modelize_class: adapt MClass and MClassDef creation to new mparameters
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class Model
34 # All known classes
35 var mclasses: Array[MClass] = new Array[MClass]
36
37 # All known properties
38 var mproperties: Array[MProperty] = new Array[MProperty]
39
40 # Hierarchy of class definition.
41 #
42 # Each classdef is associated with its super-classdefs in regard to
43 # its module of definition.
44 var mclassdef_hierarchy: POSet[MClassDef] = new POSet[MClassDef]
45
46 # Class-type hierarchy restricted to the introduction.
47 #
48 # The idea is that what is true on introduction is always true whatever
49 # the module considered.
50 # Therefore, this hierarchy is used for a fast positive subtype check.
51 #
52 # This poset will evolve in a monotonous way:
53 # * Two non connected nodes will remain unconnected
54 # * New nodes can appear with new edges
55 private var intro_mtype_specialization_hierarchy: POSet[MClassType] = new POSet[MClassType]
56
57 # Global overlapped class-type hierarchy.
58 # The hierarchy when all modules are combined.
59 # Therefore, this hierarchy is used for a fast negative subtype check.
60 #
61 # This poset will evolve in an anarchic way. Loops can even be created.
62 #
63 # FIXME decide what to do on loops
64 private var full_mtype_specialization_hierarchy: POSet[MClassType] = new POSet[MClassType]
65
66 # Collections of classes grouped by their short name
67 private var mclasses_by_name: MultiHashMap[String, MClass] = new MultiHashMap[String, MClass]
68
69 # Return all class named `name`.
70 #
71 # If such a class does not exist, null is returned
72 # (instead of an empty array)
73 #
74 # Visibility or modules are not considered
75 fun get_mclasses_by_name(name: String): nullable Array[MClass]
76 do
77 if mclasses_by_name.has_key(name) then
78 return mclasses_by_name[name]
79 else
80 return null
81 end
82 end
83
84 # Collections of properties grouped by their short name
85 private var mproperties_by_name: MultiHashMap[String, MProperty] = new MultiHashMap[String, MProperty]
86
87 # Return all properties named `name`.
88 #
89 # If such a property does not exist, null is returned
90 # (instead of an empty array)
91 #
92 # Visibility or modules are not considered
93 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
94 do
95 if not mproperties_by_name.has_key(name) then
96 return null
97 else
98 return mproperties_by_name[name]
99 end
100 end
101
102 # The only null type
103 var null_type: MNullType = new MNullType(self)
104
105 # Build an ordered tree with from `concerns`
106 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
107 var seen = new HashSet[MConcern]
108 var res = new ConcernsTree
109
110 var todo = new Array[MConcern]
111 todo.add_all mconcerns
112
113 while not todo.is_empty do
114 var c = todo.pop
115 if seen.has(c) then continue
116 var pc = c.parent_concern
117 if pc == null then
118 res.add(null, c)
119 else
120 res.add(pc, c)
121 todo.add(pc)
122 end
123 seen.add(c)
124 end
125
126 return res
127 end
128 end
129
130 # An OrderedTree that can be easily refined for display purposes
131 class ConcernsTree
132 super OrderedTree[MConcern]
133 end
134
135 redef class MModule
136 # All the classes introduced in the module
137 var intro_mclasses: Array[MClass] = new Array[MClass]
138
139 # All the class definitions of the module
140 # (introduction and refinement)
141 var mclassdefs: Array[MClassDef] = new Array[MClassDef]
142
143 # Does the current module has a given class `mclass`?
144 # Return true if the mmodule introduces, refines or imports a class.
145 # Visibility is not considered.
146 fun has_mclass(mclass: MClass): Bool
147 do
148 return self.in_importation <= mclass.intro_mmodule
149 end
150
151 # Full hierarchy of introduced ans imported classes.
152 #
153 # Create a new hierarchy got by flattening the classes for the module
154 # and its imported modules.
155 # Visibility is not considered.
156 #
157 # Note: this function is expensive and is usually used for the main
158 # module of a program only. Do not use it to do you own subtype
159 # functions.
160 fun flatten_mclass_hierarchy: POSet[MClass]
161 do
162 var res = self.flatten_mclass_hierarchy_cache
163 if res != null then return res
164 res = new POSet[MClass]
165 for m in self.in_importation.greaters do
166 for cd in m.mclassdefs do
167 var c = cd.mclass
168 res.add_node(c)
169 for s in cd.supertypes do
170 res.add_edge(c, s.mclass)
171 end
172 end
173 end
174 self.flatten_mclass_hierarchy_cache = res
175 return res
176 end
177
178 # Sort a given array of classes using the linerarization order of the module
179 # The most general is first, the most specific is last
180 fun linearize_mclasses(mclasses: Array[MClass])
181 do
182 self.flatten_mclass_hierarchy.sort(mclasses)
183 end
184
185 # Sort a given array of class definitions using the linerarization order of the module
186 # the refinement link is stronger than the specialisation link
187 # The most general is first, the most specific is last
188 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
189 do
190 var sorter = new MClassDefSorter(self)
191 sorter.sort(mclassdefs)
192 end
193
194 # Sort a given array of property definitions using the linerarization order of the module
195 # the refinement link is stronger than the specialisation link
196 # The most general is first, the most specific is last
197 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
198 do
199 var sorter = new MPropDefSorter(self)
200 sorter.sort(mpropdefs)
201 end
202
203 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
204
205 # The primitive type `Object`, the root of the class hierarchy
206 fun object_type: MClassType
207 do
208 var res = self.object_type_cache
209 if res != null then return res
210 res = self.get_primitive_class("Object").mclass_type
211 self.object_type_cache = res
212 return res
213 end
214
215 private var object_type_cache: nullable MClassType
216
217 # The type `Pointer`, super class to all extern classes
218 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
219
220 # The primitive type `Bool`
221 fun bool_type: MClassType
222 do
223 var res = self.bool_type_cache
224 if res != null then return res
225 res = self.get_primitive_class("Bool").mclass_type
226 self.bool_type_cache = res
227 return res
228 end
229
230 private var bool_type_cache: nullable MClassType
231
232 # The primitive type `Sys`, the main type of the program, if any
233 fun sys_type: nullable MClassType
234 do
235 var clas = self.model.get_mclasses_by_name("Sys")
236 if clas == null then return null
237 return get_primitive_class("Sys").mclass_type
238 end
239
240 fun finalizable_type: nullable MClassType
241 do
242 var clas = self.model.get_mclasses_by_name("Finalizable")
243 if clas == null then return null
244 return get_primitive_class("Finalizable").mclass_type
245 end
246
247 # Force to get the primitive class named `name` or abort
248 fun get_primitive_class(name: String): MClass
249 do
250 var cla = self.model.get_mclasses_by_name(name)
251 if cla == null then
252 if name == "Bool" then
253 var c = new MClass(self, name, null, enum_kind, public_visibility)
254 var cladef = new MClassDef(self, c.mclass_type, new Location(null, 0,0,0,0))
255 return c
256 end
257 print("Fatal Error: no primitive class {name}")
258 exit(1)
259 end
260 if cla.length != 1 then
261 var msg = "Fatal Error: more than one primitive class {name}:"
262 for c in cla do msg += " {c.full_name}"
263 print msg
264 exit(1)
265 end
266 return cla.first
267 end
268
269 # Try to get the primitive method named `name` on the type `recv`
270 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
271 do
272 var props = self.model.get_mproperties_by_name(name)
273 if props == null then return null
274 var res: nullable MMethod = null
275 for mprop in props do
276 assert mprop isa MMethod
277 var intro = mprop.intro_mclassdef
278 for mclassdef in recv.mclassdefs do
279 if not self.in_importation.greaters.has(mclassdef.mmodule) then continue
280 if not mclassdef.in_hierarchy.greaters.has(intro) then continue
281 if res == null then
282 res = mprop
283 else if res != mprop then
284 print("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
285 abort
286 end
287 end
288 end
289 return res
290 end
291 end
292
293 private class MClassDefSorter
294 super AbstractSorter[MClassDef]
295 var mmodule: MModule
296 redef fun compare(a, b)
297 do
298 var ca = a.mclass
299 var cb = b.mclass
300 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
301 return mmodule.model.mclassdef_hierarchy.compare(a, b)
302 end
303 end
304
305 private class MPropDefSorter
306 super AbstractSorter[MPropDef]
307 var mmodule: MModule
308 redef fun compare(pa, pb)
309 do
310 var a = pa.mclassdef
311 var b = pb.mclassdef
312 var ca = a.mclass
313 var cb = b.mclass
314 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
315 return mmodule.model.mclassdef_hierarchy.compare(a, b)
316 end
317 end
318
319 # A named class
320 #
321 # `MClass` are global to the model; it means that a `MClass` is not bound to a
322 # specific `MModule`.
