src: finish documenting some module
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class Model
34 # All known classes
35 var mclasses = new Array[MClass]
36
37 # All known properties
38 var mproperties = new Array[MProperty]
39
40 # Hierarchy of class definition.
41 #
42 # Each classdef is associated with its super-classdefs in regard to
43 # its module of definition.
44 var mclassdef_hierarchy = new POSet[MClassDef]
45
46 # Class-type hierarchy restricted to the introduction.
47 #
48 # The idea is that what is true on introduction is always true whatever
49 # the module considered.
50 # Therefore, this hierarchy is used for a fast positive subtype check.
51 #
52 # This poset will evolve in a monotonous way:
53 # * Two non connected nodes will remain unconnected
54 # * New nodes can appear with new edges
55 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
56
57 # Global overlapped class-type hierarchy.
58 # The hierarchy when all modules are combined.
59 # Therefore, this hierarchy is used for a fast negative subtype check.
60 #
61 # This poset will evolve in an anarchic way. Loops can even be created.
62 #
63 # FIXME decide what to do on loops
64 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
65
66 # Collections of classes grouped by their short name
67 private var mclasses_by_name = new MultiHashMap[String, MClass]
68
69 # Return all class named `name`.
70 #
71 # If such a class does not exist, null is returned
72 # (instead of an empty array)
73 #
74 # Visibility or modules are not considered
75 fun get_mclasses_by_name(name: String): nullable Array[MClass]
76 do
77 if mclasses_by_name.has_key(name) then
78 return mclasses_by_name[name]
79 else
80 return null
81 end
82 end
83
84 # Collections of properties grouped by their short name
85 private var mproperties_by_name = new MultiHashMap[String, MProperty]
86
87 # Return all properties named `name`.
88 #
89 # If such a property does not exist, null is returned
90 # (instead of an empty array)
91 #
92 # Visibility or modules are not considered
93 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
94 do
95 if not mproperties_by_name.has_key(name) then
96 return null
97 else
98 return mproperties_by_name[name]
99 end
100 end
101
102 # The only null type
103 var null_type = new MNullType(self)
104
105 # Build an ordered tree with from `concerns`
106 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
107 var seen = new HashSet[MConcern]
108 var res = new ConcernsTree
109
110 var todo = new Array[MConcern]
111 todo.add_all mconcerns
112
113 while not todo.is_empty do
114 var c = todo.pop
115 if seen.has(c) then continue
116 var pc = c.parent_concern
117 if pc == null then
118 res.add(null, c)
119 else
120 res.add(pc, c)
121 todo.add(pc)
122 end
123 seen.add(c)
124 end
125
126 return res
127 end
128 end
129
130 # An OrderedTree that can be easily refined for display purposes
131 class ConcernsTree
132 super OrderedTree[MConcern]
133 end
134
135 redef class MModule
136 # All the classes introduced in the module
137 var intro_mclasses = new Array[MClass]
138
139 # All the class definitions of the module
140 # (introduction and refinement)
141 var mclassdefs = new Array[MClassDef]
142
143 # Does the current module has a given class `mclass`?
144 # Return true if the mmodule introduces, refines or imports a class.
145 # Visibility is not considered.
146 fun has_mclass(mclass: MClass): Bool
147 do
148 return self.in_importation <= mclass.intro_mmodule
149 end
150
151 # Full hierarchy of introduced ans imported classes.
152 #
153 # Create a new hierarchy got by flattening the classes for the module
154 # and its imported modules.
155 # Visibility is not considered.
156 #
157 # Note: this function is expensive and is usually used for the main
158 # module of a program only. Do not use it to do you own subtype
159 # functions.
160 fun flatten_mclass_hierarchy: POSet[MClass]
161 do
162 var res = self.flatten_mclass_hierarchy_cache
163 if res != null then return res
164 res = new POSet[MClass]
165 for m in self.in_importation.greaters do
166 for cd in m.mclassdefs do
167 var c = cd.mclass
168 res.add_node(c)
169 for s in cd.supertypes do
170 res.add_edge(c, s.mclass)
171 end
172 end
173 end
174 self.flatten_mclass_hierarchy_cache = res
175 return res
176 end
177
178 # Sort a given array of classes using the linearization order of the module
179 # The most general is first, the most specific is last
180 fun linearize_mclasses(mclasses: Array[MClass])
181 do
182 self.flatten_mclass_hierarchy.sort(mclasses)
183 end
184
185 # Sort a given array of class definitions using the linearization order of the module
186 # the refinement link is stronger than the specialisation link
187 # The most general is first, the most specific is last
188 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
189 do
190 var sorter = new MClassDefSorter(self)
191 sorter.sort(mclassdefs)
192 end
193
194 # Sort a given array of property definitions using the linearization order of the module
195 # the refinement link is stronger than the specialisation link
196 # The most general is first, the most specific is last
197 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
198 do
199 var sorter = new MPropDefSorter(self)
200 sorter.sort(mpropdefs)
201 end
202
203 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
204
205 # The primitive type `Object`, the root of the class hierarchy
206 fun object_type: MClassType
207 do
208 var res = self.object_type_cache
209 if res != null then return res
210 res = self.get_primitive_class("Object").mclass_type
211 self.object_type_cache = res
212 return res
213 end
214
215 private var object_type_cache: nullable MClassType
216
217 # The type `Pointer`, super class to all extern classes
218 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
219
220 # The primitive type `Bool`
221 fun bool_type: MClassType
222 do
223 var res = self.bool_type_cache
224 if res != null then return res
225 res = self.get_primitive_class("Bool").mclass_type
226 self.bool_type_cache = res
227 return res
228 end
229
230 private var bool_type_cache: nullable MClassType
231
232 # The primitive type `Sys`, the main type of the program, if any
233 fun sys_type: nullable MClassType
234 do
235 var clas = self.model.get_mclasses_by_name("Sys")
236 if clas == null then return null
237 return get_primitive_class("Sys").mclass_type
238 end
239
240 # The primitive type `Finalizable`
241 # Used to tag classes that need to be finalized.
242 fun finalizable_type: nullable MClassType
243 do
244 var clas = self.model.get_mclasses_by_name("Finalizable")
245 if clas == null then return null
246 return get_primitive_class("Finalizable").mclass_type
247 end
248
249 # Force to get the primitive class named `name` or abort
250 fun get_primitive_class(name: String): MClass
251 do
252 var cla = self.model.get_mclasses_by_name(name)
253 if cla == null then
254 if name == "Bool" and self.model.get_mclasses_by_name("Object") != null then
255 # Bool is injected because it is needed by engine to code the result
256 # of the implicit casts.
257 var c = new MClass(self, name, null, enum_kind, public_visibility)
258 var cladef = new MClassDef(self, c.mclass_type, new Location(null, 0,0,0,0))
259 cladef.set_supertypes([object_type])
260 cladef.add_in_hierarchy
261 return c
262 end
263 print("Fatal Error: no primitive class {name}")
264 exit(1)
265 end
266 if cla.length != 1 then
267 var msg = "Fatal Error: more than one primitive class {name}:"
268 for c in cla do msg += " {c.full_name}"
269 print msg
270 #exit(1)
271 end
272 return cla.first
273 end
274
275 # Try to get the primitive method named `name` on the type `recv`
276 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
277 do
278 var props = self.model.get_mproperties_by_name(name)
279 if props == null then return null
280 var res: nullable MMethod = null
281 for mprop in props do
282 assert mprop isa MMethod
283 var intro = mprop.intro_mclassdef
284 for mclassdef in recv.mclassdefs do
285 if not self.in_importation.greaters.has(mclassdef.mmodule) then continue
286 if not mclassdef.in_hierarchy.greaters.has(intro) then continue
287 if res == null then
288 res = mprop
289 else if res != mprop then
290 print("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
291 abort
292 end
293 end
294 end
295 return res
296 end
297 end
298
299 private class MClassDefSorter
300 super Comparator
301 redef type COMPARED: MClassDef
302 var mmodule: MModule
303 redef fun compare(a, b)
304 do
305 var ca = a.mclass
306 var cb = b.mclass
307 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
308 return mmodule.model.mclassdef_hierarchy.compare(a, b)
309 end
310 end
311
312 private class MPropDefSorter
313 super Comparator
314 redef type COMPARED: MPropDef
315 var mmodule: MModule
316 redef fun compare(pa, pb)
317 do
318 var a = pa.mclassdef
319 var b = pb.mclassdef
320 var ca = a.mclass
321 var cb = b.mclass
322 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
323 return mmodule.model.mclassdef_hierarchy.compare(a, b)
324 end
325 end
326
327 # A named class
328 #
329 # `MClass` are global to the model; it means that a `MClass` is not bound to a
330 # specific `MModule`.
