model: new class MErrorType as using MBottomType was abuse
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class MEntity
34 # The visibility of the MEntity.
35 #
36 # MPackages, MGroups and MModules are always public.
37 # The visibility of `MClass` and `MProperty` is defined by the keyword used.
38 # `MClassDef` and `MPropDef` return the visibility of `MClass` and `MProperty`.
39 fun visibility: MVisibility do return public_visibility
40 end
41
42 redef class Model
43 # All known classes
44 var mclasses = new Array[MClass]
45
46 # All known properties
47 var mproperties = new Array[MProperty]
48
49 # Hierarchy of class definition.
50 #
51 # Each classdef is associated with its super-classdefs in regard to
52 # its module of definition.
53 var mclassdef_hierarchy = new POSet[MClassDef]
54
55 # Class-type hierarchy restricted to the introduction.
56 #
57 # The idea is that what is true on introduction is always true whatever
58 # the module considered.
59 # Therefore, this hierarchy is used for a fast positive subtype check.
60 #
61 # This poset will evolve in a monotonous way:
62 # * Two non connected nodes will remain unconnected
63 # * New nodes can appear with new edges
64 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
65
66 # Global overlapped class-type hierarchy.
67 # The hierarchy when all modules are combined.
68 # Therefore, this hierarchy is used for a fast negative subtype check.
69 #
70 # This poset will evolve in an anarchic way. Loops can even be created.
71 #
72 # FIXME decide what to do on loops
73 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
74
75 # Collections of classes grouped by their short name
76 private var mclasses_by_name = new MultiHashMap[String, MClass]
77
78 # Return all classes named `name`.
79 #
80 # If such a class does not exist, null is returned
81 # (instead of an empty array)
82 #
83 # Visibility or modules are not considered
84 fun get_mclasses_by_name(name: String): nullable Array[MClass]
85 do
86 return mclasses_by_name.get_or_null(name)
87 end
88
89 # Collections of properties grouped by their short name
90 private var mproperties_by_name = new MultiHashMap[String, MProperty]
91
92 # Return all properties named `name`.
93 #
94 # If such a property does not exist, null is returned
95 # (instead of an empty array)
96 #
97 # Visibility or modules are not considered
98 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
99 do
100 return mproperties_by_name.get_or_null(name)
101 end
102
103 # The only null type
104 var null_type = new MNullType(self)
105
106 # Build an ordered tree with from `concerns`
107 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
108 var seen = new HashSet[MConcern]
109 var res = new ConcernsTree
110
111 var todo = new Array[MConcern]
112 todo.add_all mconcerns
113
114 while not todo.is_empty do
115 var c = todo.pop
116 if seen.has(c) then continue
117 var pc = c.parent_concern
118 if pc == null then
119 res.add(null, c)
120 else
121 res.add(pc, c)
122 todo.add(pc)
123 end
124 seen.add(c)
125 end
126
127 return res
128 end
129 end
130
131 # An OrderedTree bound to MEntity.
132 #
133 # We introduce a new class so it can be easily refined by tools working
134 # with a Model.
135 class MEntityTree
136 super OrderedTree[MEntity]
137 end
138
139 # A MEntityTree borned to MConcern.
140 #
141 # TODO remove when nitdoc is fully merged with model_collect
142 class ConcernsTree
143 super OrderedTree[MConcern]
144 end
145
146 redef class MModule
147 # All the classes introduced in the module
148 var intro_mclasses = new Array[MClass]
149
150 # All the class definitions of the module
151 # (introduction and refinement)
152 var mclassdefs = new Array[MClassDef]
153
154 # Does the current module has a given class `mclass`?
155 # Return true if the mmodule introduces, refines or imports a class.
156 # Visibility is not considered.
157 fun has_mclass(mclass: MClass): Bool
158 do
159 return self.in_importation <= mclass.intro_mmodule
160 end
161
162 # Full hierarchy of introduced and imported classes.
163 #
164 # Create a new hierarchy got by flattening the classes for the module
165 # and its imported modules.
166 # Visibility is not considered.
167 #
168 # Note: this function is expensive and is usually used for the main
169 # module of a program only. Do not use it to do you own subtype
170 # functions.
171 fun flatten_mclass_hierarchy: POSet[MClass]
172 do
173 var res = self.flatten_mclass_hierarchy_cache
174 if res != null then return res
175 res = new POSet[MClass]
176 for m in self.in_importation.greaters do
177 for cd in m.mclassdefs do
178 var c = cd.mclass
179 res.add_node(c)
180 for s in cd.supertypes do
181 res.add_edge(c, s.mclass)
182 end
183 end
184 end
185 self.flatten_mclass_hierarchy_cache = res
186 return res
187 end
188
189 # Sort a given array of classes using the linearization order of the module
190 # The most general is first, the most specific is last
191 fun linearize_mclasses(mclasses: Array[MClass])
192 do
193 self.flatten_mclass_hierarchy.sort(mclasses)
194 end
195
196 # Sort a given array of class definitions using the linearization order of the module
197 # the refinement link is stronger than the specialisation link
198 # The most general is first, the most specific is last
199 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
200 do
201 var sorter = new MClassDefSorter(self)
202 sorter.sort(mclassdefs)
203 end
204
205 # Sort a given array of property definitions using the linearization order of the module
206 # the refinement link is stronger than the specialisation link
207 # The most general is first, the most specific is last
208 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
209 do
210 var sorter = new MPropDefSorter(self)
211 sorter.sort(mpropdefs)
212 end
213
214 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
215
216 # The primitive type `Object`, the root of the class hierarchy
217 var object_type: MClassType = self.get_primitive_class("Object").mclass_type is lazy
218
219 # The type `Pointer`, super class to all extern classes
220 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
221
222 # The primitive type `Bool`
223 var bool_type: MClassType = self.get_primitive_class("Bool").mclass_type is lazy
224
225 # The primitive type `Int`
226 var int_type: MClassType = self.get_primitive_class("Int").mclass_type is lazy
227
228 # The primitive type `Byte`
229 var byte_type: MClassType = self.get_primitive_class("Byte").mclass_type is lazy
230
231 # The primitive type `Int8`
232 var int8_type: MClassType = self.get_primitive_class("Int8").mclass_type is lazy
233
234 # The primitive type `Int16`
235 var int16_type: MClassType = self.get_primitive_class("Int16").mclass_type is lazy
236
237 # The primitive type `UInt16`
238 var uint16_type: MClassType = self.get_primitive_class("UInt16").mclass_type is lazy
239
240 # The primitive type `Int32`
241 var int32_type: MClassType = self.get_primitive_class("Int32").mclass_type is lazy
242
243 # The primitive type `UInt32`
244 var uint32_type: MClassType = self.get_primitive_class("UInt32").mclass_type is lazy
245
246 # The primitive type `Char`
247 var char_type: MClassType = self.get_primitive_class("Char").mclass_type is lazy
248
249 # The primitive type `Float`
250 var float_type: MClassType = self.get_primitive_class("Float").mclass_type is lazy
251
252 # The primitive type `String`
253 var string_type: MClassType = self.get_primitive_class("String").mclass_type is lazy
254
255 # The primitive type `NativeString`
256 var native_string_type: MClassType = self.get_primitive_class("NativeString").mclass_type is lazy
257
258 # A primitive type of `Array`
259 fun array_type(elt_type: MType): MClassType do return array_class.get_mtype([elt_type])
260
261 # The primitive class `Array`
262 var array_class: MClass = self.get_primitive_class("Array") is lazy
263
264 # A primitive type of `NativeArray`
265 fun native_array_type(elt_type: MType): MClassType do return native_array_class.get_mtype([elt_type])
266
267 # The primitive class `NativeArray`
268 var native_array_class: MClass = self.get_primitive_class("NativeArray") is lazy
269
270 # The primitive type `Sys`, the main type of the program, if any
271 fun sys_type: nullable MClassType
272 do
273 var clas = self.model.get_mclasses_by_name("Sys")
274 if clas == null then return null
275 return get_primitive_class("Sys").mclass_type
276 end
277
278 # The primitive type `Finalizable`
279 # Used to tag classes that need to be finalized.
280 fun finalizable_type: nullable MClassType
281 do
282 var clas = self.model.get_mclasses_by_name("Finalizable")
283 if clas == null then return null
284 return get_primitive_class("Finalizable").mclass_type
285 end
286
287 # Force to get the primitive class named `name` or abort
288 fun get_primitive_class(name: String): MClass
289 do
290 var cla = self.model.get_mclasses_by_name(name)
291 # Filter classes by introducing module
292 if cla != null then cla = [for c in cla do if self.in_importation <= c.intro_mmodule then c]
293 if cla == null or cla.is_empty then
294 if name == "Bool" and self.model.get_mclasses_by_name("Object") != null then
295 # Bool is injected because it is needed by engine to code the result
296 # of the implicit casts.