323 #
324 # This characteristic helps the reasoning about classes in a program since a
325 # single `MClass` object always denote the same class.
326 #
327 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
328 # These do not really have properties nor belong to a hierarchy since the property and the
329 # hierarchy of a class depends of the refinement in the modules.
330 #
331 # Most services on classes require the precision of a module, and no one can asks what are
332 # the super-classes of a class nor what are properties of a class without precising what is
333 # the module considered.
334 #
335 # For instance, during the typing of a source-file, the module considered is the module of the file.
336 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
337 # *is the method `foo` exists in the class `Bar` in the current module?*
338 #
339 # During some global analysis, the module considered may be the main module of the program.
340 class MClass
341 super MEntity
342
343 # The module that introduce the class
344 # While classes are not bound to a specific module,
345 # the introducing module is used for naming an visibility
346 var intro_mmodule: MModule
347
348 # The short name of the class
349 # In Nit, the name of a class cannot evolve in refinements
350 redef var name: String
351
352 # The canonical name of the class
353 # Example: `"owner::module::MyClass"`
354 fun full_name: String
355 do
356 return "{self.intro_mmodule.full_name}::{name}"
357 end
358
359 # The number of generic formal parameters
360 # 0 if the class is not generic
361 var arity: Int
362
363 # Each generic formal parameters in order.
364 # is empty if the class is not generic
365 var mparameters = new Array[MParameterType]
366
367 # The kind of the class (interface, abstract class, etc.)
368 # In Nit, the kind of a class cannot evolve in refinements
369 var kind: MClassKind
370
371 # The visibility of the class
372 # In Nit, the visibility of a class cannot evolve in refinements
373 var visibility: MVisibility
374
375 init(intro_mmodule: MModule, name: String, parameter_names: nullable Array[String], kind: MClassKind, visibility: MVisibility)
376 do
377 self.intro_mmodule = intro_mmodule
378 self.name = name
379 if parameter_names == null then
380 self.arity = 0
381 else
382 self.arity = parameter_names.length
383 end
384 self.kind = kind
385 self.visibility = visibility
386 intro_mmodule.intro_mclasses.add(self)
387 var model = intro_mmodule.model
388 model.mclasses_by_name.add_one(name, self)
389 model.mclasses.add(self)
390
391 # Create the formal parameter types
392 if arity > 0 then
393 assert parameter_names != null
394 var mparametertypes = new Array[MParameterType]
395 for i in [0..arity[ do
396 var mparametertype = new MParameterType(self, i, parameter_names[i])
397 mparametertypes.add(mparametertype)
398 end
399 self.mparameters = mparametertypes
400 var mclass_type = new MGenericType(self, mparametertypes)
401 self.mclass_type = mclass_type
402 self.get_mtype_cache.add(mclass_type)
403 else
404 self.mclass_type = new MClassType(self)
405 end
406 end
407
408 redef fun model do return intro_mmodule.model
409
410 # All class definitions (introduction and refinements)
411 var mclassdefs: Array[MClassDef] = new Array[MClassDef]
412
413 # Alias for `name`
414 redef fun to_s do return self.name
415
416 # The definition that introduced the class
417 # Warning: the introduction is the first `MClassDef` object associated
418 # to self. If self is just created without having any associated
419 # definition, this method will abort
420 fun intro: MClassDef
421 do
422 assert has_a_first_definition: not mclassdefs.is_empty
423 return mclassdefs.first
424 end
425
426 # Return the class `self` in the class hierarchy of the module `mmodule`.
427 #
428 # SEE: `MModule::flatten_mclass_hierarchy`
429 # REQUIRE: `mmodule.has_mclass(self)`
430 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
431 do
432 return mmodule.flatten_mclass_hierarchy[self]
433 end
434
435 # The principal static type of the class.
436 #
437 # For non-generic class, mclass_type is the only `MClassType` based
438 # on self.
439 #
440 # For a generic class, the arguments are the formal parameters.
441 # i.e.: for the class Array[E:Object], the `mclass_type` is Array[E].
442 # If you want Array[Object] the see `MClassDef::bound_mtype`
443 #
444 # For generic classes, the mclass_type is also the way to get a formal
445 # generic parameter type.
446 #
447 # To get other types based on a generic class, see `get_mtype`.
448 #
449 # ENSURE: `mclass_type.mclass == self`
450 var mclass_type: MClassType
451
452 # Return a generic type based on the class
453 # Is the class is not generic, then the result is `mclass_type`
454 #
455 # REQUIRE: `mtype_arguments.length == self.arity`
456 fun get_mtype(mtype_arguments: Array[MType]): MClassType
457 do
458 assert mtype_arguments.length == self.arity
459 if self.arity == 0 then return self.mclass_type
460 for t in self.get_mtype_cache do
461 if t.arguments == mtype_arguments then
462 return t
463 end
464 end
465 var res = new MGenericType(self, mtype_arguments)
466 self.get_mtype_cache.add res
467 return res
468 end
469
470 private var get_mtype_cache: Array[MGenericType] = new Array[MGenericType]
471 end
472
473
474 # A definition (an introduction or a refinement) of a class in a module
475 #
476 # A `MClassDef` is associated with an explicit (or almost) definition of a
477 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
478 # a specific class and a specific module, and contains declarations like super-classes
479 # or properties.
480 #
481 # It is the class definitions that are the backbone of most things in the model:
482 # ClassDefs are defined with regard with other classdefs.
483 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
484 #
485 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
486 class MClassDef
487 super MEntity
488
489 # The module where the definition is
490 var mmodule: MModule
491
492 # The associated `MClass`
493 var mclass: MClass
494
495 # The bounded type associated to the mclassdef
496 #
497 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
498 # are the same type.