331 #
332 # This characteristic helps the reasoning about classes in a program since a
333 # single `MClass` object always denote the same class.
334 #
335 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
336 # These do not really have properties nor belong to a hierarchy since the property and the
337 # hierarchy of a class depends of the refinement in the modules.
338 #
339 # Most services on classes require the precision of a module, and no one can asks what are
340 # the super-classes of a class nor what are properties of a class without precising what is
341 # the module considered.
342 #
343 # For instance, during the typing of a source-file, the module considered is the module of the file.
344 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
345 # *is the method `foo` exists in the class `Bar` in the current module?*
346 #
347 # During some global analysis, the module considered may be the main module of the program.
348 class MClass
349 super MEntity
350
351 # The module that introduce the class
352 # While classes are not bound to a specific module,
353 # the introducing module is used for naming an visibility
354 var intro_mmodule: MModule
355
356 # The short name of the class
357 # In Nit, the name of a class cannot evolve in refinements
358 redef var name: String
359
360 # The canonical name of the class
361 #
362 # It is the name of the class prefixed by the full_name of the `intro_mmodule`
363 # Example: `"owner::module::MyClass"`
364 redef var full_name is lazy do return "{self.intro_mmodule.full_name}::{name}"
365
366 redef var c_name is lazy do return "{intro_mmodule.c_name}__{name.to_cmangle}"
367
368 # The number of generic formal parameters
369 # 0 if the class is not generic
370 var arity: Int is noinit
371
372 # Each generic formal parameters in order.
373 # is empty if the class is not generic
374 var mparameters = new Array[MParameterType]
375
376 # Initialize `mparameters` from their names.
377 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
378 autoinit
379 do
380 if parameter_names == null then
381 self.arity = 0
382 else
383 self.arity = parameter_names.length
384 end
385
386 # Create the formal parameter types
387 if arity > 0 then
388 assert parameter_names != null
389 var mparametertypes = new Array[MParameterType]
390 for i in [0..arity[ do
391 var mparametertype = new MParameterType(self, i, parameter_names[i])
392 mparametertypes.add(mparametertype)
393 end
394 self.mparameters = mparametertypes
395 var mclass_type = new MGenericType(self, mparametertypes)
396 self.mclass_type = mclass_type
397 self.get_mtype_cache[mparametertypes] = mclass_type
398 else
399 self.mclass_type = new MClassType(self)
400 end
401 end
402
403 # The kind of the class (interface, abstract class, etc.)
404 # In Nit, the kind of a class cannot evolve in refinements
405 var kind: MClassKind
406
407 # The visibility of the class
408 # In Nit, the visibility of a class cannot evolve in refinements
409 var visibility: MVisibility
410
411 init
412 do
413 intro_mmodule.intro_mclasses.add(self)
414 var model = intro_mmodule.model
415 model.mclasses_by_name.add_one(name, self)
416 model.mclasses.add(self)
417 end
418
419 redef fun model do return intro_mmodule.model
420
421 # All class definitions (introduction and refinements)
422 var mclassdefs = new Array[MClassDef]
423
424 # Alias for `name`
425 redef fun to_s do return self.name
426
427 # The definition that introduces the class.
428 #
429 # Warning: such a definition may not exist in the early life of the object.
430 # In this case, the method will abort.
431 var intro: MClassDef is noinit
432
433 # Return the class `self` in the class hierarchy of the module `mmodule`.
434 #
435 # SEE: `MModule::flatten_mclass_hierarchy`
436 # REQUIRE: `mmodule.has_mclass(self)`
437 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
438 do
439 return mmodule.flatten_mclass_hierarchy[self]
440 end
441
442 # The principal static type of the class.
443 #
444 # For non-generic class, mclass_type is the only `MClassType` based
445 # on self.
446 #
447 # For a generic class, the arguments are the formal parameters.
448 # i.e.: for the class Array[E:Object], the `mclass_type` is Array[E].
449 # If you want Array[Object] the see `MClassDef::bound_mtype`
450 #
451 # For generic classes, the mclass_type is also the way to get a formal
452 # generic parameter type.
453 #
454 # To get other types based on a generic class, see `get_mtype`.
455 #
456 # ENSURE: `mclass_type.mclass == self`
457 var mclass_type: MClassType is noinit
458
459 # Return a generic type based on the class
460 # Is the class is not generic, then the result is `mclass_type`
461 #
462 # REQUIRE: `mtype_arguments.length == self.arity`
463 fun get_mtype(mtype_arguments: Array[MType]): MClassType
464 do
465 assert mtype_arguments.length == self.arity
466 if self.arity == 0 then return self.mclass_type
467 var res = get_mtype_cache.get_or_null(mtype_arguments)
468 if res != null then return res
469 res = new MGenericType(self, mtype_arguments)
470 self.get_mtype_cache[mtype_arguments.to_a] = res
471 return res
472 end
473
474 private var get_mtype_cache = new HashMap[Array[MType], MGenericType]
475 end
476
477
478 # A definition (an introduction or a refinement) of a class in a module
479 #
480 # A `MClassDef` is associated with an explicit (or almost) definition of a
481 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
482 # a specific class and a specific module, and contains declarations like super-classes
483 # or properties.
484 #
485 # It is the class definitions that are the backbone of most things in the model:
486 # ClassDefs are defined with regard with other classdefs.
487 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
488 #
489 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
490 class MClassDef
491 super MEntity
492
493 # The module where the definition is
494 var mmodule: MModule
495
496 # The associated `MClass`
497 var mclass: MClass is noinit
498
499 # The bounded type associated to the mclassdef
500 #
501 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
502 # are the same type.
503 #
504 # Example:
505 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
506 # If you want Array[E], then see `mclass.mclass_type`
507 #
508 # ENSURE: `bound_mtype.mclass == self.mclass`
509 var bound_mtype: MClassType
510
511 # The origin of the definition
512 var location: Location
513
514 # Internal name combining the module and the class
515 # Example: "mymodule#MyClass"
516 redef var to_s: String is noinit
517
518 init
519 do
520 self.mclass = bound_mtype.mclass
521 mmodule.mclassdefs.add(self)
522 mclass.mclassdefs.add(self)
523 if mclass.intro_mmodule == mmodule then
524 assert not isset mclass._intro
525 mclass.intro = self
526 end
527 self.to_s = "{mmodule}#{mclass}"
528 end
529
530 # Actually the name of the `mclass`
531 redef fun name do return mclass.name
532
533 # The module and class name separated by a '#'.
534 #
535 # The short-name of the class is used for introduction.
536 # Example: "my_module#MyClass"
537 #
538 # The full-name of the class is used for refinement.