297 var loc = model.no_location
298 var c = new MClass(self, name, loc, null, enum_kind, public_visibility)
299 var cladef = new MClassDef(self, c.mclass_type, loc)
300 cladef.set_supertypes([object_type])
301 cladef.add_in_hierarchy
302 return c
303 end
304 print_error("Fatal Error: no primitive class {name} in {self}")
305 exit(1)
306 abort
307 end
308 if cla.length != 1 then
309 var msg = "Fatal Error: more than one primitive class {name} in {self}:"
310 for c in cla do msg += " {c.full_name}"
311 print_error msg
312 #exit(1)
313 end
314 return cla.first
315 end
316
317 # Try to get the primitive method named `name` on the type `recv`
318 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
319 do
320 var props = self.model.get_mproperties_by_name(name)
321 if props == null then return null
322 var res: nullable MMethod = null
323 var recvtype = recv.intro.bound_mtype
324 for mprop in props do
325 assert mprop isa MMethod
326 if not recvtype.has_mproperty(self, mprop) then continue
327 if res == null then
328 res = mprop
329 else if res != mprop then
330 print_error("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
331 abort
332 end
333 end
334 return res
335 end
336 end
337
338 private class MClassDefSorter
339 super Comparator
340 redef type COMPARED: MClassDef
341 var mmodule: MModule
342 redef fun compare(a, b)
343 do
344 var ca = a.mclass
345 var cb = b.mclass
346 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
347 return mmodule.model.mclassdef_hierarchy.compare(a, b)
348 end
349 end
350
351 private class MPropDefSorter
352 super Comparator
353 redef type COMPARED: MPropDef
354 var mmodule: MModule
355 redef fun compare(pa, pb)
356 do
357 var a = pa.mclassdef
358 var b = pb.mclassdef
359 var ca = a.mclass
360 var cb = b.mclass
361 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
362 return mmodule.model.mclassdef_hierarchy.compare(a, b)
363 end
364 end
365
366 # A named class
367 #
368 # `MClass` are global to the model; it means that a `MClass` is not bound to a
369 # specific `MModule`.
370 #
371 # This characteristic helps the reasoning about classes in a program since a
372 # single `MClass` object always denote the same class.
373 #
374 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
375 # These do not really have properties nor belong to a hierarchy since the property and the
376 # hierarchy of a class depends of the refinement in the modules.
377 #
378 # Most services on classes require the precision of a module, and no one can asks what are
379 # the super-classes of a class nor what are properties of a class without precising what is
380 # the module considered.
381 #
382 # For instance, during the typing of a source-file, the module considered is the module of the file.
383 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
384 # *is the method `foo` exists in the class `Bar` in the current module?*
385 #
386 # During some global analysis, the module considered may be the main module of the program.
387 class MClass
388 super MEntity
389
390 # The module that introduce the class
391 #
392 # While classes are not bound to a specific module,
393 # the introducing module is used for naming and visibility.
394 var intro_mmodule: MModule
395
396 # The short name of the class
397 # In Nit, the name of a class cannot evolve in refinements
398 redef var name
399
400 redef var location
401
402 # The canonical name of the class
403 #
404 # It is the name of the class prefixed by the full_name of the `intro_mmodule`
405 # Example: `"owner::module::MyClass"`
406 redef var full_name is lazy do
407 return "{self.intro_mmodule.namespace_for(visibility)}::{name}"
408 end
409
410 redef var c_name is lazy do
411 return "{intro_mmodule.c_namespace_for(visibility)}__{name.to_cmangle}"
412 end
413
414 # The number of generic formal parameters
415 # 0 if the class is not generic
416 var arity: Int is noinit
417
418 # Each generic formal parameters in order.
419 # is empty if the class is not generic
420 var mparameters = new Array[MParameterType]
421
422 # A string version of the signature a generic class.
423 #
424 # eg. `Map[K: nullable Object, V: nullable Object]`
425 #
426 # If the class in non generic the name is just given.
427 #
428 # eg. `Object`
429 fun signature_to_s: String
430 do
431 if arity == 0 then return name
432 var res = new FlatBuffer
433 res.append name
434 res.append "["
435 for i in [0..arity[ do
436 if i > 0 then res.append ", "
437 res.append mparameters[i].name
438 res.append ": "
439 res.append intro.bound_mtype.arguments[i].to_s
440 end
441 res.append "]"
442 return res.to_s
443 end
444
445 # Initialize `mparameters` from their names.
446 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
447 autoinit
448 do
449 if parameter_names == null then
450 self.arity = 0
451 else
452 self.arity = parameter_names.length
453 end
454
455 # Create the formal parameter types
456 if arity > 0 then
457 assert parameter_names != null
458 var mparametertypes = new Array[MParameterType]
459 for i in [0..arity[ do
460 var mparametertype = new MParameterType(self, i, parameter_names[i])
461 mparametertypes.add(mparametertype)
462 end
463 self.mparameters = mparametertypes
464 var mclass_type = new MGenericType(self, mparametertypes)
465 self.mclass_type = mclass_type
466 self.get_mtype_cache[mparametertypes] = mclass_type
467 else
468 self.mclass_type = new MClassType(self)
469 end
470 end
471
472 # The kind of the class (interface, abstract class, etc.)
473 # In Nit, the kind of a class cannot evolve in refinements
474 var kind: MClassKind
475
476 # The visibility of the class
477 # In Nit, the visibility of a class cannot evolve in refinements
478 redef var visibility
479
480 init
481 do
482 intro_mmodule.intro_mclasses.add(self)
483 var model = intro_mmodule.model
484 model.mclasses_by_name.add_one(name, self)
485 model.mclasses.add(self)
486 end
487
488 redef fun model do return intro_mmodule.model
489
490 # All class definitions (introduction and refinements)
491 var mclassdefs = new Array[MClassDef]
492
493 # Alias for `name`
494 redef fun to_s do return self.name
495
496 # The definition that introduces the class.
497 #
498 # Warning: such a definition may not exist in the early life of the object.
499 # In this case, the method will abort.
500 #
501 # Use `try_intro` instead
502 var intro: MClassDef is noinit
503
504 # The definition that introduces the class or null if not yet known.
505 #
506 # See `intro`
507 fun try_intro: nullable MClassDef do
508 if isset _intro then return _intro else return null
509 end
510
511 # Return the class `self` in the class hierarchy of the module `mmodule`.
512 #
513 # SEE: `MModule::flatten_mclass_hierarchy`
514 # REQUIRE: `mmodule.has_mclass(self)`
515 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
516 do
517 return mmodule.flatten_mclass_hierarchy[self]
518 end
519
520 # The principal static type of the class.
521 #
522 # For non-generic class, `mclass_type` is the only `MClassType` based
523 # on self.
524 #
525 # For a generic class, the arguments are the formal parameters.
526 # i.e.: for the class `Array[E:Object]`, the `mclass_type` is `Array[E]`.
527 # If you want `Array[Object]`, see `MClassDef::bound_mtype`.
528 #
529 # For generic classes, the mclass_type is also the way to get a formal
530 # generic parameter type.
531 #
532 # To get other types based on a generic class, see `get_mtype`.
533 #
534 # ENSURE: `mclass_type.mclass == self`
535 var mclass_type: MClassType is noinit
536
537 # Return a generic type based on the class
538 # Is the class is not generic, then the result is `mclass_type`
539 #
540 # REQUIRE: `mtype_arguments.length == self.arity`
541 fun get_mtype(mtype_arguments: Array[MType]): MClassType
542 do
543 assert mtype_arguments.length == self.arity
544 if self.arity == 0 then return self.mclass_type
545 var res = get_mtype_cache.get_or_null(mtype_arguments)
546 if res != null then return res
547 res = new MGenericType(self, mtype_arguments)
548 self.get_mtype_cache[mtype_arguments.to_a] = res
549 return res
550 end
551
552 private var get_mtype_cache = new HashMap[Array[MType], MGenericType]
553
554 # Is there a `new` factory to allow the pseudo instantiation?
555 var has_new_factory = false is writable
556
557 # Is `self` a standard or abstract class kind?
558 var is_class: Bool is lazy do return kind == concrete_kind or kind == abstract_kind
559
560 # Is `self` an interface kind?
561 var is_interface: Bool is lazy do return kind == interface_kind
562
563 # Is `self` an enum kind?
564 var is_enum: Bool is lazy do return kind == enum_kind
565
566 # Is `self` and abstract class?
567 var is_abstract: Bool is lazy do return kind == abstract_kind
568
569 redef fun mdoc_or_fallback do return intro.mdoc_or_fallback
570 end
571
572
573 # A definition (an introduction or a refinement) of a class in a module
574 #
575 # A `MClassDef` is associated with an explicit (or almost) definition of a
576 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
577 # a specific class and a specific module, and contains declarations like super-classes
578 # or properties.
579 #
580 # It is the class definitions that are the backbone of most things in the model:
581 # ClassDefs are defined with regard with other classdefs.
582 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
583 #
584 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
585 class MClassDef
586 super MEntity
587
588 # The module where the definition is
589 var mmodule: MModule
590
591 # The associated `MClass`
592 var mclass: MClass is noinit
593
594 # The bounded type associated to the mclassdef
595 #
596 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
597 # are the same type.
598 #
599 # Example:
600 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
601 # If you want Array[E], then see `mclass.mclass_type`
602 #
603 # ENSURE: `bound_mtype.mclass == self.mclass`
604 var bound_mtype: MClassType
605
606 redef var location: Location
607
608 redef fun visibility do return mclass.visibility
609
610 # Internal name combining the module and the class
611 # Example: "mymodule$MyClass"
612 redef var to_s is noinit
613
614 init
615 do
616 self.mclass = bound_mtype.mclass
617 mmodule.mclassdefs.add(self)
618 mclass.mclassdefs.add(self)
619 if mclass.intro_mmodule == mmodule then
620 assert not isset mclass._intro
621 mclass.intro = self
622 end
623 self.to_s = "{mmodule}${mclass}"
624 end
625
626 # Actually the name of the `mclass`
627 redef fun name do return mclass.name
628
629 # The module and class name separated by a '$'.
