441 end
1442
1443 # A PT is fixed when:
1444 # * Its bound is a enum class (see `enum_kind`).
1445 # The PT is just useless, but it is still a case.
1446 # * More usually, the `resolved_receiver` is a subclass of `self.mclass`,
1447 # so it is necessarily fixed in a `super` clause, either with a normal type
1448 # or with another PT.
1449 # See `resolve_for` for examples about related issues.
1450 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1451 do
1452 assert not resolved_receiver.need_anchor
1453 resolved_receiver = resolved_receiver.as_notnullable
1454 assert resolved_receiver isa MClassType # It is the only remaining type
1455 var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false)
1456 return res
1457 end
1458
1459 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1460 do
1461 assert can_resolve_for(mtype, anchor, mmodule)
1462 #print "{class_name}: {self}/{mtype}/{anchor}?"
1463
1464 if mtype isa MGenericType and mtype.mclass == self.mclass then
1465 var res = mtype.arguments[self.rank]
1466 if anchor != null and res.need_anchor then
1467 # Maybe the result can be resolved more if are bound to a final class
1468 var r2 = res.anchor_to(mmodule, anchor)
1469 if r2 isa MClassType and r2.mclass.kind == enum_kind then return r2
1470 end
1471 return res
1472 end
1473
1474 # self is a parameter type of mtype (or of a super-class of mtype)
1475 # The point of the function it to get the bound of the virtual type that make sense for mtype
1476 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1477 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1478 var resolved_receiver
1479 if mtype.need_anchor then
1480 assert anchor != null
1481 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1482 else
1483 resolved_receiver = mtype
1484 end
1485 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1486 if resolved_receiver isa MParameterType then
1487 assert resolved_receiver.mclass == anchor.mclass
1488 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1489 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1490 end
1491 assert resolved_receiver isa MClassType # It is the only remaining type
1492
1493 # Eh! The parameter is in the current class.
1494 # So we return the corresponding argument, no mater what!
1495 if resolved_receiver.mclass == self.mclass then
1496 var res = resolved_receiver.arguments[self.rank]
1497 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1498 return res
1499 end
1500
1501 if resolved_receiver.need_anchor then
1502 assert anchor != null
1503 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1504 end
1505 # Now, we can get the bound
1506 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1507 # The bound is exactly as declared in the "type" property, so we must resolve it again
1508 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1509
1510 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1511
1512 return res
1513 end
1514
1515 redef fun can_resolve_for(mtype, anchor, mmodule)
1516 do
1517 if mtype.need_anchor then
1518 assert anchor != null
1519 mtype = mtype.anchor_to(mmodule, anchor)
1520 end
1521 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1522 end
1523 end
1524
1525 # A type prefixed with "nullable"
1526 class MNullableType
1527 super MType
1528
1529 # The base type of the nullable type
1530 var mtype: MType
1531
1532 redef fun model do return self.mtype.model
1533
1534 init
1535 do
1536 self.to_s = "nullable {mtype}"
1537 end
1538
1539 redef var to_s: String is noinit
1540
1541 redef var full_name is lazy do return "nullable {mtype.full_name}"
1542
1543 redef var c_name is lazy do return "nullable__{mtype.c_name}"
1544
1545 redef fun need_anchor do return mtype.need_anchor
1546 redef fun as_nullable do return self
1547 redef fun as_notnullable do return mtype
1548 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1549 do
1550 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1551 return res.as_nullable
1552 end
1553
1554 redef fun can_resolve_for(mtype, anchor, mmodule)
1555 do
1556 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1557 end
1558
1559 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable`
1560 redef fun lookup_fixed(mmodule, resolved_receiver)
1561 do
1562 var t = mtype.lookup_fixed(mmodule, resolved_receiver)
1563 if t == mtype then return self
1564 return t.as_nullable
1565 end
1566
1567 redef fun depth do return self.mtype.depth
1568
1569 redef fun length do return self.mtype.length
1570
1571 redef fun collect_mclassdefs(mmodule)
1572 do
1573 assert not self.need_anchor
1574 return self.mtype.collect_mclassdefs(mmodule)
1575 end
1576
1577 redef fun collect_mclasses(mmodule)
1578 do
1579 assert not self.need_anchor
1580 return self.mtype.collect_mclasses(mmodule)
1581 end
1582
1583 redef fun collect_mtypes(mmodule)
1584 do
1585 assert not self.need_anchor
1586 return self.mtype.collect_mtypes(mmodule)
1587 end
1588 end
1589
1590 # The type of the only value null
1591 #
1592 # The is only one null type per model, see `MModel::null_type`.