499 #
500 # Example:
501 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
502 # If you want Array[E], then see `mclass.mclass_type`
503 #
504 # ENSURE: `bound_mtype.mclass == self.mclass`
505 var bound_mtype: MClassType
506
507 # The origin of the definition
508 var location: Location
509
510 # Internal name combining the module and the class
511 # Example: "mymodule#MyClass"
512 redef var to_s: String
513
514 init(mmodule: MModule, bound_mtype: MClassType, location: Location)
515 do
516 self.bound_mtype = bound_mtype
517 self.mmodule = mmodule
518 self.mclass = bound_mtype.mclass
519 self.location = location
520 mmodule.mclassdefs.add(self)
521 mclass.mclassdefs.add(self)
522 self.to_s = "{mmodule}#{mclass}"
523 end
524
525 # Actually the name of the `mclass`
526 redef fun name do return mclass.name
527
528 redef fun model do return mmodule.model
529
530 # All declared super-types
531 # FIXME: quite ugly but not better idea yet
532 var supertypes: Array[MClassType] = new Array[MClassType]
533
534 # Register some super-types for the class (ie "super SomeType")
535 #
536 # The hierarchy must not already be set
537 # REQUIRE: `self.in_hierarchy == null`
538 fun set_supertypes(supertypes: Array[MClassType])
539 do
540 assert unique_invocation: self.in_hierarchy == null
541 var mmodule = self.mmodule
542 var model = mmodule.model
543 var mtype = self.bound_mtype
544
545 for supertype in supertypes do
546 self.supertypes.add(supertype)
547
548 # Register in full_type_specialization_hierarchy
549 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
550 # Register in intro_type_specialization_hierarchy
551 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
552 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
553 end
554 end
555
556 end
557
558 # Collect the super-types (set by set_supertypes) to build the hierarchy
559 #
560 # This function can only invoked once by class
561 # REQUIRE: `self.in_hierarchy == null`
562 # ENSURE: `self.in_hierarchy != null`
563 fun add_in_hierarchy
564 do
565 assert unique_invocation: self.in_hierarchy == null
566 var model = mmodule.model
567 var res = model.mclassdef_hierarchy.add_node(self)
568 self.in_hierarchy = res
569 var mtype = self.bound_mtype
570
571 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
572 # The simpliest way is to attach it to collect_mclassdefs
573 for mclassdef in mtype.collect_mclassdefs(mmodule) do
574 res.poset.add_edge(self, mclassdef)
575 end
576 end
577
578 # The view of the class definition in `mclassdef_hierarchy`
579 var in_hierarchy: nullable POSetElement[MClassDef] = null
580
581 # Is the definition the one that introduced `mclass`?
582 fun is_intro: Bool do return mclass.intro == self
583
584 # All properties introduced by the classdef
585 var intro_mproperties: Array[MProperty] = new Array[MProperty]
586
587 # All property definitions in the class (introductions and redefinitions)
588 var mpropdefs: Array[MPropDef] = new Array[MPropDef]
589 end
590
591 # A global static type
592 #
593 # MType are global to the model; it means that a `MType` is not bound to a
594 # specific `MModule`.
595 # This characteristic helps the reasoning about static types in a program
596 # since a single `MType` object always denote the same type.
597 #
598 # However, because a `MType` is global, it does not really have properties
599 # nor have subtypes to a hierarchy since the property and the class hierarchy
600 # depends of a module.
601 # Moreover, virtual types an formal generic parameter types also depends on
602 # a receiver to have sense.
603 #
604 # Therefore, most method of the types require a module and an anchor.
605 # The module is used to know what are the classes and the specialization
606 # links.
607 # The anchor is used to know what is the bound of the virtual types and formal
608 # generic parameter types.
609 #
610 # MType are not directly usable to get properties. See the `anchor_to` method
611 # and the `MClassType` class.
612 #
613 # FIXME: the order of the parameters is not the best. We mus pick on from:
614 # * foo(mmodule, anchor, othertype)
615 # * foo(othertype, anchor, mmodule)
616 # * foo(anchor, mmodule, othertype)
617 # * foo(othertype, mmodule, anchor)
618 abstract class MType
619 super MEntity
620
621 redef fun name do return to_s
622
623 # Return true if `self` is an subtype of `sup`.
624 # The typing is done using the standard typing policy of Nit.
625 #
626 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
627 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
628 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
629 do
630 var sub = self
631 if sub == sup then return true
632 if anchor == null then
633 assert not sub.need_anchor
634 assert not sup.need_anchor
635 else
636 assert sub.can_resolve_for(anchor, null, mmodule)
637 assert sup.can_resolve_for(anchor, null, mmodule)
638 end
639
640 # First, resolve the formal types to a common version in the receiver
641 # The trick here is that fixed formal type will be associed to the bound
642 # And unfixed formal types will be associed to a canonical formal type.
643 if sub isa MParameterType or sub isa MVirtualType then
644 assert anchor != null
645 sub = sub.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, false)
646 end
647 if sup isa MParameterType or sup isa MVirtualType then
648 assert anchor != null
649 sup = sup.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, false)
650 end
651
652 # Does `sup` accept null or not?
653 # Discard the nullable marker if it exists
654 var sup_accept_null = false
655 if sup isa MNullableType then
656 sup_accept_null = true
657 sup = sup.mtype
658 else if sup isa MNullType then
659 sup_accept_null = true
660 end
661
662 # Can `sub` provide null or not?
663 # Thus we can match with `sup_accept_null`
664 # Also discard the nullable marker if it exists
665 if sub isa MNullableType then
666 if not sup_accept_null then return false
667 sub = sub.mtype
668 else if sub isa MNullType then
669 return sup_accept_null
670 end
671 # Now the case of direct null and nullable is over.
672
673 # A unfixed formal type can only accept itself
674 if sup isa MParameterType or sup isa MVirtualType then
675 return sub == sup
676 end
677
678 # If `sub` is a formal type, then it is accepted if its bound is accepted
679 if sub isa MParameterType or sub isa MVirtualType then
680 assert anchor != null
681 sub = sub.anchor_to(mmodule, anchor)
682
683 # Manage the second layer of null/nullable
684 if sub isa MNullableType then
685 if not sup_accept_null then return false
686 sub = sub.mtype
687 else if sub isa MNullType then
688 return sup_accept_null
689 end
690 end
691
692 assert sub isa MClassType # It is the only remaining type
693
694 if sup isa MNullType then
695 # `sup` accepts only null
696 return false
697 end
698
699 assert sup isa MClassType # It is the only remaining type
700
701 # Now both are MClassType, we need to dig
702
703 if sub == sup then return true
704
705 if anchor == null then anchor = sub # UGLY: any anchor will work
706 var resolved_sub = sub.anchor_to(mmodule, anchor)
707 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
708 if res == false then return false
709 if not sup isa MGenericType then return true
710 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
711 assert sub2.mclass == sup.mclass
712 for i in [0..sup.mclass.arity[ do
713 var sub_arg = sub2.arguments[i]
714 var sup_arg = sup.arguments[i]
715 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
716 if res == false then return false
717 end
718 return true
719 end
720
721 # The base class type on which self is based
722 #
723 # This base type is used to get property (an internally to perform
724 # unsafe type comparison).
725 #
726 # Beware: some types (like null) are not based on a class thus this
727 # method will crash
728 #
729 # Basically, this function transform the virtual types and parameter
730 # types to their bounds.
731 #
732 # Example
733 # class A end
734 # class B super A end
735 # class X end
736 # class Y super X end
737 # class G[T: A]
738 # type U: X
739 # end
740 # class H
741 # super G[B]
742 # redef type U: Y
743 # end
744 # Map[T,U] anchor_to H #-> Map[B,Y]
745 #
746 # Explanation of the example:
747 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
748 # because "redef type U: Y". Therefore, Map[T, U] is bound to
749 # Map[B, Y]
750 #
751 # ENSURE: `not self.need_anchor implies result == self`
752 # ENSURE: `not result.need_anchor`
753 fun anchor_to(mmodule: MModule, anchor: MClassType): MType
754 do
755 if not need_anchor then return self
756 assert not anchor.need_anchor
757 # Just resolve to the anchor and clear all the virtual types
758 var res = self.resolve_for(anchor, null, mmodule, true)
759 assert not res.need_anchor
760 return res
761 end
762
763 # Does `self` contain a virtual type or a formal generic parameter type?
764 # In order to remove those types, you usually want to use `anchor_to`.
765 fun need_anchor: Bool do return true
766
767 # Return the supertype when adapted to a class.
768 #
769 # In Nit, for each super-class of a type, there is a equivalent super-type.