630 #
631 # The short-name of the class is used for introduction.
632 # Example: "my_module$MyClass"
633 #
634 # The full-name of the class is used for refinement.
635 # Example: "my_module$intro_module::MyClass"
636 redef var full_name is lazy do
637 if is_intro then
638 # public gives 'p$A'
639 # private gives 'p::m$A'
640 return "{mmodule.namespace_for(mclass.visibility)}${mclass.name}"
641 else if mclass.intro_mmodule.mpackage != mmodule.mpackage then
642 # public gives 'q::n$p::A'
643 # private gives 'q::n$p::m::A'
644 return "{mmodule.full_name}${mclass.full_name}"
645 else if mclass.visibility > private_visibility then
646 # public gives 'p::n$A'
647 return "{mmodule.full_name}${mclass.name}"
648 else
649 # private gives 'p::n$::m::A' (redundant p is omitted)
650 return "{mmodule.full_name}$::{mclass.intro_mmodule.name}::{mclass.name}"
651 end
652 end
653
654 redef var c_name is lazy do
655 if is_intro then
656 return "{mmodule.c_namespace_for(mclass.visibility)}___{mclass.c_name}"
657 else if mclass.intro_mmodule.mpackage == mmodule.mpackage and mclass.visibility > private_visibility then
658 return "{mmodule.c_name}___{mclass.name.to_cmangle}"
659 else
660 return "{mmodule.c_name}___{mclass.c_name}"
661 end
662 end
663
664 redef fun model do return mmodule.model
665
666 # All declared super-types
667 # FIXME: quite ugly but not better idea yet
668 var supertypes = new Array[MClassType]
669
670 # Register some super-types for the class (ie "super SomeType")
671 #
672 # The hierarchy must not already be set
673 # REQUIRE: `self.in_hierarchy == null`
674 fun set_supertypes(supertypes: Array[MClassType])
675 do
676 assert unique_invocation: self.in_hierarchy == null
677 var mmodule = self.mmodule
678 var model = mmodule.model
679 var mtype = self.bound_mtype
680
681 for supertype in supertypes do
682 self.supertypes.add(supertype)
683
684 # Register in full_type_specialization_hierarchy
685 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
686 # Register in intro_type_specialization_hierarchy
687 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
688 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
689 end
690 end
691
692 end
693
694 # Collect the super-types (set by set_supertypes) to build the hierarchy
695 #
696 # This function can only invoked once by class
697 # REQUIRE: `self.in_hierarchy == null`
698 # ENSURE: `self.in_hierarchy != null`
699 fun add_in_hierarchy
700 do
701 assert unique_invocation: self.in_hierarchy == null
702 var model = mmodule.model
703 var res = model.mclassdef_hierarchy.add_node(self)
704 self.in_hierarchy = res
705 var mtype = self.bound_mtype
706
707 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
708 # The simpliest way is to attach it to collect_mclassdefs
709 for mclassdef in mtype.collect_mclassdefs(mmodule) do
710 res.poset.add_edge(self, mclassdef)
711 end
712 end
713
714 # The view of the class definition in `mclassdef_hierarchy`
715 var in_hierarchy: nullable POSetElement[MClassDef] = null
716
717 # Is the definition the one that introduced `mclass`?
718 fun is_intro: Bool do return isset mclass._intro and mclass.intro == self
719
720 # All properties introduced by the classdef
721 var intro_mproperties = new Array[MProperty]
722
723 # All property introductions and redefinitions in `self` (not inheritance).
724 var mpropdefs = new Array[MPropDef]
725
726 # All property introductions and redefinitions (not inheritance) in `self` by its associated property.
727 var mpropdefs_by_property = new HashMap[MProperty, MPropDef]
728 end
729
730 # A global static type
731 #
732 # MType are global to the model; it means that a `MType` is not bound to a
733 # specific `MModule`.
734 # This characteristic helps the reasoning about static types in a program
735 # since a single `MType` object always denote the same type.
736 #
737 # However, because a `MType` is global, it does not really have properties
738 # nor have subtypes to a hierarchy since the property and the class hierarchy
739 # depends of a module.
740 # Moreover, virtual types an formal generic parameter types also depends on
741 # a receiver to have sense.
742 #
743 # Therefore, most method of the types require a module and an anchor.
744 # The module is used to know what are the classes and the specialization
745 # links.
746 # The anchor is used to know what is the bound of the virtual types and formal
747 # generic parameter types.
748 #
749 # MType are not directly usable to get properties. See the `anchor_to` method
750 # and the `MClassType` class.
751 #
752 # FIXME: the order of the parameters is not the best. We mus pick on from:
753 # * foo(mmodule, anchor, othertype)
754 # * foo(othertype, anchor, mmodule)
755 # * foo(anchor, mmodule, othertype)
756 # * foo(othertype, mmodule, anchor)
757 abstract class MType
758 super MEntity
759
760 redef fun name do return to_s
761
762 # Return true if `self` is an subtype of `sup`.
763 # The typing is done using the standard typing policy of Nit.
764 #
765 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
766 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
767 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
768 do
769 var sub = self
770 if sub == sup then return true
771
772 #print "1.is {sub} a {sup}? ===="
773
774 if anchor == null then
775 assert not sub.need_anchor
776 assert not sup.need_anchor
777 else
778 # First, resolve the formal types to the simplest equivalent forms in the receiver
779 assert sub.can_resolve_for(anchor, null, mmodule)
780 sub = sub.lookup_fixed(mmodule, anchor)
781 assert sup.can_resolve_for(anchor, null, mmodule)
782 sup = sup.lookup_fixed(mmodule, anchor)
783 end
784
785 # Does `sup` accept null or not?
786 # Discard the nullable marker if it exists
787 var sup_accept_null = false
788 if sup isa MNullableType then
789 sup_accept_null = true
790 sup = sup.mtype
791 else if sup isa MNotNullType then
792 sup = sup.mtype
793 else if sup isa MNullType then
794 sup_accept_null = true
795 end
796
797 # Can `sub` provide null or not?
798 # Thus we can match with `sup_accept_null`
799 # Also discard the nullable marker if it exists
800 var sub_reject_null = false
801 if sub isa MNullableType then
802 if not sup_accept_null then return false
803 sub = sub.mtype
804 else if sub isa MNotNullType then
805 sub_reject_null = true
806 sub = sub.mtype
807 else if sub isa MNullType then
808 return sup_accept_null
809 end
810 # Now the case of direct null and nullable is over.
811
812 # If `sub` is a formal type, then it is accepted if its bound is accepted
813 while sub isa MFormalType do
814 #print "3.is {sub} a {sup}?"
815
816 # A unfixed formal type can only accept itself
817 if sub == sup then return true
818
819 assert anchor != null
820 sub = sub.lookup_bound(mmodule, anchor)
821 if sub_reject_null then sub = sub.as_notnull
822
823 #print "3.is {sub} a {sup}?"
824
825 # Manage the second layer of null/nullable
826 if sub isa MNullableType then
827 if not sup_accept_null and not sub_reject_null then return false
828 sub = sub.mtype
829 else if sub isa MNotNullType then
830 sub_reject_null = true
831 sub = sub.mtype
832 else if sub isa MNullType then
833 return sup_accept_null
834 end
835 end
836 #print "4.is {sub} a {sup}? <- no more resolution"
837
838 if sub isa MBottomType or sub isa MErrorType then
839 return true
840 end
841
842 assert sub isa MClassType else print_error "{sub} <? {sup}" # It is the only remaining type
843
844 # Handle sup-type when the sub-type is class-based (other cases must have be identified before).
845 if sup isa MFormalType or sup isa MNullType or sup isa MBottomType or sup isa MErrorType then
846 # These types are not super-types of Class-based types.
847 return false
848 end
849
850 assert sup isa MClassType else print_error "got {sup} {sub.inspect}" # It is the only remaining type
851
852 # Now both are MClassType, we need to dig
853
854 if sub == sup then return true
855
856 if anchor == null then anchor = sub # UGLY: any anchor will work
857 var resolved_sub = sub.anchor_to(mmodule, anchor)
858 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
859 if res == false then return false
860 if not sup isa MGenericType then return true
861 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
862 assert sub2.mclass == sup.mclass
863 for i in [0..sup.mclass.arity[ do
864 var sub_arg = sub2.arguments[i]
865 var sup_arg = sup.arguments[i]
866 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
867 if res == false then return false
868 end
869 return true
870 end
871
872 # The base class type on which self is based
873 #
874 # This base type is used to get property (an internally to perform
875 # unsafe type comparison).
876 #
877 # Beware: some types (like null) are not based on a class thus this
878 # method will crash
879 #
880 # Basically, this function transform the virtual types and parameter
881 # types to their bounds.
882 #
883 # Example
884 #
885 # class A end
886 # class B super A end
887 # class X end
888 # class Y super X end
889 # class G[T: A]
890 # type U: X
891 # end
892 # class H
893 # super G[B]
894 # redef type U: Y
895 # end
896 #
897 # Map[T,U] anchor_to H #-> Map[B,Y]
898 #
899 # Explanation of the example:
900 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
901 # because "redef type U: Y". Therefore, Map[T, U] is bound to
902 # Map[B, Y]
903 #
904 # ENSURE: `not self.need_anchor implies result == self`
905 # ENSURE: `not result.need_anchor`
906 fun anchor_to(mmodule: MModule, anchor: MClassType): MType
907 do
908 if not need_anchor then return self
909 assert not anchor.need_anchor
910 # Just resolve to the anchor and clear all the virtual types
911 var res = self.resolve_for(anchor, null, mmodule, true)
912 assert not res.need_anchor
913 return res
914 end
915
916 # Does `self` contain a virtual type or a formal generic parameter type?