539 # Example: "my_module#intro_module::MyClass"
540 redef var full_name is lazy do
541 if is_intro then
542 return "{mmodule.full_name}#{mclass.name}"
543 else
544 return "{mmodule.full_name}#{mclass.full_name}"
545 end
546 end
547
548 redef var c_name is lazy do
549 if is_intro then
550 return mclass.c_name
551 else
552 return "{mmodule.c_name}__{mclass.c_name.to_cmangle}"
553 end
554 end
555
556 redef fun model do return mmodule.model
557
558 # All declared super-types
559 # FIXME: quite ugly but not better idea yet
560 var supertypes = new Array[MClassType]
561
562 # Register some super-types for the class (ie "super SomeType")
563 #
564 # The hierarchy must not already be set
565 # REQUIRE: `self.in_hierarchy == null`
566 fun set_supertypes(supertypes: Array[MClassType])
567 do
568 assert unique_invocation: self.in_hierarchy == null
569 var mmodule = self.mmodule
570 var model = mmodule.model
571 var mtype = self.bound_mtype
572
573 for supertype in supertypes do
574 self.supertypes.add(supertype)
575
576 # Register in full_type_specialization_hierarchy
577 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
578 # Register in intro_type_specialization_hierarchy
579 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
580 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
581 end
582 end
583
584 end
585
586 # Collect the super-types (set by set_supertypes) to build the hierarchy
587 #
588 # This function can only invoked once by class
589 # REQUIRE: `self.in_hierarchy == null`
590 # ENSURE: `self.in_hierarchy != null`
591 fun add_in_hierarchy
592 do
593 assert unique_invocation: self.in_hierarchy == null
594 var model = mmodule.model
595 var res = model.mclassdef_hierarchy.add_node(self)
596 self.in_hierarchy = res
597 var mtype = self.bound_mtype
598
599 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
600 # The simpliest way is to attach it to collect_mclassdefs
601 for mclassdef in mtype.collect_mclassdefs(mmodule) do
602 res.poset.add_edge(self, mclassdef)
603 end
604 end
605
606 # The view of the class definition in `mclassdef_hierarchy`
607 var in_hierarchy: nullable POSetElement[MClassDef] = null
608
609 # Is the definition the one that introduced `mclass`?
610 fun is_intro: Bool do return mclass.intro == self
611
612 # All properties introduced by the classdef
613 var intro_mproperties = new Array[MProperty]
614
615 # All property definitions in the class (introductions and redefinitions)
616 var mpropdefs = new Array[MPropDef]
617 end
618
619 # A global static type
620 #
621 # MType are global to the model; it means that a `MType` is not bound to a
622 # specific `MModule`.
623 # This characteristic helps the reasoning about static types in a program
624 # since a single `MType` object always denote the same type.
625 #
626 # However, because a `MType` is global, it does not really have properties
627 # nor have subtypes to a hierarchy since the property and the class hierarchy
628 # depends of a module.
629 # Moreover, virtual types an formal generic parameter types also depends on
630 # a receiver to have sense.
631 #
632 # Therefore, most method of the types require a module and an anchor.
633 # The module is used to know what are the classes and the specialization
634 # links.
635 # The anchor is used to know what is the bound of the virtual types and formal
636 # generic parameter types.
637 #
638 # MType are not directly usable to get properties. See the `anchor_to` method
639 # and the `MClassType` class.
640 #
641 # FIXME: the order of the parameters is not the best. We mus pick on from:
642 # * foo(mmodule, anchor, othertype)
643 # * foo(othertype, anchor, mmodule)
644 # * foo(anchor, mmodule, othertype)
645 # * foo(othertype, mmodule, anchor)
646 abstract class MType
647 super MEntity
648
649 redef fun name do return to_s
650
651 # Return true if `self` is an subtype of `sup`.
652 # The typing is done using the standard typing policy of Nit.
653 #
654 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
655 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
656 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
657 do
658 var sub = self
659 if sub == sup then return true
660
661 #print "1.is {sub} a {sup}? ===="
662
663 if anchor == null then
664 assert not sub.need_anchor
665 assert not sup.need_anchor
666 else
667 # First, resolve the formal types to the simplest equivalent forms in the receiver
668 assert sub.can_resolve_for(anchor, null, mmodule)
669 sub = sub.lookup_fixed(mmodule, anchor)
670 assert sup.can_resolve_for(anchor, null, mmodule)
671 sup = sup.lookup_fixed(mmodule, anchor)
672 end
673
674 # Does `sup` accept null or not?
675 # Discard the nullable marker if it exists
676 var sup_accept_null = false
677 if sup isa MNullableType then
678 sup_accept_null = true
679 sup = sup.mtype
680 else if sup isa MNullType then
681 sup_accept_null = true
682 end
683
684 # Can `sub` provide null or not?
685 # Thus we can match with `sup_accept_null`
686 # Also discard the nullable marker if it exists
687 if sub isa MNullableType then
688 if not sup_accept_null then return false
689 sub = sub.mtype
690 else if sub isa MNullType then
691 return sup_accept_null
692 end
693 # Now the case of direct null and nullable is over.
694
695 # If `sub` is a formal type, then it is accepted if its bound is accepted
696 while sub isa MParameterType or sub isa MVirtualType do
697 #print "3.is {sub} a {sup}?"
698
699 # A unfixed formal type can only accept itself
700 if sub == sup then return true
701
702 assert anchor != null
703 sub = sub.lookup_bound(mmodule, anchor)
704
705 #print "3.is {sub} a {sup}?"
706
707 # Manage the second layer of null/nullable
708 if sub isa MNullableType then
709 if not sup_accept_null then return false
710 sub = sub.mtype
711 else if sub isa MNullType then
712 return sup_accept_null
713 end
714 end
715 #print "4.is {sub} a {sup}? <- no more resolution"
716
717 assert sub isa MClassType # It is the only remaining type
718
719 # A unfixed formal type can only accept itself
720 if sup isa MParameterType or sup isa MVirtualType then
721 return false
722 end
723
724 if sup isa MNullType then
725 # `sup` accepts only null
726 return false
727 end
728
729 assert sup isa MClassType # It is the only remaining type
730
731 # Now both are MClassType, we need to dig
732
733 if sub == sup then return true
734
735 if anchor == null then anchor = sub # UGLY: any anchor will work
736 var resolved_sub = sub.anchor_to(mmodule, anchor)
737 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
738 if res == false then return false
739 if not sup isa MGenericType then return true
740 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
741 assert sub2.mclass == sup.mclass
742 for i in [0..sup.mclass.arity[ do
743 var sub_arg = sub2.arguments[i]
744 var sup_arg = sup.arguments[i]
745 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
746 if res == false then return false
747 end
748 return true
749 end
750
751 # The base class type on which self is based
752 #
753 # This base type is used to get property (an internally to perform
754 # unsafe type comparison).
755 #
756 # Beware: some types (like null) are not based on a class thus this
757 # method will crash
758 #
759 # Basically, this function transform the virtual types and parameter
760 # types to their bounds.
761 #
762 # Example
763 #
764 # class A end
765 # class B super A end
766 # class X end
767 # class Y super X end
768 # class G[T: A]
769 # type U: X
770 # end
771 # class H
772 # super G[B]
773 # redef type U: Y
774 # end
775 #
776 # Map[T,U] anchor_to H #-> Map[B,Y]
777 #
778 # Explanation of the example:
779 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
780 # because "redef type U: Y". Therefore, Map[T, U] is bound to
781 # Map[B, Y]
782 #
783 # ENSURE: `not self.need_anchor implies result == self`
784 # ENSURE: `not result.need_anchor`
785 fun anchor_to(mmodule: MModule, anchor: MClassType): MType
786 do
787 if not need_anchor then return self
788 assert not anchor.need_anchor
789 # Just resolve to the anchor and clear all the virtual types
790 var res = self.resolve_for(anchor, null, mmodule, true)
791 assert not res.need_anchor
792 return res
793 end
794
795 # Does `self` contain a virtual type or a formal generic parameter type?
796 # In order to remove those types, you usually want to use `anchor_to`.
797 fun need_anchor: Bool do return true
798
799 # Return the supertype when adapted to a class.
800 #
801 # In Nit, for each super-class of a type, there is a equivalent super-type.
802 #
803 # Example:
804 #
805 # ~~~nitish
806 # class G[T, U] end
807 # class H[V] super G[V, Bool] end
808 #
809 # H[Int] supertype_to G #-> G[Int, Bool]
810 # ~~~
811 #
812 # REQUIRE: `super_mclass` is a super-class of `self`
813 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
814 # ENSURE: `result.mclass = super_mclass`
815 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
816 do
817 if super_mclass.arity == 0 then return super_mclass.mclass_type
818 if self isa MClassType and self.mclass == super_mclass then return self
819 var resolved_self
820 if self.need_anchor then
821 assert anchor != null
822 resolved_self = self.anchor_to(mmodule, anchor)
823 else
824 resolved_self = self
825 end
826 var supertypes = resolved_self.collect_mtypes(mmodule)
827 for supertype in supertypes do
828 if supertype.mclass == super_mclass then
829 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
830 return supertype.resolve_for(self, anchor, mmodule, false)
831 end
832 end
833 abort
834 end
835
836 # Replace formals generic types in self with resolved values in `mtype`
837 # If `cleanup_virtual` is true, then virtual types are also replaced
838 # with their bounds.