1593 class MNullType
1594 super MType
1595 redef var model: Model
1596 redef fun to_s do return "null"
1597 redef fun full_name do return "null"
1598 redef fun c_name do return "null"
1599 redef fun as_nullable do return self
1600 redef fun need_anchor do return false
1601 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1602 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1603
1604 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1605
1606 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1607
1608 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1609 end
1610
1611 # A signature of a method
1612 class MSignature
1613 super MType
1614
1615 # The each parameter (in order)
1616 var mparameters: Array[MParameter]
1617
1618 # The return type (null for a procedure)
1619 var return_mtype: nullable MType
1620
1621 redef fun depth
1622 do
1623 var dmax = 0
1624 var t = self.return_mtype
1625 if t != null then dmax = t.depth
1626 for p in mparameters do
1627 var d = p.mtype.depth
1628 if d > dmax then dmax = d
1629 end
1630 return dmax + 1
1631 end
1632
1633 redef fun length
1634 do
1635 var res = 1
1636 var t = self.return_mtype
1637 if t != null then res += t.length
1638 for p in mparameters do
1639 res += p.mtype.length
1640 end
1641 return res
1642 end
1643
1644 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1645 init
1646 do
1647 var vararg_rank = -1
1648 for i in [0..mparameters.length[ do
1649 var parameter = mparameters[i]
1650 if parameter.is_vararg then
1651 assert vararg_rank == -1
1652 vararg_rank = i
1653 end
1654 end
1655 self.vararg_rank = vararg_rank
1656 end
1657
1658 # The rank of the ellipsis (`...`) for vararg (starting from 0).
1659 # value is -1 if there is no vararg.
1660 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1661 var vararg_rank: Int is noinit
1662
1663 # The number or parameters
1664 fun arity: Int do return mparameters.length
1665
1666 redef fun to_s
1667 do
1668 var b = new FlatBuffer
1669 if not mparameters.is_empty then
1670 b.append("(")
1671 for i in [0..mparameters.length[ do
1672 var mparameter = mparameters[i]
1673 if i > 0 then b.append(", ")
1674 b.append(mparameter.name)
1675 b.append(": ")
1676 b.append(mparameter.mtype.to_s)
1677 if mparameter.is_vararg then
1678 b.append("...")
1679 end
1680 end
1681 b.append(")")
1682 end
1683 var ret = self.return_mtype
1684 if ret != null then
1685 b.append(": ")
1686 b.append(ret.to_s)
1687 end
1688 return b.to_s
1689 end
1690
1691 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
1692 do
1693 var params = new Array[MParameter]
1694 for p in self.mparameters do
1695 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1696 end
1697 var ret = self.return_mtype
1698 if ret != null then
1699 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1700 end
1701 var res = new MSignature(params, ret)
1702 return res
1703 end
1704 end
1705
1706 # A parameter in a signature
1707 class MParameter
1708 super MEntity
1709
1710 # The name of the parameter
1711 redef var name: String
1712
1713 # The static type of the parameter
1714 var mtype: MType
1715
1716 # Is the parameter a vararg?
1717 var is_vararg: Bool
1718
1719 redef fun to_s
1720 do
1721 if is_vararg then
1722 return "{name}: {mtype}..."
1723 else
1724 return "{name}: {mtype}"
1725 end
1726 end
1727
1728 # Returns a new parameter with the `mtype` resolved.
1729 # See `MType::resolve_for` for details.
1730 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
1731 do
1732 if not self.mtype.need_anchor then return self
1733 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1734 var res = new MParameter(self.name, newtype, self.is_vararg)
1735 return res
1736 end
1737
1738 redef fun model do return mtype.model
1739 end
1740
1741 # A service (global property) that generalize method, attribute, etc.
1742 #
1743 # `MProperty` are global to the model; it means that a `MProperty` is not bound
1744 # to a specific `MModule` nor a specific `MClass`.