770 #
771 # Example:
772 # class G[T, U] end
773 # class H[V] super G[V, Bool] end
774 # H[Int] supertype_to G #-> G[Int, Bool]
775 #
776 # REQUIRE: `super_mclass` is a super-class of `self`
777 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
778 # ENSURE: `result.mclass = super_mclass`
779 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
780 do
781 if super_mclass.arity == 0 then return super_mclass.mclass_type
782 if self isa MClassType and self.mclass == super_mclass then return self
783 var resolved_self
784 if self.need_anchor then
785 assert anchor != null
786 resolved_self = self.anchor_to(mmodule, anchor)
787 else
788 resolved_self = self
789 end
790 var supertypes = resolved_self.collect_mtypes(mmodule)
791 for supertype in supertypes do
792 if supertype.mclass == super_mclass then
793 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
794 return supertype.resolve_for(self, anchor, mmodule, false)
795 end
796 end
797 abort
798 end
799
800 # Replace formals generic types in self with resolved values in `mtype`
801 # If `cleanup_virtual` is true, then virtual types are also replaced
802 # with their bounds.
803 #
804 # This function returns self if `need_anchor` is false.
805 #
806 # ## Example 1
807 #
808 # class G[E] end
809 # class H[F] super G[F] end
810 # class X[Z] end
811 #
812 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
813 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
814 #
815 # Explanation of the example:
816 # * Array[E].need_anchor is true because there is a formal generic parameter type E
817 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
818 # * Since "H[F] super G[F]", E is in fact F for H
819 # * More specifically, in H[Int], E is Int
820 # * So, in H[Int], Array[E] is Array[Int]
821 #
822 # This function is mainly used to inherit a signature.
823 # Because, unlike `anchor_to`, we do not want a full resolution of
824 # a type but only an adapted version of it.
825 #
826 # ## Example 2
827 #
828 # class A[E]
829 # fun foo(e:E):E is abstract
830 # end
831 # class B super A[Int] end
832 #
833 # The signature on foo is (e: E): E
834 # If we resolve the signature for B, we get (e:Int):Int
835 #
836 # ## Example 3
837 #
838 # class A[E]
839 # fun foo(e:E) is abstract
840 # end
841 # class B[F]
842 # var a: A[Array[F]]
843 # fun bar do a.foo(x) # <- x is here
844 # end
845 #
846 # The first question is: is foo available on `a`?
847 #
848 # The static type of a is `A[Array[F]]`, that is an open type.
849 # in order to find a method `foo`, whe must look at a resolved type.
850 #
851 # A[Array[F]].anchor_to(B[nullable Object]) #-> A[Array[nullable Object]]
852 #
853 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
854 #
855 # The next question is: what is the accepted types for `x`?
856 #
857 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
858 #
859 # E.resolve_for(A[Array[F]],B[nullable Object]) #-> Array[F]
860 #
861 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
862 #
863 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
864 # two function instead of one seems also to be a bad idea.
865 #
866 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
867 # ENSURE: `not self.need_anchor implies result == self`
868 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
869
870 # Can the type be resolved?
871 #
872 # In order to resolve open types, the formal types must make sence.
873 #
874 # ## Example
875 #
876 # class A[E]
877 # end
878 # class B[F]
879 # end
880 #
881 # * E.can_resolve_for(A[Int]) #-> true, E make sense in A
882 # * E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
883 # * B[E].can_resolve_for(A[F], B[Object]) #-> true,
884 # B[E] is a red hearing only the E is important,
885 # E make sense in A
886 #
887 # REQUIRE: `anchor != null implies not anchor.need_anchor`
888 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
889 # ENSURE: `not self.need_anchor implies result == true`
890 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
891
892 # Return the nullable version of the type
893 # If the type is already nullable then self is returned
894 fun as_nullable: MType
895 do
896 var res = self.as_nullable_cache
897 if res != null then return res
898 res = new MNullableType(self)
899 self.as_nullable_cache = res
900 return res
901 end
902
903 # Return the not nullable version of the type
904 # Is the type is already not nullable, then self is returned.
905 #
906 # Note: this just remove the `nullable` notation, but the result can still contains null.
907 # For instance if `self isa MNullType` or self is a a formal type bounded by a nullable type.
908 fun as_notnullable: MType
909 do
910 return self
911 end
912
913 private var as_nullable_cache: nullable MType = null
914
915
916 # The deph of the type seen as a tree.
917 #
918 # * A -> 1
919 # * G[A] -> 2
920 # * H[A, B] -> 2
921 # * H[G[A], B] -> 3
922 #
923 # Formal types have a depth of 1.
924 fun depth: Int
925 do
926 return 1
927 end
928
929 # The length of the type seen as a tree.
930 #
931 # * A -> 1
932 # * G[A] -> 2
933 # * H[A, B] -> 3
934 # * H[G[A], B] -> 4
935 #
936 # Formal types have a length of 1.
937 fun length: Int
938 do
939 return 1
940 end
941
942 # Compute all the classdefs inherited/imported.
943 # The returned set contains:
944 # * the class definitions from `mmodule` and its imported modules
945 # * the class definitions of this type and its super-types
946 #
947 # This function is used mainly internally.
948 #
949 # REQUIRE: `not self.need_anchor`
950 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
951
952 # Compute all the super-classes.
953 # This function is used mainly internally.
954 #
955 # REQUIRE: `not self.need_anchor`
956 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
957
958 # Compute all the declared super-types.
959 # Super-types are returned as declared in the classdefs (verbatim).
960 # This function is used mainly internally.
961 #
962 # REQUIRE: `not self.need_anchor`
963 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
964
965 # Is the property in self for a given module
966 # This method does not filter visibility or whatever
967 #
968 # REQUIRE: `not self.need_anchor`
969 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
970 do
971 assert not self.need_anchor
972 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
973 end
974 end
975
976 # A type based on a class.
977 #
978 # `MClassType` have properties (see `has_mproperty`).
979 class MClassType
980 super MType
981
982 # The associated class
983 var mclass: MClass
984
985 redef fun model do return self.mclass.intro_mmodule.model
986
987 private init(mclass: MClass)
988 do
989 self.mclass = mclass
990 end
991
992 # The formal arguments of the type
993 # ENSURE: `result.length == self.mclass.arity`
994 var arguments: Array[MType] = new Array[MType]
995
996 redef fun to_s do return mclass.to_s
997
998 redef fun need_anchor do return false
999
1000 redef fun anchor_to(mmodule: MModule, anchor: MClassType): MClassType
1001 do
1002 return super.as(MClassType)
1003 end
1004
1005 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1006
1007 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1008
1009 redef fun collect_mclassdefs(mmodule)
1010 do
1011 assert not self.need_anchor
1012 var cache = self.collect_mclassdefs_cache
1013 if not cache.has_key(mmodule) then
1014 self.collect_things(mmodule)
1015 end
1016 return cache[mmodule]
1017 end
1018
1019 redef fun collect_mclasses(mmodule)
1020 do
1021 assert not self.need_anchor
1022 var cache = self.collect_mclasses_cache
1023 if not cache.has_key(mmodule) then
1024 self.collect_things(mmodule)
1025 end
1026 return cache[mmodule]
1027 end
1028
1029 redef fun collect_mtypes(mmodule)
1030 do
1031 assert not self.need_anchor
1032 var cache = self.collect_mtypes_cache
1033 if not cache.has_key(mmodule) then
1034 self.collect_things(mmodule)
1035 end
1036 return cache[mmodule]
1037 end
1038
1039 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1040 private fun collect_things(mmodule: MModule)
1041 do
1042 var res = new HashSet[MClassDef]
1043 var seen = new HashSet[MClass]
1044 var types = new HashSet[MClassType]
1045 seen.add(self.mclass)
1046 var todo = [self.mclass]
1047 while not todo.is_empty do
1048 var mclass = todo.pop
1049 #print "process {mclass}"
1050 for mclassdef in mclass.mclassdefs do
1051 if not mmodule.in_importation <= mclassdef.mmodule then continue
1052 #print " process {mclassdef}"
1053 res.add(mclassdef)
1054 for supertype in mclassdef.supertypes do
1055 types.add(supertype)
1056 var superclass = supertype.mclass
1057 if seen.has(superclass) then continue
1058 #print " add {superclass}"
1059 seen.add(superclass)
1060 todo.add(superclass)
1061 end
1062 end
1063 end
1064 collect_mclassdefs_cache[mmodule] = res
1065 collect_mclasses_cache[mmodule] = seen
1066 collect_mtypes_cache[mmodule] = types
1067 end
1068
1069 private var collect_mclassdefs_cache: HashMap[MModule, Set[MClassDef]] = new HashMap[MModule, Set[MClassDef]]
1070 private var collect_mclasses_cache: HashMap[MModule, Set[MClass]] = new HashMap[MModule, Set[MClass]]
1071 private var collect_mtypes_cache: HashMap[MModule, Set[MClassType]] = new HashMap[MModule, Set[MClassType]]
1072
1073 end
1074
1075 # A type based on a generic class.