839 #
840 # This function returns self if `need_anchor` is false.
841 #
842 # ## Example 1
843 #
844 # ~~~
845 # class G[E] end
846 # class H[F] super G[F] end
847 # class X[Z] end
848 # ~~~
849 #
850 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
851 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
852 #
853 # Explanation of the example:
854 # * Array[E].need_anchor is true because there is a formal generic parameter type E
855 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
856 # * Since "H[F] super G[F]", E is in fact F for H
857 # * More specifically, in H[Int], E is Int
858 # * So, in H[Int], Array[E] is Array[Int]
859 #
860 # This function is mainly used to inherit a signature.
861 # Because, unlike `anchor_to`, we do not want a full resolution of
862 # a type but only an adapted version of it.
863 #
864 # ## Example 2
865 #
866 # ~~~
867 # class A[E]
868 # fun foo(e:E):E is abstract
869 # end
870 # class B super A[Int] end
871 # ~~~
872 #
873 # The signature on foo is (e: E): E
874 # If we resolve the signature for B, we get (e:Int):Int
875 #
876 # ## Example 3
877 #
878 # ~~~nitish
879 # class A[E]
880 # fun foo(e:E):E is abstract
881 # end
882 # class C[F]
883 # var a: A[Array[F]]
884 # fun bar do a.foo(x) # <- x is here
885 # end
886 # ~~~
887 #
888 # The first question is: is foo available on `a`?
889 #
890 # The static type of a is `A[Array[F]]`, that is an open type.
891 # in order to find a method `foo`, whe must look at a resolved type.
892 #
893 # A[Array[F]].anchor_to(C[nullable Object]) #-> A[Array[nullable Object]]
894 #
895 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
896 #
897 # The next question is: what is the accepted types for `x`?
898 #
899 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
900 #
901 # E.resolve_for(A[Array[F]],C[nullable Object]) #-> Array[F]
902 #
903 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
904 #
905 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
906 # two function instead of one seems also to be a bad idea.
907 #
908 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
909 # ENSURE: `not self.need_anchor implies result == self`
910 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
911
912 # Resolve formal type to its verbatim bound.
913 # If the type is not formal, just return self
914 #
915 # The result is returned exactly as declared in the "type" property (verbatim).
916 # So it could be another formal type.
917 #
918 # In case of conflict, the method aborts.
919 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self
920
921 # Resolve the formal type to its simplest equivalent form.
922 #
923 # Formal types are either free or fixed.
924 # When it is fixed, it means that it is equivalent with a simpler type.
925 # When a formal type is free, it means that it is only equivalent with itself.
926 # This method return the most simple equivalent type of `self`.
927 #
928 # This method is mainly used for subtype test in order to sanely compare fixed.
929 #
930 # By default, return self.
931 # See the redefinitions for specific behavior in each kind of type.
932 fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self
933
934 # Can the type be resolved?
935 #
936 # In order to resolve open types, the formal types must make sence.
937 #
938 # ## Example
939 #
940 # class A[E]
941 # end
942 # class B[F]
943 # end
944 #
945 # ~~~nitish
946 # E.can_resolve_for(A[Int]) #-> true, E make sense in A
947 #
948 # E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
949 #
950 # B[E].can_resolve_for(A[F], B[Object]) #-> true,
951 # # B[E] is a red hearing only the E is important,
952 # # E make sense in A
953 # ~~~
954 #
955 # REQUIRE: `anchor != null implies not anchor.need_anchor`
956 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
957 # ENSURE: `not self.need_anchor implies result == true`
958 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
959
960 # Return the nullable version of the type
961 # If the type is already nullable then self is returned
962 fun as_nullable: MType
963 do
964 var res = self.as_nullable_cache
965 if res != null then return res
966 res = new MNullableType(self)
967 self.as_nullable_cache = res
968 return res
969 end
970
971 # Return the not nullable version of the type
972 # Is the type is already not nullable, then self is returned.
973 #
974 # Note: this just remove the `nullable` notation, but the result can still contains null.
975 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
976 fun as_notnullable: MType
977 do
978 return self
979 end
980
981 private var as_nullable_cache: nullable MType = null
982
983
984 # The depth of the type seen as a tree.
985 #
986 # * A -> 1
987 # * G[A] -> 2
988 # * H[A, B] -> 2
989 # * H[G[A], B] -> 3
990 #
991 # Formal types have a depth of 1.
992 fun depth: Int
993 do
994 return 1
995 end
996
997 # The length of the type seen as a tree.
998 #
999 # * A -> 1
1000 # * G[A] -> 2
1001 # * H[A, B] -> 3
1002 # * H[G[A], B] -> 4
1003 #
1004 # Formal types have a length of 1.
1005 fun length: Int
1006 do
1007 return 1
1008 end
1009
1010 # Compute all the classdefs inherited/imported.
1011 # The returned set contains:
1012 # * the class definitions from `mmodule` and its imported modules
1013 # * the class definitions of this type and its super-types
1014 #
1015 # This function is used mainly internally.
1016 #
1017 # REQUIRE: `not self.need_anchor`
1018 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
1019
1020 # Compute all the super-classes.
1021 # This function is used mainly internally.
1022 #
1023 # REQUIRE: `not self.need_anchor`
1024 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
1025
1026 # Compute all the declared super-types.
1027 # Super-types are returned as declared in the classdefs (verbatim).
1028 # This function is used mainly internally.
1029 #
1030 # REQUIRE: `not self.need_anchor`
1031 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
1032
1033 # Is the property in self for a given module
1034 # This method does not filter visibility or whatever
1035 #
1036 # REQUIRE: `not self.need_anchor`
1037 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
1038 do
1039 assert not self.need_anchor
1040 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
1041 end
1042 end
1043
1044 # A type based on a class.
1045 #
1046 # `MClassType` have properties (see `has_mproperty`).
1047 class MClassType
1048 super MType
1049
1050 # The associated class
1051 var mclass: MClass
1052
1053 redef fun model do return self.mclass.intro_mmodule.model
1054
1055 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1056
1057 # The formal arguments of the type
1058 # ENSURE: `result.length == self.mclass.arity`
1059 var arguments = new Array[MType]
1060
1061 redef fun to_s do return mclass.to_s
1062
1063 redef fun full_name do return mclass.full_name
1064
1065 redef fun c_name do return mclass.c_name
1066
1067 redef fun need_anchor do return false
1068
1069 redef fun anchor_to(mmodule: MModule, anchor: MClassType): MClassType
1070 do
1071 return super.as(MClassType)
1072 end
1073
1074 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1075
1076 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1077
1078 redef fun collect_mclassdefs(mmodule)
1079 do
1080 assert not self.need_anchor
1081 var cache = self.collect_mclassdefs_cache
1082 if not cache.has_key(mmodule) then
1083 self.collect_things(mmodule)
1084 end
1085 return cache[mmodule]
1086 end
1087
1088 redef fun collect_mclasses(mmodule)
1089 do
1090 if collect_mclasses_last_module == mmodule then return collect_mclasses_last_module_cache
1091 assert not self.need_anchor
1092 var cache = self.collect_mclasses_cache
1093 if not cache.has_key(mmodule) then
1094 self.collect_things(mmodule)
1095 end
1096 var res = cache[mmodule]
1097 collect_mclasses_last_module = mmodule
1098 collect_mclasses_last_module_cache = res
1099 return res
1100 end
1101
1102 private var collect_mclasses_last_module: nullable MModule = null
1103 private var collect_mclasses_last_module_cache: Set[MClass] is noinit
1104
1105 redef fun collect_mtypes(mmodule)
1106 do
1107 assert not self.need_anchor
1108 var cache = self.collect_mtypes_cache
1109 if not cache.has_key(mmodule) then
1110 self.collect_things(mmodule)
1111 end
1112 return cache[mmodule]
1113 end
1114
1115 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1116 private fun collect_things(mmodule: MModule)
1117 do
1118 var res = new HashSet[MClassDef]
1119 var seen = new HashSet[MClass]
1120 var types = new HashSet[MClassType]
1121 seen.add(self.mclass)
1122 var todo = [self.mclass]
1123 while not todo.is_empty do
1124 var mclass = todo.pop
1125 #print "process {mclass}"
1126 for mclassdef in mclass.mclassdefs do
1127 if not mmodule.in_importation <= mclassdef.mmodule then continue
1128 #print " process {mclassdef}"
1129 res.add(mclassdef)
1130 for supertype in mclassdef.supertypes do
1131 types.add(supertype)
1132 var superclass = supertype.mclass
1133 if seen.has(superclass) then continue
1134 #print " add {superclass}"
1135 seen.add(superclass)
1136 todo.add(superclass)
1137 end
1138 end
1139 end
1140 collect_mclassdefs_cache[mmodule] = res
1141 collect_mclasses_cache[mmodule] = seen
1142 collect_mtypes_cache[mmodule] = types
1143 end
1144
1145 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1146 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1147 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1148
1149 end
1150
1151 # A type based on a generic class.