1745 #
1746 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
1747 # and the other in subclasses and in refinements.
1748 #
1749 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
1750 # of any dynamic type).
1751 # For instance, a call site "x.foo" is associated to a `MProperty`.
1752 abstract class MProperty
1753 super MEntity
1754
1755 # The associated MPropDef subclass.
1756 # The two specialization hierarchy are symmetric.
1757 type MPROPDEF: MPropDef
1758
1759 # The classdef that introduce the property
1760 # While a property is not bound to a specific module, or class,
1761 # the introducing mclassdef is used for naming and visibility
1762 var intro_mclassdef: MClassDef
1763
1764 # The (short) name of the property
1765 redef var name: String
1766
1767 # The canonical name of the property.
1768 #
1769 # It is the short-`name` prefixed by the short-name of the class and the full-name of the module.
1770 # Example: "my_project::my_module::MyClass::my_method"
1771 redef var full_name is lazy do
1772 return "{intro_mclassdef.mmodule.namespace_for(visibility)}::{intro_mclassdef.mclass.name}::{name}"
1773 end
1774
1775 redef var c_name is lazy do
1776 # FIXME use `namespace_for`
1777 return "{intro_mclassdef.mmodule.c_name}__{intro_mclassdef.mclass.name.to_cmangle}__{name.to_cmangle}"
1778 end
1779
1780 # The visibility of the property
1781 var visibility: MVisibility
1782
1783 # Is the property usable as an initializer?
1784 var is_autoinit = false is writable
1785
1786 init
1787 do
1788 intro_mclassdef.intro_mproperties.add(self)
1789 var model = intro_mclassdef.mmodule.model
1790 model.mproperties_by_name.add_one(name, self)
1791 model.mproperties.add(self)
1792 end
1793
1794 # All definitions of the property.
1795 # The first is the introduction,
1796 # The other are redefinitions (in refinements and in subclasses)
1797 var mpropdefs = new Array[MPROPDEF]
1798
1799 # The definition that introduces the property.
1800 #
1801 # Warning: such a definition may not exist in the early life of the object.
1802 # In this case, the method will abort.
1803 var intro: MPROPDEF is noinit
1804
1805 redef fun model do return intro.model
1806
1807 # Alias for `name`
1808 redef fun to_s do return name
1809
1810 # Return the most specific property definitions defined or inherited by a type.
1811 # The selection knows that refinement is stronger than specialization;
1812 # however, in case of conflict more than one property are returned.
1813 # If mtype does not know mproperty then an empty array is returned.
1814 #
1815 # If you want the really most specific property, then look at `lookup_first_definition`
1816 #
1817 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
1818 # ENSURE: `not mtype.has_mproperty(mmodule, self) == result.is_empty`
1819 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1820 do
1821 assert not mtype.need_anchor
1822 mtype = mtype.as_notnullable
1823
1824 var cache = self.lookup_definitions_cache[mmodule, mtype]
1825 if cache != null then return cache
1826
1827 #print "select prop {mproperty} for {mtype} in {self}"
1828 # First, select all candidates
1829 var candidates = new Array[MPROPDEF]
1830 for mpropdef in self.mpropdefs do
1831 # If the definition is not imported by the module, then skip
1832 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1833 # If the definition is not inherited by the type, then skip
1834 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1835 # Else, we keep it
1836 candidates.add(mpropdef)
1837 end
1838 # Fast track for only one candidate
1839 if candidates.length <= 1 then
1840 self.lookup_definitions_cache[mmodule, mtype] = candidates
1841 return candidates
1842 end
1843
1844 # Second, filter the most specific ones
1845 return select_most_specific(mmodule, candidates)
1846 end
1847
1848 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
1849
1850 # Return the most specific property definitions inherited by a type.
1851 # The selection knows that refinement is stronger than specialization;
1852 # however, in case of conflict more than one property are returned.
1853 # If mtype does not know mproperty then an empty array is returned.