917 # In order to remove those types, you usually want to use `anchor_to`.
918 fun need_anchor: Bool do return true
919
920 # Return the supertype when adapted to a class.
921 #
922 # In Nit, for each super-class of a type, there is a equivalent super-type.
923 #
924 # Example:
925 #
926 # ~~~nitish
927 # class G[T, U] end
928 # class H[V] super G[V, Bool] end
929 #
930 # H[Int] supertype_to G #-> G[Int, Bool]
931 # ~~~
932 #
933 # REQUIRE: `super_mclass` is a super-class of `self`
934 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
935 # ENSURE: `result.mclass = super_mclass`
936 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
937 do
938 if super_mclass.arity == 0 then return super_mclass.mclass_type
939 if self isa MClassType and self.mclass == super_mclass then return self
940 var resolved_self
941 if self.need_anchor then
942 assert anchor != null
943 resolved_self = self.anchor_to(mmodule, anchor)
944 else
945 resolved_self = self
946 end
947 var supertypes = resolved_self.collect_mtypes(mmodule)
948 for supertype in supertypes do
949 if supertype.mclass == super_mclass then
950 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
951 return supertype.resolve_for(self, anchor, mmodule, false)
952 end
953 end
954 abort
955 end
956
957 # Replace formals generic types in self with resolved values in `mtype`
958 # If `cleanup_virtual` is true, then virtual types are also replaced
959 # with their bounds.
960 #
961 # This function returns self if `need_anchor` is false.
962 #
963 # ## Example 1
964 #
965 # ~~~
966 # class G[E] end
967 # class H[F] super G[F] end
968 # class X[Z] end
969 # ~~~
970 #
971 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
972 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
973 #
974 # Explanation of the example:
975 # * Array[E].need_anchor is true because there is a formal generic parameter type E
976 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
977 # * Since "H[F] super G[F]", E is in fact F for H
978 # * More specifically, in H[Int], E is Int
979 # * So, in H[Int], Array[E] is Array[Int]
980 #
981 # This function is mainly used to inherit a signature.
982 # Because, unlike `anchor_to`, we do not want a full resolution of
983 # a type but only an adapted version of it.
984 #
985 # ## Example 2
986 #
987 # ~~~
988 # class A[E]
989 # fun foo(e:E):E is abstract
990 # end
991 # class B super A[Int] end
992 # ~~~
993 #
994 # The signature on foo is (e: E): E
995 # If we resolve the signature for B, we get (e:Int):Int
996 #
997 # ## Example 3
998 #
999 # ~~~nitish
1000 # class A[E]
1001 # fun foo(e:E):E is abstract
1002 # end
1003 # class C[F]
1004 # var a: A[Array[F]]
1005 # fun bar do a.foo(x) # <- x is here
1006 # end
1007 # ~~~
1008 #
1009 # The first question is: is foo available on `a`?
1010 #
1011 # The static type of a is `A[Array[F]]`, that is an open type.
1012 # in order to find a method `foo`, whe must look at a resolved type.
1013 #
1014 # A[Array[F]].anchor_to(C[nullable Object]) #-> A[Array[nullable Object]]
1015 #
1016 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
1017 #
1018 # The next question is: what is the accepted types for `x`?
1019 #
1020 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
1021 #
1022 # E.resolve_for(A[Array[F]],C[nullable Object]) #-> Array[F]
1023 #
1024 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
1025 #
1026 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
1027 # two function instead of one seems also to be a bad idea.
1028 #
1029 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
1030 # ENSURE: `not self.need_anchor implies result == self`
1031 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
1032
1033 # Resolve formal type to its verbatim bound.
1034 # If the type is not formal, just return self
1035 #
1036 # The result is returned exactly as declared in the "type" property (verbatim).
1037 # So it could be another formal type.
1038 #
1039 # In case of conflicts or inconsistencies in the model, the method returns a `MErrorType`.
1040 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self
1041
1042 # Resolve the formal type to its simplest equivalent form.
1043 #
1044 # Formal types are either free or fixed.
1045 # When it is fixed, it means that it is equivalent with a simpler type.
1046 # When a formal type is free, it means that it is only equivalent with itself.
1047 # This method return the most simple equivalent type of `self`.
1048 #
1049 # This method is mainly used for subtype test in order to sanely compare fixed.
1050 #
1051 # By default, return self.
1052 # See the redefinitions for specific behavior in each kind of type.
1053 #
1054 # In case of conflicts or inconsistencies in the model, the method returns a `MErrorType`.
1055 fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self
1056
1057 # Can the type be resolved?
1058 #
1059 # In order to resolve open types, the formal types must make sence.
1060 #
1061 # ## Example
1062 #
1063 # class A[E]
1064 # end
1065 # class B[F]
1066 # end
1067 #
1068 # ~~~nitish
1069 # E.can_resolve_for(A[Int]) #-> true, E make sense in A
1070 #
1071 # E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
1072 #
1073 # B[E].can_resolve_for(A[F], B[Object]) #-> true,
1074 # # B[E] is a red hearing only the E is important,
1075 # # E make sense in A
1076 # ~~~
1077 #
1078 # REQUIRE: `anchor != null implies not anchor.need_anchor`
1079 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
1080 # ENSURE: `not self.need_anchor implies result == true`
1081 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
1082
1083 # Return the nullable version of the type
1084 # If the type is already nullable then self is returned
1085 fun as_nullable: MType
1086 do
1087 var res = self.as_nullable_cache
1088 if res != null then return res
1089 res = new MNullableType(self)
1090 self.as_nullable_cache = res
1091 return res
1092 end
1093
1094 # Remove the base type of a decorated (proxy) type.
1095 # Is the type is not decorated, then self is returned.
1096 #
1097 # Most of the time it is used to return the not nullable version of a nullable type.
1098 # In this case, this just remove the `nullable` notation, but the result can still contains null.
1099 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
1100 # If you really want to exclude the `null` value, then use `as_notnull`
1101 fun undecorate: MType
1102 do
1103 return self
1104 end
1105
1106 # Returns the not null version of the type.
1107 # That is `self` minus the `null` value.
1108 #
1109 # For most types, this return `self`.
1110 # For formal types, this returns a special `MNotNullType`
1111 fun as_notnull: MType do return self
1112
1113 private var as_nullable_cache: nullable MType = null
1114
1115
1116 # The depth of the type seen as a tree.
1117 #
1118 # * A -> 1
1119 # * G[A] -> 2
1120 # * H[A, B] -> 2
1121 # * H[G[A], B] -> 3
1122 #
1123 # Formal types have a depth of 1.
1124 fun depth: Int
1125 do
1126 return 1
1127 end
1128
1129 # The length of the type seen as a tree.
1130 #
1131 # * A -> 1
1132 # * G[A] -> 2
1133 # * H[A, B] -> 3
1134 # * H[G[A], B] -> 4
1135 #
1136 # Formal types have a length of 1.
1137 fun length: Int
1138 do
1139 return 1
1140 end
1141
1142 # Compute all the classdefs inherited/imported.
1143 # The returned set contains:
1144 # * the class definitions from `mmodule` and its imported modules
1145 # * the class definitions of this type and its super-types
1146 #
1147 # This function is used mainly internally.
1148 #
1149 # REQUIRE: `not self.need_anchor`
1150 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
1151
1152 # Compute all the super-classes.
1153 # This function is used mainly internally.
1154 #
1155 # REQUIRE: `not self.need_anchor`
1156 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
1157
1158 # Compute all the declared super-types.
1159 # Super-types are returned as declared in the classdefs (verbatim).
1160 # This function is used mainly internally.
1161 #
1162 # REQUIRE: `not self.need_anchor`
1163 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
1164
1165 # Is the property in self for a given module
1166 # This method does not filter visibility or whatever
1167 #
1168 # REQUIRE: `not self.need_anchor`
1169 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
1170 do
1171 assert not self.need_anchor
1172 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
1173 end
1174 end
1175
1176 # A type based on a class.
1177 #
1178 # `MClassType` have properties (see `has_mproperty`).