1152 # A generic type a just a class with additional formal generic arguments.
1153 class MGenericType
1154 super MClassType
1155
1156 redef var arguments
1157
1158 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1159
1160 init
1161 do
1162 assert self.mclass.arity == arguments.length
1163
1164 self.need_anchor = false
1165 for t in arguments do
1166 if t.need_anchor then
1167 self.need_anchor = true
1168 break
1169 end
1170 end
1171
1172 self.to_s = "{mclass}[{arguments.join(", ")}]"
1173 end
1174
1175 # The short-name of the class, then the full-name of each type arguments within brackets.
1176 # Example: `"Map[String, List[Int]]"`
1177 redef var to_s: String is noinit
1178
1179 # The full-name of the class, then the full-name of each type arguments within brackets.
1180 # Example: `"standard::Map[standard::String, standard::List[standard::Int]]"`
1181 redef var full_name is lazy do
1182 var args = new Array[String]
1183 for t in arguments do
1184 args.add t.full_name
1185 end
1186 return "{mclass.full_name}[{args.join(", ")}]}"
1187 end
1188
1189 redef var c_name is lazy do
1190 var res = mclass.c_name
1191 # Note: because the arity is known, a prefix notation is enough
1192 for t in arguments do
1193 res += "__"
1194 res += t.c_name
1195 end
1196 return res.to_s
1197 end
1198
1199 redef var need_anchor: Bool is noinit
1200
1201 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1202 do
1203 if not need_anchor then return self
1204 assert can_resolve_for(mtype, anchor, mmodule)
1205 var types = new Array[MType]
1206 for t in arguments do
1207 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1208 end
1209 return mclass.get_mtype(types)
1210 end
1211
1212 redef fun can_resolve_for(mtype, anchor, mmodule)
1213 do
1214 if not need_anchor then return true
1215 for t in arguments do
1216 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1217 end
1218 return true
1219 end
1220
1221
1222 redef fun depth
1223 do
1224 var dmax = 0
1225 for a in self.arguments do
1226 var d = a.depth
1227 if d > dmax then dmax = d
1228 end
1229 return dmax + 1
1230 end
1231
1232 redef fun length
1233 do
1234 var res = 1
1235 for a in self.arguments do
1236 res += a.length
1237 end
1238 return res
1239 end
1240 end
1241
1242 # A virtual formal type.
1243 class MVirtualType
1244 super MType
1245
1246 # The property associated with the type.
1247 # Its the definitions of this property that determine the bound or the virtual type.
1248 var mproperty: MVirtualTypeProp
1249
1250 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1251
1252 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1253 do
1254 return lookup_single_definition(mmodule, resolved_receiver).bound.as(not null)
1255 end
1256
1257 private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef
1258 do
1259 assert not resolved_receiver.need_anchor
1260 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1261 if props.is_empty then
1262 abort
1263 else if props.length == 1 then
1264 return props.first
1265 end
1266 var types = new ArraySet[MType]
1267 var res = props.first
1268 for p in props do
1269 types.add(p.bound.as(not null))
1270 if not res.is_fixed then res = p
1271 end
1272 if types.length == 1 then
1273 return res
1274 end
1275 abort
1276 end
1277
1278 # A VT is fixed when:
1279 # * the VT is (re-)defined with the annotation `is fixed`
1280 # * the VT is (indirectly) bound to an enum class (see `enum_kind`) since there is no subtype possible
1281 # * the receiver is an enum class since there is no subtype possible
1282 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1283 do
1284 assert not resolved_receiver.need_anchor
1285 resolved_receiver = resolved_receiver.as_notnullable
1286 assert resolved_receiver isa MClassType # It is the only remaining type
1287
1288 var prop = lookup_single_definition(mmodule, resolved_receiver)
1289 var res = prop.bound.as(not null)
1290
1291 # Recursively lookup the fixed result
1292 res = res.lookup_fixed(mmodule, resolved_receiver)
1293
1294 # 1. For a fixed VT, return the resolved bound
1295 if prop.is_fixed then return res
1296
1297 # 2. For a enum boud, return the bound
1298 if res isa MClassType and res.mclass.kind == enum_kind then return res
1299
1300 # 3. for a enum receiver return the bound
1301 if resolved_receiver.mclass.kind == enum_kind then return res
1302
1303 return self
1304 end
1305
1306 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1307 do
1308 if not cleanup_virtual then return self
1309 assert can_resolve_for(mtype, anchor, mmodule)
1310 # self is a virtual type declared (or inherited) in mtype
1311 # The point of the function it to get the bound of the virtual type that make sense for mtype
1312 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1313 #print "{class_name}: {self}/{mtype}/{anchor}?"
1314 var resolved_receiver
1315 if mtype.need_anchor then
1316 assert anchor != null
1317 resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true)
1318 else
1319 resolved_receiver = mtype
1320 end
1321 # Now, we can get the bound
1322 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1323 # The bound is exactly as declared in the "type" property, so we must resolve it again
1324 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1325
1326 return res
1327 end
1328
1329 redef fun can_resolve_for(mtype, anchor, mmodule)
1330 do
1331 if mtype.need_anchor then
1332 assert anchor != null
1333 mtype = mtype.anchor_to(mmodule, anchor)
1334 end
1335 return mtype.has_mproperty(mmodule, mproperty)
1336 end
1337
1338 redef fun to_s do return self.mproperty.to_s
1339
1340 redef fun full_name do return self.mproperty.full_name
1341
1342 redef fun c_name do return self.mproperty.c_name
1343 end
1344
1345 # The type associated to a formal parameter generic type of a class
1346 #
1347 # Each parameter type is associated to a specific class.
1348 # It means that all refinements of a same class "share" the parameter type,
1349 # but that a generic subclass has its own parameter types.
1350 #
1351 # However, in the sense of the meta-model, a parameter type of a class is
1352 # a valid type in a subclass. The "in the sense of the meta-model" is
1353 # important because, in the Nit language, the programmer cannot refers
1354 # directly to the parameter types of the super-classes.
1355 #
1356 # Example:
1357 #
1358 # class A[E]
1359 # fun e: E is abstract
1360 # end
1361 # class B[F]
1362 # super A[Array[F]]
1363 # end
1364 #
1365 # In the class definition B[F], `F` is a valid type but `E` is not.
1366 # However, `self.e` is a valid method call, and the signature of `e` is
1367 # declared `e: E`.
1368 #
1369 # Note that parameter types are shared among class refinements.
1370 # Therefore parameter only have an internal name (see `to_s` for details).
1371 class MParameterType
1372 super MType
1373
1374 # The generic class where the parameter belong
1375 var mclass: MClass
1376
1377 redef fun model do return self.mclass.intro_mmodule.model
1378
1379 # The position of the parameter (0 for the first parameter)
1380 # FIXME: is `position` a better name?