1854 #
1855 # If you want the really most specific property, then look at `lookup_next_definition`
1856 #
1857 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
1858 # ENSURE: `not mtype.has_mproperty(mmodule, self) implies result.is_empty`
1859 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1860 do
1861 assert not mtype.need_anchor
1862 mtype = mtype.as_notnullable
1863
1864 # First, select all candidates
1865 var candidates = new Array[MPROPDEF]
1866 for mpropdef in self.mpropdefs do
1867 # If the definition is not imported by the module, then skip
1868 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1869 # If the definition is not inherited by the type, then skip
1870 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1871 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
1872 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
1873 # Else, we keep it
1874 candidates.add(mpropdef)
1875 end
1876 # Fast track for only one candidate
1877 if candidates.length <= 1 then return candidates
1878
1879 # Second, filter the most specific ones
1880 return select_most_specific(mmodule, candidates)
1881 end
1882
1883 # Return an array containing olny the most specific property definitions
1884 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
1885 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
1886 do
1887 var res = new Array[MPROPDEF]
1888 for pd1 in candidates do
1889 var cd1 = pd1.mclassdef
1890 var c1 = cd1.mclass
1891 var keep = true
1892 for pd2 in candidates do
1893 if pd2 == pd1 then continue # do not compare with self!
1894 var cd2 = pd2.mclassdef
1895 var c2 = cd2.mclass
1896 if c2.mclass_type == c1.mclass_type then
1897 if cd2.mmodule.in_importation < cd1.mmodule then
1898 # cd2 refines cd1; therefore we skip pd1
1899 keep = false
1900 break
1901 end
1902 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
1903 # cd2 < cd1; therefore we skip pd1
1904 keep = false
1905 break
1906 end
1907 end
1908 if keep then
1909 res.add(pd1)
1910 end
1911 end
1912 if res.is_empty then
1913 print "All lost! {candidates.join(", ")}"
1914 # FIXME: should be abort!
1915 end
1916 return res
1917 end
1918
1919 # Return the most specific definition in the linearization of `mtype`.
1920 #
1921 # If you want to know the next properties in the linearization,
1922 # look at `MPropDef::lookup_next_definition`.
1923 #
1924 # FIXME: the linearization is still unspecified
1925 #
1926 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
1927 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
1928 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
1929 do
1930 return lookup_all_definitions(mmodule, mtype).first
1931 end
1932
1933 # Return all definitions in a linearization order
1934 # Most specific first, most general last
1935 #
1936 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
1937 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
1938 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1939 do
1940 mtype = mtype.as_notnullable
1941
1942 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
1943 if cache != null then return cache
1944
1945 assert not mtype.need_anchor
1946 assert mtype.has_mproperty(mmodule, self)
1947
1948 #print "select prop {mproperty} for {mtype} in {self}"
1949 # First, select all candidates
1950 var candidates = new Array[MPROPDEF]
1951 for mpropdef in self.mpropdefs do
1952 # If the definition is not imported by the module, then skip
1953 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1954 # If the definition is not inherited by the type, then skip
1955 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1956 # Else, we keep it
1957 candidates.add(mpropdef)
1958 end
1959 # Fast track for only one candidate
1960 if candidates.length <= 1 then
1961 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
1962 return candidates
1963 end
1964
1965 mmodule.linearize_mpropdefs(candidates)
1966 candidates = candidates.reversed
1967 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
1968 return candidates
1969 end
1970
1971 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
1972 end
1973
1974 # A global method
1975 class MMethod
1976 super MProperty
1977
1978 redef type MPROPDEF: MMethodDef
1979
1980 # Is the property defined at the top_level of the module?
1981 # Currently such a property are stored in `Object`
1982 var is_toplevel: Bool = false is writable
1983
1984 # Is the property a constructor?
1985 # Warning, this property can be inherited by subclasses with or without being a constructor
1986 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
1987 var is_init: Bool = false is writable
1988
1989 # The constructor is a (the) root init with empty signature but a set of initializers
1990 var is_root_init: Bool = false is writable
1991
1992 # Is the property a 'new' constructor?
1993 var is_new: Bool = false is writable
1994
1995 # Is the property a legal constructor for a given class?
1996 # As usual, visibility is not considered.