1179 class MClassType
1180 super MType
1181
1182 # The associated class
1183 var mclass: MClass
1184
1185 redef fun model do return self.mclass.intro_mmodule.model
1186
1187 redef fun location do return mclass.location
1188
1189 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1190
1191 # The formal arguments of the type
1192 # ENSURE: `result.length == self.mclass.arity`
1193 var arguments = new Array[MType]
1194
1195 redef fun to_s do return mclass.to_s
1196
1197 redef fun full_name do return mclass.full_name
1198
1199 redef fun c_name do return mclass.c_name
1200
1201 redef fun need_anchor do return false
1202
1203 redef fun anchor_to(mmodule: MModule, anchor: MClassType): MClassType
1204 do
1205 return super.as(MClassType)
1206 end
1207
1208 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1209
1210 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1211
1212 redef fun collect_mclassdefs(mmodule)
1213 do
1214 assert not self.need_anchor
1215 var cache = self.collect_mclassdefs_cache
1216 if not cache.has_key(mmodule) then
1217 self.collect_things(mmodule)
1218 end
1219 return cache[mmodule]
1220 end
1221
1222 redef fun collect_mclasses(mmodule)
1223 do
1224 if collect_mclasses_last_module == mmodule then return collect_mclasses_last_module_cache
1225 assert not self.need_anchor
1226 var cache = self.collect_mclasses_cache
1227 if not cache.has_key(mmodule) then
1228 self.collect_things(mmodule)
1229 end
1230 var res = cache[mmodule]
1231 collect_mclasses_last_module = mmodule
1232 collect_mclasses_last_module_cache = res
1233 return res
1234 end
1235
1236 private var collect_mclasses_last_module: nullable MModule = null
1237 private var collect_mclasses_last_module_cache: Set[MClass] is noinit
1238
1239 redef fun collect_mtypes(mmodule)
1240 do
1241 assert not self.need_anchor
1242 var cache = self.collect_mtypes_cache
1243 if not cache.has_key(mmodule) then
1244 self.collect_things(mmodule)
1245 end
1246 return cache[mmodule]
1247 end
1248
1249 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1250 private fun collect_things(mmodule: MModule)
1251 do
1252 var res = new HashSet[MClassDef]
1253 var seen = new HashSet[MClass]
1254 var types = new HashSet[MClassType]
1255 seen.add(self.mclass)
1256 var todo = [self.mclass]
1257 while not todo.is_empty do
1258 var mclass = todo.pop
1259 #print "process {mclass}"
1260 for mclassdef in mclass.mclassdefs do
1261 if not mmodule.in_importation <= mclassdef.mmodule then continue
1262 #print " process {mclassdef}"
1263 res.add(mclassdef)
1264 for supertype in mclassdef.supertypes do
1265 types.add(supertype)
1266 var superclass = supertype.mclass
1267 if seen.has(superclass) then continue
1268 #print " add {superclass}"
1269 seen.add(superclass)
1270 todo.add(superclass)
1271 end
1272 end
1273 end
1274 collect_mclassdefs_cache[mmodule] = res
1275 collect_mclasses_cache[mmodule] = seen
1276 collect_mtypes_cache[mmodule] = types
1277 end
1278
1279 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1280 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1281 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1282
1283 end
1284
1285 # A type based on a generic class.
1286 # A generic type a just a class with additional formal generic arguments.
1287 class MGenericType
1288 super MClassType
1289
1290 redef var arguments
1291
1292 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1293
1294 init
1295 do
1296 assert self.mclass.arity == arguments.length
1297
1298 self.need_anchor = false
1299 for t in arguments do
1300 if t.need_anchor then
1301 self.need_anchor = true
1302 break
1303 end
1304 end
1305
1306 self.to_s = "{mclass}[{arguments.join(", ")}]"
1307 end
1308
1309 # The short-name of the class, then the full-name of each type arguments within brackets.
1310 # Example: `"Map[String, List[Int]]"`
1311 redef var to_s is noinit
1312
1313 # The full-name of the class, then the full-name of each type arguments within brackets.
1314 # Example: `"core::Map[core::String, core::List[core::Int]]"`
1315 redef var full_name is lazy do
1316 var args = new Array[String]
1317 for t in arguments do
1318 args.add t.full_name
1319 end
1320 return "{mclass.full_name}[{args.join(", ")}]"
1321 end
1322
1323 redef var c_name is lazy do
1324 var res = mclass.c_name
1325 # Note: because the arity is known, a prefix notation is enough
1326 for t in arguments do
1327 res += "__"
1328 res += t.c_name
1329 end
1330 return res.to_s
1331 end
1332
1333 redef var need_anchor is noinit
1334
1335 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1336 do
1337 if not need_anchor then return self
1338 assert can_resolve_for(mtype, anchor, mmodule)
1339 var types = new Array[MType]
1340 for t in arguments do
1341 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1342 end
1343 return mclass.get_mtype(types)
1344 end
1345
1346 redef fun can_resolve_for(mtype, anchor, mmodule)
1347 do
1348 if not need_anchor then return true
1349 for t in arguments do
1350 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1351 end
1352 return true
1353 end
1354
1355
1356 redef fun depth
1357 do
1358 var dmax = 0
1359 for a in self.arguments do
1360 var d = a.depth
1361 if d > dmax then dmax = d
1362 end
1363 return dmax + 1
1364 end
1365
1366 redef fun length
1367 do
1368 var res = 1
1369 for a in self.arguments do
1370 res += a.length
1371 end
1372 return res
1373 end
1374 end
1375
1376 # A formal type (either virtual of parametric).
1377 #
1378 # The main issue with formal types is that they offer very little information on their own
1379 # and need a context (anchor and mmodule) to be useful.
1380 abstract class MFormalType
1381 super MType
1382
1383 redef var as_notnull = new MNotNullType(self) is lazy
1384 end
1385
1386 # A virtual formal type.
1387 class MVirtualType
1388 super MFormalType
1389
1390 # The property associated with the type.
1391 # Its the definitions of this property that determine the bound or the virtual type.
1392 var mproperty: MVirtualTypeProp
1393
1394 redef fun location do return mproperty.location
1395
1396 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1397
1398 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1399 do
1400 return lookup_single_definition(mmodule, resolved_receiver).bound or else new MErrorType(model)
1401 end
1402
1403 private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef
1404 do
1405 assert not resolved_receiver.need_anchor
1406 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1407 if props.is_empty then
1408 abort
1409 else if props.length == 1 then
1410 return props.first
1411 end
1412 var types = new ArraySet[MType]
1413 var res = props.first
1414 for p in props do
1415 types.add(p.bound.as(not null))
1416 if not res.is_fixed then res = p
1417 end
1418 if types.length == 1 then
1419 return res
1420 end
1421 abort
1422 end
1423
1424 # A VT is fixed when:
1425 # * the VT is (re-)defined with the annotation `is fixed`
1426 # * the VT is (indirectly) bound to an enum class (see `enum_kind`) since there is no subtype possible
1427 # * the receiver is an enum class since there is no subtype possible
1428 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1429 do
1430 assert not resolved_receiver.need_anchor
1431 resolved_receiver = resolved_receiver.undecorate
1432 assert resolved_receiver isa MClassType # It is the only remaining type
1433
1434 var prop = lookup_single_definition(mmodule, resolved_receiver)
1435 var res = prop.bound
1436 if res == null then return new MErrorType(model)
1437
1438 # Recursively lookup the fixed result
1439 res = res.lookup_fixed(mmodule, resolved_receiver)
1440
1441 # 1. For a fixed VT, return the resolved bound
1442 if prop.is_fixed then return res
1443
1444 # 2. For a enum boud, return the bound
1445 if res isa MClassType and res.mclass.kind == enum_kind then return res
1446
1447 # 3. for a enum receiver return the bound
1448 if resolved_receiver.mclass.kind == enum_kind then return res
1449
1450 return self
1451 end
1452
1453 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1454 do
1455 if not cleanup_virtual then return self
1456 assert can_resolve_for(mtype, anchor, mmodule)
1457
1458 if mproperty.is_selftype then return mtype
1459
1460 # self is a virtual type declared (or inherited) in mtype
1461 # The point of the function it to get the bound of the virtual type that make sense for mtype
1462 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1463 #print "{class_name}: {self}/{mtype}/{anchor}?"
1464 var resolved_receiver
1465 if mtype.need_anchor then
1466 assert anchor != null
1467 resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true)
1468 else
1469 resolved_receiver = mtype
1470 end
1471 # Now, we can get the bound
1472 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1473 # The bound is exactly as declared in the "type" property, so we must resolve it again
1474 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1475
1476 return res
1477 end
1478
1479 redef fun can_resolve_for(mtype, anchor, mmodule)
1480 do
1481 if mtype.need_anchor then
1482 assert anchor != null
1483 mtype = mtype.anchor_to(mmodule, anchor)
1484 end
1485 return mtype.has_mproperty(mmodule, mproperty)
1486 end
1487
1488 redef fun to_s do return self.mproperty.to_s
1489
1490 redef fun full_name do return self.mproperty.full_name
1491
1492 redef fun c_name do return self.mproperty.c_name
1493 end
1494
1495 # The type associated to a formal parameter generic type of a class
1496 #
1497 # Each parameter type is associated to a specific class.
1498 # It means that all refinements of a same class "share" the parameter type,
1499 # but that a generic subclass has its own parameter types.
1500 #
1501 # However, in the sense of the meta-model, a parameter type of a class is
1502 # a valid type in a subclass. The "in the sense of the meta-model" is
1503 # important because, in the Nit language, the programmer cannot refers
1504 # directly to the parameter types of the super-classes.
1505 #
1506 # Example:
1507 #
1508 # class A[E]
1509 # fun e: E is abstract
1510 # end
1511 # class B[F]
1512 # super A[Array[F]]
1513 # end
1514 #
1515 # In the class definition B[F], `F` is a valid type but `E` is not.
1516 # However, `self.e` is a valid method call, and the signature of `e` is
1517 # declared `e: E`.
1518 #
1519 # Note that parameter types are shared among class refinements.
1520 # Therefore parameter only have an internal name (see `to_s` for details).
1521 class MParameterType
1522 super MFormalType
1523
1524 # The generic class where the parameter belong
1525 var mclass: MClass
1526
1527 redef fun model do return self.mclass.intro_mmodule.model
1528
1529 redef fun location do return mclass.location
1530
1531 # The position of the parameter (0 for the first parameter)
1532 # FIXME: is `position` a better name?