1381 var rank: Int
1382
1383 redef var name
1384
1385 redef fun to_s do return name
1386
1387 redef var full_name is lazy do return "{mclass.full_name}::{name}"
1388
1389 redef var c_name is lazy do return mclass.c_name + "__" + "#{name}".to_cmangle
1390
1391 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1392 do
1393 assert not resolved_receiver.need_anchor
1394 resolved_receiver = resolved_receiver.as_notnullable
1395 assert resolved_receiver isa MClassType # It is the only remaining type
1396 var goalclass = self.mclass
1397 if resolved_receiver.mclass == goalclass then
1398 return resolved_receiver.arguments[self.rank]
1399 end
1400 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1401 for t in supertypes do
1402 if t.mclass == goalclass then
1403 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1404 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1405 var res = t.arguments[self.rank]
1406 return res
1407 end
1408 end
1409 abort
1410 end
1411
1412 # A PT is fixed when:
1413 # * Its bound is a enum class (see `enum_kind`).
1414 # The PT is just useless, but it is still a case.
1415 # * More usually, the `resolved_receiver` is a subclass of `self.mclass`,
1416 # so it is necessarily fixed in a `super` clause, either with a normal type
1417 # or with another PT.
1418 # See `resolve_for` for examples about related issues.
1419 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1420 do
1421 assert not resolved_receiver.need_anchor
1422 resolved_receiver = resolved_receiver.as_notnullable
1423 assert resolved_receiver isa MClassType # It is the only remaining type
1424 var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false)
1425 return res
1426 end
1427
1428 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1429 do
1430 assert can_resolve_for(mtype, anchor, mmodule)
1431 #print "{class_name}: {self}/{mtype}/{anchor}?"
1432
1433 if mtype isa MGenericType and mtype.mclass == self.mclass then
1434 var res = mtype.arguments[self.rank]
1435 if anchor != null and res.need_anchor then
1436 # Maybe the result can be resolved more if are bound to a final class
1437 var r2 = res.anchor_to(mmodule, anchor)
1438 if r2 isa MClassType and r2.mclass.kind == enum_kind then return r2
1439 end
1440 return res
1441 end
1442
1443 # self is a parameter type of mtype (or of a super-class of mtype)
1444 # The point of the function it to get the bound of the virtual type that make sense for mtype
1445 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1446 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1447 var resolved_receiver
1448 if mtype.need_anchor then
1449 assert anchor != null
1450 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1451 else
1452 resolved_receiver = mtype
1453 end
1454 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1455 if resolved_receiver isa MParameterType then
1456 assert resolved_receiver.mclass == anchor.mclass
1457 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1458 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1459 end
1460 assert resolved_receiver isa MClassType # It is the only remaining type
1461
1462 # Eh! The parameter is in the current class.
1463 # So we return the corresponding argument, no mater what!
1464 if resolved_receiver.mclass == self.mclass then
1465 var res = resolved_receiver.arguments[self.rank]
1466 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1467 return res
1468 end
1469
1470 if resolved_receiver.need_anchor then
1471 assert anchor != null
1472 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1473 end
1474 # Now, we can get the bound
1475 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1476 # The bound is exactly as declared in the "type" property, so we must resolve it again
1477 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1478
1479 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1480
1481 return res
1482 end
1483
1484 redef fun can_resolve_for(mtype, anchor, mmodule)
1485 do
1486 if mtype.need_anchor then
1487 assert anchor != null
1488 mtype = mtype.anchor_to(mmodule, anchor)
1489 end
1490 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1491 end
1492 end
1493
1494 # A type prefixed with "nullable"
1495 class MNullableType
1496 super MType
1497
1498 # The base type of the nullable type
1499 var mtype: MType
1500
1501 redef fun model do return self.mtype.model
1502
1503 init
1504 do
1505 self.to_s = "nullable {mtype}"
1506 end
1507
1508 redef var to_s: String is noinit
1509
1510 redef var full_name is lazy do return "nullable {mtype.full_name}"
1511
1512 redef var c_name is lazy do return "nullable__{mtype.c_name}"
1513
1514 redef fun need_anchor do return mtype.need_anchor
1515 redef fun as_nullable do return self
1516 redef fun as_notnullable do return mtype
1517 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1518 do
1519 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1520 return res.as_nullable
1521 end
1522
1523 redef fun can_resolve_for(mtype, anchor, mmodule)
1524 do
1525 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1526 end
1527
1528 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable`
1529 redef fun lookup_fixed(mmodule, resolved_receiver)
1530 do
1531 var t = mtype.lookup_fixed(mmodule, resolved_receiver)
1532 if t == mtype then return self
1533 return t.as_nullable
1534 end
1535
1536 redef fun depth do return self.mtype.depth
1537
1538 redef fun length do return self.mtype.length
1539
1540 redef fun collect_mclassdefs(mmodule)
1541 do
1542 assert not self.need_anchor
1543 return self.mtype.collect_mclassdefs(mmodule)
1544 end
1545
1546 redef fun collect_mclasses(mmodule)
1547 do
1548 assert not self.need_anchor
1549 return self.mtype.collect_mclasses(mmodule)
1550 end
1551
1552 redef fun collect_mtypes(mmodule)
1553 do
1554 assert not self.need_anchor
1555 return self.mtype.collect_mtypes(mmodule)
1556 end
1557 end
1558
1559 # The type of the only value null
1560 #
1561 # The is only one null type per model, see `MModel::null_type`.
1562 class MNullType
1563 super MType
1564 redef var model: Model
1565 redef fun to_s do return "null"
1566 redef fun full_name do return "null"
1567 redef fun c_name do return "null"
1568 redef fun as_nullable do return self
1569 redef fun need_anchor do return false
1570 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1571 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1572
1573 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1574
1575 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1576
1577 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1578 end
1579
1580 # A signature of a method
1581 class MSignature
1582 super MType
1583
1584 # The each parameter (in order)
1585 var mparameters: Array[MParameter]
1586
1587 # The return type (null for a procedure)
1588 var return_mtype: nullable MType
1589
1590 redef fun depth
1591 do
1592 var dmax = 0
1593 var t = self.return_mtype
1594 if t != null then dmax = t.depth
1595 for p in mparameters do
1596 var d = p.mtype.depth
1597 if d > dmax then dmax = d
1598 end
1599 return dmax + 1
1600 end
1601
1602 redef fun length
1603 do
1604 var res = 1
1605 var t = self.return_mtype
1606 if t != null then res += t.length
1607 for p in mparameters do
1608 res += p.mtype.length
1609 end
1610 return res
1611 end
1612
1613 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1614 init
1615 do
1616 var vararg_rank = -1
1617 for i in [0..mparameters.length[ do
1618 var parameter = mparameters[i]
1619 if parameter.is_vararg then
1620 assert vararg_rank == -1
1621 vararg_rank = i
1622 end
1623 end
1624 self.vararg_rank = vararg_rank
1625 end
1626
1627 # The rank of the ellipsis (`...`) for vararg (starting from 0).
1628 # value is -1 if there is no vararg.
1629 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1630 var vararg_rank: Int is noinit
1631
1632 # The number or parameters
1633 fun arity: Int do return mparameters.length
1634
1635 redef fun to_s
1636 do
1637 var b = new FlatBuffer
1638 if not mparameters.is_empty then
1639 b.append("(")
1640 for i in [0..mparameters.length[ do
1641 var mparameter = mparameters[i]
1642 if i > 0 then b.append(", ")
1643 b.append(mparameter.name)
1644 b.append(": ")
1645 b.append(mparameter.mtype.to_s)
1646 if mparameter.is_vararg then
1647 b.append("...")
1648 end
1649 end
1650 b.append(")")
1651 end
1652 var ret = self.return_mtype
1653 if ret != null then
1654 b.append(": ")
1655 b.append(ret.to_s)
1656 end
1657 return b.to_s
1658 end
1659
1660 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
1661 do
1662 var params = new Array[MParameter]
1663 for p in self.mparameters do
1664 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1665 end
1666 var ret = self.return_mtype
1667 if ret != null then
1668 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1669 end
1670 var res = new MSignature(params, ret)
1671 return res
1672 end
1673 end
1674
1675 # A parameter in a signature
1676 class MParameter
1677 super MEntity
1678
1679 # The name of the parameter
1680 redef var name: String
1681
1682 # The static type of the parameter
1683 var mtype: MType
1684
1685 # Is the parameter a vararg?