1997 # FIXME not implemented
1998 fun is_init_for(mclass: MClass): Bool
1999 do
2000 return self.is_init
2001 end
2002 end
2003
2004 # A global attribute
2005 class MAttribute
2006 super MProperty
2007
2008 redef type MPROPDEF: MAttributeDef
2009
2010 end
2011
2012 # A global virtual type
2013 class MVirtualTypeProp
2014 super MProperty
2015
2016 redef type MPROPDEF: MVirtualTypeDef
2017
2018 # The formal type associated to the virtual type property
2019 var mvirtualtype = new MVirtualType(self)
2020 end
2021
2022 # A definition of a property (local property)
2023 #
2024 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
2025 # specific class definition (which belong to a specific module)
2026 abstract class MPropDef
2027 super MEntity
2028
2029 # The associated `MProperty` subclass.
2030 # the two specialization hierarchy are symmetric
2031 type MPROPERTY: MProperty
2032
2033 # Self class
2034 type MPROPDEF: MPropDef
2035
2036 # The class definition where the property definition is
2037 var mclassdef: MClassDef
2038
2039 # The associated global property
2040 var mproperty: MPROPERTY
2041
2042 # The origin of the definition
2043 var location: Location
2044
2045 init
2046 do
2047 mclassdef.mpropdefs.add(self)
2048 mproperty.mpropdefs.add(self)
2049 if mproperty.intro_mclassdef == mclassdef then
2050 assert not isset mproperty._intro
2051 mproperty.intro = self
2052 end
2053 self.to_s = "{mclassdef}#{mproperty}"
2054 end
2055
2056 # Actually the name of the `mproperty`
2057 redef fun name do return mproperty.name
2058
2059 # The full-name of mpropdefs combine the information about the `classdef` and the `mproperty`.
2060 #
2061 # Therefore the combination of identifiers is awful,
2062 # the worst case being
2063 #
2064 # * a property "p::m::A::x"
2065 # * redefined in a refinement of a class "q::n::B"
2066 # * in a module "r::o"
2067 # * so "r::o#q::n::B#p::m::A::x"
2068 #
2069 # Fortunately, the full-name is simplified when entities are repeated.
2070 # For the previous case, the simplest form is "p#A#x".
2071 redef var full_name is lazy do
2072 var res = new FlatBuffer
2073
2074 # The first part is the mclassdef. Worst case is "r::o#q::n::B"
2075 res.append mclassdef.full_name
2076
2077 res.append "#"
2078
2079 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2080 # intro are unambiguous in a class
2081 res.append name
2082 else
2083 # Just try to simplify each part
2084 if mclassdef.mmodule.mproject != mproperty.intro_mclassdef.mmodule.mproject then
2085 # precise "p::m" only if "p" != "r"
2086 res.append mproperty.intro_mclassdef.mmodule.full_name
2087 res.append "::"
2088 else if mproperty.visibility <= private_visibility then
2089 # Same project ("p"=="q"), but private visibility,
2090 # does the module part ("::m") need to be displayed
2091 if mclassdef.mmodule.namespace_for(mclassdef.mclass.visibility) != mproperty.intro_mclassdef.mmodule.mproject then
2092 res.append "::"
2093 res.append mproperty.intro_mclassdef.mmodule.name
2094 res.append "::"
2095 end
2096 end
2097 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2098 # precise "B" only if not the same class than "A"
2099 res.append mproperty.intro_mclassdef.name
2100 res.append "::"
2101 end
2102 # Always use the property name "x"
2103 res.append mproperty.name
2104 end
2105 return res.to_s
2106 end
2107
2108 redef var c_name is lazy do
2109 var res = new FlatBuffer
2110 res.append mclassdef.c_name
2111 res.append "___"
2112 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2113 res.append name.to_cmangle
2114 else
2115 if mclassdef.mmodule != mproperty.intro_mclassdef.mmodule then
2116 res.append mproperty.intro_mclassdef.mmodule.c_name
2117 res.append "__"
2118 end
2119 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2120 res.append mproperty.intro_mclassdef.name.to_cmangle
2121 res.append "__"
2122 end
2123 res.append mproperty.name.to_cmangle
2124 end
2125 return res.to_s
2126 end
2127
2128 redef fun model do return mclassdef.model
2129
2130 # Internal name combining the module, the class and the property
2131 # Example: "mymodule#MyClass#mymethod"
2132 redef var to_s: String is noinit
2133
2134 # Is self the definition that introduce the property?