1076 # A generic type a just a class with additional formal generic arguments.
1077 class MGenericType
1078 super MClassType
1079
1080 private init(mclass: MClass, arguments: Array[MType])
1081 do
1082 super(mclass)
1083 assert self.mclass.arity == arguments.length
1084 self.arguments = arguments
1085
1086 self.need_anchor = false
1087 for t in arguments do
1088 if t.need_anchor then
1089 self.need_anchor = true
1090 break
1091 end
1092 end
1093
1094 self.to_s = "{mclass}[{arguments.join(", ")}]"
1095 end
1096
1097 # Recursively print the type of the arguments within brackets.
1098 # Example: `"Map[String, List[Int]]"`
1099 redef var to_s: String
1100
1101 redef var need_anchor: Bool
1102
1103 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1104 do
1105 if not need_anchor then return self
1106 assert can_resolve_for(mtype, anchor, mmodule)
1107 var types = new Array[MType]
1108 for t in arguments do
1109 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1110 end
1111 return mclass.get_mtype(types)
1112 end
1113
1114 redef fun can_resolve_for(mtype, anchor, mmodule)
1115 do
1116 if not need_anchor then return true
1117 for t in arguments do
1118 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1119 end
1120 return true
1121 end
1122
1123
1124 redef fun depth
1125 do
1126 var dmax = 0
1127 for a in self.arguments do
1128 var d = a.depth
1129 if d > dmax then dmax = d
1130 end
1131 return dmax + 1
1132 end
1133
1134 redef fun length
1135 do
1136 var res = 1
1137 for a in self.arguments do
1138 res += a.length
1139 end
1140 return res
1141 end
1142 end
1143
1144 # A virtual formal type.
1145 class MVirtualType
1146 super MType
1147
1148 # The property associated with the type.
1149 # Its the definitions of this property that determine the bound or the virtual type.
1150 var mproperty: MProperty
1151
1152 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1153
1154 # Lookup the bound for a given resolved_receiver
1155 # The result may be a other virtual type (or a parameter type)
1156 #
1157 # The result is returned exactly as declared in the "type" property (verbatim).
1158 #
1159 # In case of conflict, the method aborts.
1160 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1161 do
1162 assert not resolved_receiver.need_anchor
1163 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1164 if props.is_empty then
1165 abort
1166 else if props.length == 1 then
1167 return props.first.as(MVirtualTypeDef).bound.as(not null)
1168 end
1169 var types = new ArraySet[MType]
1170 for p in props do
1171 types.add(p.as(MVirtualTypeDef).bound.as(not null))
1172 end
1173 if types.length == 1 then
1174 return types.first
1175 end
1176 abort
1177 end
1178
1179 # Is the virtual type fixed for a given resolved_receiver?
1180 fun is_fixed(mmodule: MModule, resolved_receiver: MType): Bool
1181 do
1182 assert not resolved_receiver.need_anchor
1183 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1184 if props.is_empty then
1185 abort
1186 end
1187 for p in props do
1188 if p.as(MVirtualTypeDef).is_fixed then return true
1189 end
1190 return false
1191 end
1192
1193 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1194 do
1195 assert can_resolve_for(mtype, anchor, mmodule)
1196 # self is a virtual type declared (or inherited) in mtype
1197 # The point of the function it to get the bound of the virtual type that make sense for mtype
1198 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1199 #print "{class_name}: {self}/{mtype}/{anchor}?"
1200 var resolved_reciever
1201 if mtype.need_anchor then
1202 assert anchor != null
1203 resolved_reciever = mtype.resolve_for(anchor, null, mmodule, true)
1204 else
1205 resolved_reciever = mtype
1206 end
1207 # Now, we can get the bound
1208 var verbatim_bound = lookup_bound(mmodule, resolved_reciever)
1209 # The bound is exactly as declared in the "type" property, so we must resolve it again
1210 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1211 #print "{class_name}: {self}/{mtype}/{anchor} -> {self}/{resolved_reciever}/{anchor} -> {verbatim_bound}/{mtype}/{anchor} -> {res}"
1212
1213 # What to return here? There is a bunch a special cases:
1214 # If 'cleanup_virtual' we must return the resolved type, since we cannot return self
1215 if cleanup_virtual then return res
1216 # If the reciever is a intern class, then the virtual type cannot be redefined since there is no possible subclass. self is just fixed. so simply return the resolution
1217 if resolved_reciever isa MNullableType then resolved_reciever = resolved_reciever.mtype
1218 if resolved_reciever.as(MClassType).mclass.kind == enum_kind then return res
1219 # If the resolved type isa MVirtualType, it means that self was bound to it, and cannot be unbound. self is just fixed. so return the resolution.
1220 if res isa MVirtualType then return res
1221 # If we are final, just return the resolution
1222 if is_fixed(mmodule, resolved_reciever) then return res
1223 # It the resolved type isa intern class, then there is no possible valid redefinition is any potentiel subclass. self is just fixed. so simply return the resolution
1224 if res isa MClassType and res.mclass.kind == enum_kind then return res
1225 # TODO: Add 'fixed' virtual type in the specification.
1226 # TODO: What if bound to a MParameterType?
1227 # Note that Nullable types can always be redefined by the non nullable version, so there is no specific case on it.
1228
1229 # If anything apply, then `self' cannot be resolved, so return self
1230 return self
1231 end
1232
1233 redef fun can_resolve_for(mtype, anchor, mmodule)
1234 do
1235 if mtype.need_anchor then
1236 assert anchor != null
1237 mtype = mtype.anchor_to(mmodule, anchor)
1238 end
1239 return mtype.has_mproperty(mmodule, mproperty)
1240 end
1241
1242 redef fun to_s do return self.mproperty.to_s
1243
1244 init(mproperty: MProperty)
1245 do
1246 self.mproperty = mproperty
1247 end
1248 end
1249
1250 # The type associated the a formal parameter generic type of a class
1251 #
1252 # Each parameter type is associated to a specific class.
1253 # It means that all refinements of a same class "share" the parameter type,
1254 # but that a generic subclass has its own parameter types.
1255 #
1256 # However, in the sense of the meta-model, a parameter type of a class is
1257 # a valid type in a subclass. The "in the sense of the meta-model" is
1258 # important because, in the Nit language, the programmer cannot refers
1259 # directly to the parameter types of the super-classes.
1260 #
1261 # Example:
1262 # class A[E]
1263 # fun e: E is abstract
1264 # end
1265 # class B[F]
1266 # super A[Array[F]]
1267 # end
1268 # In the class definition B[F], `F` is a valid type but `E` is not.
1269 # However, `self.e` is a valid method call, and the signature of `e` is
1270 # declared `e: E`.