1686 var is_vararg: Bool
1687
1688 redef fun to_s
1689 do
1690 if is_vararg then
1691 return "{name}: {mtype}..."
1692 else
1693 return "{name}: {mtype}"
1694 end
1695 end
1696
1697 # Returns a new parameter with the `mtype` resolved.
1698 # See `MType::resolve_for` for details.
1699 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
1700 do
1701 if not self.mtype.need_anchor then return self
1702 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1703 var res = new MParameter(self.name, newtype, self.is_vararg)
1704 return res
1705 end
1706
1707 redef fun model do return mtype.model
1708 end
1709
1710 # A service (global property) that generalize method, attribute, etc.
1711 #
1712 # `MProperty` are global to the model; it means that a `MProperty` is not bound
1713 # to a specific `MModule` nor a specific `MClass`.
1714 #
1715 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
1716 # and the other in subclasses and in refinements.
1717 #
1718 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
1719 # of any dynamic type).
1720 # For instance, a call site "x.foo" is associated to a `MProperty`.
1721 abstract class MProperty
1722 super MEntity
1723
1724 # The associated MPropDef subclass.
1725 # The two specialization hierarchy are symmetric.
1726 type MPROPDEF: MPropDef
1727
1728 # The classdef that introduce the property
1729 # While a property is not bound to a specific module, or class,
1730 # the introducing mclassdef is used for naming and visibility
1731 var intro_mclassdef: MClassDef
1732
1733 # The (short) name of the property
1734 redef var name: String
1735
1736 # The canonical name of the property.
1737 #
1738 # It is the short-`name` prefixed by the short-name of the class and the full-name of the module.
1739 # Example: "my_project::my_module::MyClass::my_method"
1740 redef var full_name is lazy do
1741 return "{intro_mclassdef.mmodule.full_name}::{intro_mclassdef.mclass.name}::{name}"
1742 end
1743
1744 redef var c_name is lazy do
1745 return "{intro_mclassdef.mmodule.c_name}__{intro_mclassdef.mclass.c_name}__{name.to_cmangle}"
1746 end
1747
1748 # The visibility of the property
1749 var visibility: MVisibility
1750
1751 init
1752 do
1753 intro_mclassdef.intro_mproperties.add(self)
1754 var model = intro_mclassdef.mmodule.model
1755 model.mproperties_by_name.add_one(name, self)
1756 model.mproperties.add(self)
1757 end
1758
1759 # All definitions of the property.
1760 # The first is the introduction,
1761 # The other are redefinitions (in refinements and in subclasses)
1762 var mpropdefs = new Array[MPROPDEF]
1763
1764 # The definition that introduces the property.
1765 #
1766 # Warning: such a definition may not exist in the early life of the object.
1767 # In this case, the method will abort.
1768 var intro: MPROPDEF is noinit
1769
1770 redef fun model do return intro.model
1771
1772 # Alias for `name`
1773 redef fun to_s do return name
1774
1775 # Return the most specific property definitions defined or inherited by a type.
1776 # The selection knows that refinement is stronger than specialization;
1777 # however, in case of conflict more than one property are returned.
1778 # If mtype does not know mproperty then an empty array is returned.
1779 #
1780 # If you want the really most specific property, then look at `lookup_first_definition`
1781 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1782 do
1783 assert not mtype.need_anchor
1784 mtype = mtype.as_notnullable
1785
1786 var cache = self.lookup_definitions_cache[mmodule, mtype]
1787 if cache != null then return cache
1788
1789 #print "select prop {mproperty} for {mtype} in {self}"
1790 # First, select all candidates
1791 var candidates = new Array[MPROPDEF]
1792 for mpropdef in self.mpropdefs do
1793 # If the definition is not imported by the module, then skip
1794 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1795 # If the definition is not inherited by the type, then skip
1796 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1797 # Else, we keep it
1798 candidates.add(mpropdef)
1799 end
1800 # Fast track for only one candidate
1801 if candidates.length <= 1 then
1802 self.lookup_definitions_cache[mmodule, mtype] = candidates
1803 return candidates
1804 end
1805
1806 # Second, filter the most specific ones
1807 return select_most_specific(mmodule, candidates)
1808 end
1809
1810 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
1811
1812 # Return the most specific property definitions inherited by a type.
1813 # The selection knows that refinement is stronger than specialization;
1814 # however, in case of conflict more than one property are returned.
1815 # If mtype does not know mproperty then an empty array is returned.
1816 #
1817 # If you want the really most specific property, then look at `lookup_next_definition`
1818 #
1819 # FIXME: Move to `MPropDef`?
1820 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1821 do
1822 assert not mtype.need_anchor
1823 mtype = mtype.as_notnullable
1824
1825 # First, select all candidates
1826 var candidates = new Array[MPROPDEF]
1827 for mpropdef in self.mpropdefs do
1828 # If the definition is not imported by the module, then skip
1829 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1830 # If the definition is not inherited by the type, then skip
1831 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1832 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
1833 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
1834 # Else, we keep it
1835 candidates.add(mpropdef)
1836 end
1837 # Fast track for only one candidate
1838 if candidates.length <= 1 then return candidates
1839
1840 # Second, filter the most specific ones
1841 return select_most_specific(mmodule, candidates)
1842 end
1843
1844 # Return an array containing olny the most specific property definitions
1845 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
1846 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
1847 do
1848 var res = new Array[MPROPDEF]
1849 for pd1 in candidates do
1850 var cd1 = pd1.mclassdef
1851 var c1 = cd1.mclass
1852 var keep = true
1853 for pd2 in candidates do
1854 if pd2 == pd1 then continue # do not compare with self!
1855 var cd2 = pd2.mclassdef
1856 var c2 = cd2.mclass
1857 if c2.mclass_type == c1.mclass_type then
1858 if cd2.mmodule.in_importation < cd1.mmodule then
1859 # cd2 refines cd1; therefore we skip pd1
1860 keep = false
1861 break
1862 end
1863 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
1864 # cd2 < cd1; therefore we skip pd1
1865 keep = false
1866 break
1867 end
1868 end
1869 if keep then
1870 res.add(pd1)
1871 end
1872 end
1873 if res.is_empty then
1874 print "All lost! {candidates.join(", ")}"
1875 # FIXME: should be abort!
1876 end
1877 return res
1878 end
1879
1880 # Return the most specific definition in the linearization of `mtype`.
1881 #
1882 # If you want to know the next properties in the linearization,
1883 # look at `MPropDef::lookup_next_definition`.
1884 #
1885 # FIXME: the linearization is still unspecified
1886 #
1887 # REQUIRE: `not mtype.need_anchor`
1888 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
1889 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
1890 do
1891 assert mtype.has_mproperty(mmodule, self)
1892 return lookup_all_definitions(mmodule, mtype).first
1893 end
1894
1895 # Return all definitions in a linearization order
1896 # Most specific first, most general last
1897 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1898 do
1899 assert not mtype.need_anchor
1900 mtype = mtype.as_notnullable
1901
1902 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
1903 if cache != null then return cache
1904
1905 #print "select prop {mproperty} for {mtype} in {self}"
1906 # First, select all candidates
1907 var candidates = new Array[MPROPDEF]
1908 for mpropdef in self.mpropdefs do
1909 # If the definition is not imported by the module, then skip
1910 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1911 # If the definition is not inherited by the type, then skip
1912 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1913 # Else, we keep it
1914 candidates.add(mpropdef)
1915 end
1916 # Fast track for only one candidate
1917 if candidates.length <= 1 then
1918 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
1919 return candidates
1920 end
1921
1922 mmodule.linearize_mpropdefs(candidates)
1923 candidates = candidates.reversed
1924 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
1925 return candidates
1926 end
1927
1928 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
1929 end
1930
1931 # A global method
1932 class MMethod
1933 super MProperty
1934
1935 redef type MPROPDEF: MMethodDef
1936
1937 # Is the property defined at the top_level of the module?
1938 # Currently such a property are stored in `Object`
1939 var is_toplevel: Bool = false is writable
1940
1941 # Is the property a constructor?