2135 fun is_intro: Bool do return mproperty.intro == self
2136
2137 # Return the next definition in linearization of `mtype`.
2138 #
2139 # This method is used to determine what method is called by a super.
2140 #
2141 # REQUIRE: `not mtype.need_anchor`
2142 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
2143 do
2144 assert not mtype.need_anchor
2145
2146 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
2147 var i = mpropdefs.iterator
2148 while i.is_ok and i.item != self do i.next
2149 assert has_property: i.is_ok
2150 i.next
2151 assert has_next_property: i.is_ok
2152 return i.item
2153 end
2154 end
2155
2156 # A local definition of a method
2157 class MMethodDef
2158 super MPropDef
2159
2160 redef type MPROPERTY: MMethod
2161 redef type MPROPDEF: MMethodDef
2162
2163 # The signature attached to the property definition
2164 var msignature: nullable MSignature = null is writable
2165
2166 # The signature attached to the `new` call on a root-init
2167 # This is a concatenation of the signatures of the initializers
2168 #
2169 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2170 var new_msignature: nullable MSignature = null is writable
2171
2172 # List of initialisers to call in root-inits
2173 #
2174 # They could be setters or attributes
2175 #
2176 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2177 var initializers = new Array[MProperty]
2178
2179 # Is the method definition abstract?
2180 var is_abstract: Bool = false is writable
2181
2182 # Is the method definition intern?
2183 var is_intern = false is writable
2184
2185 # Is the method definition extern?
2186 var is_extern = false is writable
2187
2188 # An optional constant value returned in functions.
2189 #
2190 # Only some specific primitife value are accepted by engines.
2191 # Is used when there is no better implementation available.
2192 #
2193 # Currently used only for the implementation of the `--define`
2194 # command-line option.
2195 # SEE: module `mixin`.
2196 var constant_value: nullable Object = null is writable
2197 end
2198
2199 # A local definition of an attribute
2200 class MAttributeDef
2201 super MPropDef
2202
2203 redef type MPROPERTY: MAttribute
2204 redef type MPROPDEF: MAttributeDef
2205
2206 # The static type of the attribute
2207 var static_mtype: nullable MType = null is writable
2208 end
2209
2210 # A local definition of a virtual type
2211 class MVirtualTypeDef
2212 super MPropDef
2213
2214 redef type MPROPERTY: MVirtualTypeProp
2215 redef type MPROPDEF: MVirtualTypeDef
2216
2217 # The bound of the virtual type
2218 var bound: nullable MType = null is writable
2219
2220 # Is the bound fixed?
2221 var is_fixed = false is writable
2222 end
2223
2224 # A kind of class.
2225 #
2226 # * `abstract_kind`
2227 # * `concrete_kind`
2228 # * `interface_kind`
2229 # * `enum_kind`
2230 # * `extern_kind`
2231 #
2232 # Note this class is basically an enum.
2233 # FIXME: use a real enum once user-defined enums are available
2234 class MClassKind
2235 redef var to_s: String
2236
2237 # Is a constructor required?
2238 var need_init: Bool
2239
2240 # TODO: private init because enumeration.
2241
2242 # Can a class of kind `self` specializes a class of kine `other`?
2243 fun can_specialize(other: MClassKind): Bool
2244 do
2245 if other == interface_kind then return true # everybody can specialize interfaces
2246 if self == interface_kind or self == enum_kind then
2247 # no other case for interfaces
2248 return false
2249 else if self == extern_kind then
2250 # only compatible with themselves
2251 return self == other
2252 else if other == enum_kind or other == extern_kind then
2253 # abstract_kind and concrete_kind are incompatible
2254 return false
2255 end
2256 # remain only abstract_kind and concrete_kind
2257 return true
2258 end
2259 end
2260
2261 # The class kind `abstract`
2262 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", true)
2263 # The class kind `concrete`
2264 fun concrete_kind: MClassKind do return once new MClassKind("class", true)
2265 # The class kind `interface`
2266 fun interface_kind: MClassKind do return once new MClassKind("interface", false)
2267 # The class kind `enum`
2268 fun enum_kind: MClassKind do return once new MClassKind("enum", false)
2269 # The class kind `extern`
2270 fun extern_kind: MClassKind do return once new MClassKind("extern class", false)