1271 #
1272 # Note that parameter types are shared among class refinements.
1273 # Therefore parameter only have an internal name (see `to_s` for details).
1274 # TODO: Add a `name_for` to get better messages.
1275 class MParameterType
1276 super MType
1277
1278 # The generic class where the parameter belong
1279 var mclass: MClass
1280
1281 redef fun model do return self.mclass.intro_mmodule.model
1282
1283 # The position of the parameter (0 for the first parameter)
1284 # FIXME: is `position` a better name?
1285 var rank: Int
1286
1287 redef var name
1288
1289 redef fun to_s do return name
1290
1291 # Resolve the bound for a given resolved_receiver
1292 # The result may be a other virtual type (or a parameter type)
1293 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1294 do
1295 assert not resolved_receiver.need_anchor
1296 var goalclass = self.mclass
1297 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1298 for t in supertypes do
1299 if t.mclass == goalclass then
1300 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1301 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1302 var res = t.arguments[self.rank]
1303 return res
1304 end
1305 end
1306 abort
1307 end
1308
1309 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1310 do
1311 assert can_resolve_for(mtype, anchor, mmodule)
1312 #print "{class_name}: {self}/{mtype}/{anchor}?"
1313
1314 if mtype isa MGenericType and mtype.mclass == self.mclass then
1315 var res = mtype.arguments[self.rank]
1316 if anchor != null and res.need_anchor then
1317 # Maybe the result can be resolved more if are bound to a final class
1318 var r2 = res.anchor_to(mmodule, anchor)
1319 if r2 isa MClassType and r2.mclass.kind == enum_kind then return r2
1320 end
1321 return res
1322 end
1323
1324 # self is a parameter type of mtype (or of a super-class of mtype)
1325 # The point of the function it to get the bound of the virtual type that make sense for mtype
1326 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1327 # FIXME: What happend here is far from clear. Thus this part must be validated and clarified
1328 var resolved_receiver
1329 if mtype.need_anchor then
1330 assert anchor != null
1331 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1332 else
1333 resolved_receiver = mtype
1334 end
1335 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1336 if resolved_receiver isa MParameterType then
1337 assert resolved_receiver.mclass == anchor.mclass
1338 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1339 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1340 end
1341 assert resolved_receiver isa MClassType
1342
1343 # Eh! The parameter is in the current class.
1344 # So we return the corresponding argument, no mater what!
1345 if resolved_receiver.mclass == self.mclass then
1346 var res = resolved_receiver.arguments[self.rank]
1347 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1348 return res
1349 end
1350
1351 if resolved_receiver.need_anchor then
1352 assert anchor != null
1353 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1354 end
1355 # Now, we can get the bound
1356 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1357 # The bound is exactly as declared in the "type" property, so we must resolve it again
1358 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1359
1360 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1361
1362 return res
1363 end
1364
1365 redef fun can_resolve_for(mtype, anchor, mmodule)
1366 do
1367 if mtype.need_anchor then
1368 assert anchor != null
1369 mtype = mtype.anchor_to(mmodule, anchor)
1370 end
1371 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1372 end
1373
1374 init(mclass: MClass, rank: Int, name: String)
1375 do
1376 self.mclass = mclass
1377 self.rank = rank
1378 self.name = name
1379 end
1380 end
1381
1382 # A type prefixed with "nullable"
1383 class MNullableType
1384 super MType
1385
1386 # The base type of the nullable type
1387 var mtype: MType
1388
1389 redef fun model do return self.mtype.model
1390
1391 init(mtype: MType)
1392 do
1393 self.mtype = mtype
1394 self.to_s = "nullable {mtype}"
1395 end
1396
1397 redef var to_s: String
1398
1399 redef fun need_anchor do return mtype.need_anchor
1400 redef fun as_nullable do return self
1401 redef fun as_notnullable do return mtype
1402 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1403 do
1404 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1405 return res.as_nullable
1406 end
1407
1408 redef fun can_resolve_for(mtype, anchor, mmodule)
1409 do
1410 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1411 end
1412
1413 redef fun depth do return self.mtype.depth
1414
1415 redef fun length do return self.mtype.length
1416
1417 redef fun collect_mclassdefs(mmodule)
1418 do
1419 assert not self.need_anchor
1420 return self.mtype.collect_mclassdefs(mmodule)
1421 end
1422
1423 redef fun collect_mclasses(mmodule)
1424 do
1425 assert not self.need_anchor
1426 return self.mtype.collect_mclasses(mmodule)
1427 end
1428
1429 redef fun collect_mtypes(mmodule)
1430 do
1431 assert not self.need_anchor
1432 return self.mtype.collect_mtypes(mmodule)
1433 end
1434 end
1435
1436 # The type of the only value null
1437 #
1438 # The is only one null type per model, see `MModel::null_type`.
1439 class MNullType
1440 super MType
1441 redef var model: Model
1442 protected init(model: Model)
1443 do
1444 self.model = model
1445 end
1446 redef fun to_s do return "null"
1447 redef fun as_nullable do return self
1448 redef fun need_anchor do return false
1449 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1450 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1451
1452 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1453
1454 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1455
1456 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1457 end
1458
1459 # A signature of a method
1460 class MSignature
1461 super MType
1462
1463 # The each parameter (in order)
1464 var mparameters: Array[MParameter]
1465
1466 # The return type (null for a procedure)
1467 var return_mtype: nullable MType
1468
1469 redef fun depth
1470 do
1471 var dmax = 0
1472 var t = self.return_mtype
1473 if t != null then dmax = t.depth
1474 for p in mparameters do
1475 var d = p.mtype.depth
1476 if d > dmax then dmax = d
1477 end
1478 return dmax + 1
1479 end
1480
1481 redef fun length
1482 do
1483 var res = 1
1484 var t = self.return_mtype
1485 if t != null then res += t.length
1486 for p in mparameters do
1487 res += p.mtype.length
1488 end
1489 return res
1490 end
1491
1492 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1493 init(mparameters: Array[MParameter], return_mtype: nullable MType)
1494 do
1495 var vararg_rank = -1
1496 for i in [0..mparameters.length[ do
1497 var parameter = mparameters[i]
1498 if parameter.is_vararg then
1499 assert vararg_rank == -1
1500 vararg_rank = i
1501 end
1502 end
1503 self.mparameters = mparameters
1504 self.return_mtype = return_mtype
1505 self.vararg_rank = vararg_rank
1506 end
1507
1508 # The rank of the ellipsis (`...`) for vararg (starting from 0).
1509 # value is -1 if there is no vararg.
1510 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1511 var vararg_rank: Int
1512
1513 # The number or parameters
1514 fun arity: Int do return mparameters.length
1515
1516 redef fun to_s
1517 do
1518 var b = new FlatBuffer
1519 if not mparameters.is_empty then
1520 b.append("(")
1521 for i in [0..mparameters.length[ do
1522 var mparameter = mparameters[i]
1523 if i > 0 then b.append(", ")
1524 b.append(mparameter.name)
1525 b.append(": ")
1526 b.append(mparameter.mtype.to_s)
1527 if mparameter.is_vararg then
1528 b.append("...")
1529 end
1530 end
1531 b.append(")")
1532 end
1533 var ret = self.return_mtype
1534 if ret != null then
1535 b.append(": ")
1536 b.append(ret.to_s)
1537 end
1538 return b.to_s
1539 end
1540
1541 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
1542 do
1543 var params = new Array[MParameter]
1544 for p in self.mparameters do
1545 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1546 end
1547 var ret = self.return_mtype
1548 if ret != null then
1549 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1550 end
1551 var res = new MSignature(params, ret)
1552 return res
1553 end
1554 end
1555
1556 # A parameter in a signature
1557 class MParameter
1558 super MEntity
1559
1560 # The name of the parameter
1561 redef var name: String
1562
1563 # The static type of the parameter
1564 var mtype: MType
1565
1566 # Is the parameter a vararg?