1533 var rank: Int
1534
1535 redef var name
1536
1537 redef fun to_s do return name
1538
1539 redef var full_name is lazy do return "{mclass.full_name}::{name}"
1540
1541 redef var c_name is lazy do return mclass.c_name + "__" + "#{name}".to_cmangle
1542
1543 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1544 do
1545 assert not resolved_receiver.need_anchor
1546 resolved_receiver = resolved_receiver.undecorate
1547 assert resolved_receiver isa MClassType # It is the only remaining type
1548 var goalclass = self.mclass
1549 if resolved_receiver.mclass == goalclass then
1550 return resolved_receiver.arguments[self.rank]
1551 end
1552 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1553 for t in supertypes do
1554 if t.mclass == goalclass then
1555 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1556 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1557 var res = t.arguments[self.rank]
1558 return res
1559 end
1560 end
1561 abort
1562 end
1563
1564 # A PT is fixed when:
1565 # * Its bound is a enum class (see `enum_kind`).
1566 # The PT is just useless, but it is still a case.
1567 # * More usually, the `resolved_receiver` is a subclass of `self.mclass`,
1568 # so it is necessarily fixed in a `super` clause, either with a normal type
1569 # or with another PT.
1570 # See `resolve_for` for examples about related issues.
1571 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1572 do
1573 assert not resolved_receiver.need_anchor
1574 resolved_receiver = resolved_receiver.undecorate
1575 assert resolved_receiver isa MClassType # It is the only remaining type
1576 var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false)
1577 return res
1578 end
1579
1580 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1581 do
1582 assert can_resolve_for(mtype, anchor, mmodule)
1583 #print "{class_name}: {self}/{mtype}/{anchor}?"
1584
1585 if mtype isa MGenericType and mtype.mclass == self.mclass then
1586 var res = mtype.arguments[self.rank]
1587 if anchor != null and res.need_anchor then
1588 # Maybe the result can be resolved more if are bound to a final class
1589 var r2 = res.anchor_to(mmodule, anchor)
1590 if r2 isa MClassType and r2.mclass.kind == enum_kind then return r2
1591 end
1592 return res
1593 end
1594
1595 # self is a parameter type of mtype (or of a super-class of mtype)
1596 # The point of the function it to get the bound of the virtual type that make sense for mtype
1597 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1598 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1599 var resolved_receiver
1600 if mtype.need_anchor then
1601 assert anchor != null
1602 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1603 else
1604 resolved_receiver = mtype
1605 end
1606 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1607 if resolved_receiver isa MParameterType then
1608 assert anchor != null
1609 assert resolved_receiver.mclass == anchor.mclass
1610 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1611 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1612 end
1613 assert resolved_receiver isa MClassType # It is the only remaining type
1614
1615 # Eh! The parameter is in the current class.
1616 # So we return the corresponding argument, no mater what!
1617 if resolved_receiver.mclass == self.mclass then
1618 var res = resolved_receiver.arguments[self.rank]
1619 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1620 return res
1621 end
1622
1623 if resolved_receiver.need_anchor then
1624 assert anchor != null
1625 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1626 end
1627 # Now, we can get the bound
1628 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1629 # The bound is exactly as declared in the "type" property, so we must resolve it again
1630 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1631
1632 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1633
1634 return res
1635 end
1636
1637 redef fun can_resolve_for(mtype, anchor, mmodule)
1638 do
1639 if mtype.need_anchor then
1640 assert anchor != null
1641 mtype = mtype.anchor_to(mmodule, anchor)
1642 end
1643 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1644 end
1645 end
1646
1647 # A type that decorates another type.
1648 #
1649 # The point of this class is to provide a common implementation of sevices that just forward to the original type.
1650 # Specific decorator are expected to redefine (or to extend) the default implementation as this suit them.
1651 abstract class MProxyType
1652 super MType
1653 # The base type
1654 var mtype: MType
1655
1656 redef fun location do return mtype.location
1657
1658 redef fun model do return self.mtype.model
1659 redef fun need_anchor do return mtype.need_anchor
1660 redef fun as_nullable do return mtype.as_nullable
1661 redef fun as_notnull do return mtype.as_notnull
1662 redef fun undecorate do return mtype.undecorate
1663 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1664 do
1665 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1666 return res
1667 end
1668
1669 redef fun can_resolve_for(mtype, anchor, mmodule)
1670 do
1671 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1672 end
1673
1674 redef fun lookup_fixed(mmodule, resolved_receiver)
1675 do
1676 var t = mtype.lookup_fixed(mmodule, resolved_receiver)
1677 return t
1678 end
1679
1680 redef fun depth do return self.mtype.depth
1681
1682 redef fun length do return self.mtype.length
1683
1684 redef fun collect_mclassdefs(mmodule)
1685 do
1686 assert not self.need_anchor
1687 return self.mtype.collect_mclassdefs(mmodule)
1688 end
1689
1690 redef fun collect_mclasses(mmodule)
1691 do
1692 assert not self.need_anchor
1693 return self.mtype.collect_mclasses(mmodule)
1694 end
1695
1696 redef fun collect_mtypes(mmodule)
1697 do
1698 assert not self.need_anchor
1699 return self.mtype.collect_mtypes(mmodule)
1700 end
1701 end
1702
1703 # A type prefixed with "nullable"
1704 class MNullableType
1705 super MProxyType
1706
1707 init
1708 do
1709 self.to_s = "nullable {mtype}"
1710 end
1711
1712 redef var to_s is noinit
1713
1714 redef var full_name is lazy do return "nullable {mtype.full_name}"
1715
1716 redef var c_name is lazy do return "nullable__{mtype.c_name}"
1717
1718 redef fun as_nullable do return self
1719 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1720 do
1721 var res = super
1722 return res.as_nullable
1723 end
1724
1725 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable`
1726 redef fun lookup_fixed(mmodule, resolved_receiver)
1727 do
1728 var t = super
1729 if t == mtype then return self
1730 return t.as_nullable
1731 end
1732 end
1733
1734 # A non-null version of a formal type.
1735 #
1736 # When a formal type in bounded to a nullable type, this is the type of the not null version of it.
1737 class MNotNullType
1738 super MProxyType
1739
1740 redef fun to_s do return "not null {mtype}"
1741 redef var full_name is lazy do return "not null {mtype.full_name}"
1742 redef var c_name is lazy do return "notnull__{mtype.c_name}"
1743
1744 redef fun as_notnull do return self
1745
1746 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1747 do
1748 var res = super
1749 return res.as_notnull
1750 end
1751
1752 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_notnull`
1753 redef fun lookup_fixed(mmodule, resolved_receiver)
1754 do
1755 var t = super
1756 if t == mtype then return self
1757 return t.as_notnull
1758 end
1759 end
1760
1761 # The type of the only value null
1762 #
1763 # The is only one null type per model, see `MModel::null_type`.
1764 class MNullType
1765 super MType
1766 redef var model
1767 redef fun to_s do return "null"
1768 redef fun full_name do return "null"
1769 redef fun c_name do return "null"
1770 redef fun as_nullable do return self
1771
1772 redef var as_notnull = new MBottomType(model) is lazy
1773 redef fun need_anchor do return false
1774 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1775 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1776
1777 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1778
1779 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1780
1781 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1782 end
1783
1784 # The special universal most specific type.
1785 #
1786 # This type is intended to be only used internally for type computation or analysis and should not be exposed to the user.
1787 # The bottom type can de used to denote things that are dead (no instance).
1788 #
1789 # Semantically it is the singleton `null.as_notnull`.
1790 # Is also means that `self.as_nullable == null`.
1791 class MBottomType
1792 super MType
1793 redef var model
1794 redef fun to_s do return "bottom"
1795 redef fun full_name do return "bottom"
1796 redef fun c_name do return "bottom"
1797 redef fun as_nullable do return model.null_type
1798 redef fun as_notnull do return self
1799 redef fun need_anchor do return false
1800 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1801 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1802
1803 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1804
1805 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1806
1807 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1808 end
1809
1810 # A special type used as a silent error marker when building types.
1811 #
1812 # This type is intended to be only used internally for type operation and should not be exposed to the user.
1813 # The error type can de used to denote things that are conflicting or inconsistent.
1814 #
1815 # Some methods on types can return a `MErrorType` to denote a broken or a conflicting result.
1816 class MErrorType
1817 super MType
1818 redef var model
1819 redef fun to_s do return "error"
1820 redef fun full_name do return "error"
1821 redef fun c_name do return "error"
1822 redef fun need_anchor do return false
1823 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1824 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1825
1826 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1827
1828 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1829
1830 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1831 end
1832
1833 # A signature of a method
1834 class MSignature
1835 super MType
1836
1837 # The each parameter (in order)
1838 var mparameters: Array[MParameter]
1839
1840 # Returns a parameter named `name`, if any.
1841 fun mparameter_by_name(name: String): nullable MParameter
1842 do
1843 for p in mparameters do
1844 if p.name == name then return p
1845 end
1846 return null
1847 end
1848
1849 # The return type (null for a procedure)
1850 var return_mtype: nullable MType
1851
1852 redef fun depth
1853 do
1854 var dmax = 0
1855 var t = self.return_mtype
1856 if t != null then dmax = t.depth
1857 for p in mparameters do
1858 var d = p.mtype.depth
1859 if d > dmax then dmax = d
1860 end
1861 return dmax + 1
1862 end
1863
1864 redef fun length
1865 do
1866 var res = 1
1867 var t = self.return_mtype
1868 if t != null then res += t.length
1869 for p in mparameters do
1870 res += p.mtype.length
1871 end
1872 return res
1873 end
1874
1875 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1876 init
1877 do
1878 var vararg_rank = -1
1879 for i in [0..mparameters.length[ do
1880 var parameter = mparameters[i]
1881 if parameter.is_vararg then
1882 if vararg_rank >= 0 then
1883 # If there is more than one vararg,
1884 # consider that additional arguments cannot be mapped.