1942 # Warning, this property can be inherited by subclasses with or without being a constructor
1943 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
1944 var is_init: Bool = false is writable
1945
1946 # The constructor is a (the) root init with empty signature but a set of initializers
1947 var is_root_init: Bool = false is writable
1948
1949 # Is the property a 'new' constructor?
1950 var is_new: Bool = false is writable
1951
1952 # Is the property a legal constructor for a given class?
1953 # As usual, visibility is not considered.
1954 # FIXME not implemented
1955 fun is_init_for(mclass: MClass): Bool
1956 do
1957 return self.is_init
1958 end
1959 end
1960
1961 # A global attribute
1962 class MAttribute
1963 super MProperty
1964
1965 redef type MPROPDEF: MAttributeDef
1966
1967 end
1968
1969 # A global virtual type
1970 class MVirtualTypeProp
1971 super MProperty
1972
1973 redef type MPROPDEF: MVirtualTypeDef
1974
1975 # The formal type associated to the virtual type property
1976 var mvirtualtype = new MVirtualType(self)
1977 end
1978
1979 # A definition of a property (local property)
1980 #
1981 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
1982 # specific class definition (which belong to a specific module)
1983 abstract class MPropDef
1984 super MEntity
1985
1986 # The associated `MProperty` subclass.
1987 # the two specialization hierarchy are symmetric
1988 type MPROPERTY: MProperty
1989
1990 # Self class
1991 type MPROPDEF: MPropDef
1992
1993 # The class definition where the property definition is
1994 var mclassdef: MClassDef
1995
1996 # The associated global property
1997 var mproperty: MPROPERTY
1998
1999 # The origin of the definition
2000 var location: Location
2001
2002 init
2003 do
2004 mclassdef.mpropdefs.add(self)
2005 mproperty.mpropdefs.add(self)
2006 if mproperty.intro_mclassdef == mclassdef then
2007 assert not isset mproperty._intro
2008 mproperty.intro = self
2009 end
2010 self.to_s = "{mclassdef}#{mproperty}"
2011 end
2012
2013 # Actually the name of the `mproperty`
2014 redef fun name do return mproperty.name
2015
2016 # The full-name of mpropdefs combine the information about the `classdef` and the `mproperty`.
2017 #
2018 # Therefore the combination of identifiers is awful,
2019 # the worst case being
2020 #
2021 # ~~~nitish
2022 # "{mclassdef.mmodule.full_name}#{mclassdef.mclass.intro_mmodule.full_name}::{mclassdef.name}#{mproperty.intro_mclassdef.mmodule.full_name}::{mproperty.intro_mclassdef.name}::{name}"
2023 # ~~~
2024 #
2025 # Fortunately, the full-name is simplified when entities are repeated.
2026 # The simplest form is "my_module#MyClass#my_property".
2027 redef var full_name is lazy do
2028 var res = new FlatBuffer
2029 res.append mclassdef.mmodule.full_name
2030 res.append "#"
2031 if not mclassdef.is_intro then
2032 res.append mclassdef.mclass.intro_mmodule.full_name
2033 res.append "::"
2034 end
2035 res.append mclassdef.name
2036 res.append "#"
2037 if mproperty.intro_mclassdef.mmodule != mclassdef.mmodule then
2038 res.append mproperty.intro_mclassdef.mmodule.full_name
2039 res.append "::"
2040 end
2041 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2042 res.append mproperty.intro_mclassdef.mclass.name
2043 res.append "::"
2044 end
2045 res.append name
2046 return res.to_s
2047 end
2048
2049 redef var c_name is lazy do
2050 var res = new FlatBuffer
2051 res.append mclassdef.c_name
2052 res.append "__"
2053 if is_intro then
2054 res.append name.to_cmangle
2055 else
2056 res.append mproperty.c_name.to_cmangle
2057 end
2058 return res.to_s
2059 end
2060
2061 redef fun model do return mclassdef.model
2062
2063 # Internal name combining the module, the class and the property
2064 # Example: "mymodule#MyClass#mymethod"
2065 redef var to_s: String is noinit
2066
2067 # Is self the definition that introduce the property?
2068 fun is_intro: Bool do return mproperty.intro == self
2069
2070 # Return the next definition in linearization of `mtype`.
2071 #
2072 # This method is used to determine what method is called by a super.
2073 #
2074 # REQUIRE: `not mtype.need_anchor`
2075 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
2076 do
2077 assert not mtype.need_anchor
2078
2079 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
2080 var i = mpropdefs.iterator
2081 while i.is_ok and i.item != self do i.next
2082 assert has_property: i.is_ok
2083 i.next
2084 assert has_next_property: i.is_ok
2085 return i.item
2086 end
2087 end
2088
2089 # A local definition of a method
2090 class MMethodDef
2091 super MPropDef
2092
2093 redef type MPROPERTY: MMethod
2094 redef type MPROPDEF: MMethodDef
2095
2096 # The signature attached to the property definition
2097 var msignature: nullable MSignature = null is writable
2098
2099 # The signature attached to the `new` call on a root-init
2100 # This is a concatenation of the signatures of the initializers
2101 #
2102 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2103 var new_msignature: nullable MSignature = null is writable
2104
2105 # List of initialisers to call in root-inits
2106 #
2107 # They could be setters or attributes
2108 #
2109 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2110 var initializers = new Array[MProperty]
2111
2112 # Is the method definition abstract?
2113 var is_abstract: Bool = false is writable
2114
2115 # Is the method definition intern?
2116 var is_intern = false is writable
2117
2118 # Is the method definition extern?
2119 var is_extern = false is writable
2120
2121 # An optional constant value returned in functions.
2122 #
2123 # Only some specific primitife value are accepted by engines.
2124 # Is used when there is no better implementation available.
2125 #
2126 # Currently used only for the implementation of the `--define`
2127 # command-line option.
2128 # SEE: module `mixin`.
2129 var constant_value: nullable Object = null is writable
2130 end
2131
2132 # A local definition of an attribute
2133 class MAttributeDef
2134 super MPropDef
2135
2136 redef type MPROPERTY: MAttribute
2137 redef type MPROPDEF: MAttributeDef
2138
2139 # The static type of the attribute
2140 var static_mtype: nullable MType = null is writable
2141 end
2142
2143 # A local definition of a virtual type
2144 class MVirtualTypeDef
2145 super MPropDef
2146
2147 redef type MPROPERTY: MVirtualTypeProp
2148 redef type MPROPDEF: MVirtualTypeDef
2149
2150 # The bound of the virtual type
2151 var bound: nullable MType = null is writable
2152
2153 # Is the bound fixed?
2154 var is_fixed = false is writable
2155 end
2156
2157 # A kind of class.
2158 #
2159 # * `abstract_kind`
2160 # * `concrete_kind`
2161 # * `interface_kind`
2162 # * `enum_kind`
2163 # * `extern_kind`
2164 #
2165 # Note this class is basically an enum.
2166 # FIXME: use a real enum once user-defined enums are available
2167 class MClassKind
2168 redef var to_s: String
2169
2170 # Is a constructor required?
2171 var need_init: Bool
2172
2173 # TODO: private init because enumeration.
2174
2175 # Can a class of kind `self` specializes a class of kine `other`?
2176 fun can_specialize(other: MClassKind): Bool
2177 do
2178 if other == interface_kind then return true # everybody can specialize interfaces
2179 if self == interface_kind or self == enum_kind then
2180 # no other case for interfaces
2181 return false
2182 else if self == extern_kind then
2183 # only compatible with themselves
2184 return self == other
2185 else if other == enum_kind or other == extern_kind then
2186 # abstract_kind and concrete_kind are incompatible
2187 return false
2188 end
2189 # remain only abstract_kind and concrete_kind
2190 return true
2191 end
2192 end
2193
2194 # The class kind `abstract`
2195 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", true)
2196 # The class kind `concrete`
2197 fun concrete_kind: MClassKind do return once new MClassKind("class", true)
2198 # The class kind `interface`
2199 fun interface_kind: MClassKind do return once new MClassKind("interface", false)
2200 # The class kind `enum`
2201 fun enum_kind: MClassKind do return once new MClassKind("enum", false)
2202 # The class kind `extern`
2203 fun extern_kind: MClassKind do return once new MClassKind("extern class", false)