1567 var is_vararg: Bool
1568
1569 init(name: String, mtype: MType, is_vararg: Bool) do
1570 self.name = name
1571 self.mtype = mtype
1572 self.is_vararg = is_vararg
1573 end
1574
1575 redef fun to_s
1576 do
1577 if is_vararg then
1578 return "{name}: {mtype}..."
1579 else
1580 return "{name}: {mtype}"
1581 end
1582 end
1583
1584 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
1585 do
1586 if not self.mtype.need_anchor then return self
1587 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1588 var res = new MParameter(self.name, newtype, self.is_vararg)
1589 return res
1590 end
1591
1592 redef fun model do return mtype.model
1593 end
1594
1595 # A service (global property) that generalize method, attribute, etc.
1596 #
1597 # `MProperty` are global to the model; it means that a `MProperty` is not bound
1598 # to a specific `MModule` nor a specific `MClass`.
1599 #
1600 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
1601 # and the other in subclasses and in refinements.
1602 #
1603 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
1604 # of any dynamic type).
1605 # For instance, a call site "x.foo" is associated to a `MProperty`.
1606 abstract class MProperty
1607 super MEntity
1608
1609 # The associated MPropDef subclass.
1610 # The two specialization hierarchy are symmetric.
1611 type MPROPDEF: MPropDef
1612
1613 # The classdef that introduce the property
1614 # While a property is not bound to a specific module, or class,
1615 # the introducing mclassdef is used for naming and visibility
1616 var intro_mclassdef: MClassDef
1617
1618 # The (short) name of the property
1619 redef var name: String
1620
1621 # The canonical name of the property
1622 # Example: "owner::my_module::MyClass::my_method"
1623 fun full_name: String
1624 do
1625 return "{self.intro_mclassdef.mmodule.full_name}::{self.intro_mclassdef.mclass.name}::{name}"
1626 end
1627
1628 # The visibility of the property
1629 var visibility: MVisibility
1630
1631 init(intro_mclassdef: MClassDef, name: String, visibility: MVisibility)
1632 do
1633 self.intro_mclassdef = intro_mclassdef
1634 self.name = name
1635 self.visibility = visibility
1636 intro_mclassdef.intro_mproperties.add(self)
1637 var model = intro_mclassdef.mmodule.model
1638 model.mproperties_by_name.add_one(name, self)
1639 model.mproperties.add(self)
1640 end
1641
1642 # All definitions of the property.
1643 # The first is the introduction,
1644 # The other are redefinitions (in refinements and in subclasses)
1645 var mpropdefs: Array[MPROPDEF] = new Array[MPROPDEF]
1646
1647 # The definition that introduced the property
1648 # Warning: the introduction is the first `MPropDef` object
1649 # associated to self. If self is just created without having any
1650 # associated definition, this method will abort
1651 fun intro: MPROPDEF do return mpropdefs.first
1652
1653 redef fun model do return intro.model
1654
1655 # Alias for `name`
1656 redef fun to_s do return name
1657
1658 # Return the most specific property definitions defined or inherited by a type.
1659 # The selection knows that refinement is stronger than specialization;
1660 # however, in case of conflict more than one property are returned.
1661 # If mtype does not know mproperty then an empty array is returned.
1662 #
1663 # If you want the really most specific property, then look at `lookup_first_definition`
1664 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1665 do
1666 assert not mtype.need_anchor
1667 mtype = mtype.as_notnullable
1668
1669 var cache = self.lookup_definitions_cache[mmodule, mtype]
1670 if cache != null then return cache
1671
1672 #print "select prop {mproperty} for {mtype} in {self}"
1673 # First, select all candidates
1674 var candidates = new Array[MPROPDEF]
1675 for mpropdef in self.mpropdefs do
1676 # If the definition is not imported by the module, then skip
1677 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1678 # If the definition is not inherited by the type, then skip
1679 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1680 # Else, we keep it
1681 candidates.add(mpropdef)
1682 end
1683 # Fast track for only one candidate
1684 if candidates.length <= 1 then
1685 self.lookup_definitions_cache[mmodule, mtype] = candidates
1686 return candidates
1687 end
1688
1689 # Second, filter the most specific ones
1690 return select_most_specific(mmodule, candidates)
1691 end
1692
1693 private var lookup_definitions_cache: HashMap2[MModule, MType, Array[MPROPDEF]] = new HashMap2[MModule, MType, Array[MPROPDEF]]
1694
1695 # Return the most specific property definitions inherited by a type.
1696 # The selection knows that refinement is stronger than specialization;
1697 # however, in case of conflict more than one property are returned.
1698 # If mtype does not know mproperty then an empty array is returned.
1699 #
1700 # If you want the really most specific property, then look at `lookup_next_definition`
1701 #
1702 # FIXME: Move to `MPropDef`?
1703 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1704 do
1705 assert not mtype.need_anchor
1706 mtype = mtype.as_notnullable
1707
1708 # First, select all candidates
1709 var candidates = new Array[MPROPDEF]
1710 for mpropdef in self.mpropdefs do
1711 # If the definition is not imported by the module, then skip
1712 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1713 # If the definition is not inherited by the type, then skip
1714 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1715 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
1716 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
1717 # Else, we keep it
1718 candidates.add(mpropdef)
1719 end
1720 # Fast track for only one candidate
1721 if candidates.length <= 1 then return candidates
1722
1723 # Second, filter the most specific ones
1724 return select_most_specific(mmodule, candidates)
1725 end
1726
1727 # Return an array containing olny the most specific property definitions
1728 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
1729 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
1730 do
1731 var res = new Array[MPROPDEF]
1732 for pd1 in candidates do
1733 var cd1 = pd1.mclassdef
1734 var c1 = cd1.mclass
1735 var keep = true
1736 for pd2 in candidates do
1737 if pd2 == pd1 then continue # do not compare with self!
1738 var cd2 = pd2.mclassdef
1739 var c2 = cd2.mclass
1740 if c2.mclass_type == c1.mclass_type then
1741 if cd2.mmodule.in_importation < cd1.mmodule then
1742 # cd2 refines cd1; therefore we skip pd1
1743 keep = false
1744 break
1745 end
1746 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
1747 # cd2 < cd1; therefore we skip pd1
1748 keep = false
1749 break
1750 end
1751 end
1752 if keep then
1753 res.add(pd1)
1754 end
1755 end
1756 if res.is_empty then
1757 print "All lost! {candidates.join(", ")}"
1758 # FIXME: should be abort!
1759 end
1760 return res
1761 end
1762
1763 # Return the most specific definition in the linearization of `mtype`.
1764 #
1765 # If you want to know the next properties in the linearization,
1766 # look at `MPropDef::lookup_next_definition`.
1767 #
1768 # FIXME: the linearisation is still unspecified
1769 #
1770 # REQUIRE: `not mtype.need_anchor`
1771 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
1772 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
1773 do
1774 assert mtype.has_mproperty(mmodule, self)
1775 return lookup_all_definitions(mmodule, mtype).first
1776 end
1777
1778 # Return all definitions in a linearisation order
1779 # Most speficic first, most general last
1780 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1781 do
1782 assert not mtype.need_anchor
1783 mtype = mtype.as_notnullable
1784
1785 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
1786 if cache != null then return cache
1787
1788 #print "select prop {mproperty} for {mtype} in {self}"
1789 # First, select all candidates
1790 var candidates = new Array[MPROPDEF]
1791 for mpropdef in self.mpropdefs do
1792 # If the definition is not imported by the module, then skip
1793 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1794 # If the definition is not inherited by the type, then skip
1795 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1796 # Else, we keep it
1797 candidates.add(mpropdef)
1798 end
1799 # Fast track for only one candidate
1800 if candidates.length <= 1 then
1801 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
1802 return candidates
1803 end
1804
1805 mmodule.linearize_mpropdefs(candidates)
1806 candidates = candidates.reversed
1807 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
1808 return candidates
1809 end
1810
1811 private var lookup_all_definitions_cache: HashMap2[MModule, MType, Array[MPROPDEF]] = new HashMap2[MModule, MType, Array[MPROPDEF]]
1812 end
1813
1814 # A global method
1815 class MMethod
1816 super MProperty
1817
1818 redef type MPROPDEF: MMethodDef
1819
1820 init(intro_mclassdef: MClassDef, name: String, visibility: MVisibility)
1821 do
1822 super
1823 end
1824
1825 # Is the property defined at the top_level of the module?