1885 vararg_rank = -1
1886 break
1887 end
1888 vararg_rank = i
1889 end
1890 end
1891 self.vararg_rank = vararg_rank
1892 end
1893
1894 # The rank of the main ellipsis (`...`) for vararg (starting from 0).
1895 # value is -1 if there is no vararg.
1896 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1897 #
1898 # From a model POV, a signature can contain more than one vararg parameter,
1899 # the `vararg_rank` just indicates the one that will receive the additional arguments.
1900 # However, currently, if there is more that one vararg parameter, no one will be the main one,
1901 # and additional arguments will be refused.
1902 var vararg_rank: Int is noinit
1903
1904 # The number of parameters
1905 fun arity: Int do return mparameters.length
1906
1907 redef fun to_s
1908 do
1909 var b = new FlatBuffer
1910 if not mparameters.is_empty then
1911 b.append("(")
1912 for i in [0..mparameters.length[ do
1913 var mparameter = mparameters[i]
1914 if i > 0 then b.append(", ")
1915 b.append(mparameter.name)
1916 b.append(": ")
1917 b.append(mparameter.mtype.to_s)
1918 if mparameter.is_vararg then
1919 b.append("...")
1920 end
1921 end
1922 b.append(")")
1923 end
1924 var ret = self.return_mtype
1925 if ret != null then
1926 b.append(": ")
1927 b.append(ret.to_s)
1928 end
1929 return b.to_s
1930 end
1931
1932 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
1933 do
1934 var params = new Array[MParameter]
1935 for p in self.mparameters do
1936 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1937 end
1938 var ret = self.return_mtype
1939 if ret != null then
1940 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1941 end
1942 var res = new MSignature(params, ret)
1943 return res
1944 end
1945 end
1946
1947 # A parameter in a signature
1948 class MParameter
1949 super MEntity
1950
1951 # The name of the parameter
1952 redef var name
1953
1954 # The static type of the parameter
1955 var mtype: MType
1956
1957 # Is the parameter a vararg?
1958 var is_vararg: Bool
1959
1960 redef fun to_s
1961 do
1962 if is_vararg then
1963 return "{name}: {mtype}..."
1964 else
1965 return "{name}: {mtype}"
1966 end
1967 end
1968
1969 # Returns a new parameter with the `mtype` resolved.
1970 # See `MType::resolve_for` for details.
1971 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
1972 do
1973 if not self.mtype.need_anchor then return self
1974 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1975 var res = new MParameter(self.name, newtype, self.is_vararg)
1976 return res
1977 end
1978
1979 redef fun model do return mtype.model
1980 end
1981
1982 # A service (global property) that generalize method, attribute, etc.
1983 #
1984 # `MProperty` are global to the model; it means that a `MProperty` is not bound
1985 # to a specific `MModule` nor a specific `MClass`.
1986 #
1987 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
1988 # and the other in subclasses and in refinements.
1989 #
1990 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
1991 # of any dynamic type).
1992 # For instance, a call site "x.foo" is associated to a `MProperty`.
1993 abstract class MProperty
1994 super MEntity
1995
1996 # The associated MPropDef subclass.
1997 # The two specialization hierarchy are symmetric.
1998 type MPROPDEF: MPropDef
1999
2000 # The classdef that introduce the property
2001 # While a property is not bound to a specific module, or class,
2002 # the introducing mclassdef is used for naming and visibility
2003 var intro_mclassdef: MClassDef
2004
2005 # The (short) name of the property
2006 redef var name
2007
2008 redef var location
2009
2010 redef fun mdoc_or_fallback do return intro.mdoc_or_fallback
2011
2012 # The canonical name of the property.
2013 #
2014 # It is currently the short-`name` prefixed by the short-name of the class and the full-name of the module.
2015 # Example: "my_package::my_module::MyClass::my_method"
2016 #
2017 # The full-name of the module is needed because two distinct modules of the same package can
2018 # still refine the same class and introduce homonym properties.
2019 #
2020 # For public properties not introduced by refinement, the module name is not used.
2021 #
2022 # Example: `my_package::MyClass::My_method`
2023 redef var full_name is lazy do
2024 if intro_mclassdef.is_intro then
2025 return "{intro_mclassdef.mmodule.namespace_for(visibility)}::{intro_mclassdef.mclass.name}::{name}"
2026 else
2027 return "{intro_mclassdef.mmodule.full_name}::{intro_mclassdef.mclass.name}::{name}"
2028 end
2029 end
2030
2031 redef var c_name is lazy do
2032 # FIXME use `namespace_for`
2033 return "{intro_mclassdef.mmodule.c_name}__{intro_mclassdef.mclass.name.to_cmangle}__{name.to_cmangle}"
2034 end
2035
2036 # The visibility of the property
2037 redef var visibility
2038
2039 # Is the property usable as an initializer?
2040 var is_autoinit = false is writable
2041
2042 init
2043 do
2044 intro_mclassdef.intro_mproperties.add(self)
2045 var model = intro_mclassdef.mmodule.model
2046 model.mproperties_by_name.add_one(name, self)
2047 model.mproperties.add(self)
2048 end
2049
2050 # All definitions of the property.
2051 # The first is the introduction,
2052 # The other are redefinitions (in refinements and in subclasses)
2053 var mpropdefs = new Array[MPROPDEF]
2054
2055 # The definition that introduces the property.
2056 #
2057 # Warning: such a definition may not exist in the early life of the object.
2058 # In this case, the method will abort.
2059 var intro: MPROPDEF is noinit
2060
2061 redef fun model do return intro.model
2062
2063 # Alias for `name`
2064 redef fun to_s do return name
2065
2066 # Return the most specific property definitions defined or inherited by a type.
2067 # The selection knows that refinement is stronger than specialization;
2068 # however, in case of conflict more than one property are returned.
2069 # If mtype does not know mproperty then an empty array is returned.
2070 #
2071 # If you want the really most specific property, then look at `lookup_first_definition`
2072 #
2073 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2074 # ENSURE: `not mtype.has_mproperty(mmodule, self) == result.is_empty`
2075 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2076 do
2077 assert not mtype.need_anchor
2078 mtype = mtype.undecorate
2079
2080 var cache = self.lookup_definitions_cache[mmodule, mtype]
2081 if cache != null then return cache
2082
2083 #print "select prop {mproperty} for {mtype} in {self}"
2084 # First, select all candidates
2085 var candidates = new Array[MPROPDEF]
2086
2087 # Here we have two strategies: iterate propdefs or iterate classdefs.
2088 var mpropdefs = self.mpropdefs
2089 if mpropdefs.length <= 1 or mpropdefs.length < mtype.collect_mclassdefs(mmodule).length then
2090 # Iterate on all definitions of `self`, keep only those inherited by `mtype` in `mmodule`
2091 for mpropdef in mpropdefs do
2092 # If the definition is not imported by the module, then skip
2093 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2094 # If the definition is not inherited by the type, then skip
2095 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2096 # Else, we keep it
2097 candidates.add(mpropdef)
2098 end
2099 else
2100 # Iterate on all super-classdefs of `mtype`, keep only the definitions of `self`, if any.
2101 for mclassdef in mtype.collect_mclassdefs(mmodule) do
2102 var p = mclassdef.mpropdefs_by_property.get_or_null(self)
2103 if p != null then candidates.add p
2104 end
2105 end
2106
2107 # Fast track for only one candidate
2108 if candidates.length <= 1 then
2109 self.lookup_definitions_cache[mmodule, mtype] = candidates
2110 return candidates
2111 end
2112
2113 # Second, filter the most specific ones
2114 return select_most_specific(mmodule, candidates)
2115 end
2116
2117 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2118
2119 # Return the most specific property definitions inherited by a type.
2120 # The selection knows that refinement is stronger than specialization;
2121 # however, in case of conflict more than one property are returned.
2122 # If mtype does not know mproperty then an empty array is returned.
2123 #
2124 # If you want the really most specific property, then look at `lookup_next_definition`
2125 #
2126 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2127 # ENSURE: `not mtype.has_mproperty(mmodule, self) implies result.is_empty`
2128 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2129 do
2130 assert not mtype.need_anchor
2131 mtype = mtype.undecorate
2132
2133 # First, select all candidates
2134 var candidates = new Array[MPROPDEF]
2135 for mpropdef in self.mpropdefs do
2136 # If the definition is not imported by the module, then skip
2137 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2138 # If the definition is not inherited by the type, then skip
2139 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2140 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
2141 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
2142 # Else, we keep it
2143 candidates.add(mpropdef)
2144 end
2145 # Fast track for only one candidate
2146 if candidates.length <= 1 then return candidates
2147
2148 # Second, filter the most specific ones
2149 return select_most_specific(mmodule, candidates)
2150 end
2151
2152 # Return an array containing olny the most specific property definitions
2153 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
2154 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
2155 do
2156 var res = new Array[MPROPDEF]
2157 for pd1 in candidates do
2158 var cd1 = pd1.mclassdef
2159 var c1 = cd1.mclass
2160 var keep = true
2161 for pd2 in candidates do
2162 if pd2 == pd1 then continue # do not compare with self!