1826 # Currently such a property are stored in `Object`
1827 var is_toplevel: Bool = false is writable
1828
1829 # Is the property a constructor?
1830 # Warning, this property can be inherited by subclasses with or without being a constructor
1831 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
1832 var is_init: Bool = false is writable
1833
1834 # The constructor is a (the) root init with empty signature but a set of initializers
1835 var is_root_init: Bool = false is writable
1836
1837 # The the property a 'new' contructor?
1838 var is_new: Bool = false is writable
1839
1840 # Is the property a legal constructor for a given class?
1841 # As usual, visibility is not considered.
1842 # FIXME not implemented
1843 fun is_init_for(mclass: MClass): Bool
1844 do
1845 return self.is_init
1846 end
1847 end
1848
1849 # A global attribute
1850 class MAttribute
1851 super MProperty
1852
1853 redef type MPROPDEF: MAttributeDef
1854
1855 init(intro_mclassdef: MClassDef, name: String, visibility: MVisibility)
1856 do
1857 super
1858 end
1859 end
1860
1861 # A global virtual type
1862 class MVirtualTypeProp
1863 super MProperty
1864
1865 redef type MPROPDEF: MVirtualTypeDef
1866
1867 init(intro_mclassdef: MClassDef, name: String, visibility: MVisibility)
1868 do
1869 super
1870 end
1871
1872 # The formal type associated to the virtual type property
1873 var mvirtualtype: MVirtualType = new MVirtualType(self)
1874 end
1875
1876 # A definition of a property (local property)
1877 #
1878 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
1879 # specific class definition (which belong to a specific module)
1880 abstract class MPropDef
1881 super MEntity
1882
1883 # The associated `MProperty` subclass.
1884 # the two specialization hierarchy are symmetric
1885 type MPROPERTY: MProperty
1886
1887 # Self class
1888 type MPROPDEF: MPropDef
1889
1890 # The origin of the definition
1891 var location: Location
1892
1893 # The class definition where the property definition is
1894 var mclassdef: MClassDef
1895
1896 # The associated global property
1897 var mproperty: MPROPERTY
1898
1899 init(mclassdef: MClassDef, mproperty: MPROPERTY, location: Location)
1900 do
1901 self.mclassdef = mclassdef
1902 self.mproperty = mproperty
1903 self.location = location
1904 mclassdef.mpropdefs.add(self)
1905 mproperty.mpropdefs.add(self)
1906 self.to_s = "{mclassdef}#{mproperty}"
1907 end
1908
1909 # Actually the name of the `mproperty`
1910 redef fun name do return mproperty.name
1911
1912 redef fun model do return mclassdef.model
1913
1914 # Internal name combining the module, the class and the property
1915 # Example: "mymodule#MyClass#mymethod"
1916 redef var to_s: String
1917
1918 # Is self the definition that introduce the property?
1919 fun is_intro: Bool do return mproperty.intro == self
1920
1921 # Return the next definition in linearization of `mtype`.
1922 #
1923 # This method is used to determine what method is called by a super.
1924 #
1925 # REQUIRE: `not mtype.need_anchor`
1926 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
1927 do
1928 assert not mtype.need_anchor
1929
1930 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
1931 var i = mpropdefs.iterator
1932 while i.is_ok and i.item != self do i.next
1933 assert has_property: i.is_ok
1934 i.next
1935 assert has_next_property: i.is_ok
1936 return i.item
1937 end
1938 end
1939
1940 # A local definition of a method
1941 class MMethodDef
1942 super MPropDef
1943
1944 redef type MPROPERTY: MMethod
1945 redef type MPROPDEF: MMethodDef
1946
1947 init(mclassdef: MClassDef, mproperty: MPROPERTY, location: Location)
1948 do
1949 super
1950 end
1951
1952 # The signature attached to the property definition
1953 var msignature: nullable MSignature = null is writable
1954
1955 # The signature attached to the `new` call on a root-init
1956 # This is a concatenation of the signatures of the initializers
1957 #
1958 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
1959 var new_msignature: nullable MSignature = null is writable
1960
1961 # List of initialisers to call in root-inits
1962 #
1963 # They could be setters or attributes
1964 #
1965 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
1966 var initializers = new Array[MProperty]
1967
1968 # Is the method definition abstract?
1969 var is_abstract: Bool = false is writable
1970
1971 # Is the method definition intern?
1972 var is_intern = false is writable
1973
1974 # Is the method definition extern?
1975 var is_extern = false is writable
1976 end
1977
1978 # A local definition of an attribute
1979 class MAttributeDef
1980 super MPropDef
1981
1982 redef type MPROPERTY: MAttribute
1983 redef type MPROPDEF: MAttributeDef
1984
1985 init(mclassdef: MClassDef, mproperty: MPROPERTY, location: Location)
1986 do
1987 super
1988 end
1989
1990 # The static type of the attribute
1991 var static_mtype: nullable MType = null is writable
1992 end
1993
1994 # A local definition of a virtual type
1995 class MVirtualTypeDef
1996 super MPropDef
1997
1998 redef type MPROPERTY: MVirtualTypeProp
1999 redef type MPROPDEF: MVirtualTypeDef
2000
2001 init(mclassdef: MClassDef, mproperty: MPROPERTY, location: Location)
2002 do
2003 super
2004 end
2005
2006 # The bound of the virtual type
2007 var bound: nullable MType = null is writable
2008
2009 # Is the bound fixed?
2010 var is_fixed = false is writable
2011 end
2012
2013 # A kind of class.
2014 #
2015 # * `abstract_kind`
2016 # * `concrete_kind`
2017 # * `interface_kind`
2018 # * `enum_kind`
2019 # * `extern_kind`
2020 #
2021 # Note this class is basically an enum.
2022 # FIXME: use a real enum once user-defined enums are available
2023 class MClassKind
2024 redef var to_s: String
2025
2026 # Is a constructor required?
2027 var need_init: Bool
2028 private init(s: String, need_init: Bool)
2029 do
2030 self.to_s = s
2031 self.need_init = need_init
2032 end
2033
2034 # Can a class of kind `self` specializes a class of kine `other`?
2035 fun can_specialize(other: MClassKind): Bool
2036 do
2037 if other == interface_kind then return true # everybody can specialize interfaces
2038 if self == interface_kind or self == enum_kind then
2039 # no other case for interfaces
2040 return false
2041 else if self == extern_kind then
2042 # only compatible with themselve
2043 return self == other
2044 else if other == enum_kind or other == extern_kind then
2045 # abstract_kind and concrete_kind are incompatible
2046 return false
2047 end
2048 # remain only abstract_kind and concrete_kind
2049 return true
2050 end
2051 end
2052
2053 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", true)
2054 fun concrete_kind: MClassKind do return once new MClassKind("class", true)
2055 fun interface_kind: MClassKind do return once new MClassKind("interface", false)
2056 fun enum_kind: MClassKind do return once new MClassKind("enum", false)
2057 fun extern_kind: MClassKind do return once new MClassKind("extern class", false)