2163 var cd2 = pd2.mclassdef
2164 var c2 = cd2.mclass
2165 if c2.mclass_type == c1.mclass_type then
2166 if cd2.mmodule.in_importation < cd1.mmodule then
2167 # cd2 refines cd1; therefore we skip pd1
2168 keep = false
2169 break
2170 end
2171 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
2172 # cd2 < cd1; therefore we skip pd1
2173 keep = false
2174 break
2175 end
2176 end
2177 if keep then
2178 res.add(pd1)
2179 end
2180 end
2181 if res.is_empty then
2182 print_error "All lost! {candidates.join(", ")}"
2183 # FIXME: should be abort!
2184 end
2185 return res
2186 end
2187
2188 # Return the most specific definition in the linearization of `mtype`.
2189 #
2190 # If you want to know the next properties in the linearization,
2191 # look at `MPropDef::lookup_next_definition`.
2192 #
2193 # FIXME: the linearization is still unspecified
2194 #
2195 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2196 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2197 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
2198 do
2199 return lookup_all_definitions(mmodule, mtype).first
2200 end
2201
2202 # Return all definitions in a linearization order
2203 # Most specific first, most general last
2204 #
2205 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2206 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2207 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2208 do
2209 mtype = mtype.undecorate
2210
2211 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
2212 if cache != null then return cache
2213
2214 assert not mtype.need_anchor
2215 assert mtype.has_mproperty(mmodule, self)
2216
2217 #print "select prop {mproperty} for {mtype} in {self}"
2218 # First, select all candidates
2219 var candidates = new Array[MPROPDEF]
2220 for mpropdef in self.mpropdefs do
2221 # If the definition is not imported by the module, then skip
2222 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2223 # If the definition is not inherited by the type, then skip
2224 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2225 # Else, we keep it
2226 candidates.add(mpropdef)
2227 end
2228 # Fast track for only one candidate
2229 if candidates.length <= 1 then
2230 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2231 return candidates
2232 end
2233
2234 mmodule.linearize_mpropdefs(candidates)
2235 candidates = candidates.reversed
2236 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2237 return candidates
2238 end
2239
2240 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2241 end
2242
2243 # A global method
2244 class MMethod
2245 super MProperty
2246
2247 redef type MPROPDEF: MMethodDef
2248
2249 # Is the property defined at the top_level of the module?
2250 # Currently such a property are stored in `Object`
2251 var is_toplevel: Bool = false is writable
2252
2253 # Is the property a constructor?
2254 # Warning, this property can be inherited by subclasses with or without being a constructor
2255 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
2256 var is_init: Bool = false is writable
2257
2258 # The constructor is a (the) root init with empty signature but a set of initializers
2259 var is_root_init: Bool = false is writable
2260
2261 # Is the property a 'new' constructor?
2262 var is_new: Bool = false is writable
2263
2264 # Is the property a legal constructor for a given class?
2265 # As usual, visibility is not considered.
2266 # FIXME not implemented
2267 fun is_init_for(mclass: MClass): Bool
2268 do
2269 return self.is_init
2270 end
2271
2272 # A specific method that is safe to call on null.
2273 # Currently, only `==`, `!=` and `is_same_instance` are safe
2274 fun is_null_safe: Bool do return name == "==" or name == "!=" or name == "is_same_instance"
2275 end
2276
2277 # A global attribute
2278 class MAttribute
2279 super MProperty
2280
2281 redef type MPROPDEF: MAttributeDef
2282
2283 end
2284
2285 # A global virtual type
2286 class MVirtualTypeProp
2287 super MProperty
2288
2289 redef type MPROPDEF: MVirtualTypeDef
2290
2291 # The formal type associated to the virtual type property
2292 var mvirtualtype = new MVirtualType(self)
2293
2294 # Is `self` the special virtual type `SELF`?
2295 var is_selftype: Bool is lazy do return name == "SELF"
2296 end
2297
2298 # A definition of a property (local property)
2299 #
2300 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
2301 # specific class definition (which belong to a specific module)
2302 abstract class MPropDef
2303 super MEntity
2304
2305 # The associated `MProperty` subclass.
2306 # the two specialization hierarchy are symmetric
2307 type MPROPERTY: MProperty
2308
2309 # Self class
2310 type MPROPDEF: MPropDef
2311
2312 # The class definition where the property definition is
2313 var mclassdef: MClassDef
2314
2315 # The associated global property
2316 var mproperty: MPROPERTY
2317
2318 redef var location: Location
2319
2320 redef fun visibility do return mproperty.visibility
2321
2322 init
2323 do
2324 mclassdef.mpropdefs.add(self)
2325 mproperty.mpropdefs.add(self)
2326 mclassdef.mpropdefs_by_property[mproperty] = self
2327 if mproperty.intro_mclassdef == mclassdef then
2328 assert not isset mproperty._intro
2329 mproperty.intro = self
2330 end
2331 self.to_s = "{mclassdef}${mproperty}"
2332 end
2333
2334 # Actually the name of the `mproperty`
2335 redef fun name do return mproperty.name
2336
2337 # The full-name of mpropdefs combine the information about the `classdef` and the `mproperty`.
2338 #
2339 # Therefore the combination of identifiers is awful,
2340 # the worst case being
2341 #
2342 # * a property "p::m::A::x"
2343 # * redefined in a refinement of a class "q::n::B"
2344 # * in a module "r::o"
2345 # * so "r::o$q::n::B$p::m::A::x"
2346 #
2347 # Fortunately, the full-name is simplified when entities are repeated.
2348 # For the previous case, the simplest form is "p$A$x".
2349 redef var full_name is lazy do
2350 var res = new FlatBuffer
2351
2352 # The first part is the mclassdef. Worst case is "r::o$q::n::B"
2353 res.append mclassdef.full_name
2354
2355 res.append "$"
2356
2357 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2358 # intro are unambiguous in a class
2359 res.append name
2360 else
2361 # Just try to simplify each part
2362 if mclassdef.mmodule.mpackage != mproperty.intro_mclassdef.mmodule.mpackage then
2363 # precise "p::m" only if "p" != "r"
2364 res.append mproperty.intro_mclassdef.mmodule.namespace_for(mproperty.visibility)
2365 res.append "::"
2366 else if mproperty.visibility <= private_visibility then
2367 # Same package ("p"=="q"), but private visibility,
2368 # does the module part ("::m") need to be displayed
2369 if mclassdef.mmodule.namespace_for(mclassdef.mclass.visibility) != mproperty.intro_mclassdef.mmodule.mpackage then
2370 res.append "::"
2371 res.append mproperty.intro_mclassdef.mmodule.name
2372 res.append "::"
2373 end
2374 end
2375 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2376 # precise "B" only if not the same class than "A"
2377 res.append mproperty.intro_mclassdef.name
2378 res.append "::"
2379 end
2380 # Always use the property name "x"
2381 res.append mproperty.name
2382 end
2383 return res.to_s
2384 end
2385
2386 redef var c_name is lazy do
2387 var res = new FlatBuffer
2388 res.append mclassdef.c_name
2389 res.append "___"
2390 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2391 res.append name.to_cmangle
2392 else
2393 if mclassdef.mmodule != mproperty.intro_mclassdef.mmodule then
2394 res.append mproperty.intro_mclassdef.mmodule.c_name
2395 res.append "__"
2396 end
2397 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2398 res.append mproperty.intro_mclassdef.name.to_cmangle
2399 res.append "__"
2400 end
2401 res.append mproperty.name.to_cmangle
2402 end
2403 return res.to_s
2404 end
2405
2406 redef fun model do return mclassdef.model
2407
2408 # Internal name combining the module, the class and the property
2409 # Example: "mymodule$MyClass$mymethod"
2410 redef var to_s is noinit
2411
2412 # Is self the definition that introduce the property?
2413 fun is_intro: Bool do return isset mproperty._intro and mproperty.intro == self
2414
2415 # Return the next definition in linearization of `mtype`.
2416 #
2417 # This method is used to determine what method is called by a super.
2418 #
2419 # REQUIRE: `not mtype.need_anchor`
2420 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
2421 do
2422 assert not mtype.need_anchor
2423
2424 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
2425 var i = mpropdefs.iterator
2426 while i.is_ok and i.item != self do i.next
2427 assert has_property: i.is_ok
2428 i.next
2429 assert has_next_property: i.is_ok
2430 return i.item
2431 end
2432 end
2433
2434 # A local definition of a method
2435 class MMethodDef
2436 super MPropDef
2437
2438 redef type MPROPERTY: MMethod
2439 redef type MPROPDEF: MMethodDef
2440
2441 # The signature attached to the property definition
2442 var msignature: nullable MSignature = null is writable
2443
2444 # The signature attached to the `new` call on a root-init
2445 # This is a concatenation of the signatures of the initializers
2446 #
2447 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2448 var new_msignature: nullable MSignature = null is writable
2449
2450 # List of initialisers to call in root-inits
2451 #
2452 # They could be setters or attributes
2453 #
2454 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2455 var initializers = new Array[MProperty]
2456
2457 # Is the method definition abstract?
2458 var is_abstract: Bool = false is writable
2459
2460 # Is the method definition intern?
2461 var is_intern = false is writable
2462
2463 # Is the method definition extern?
2464 var is_extern = false is writable
2465
2466 # An optional constant value returned in functions.
2467 #
2468 # Only some specific primitife value are accepted by engines.
2469 # Is used when there is no better implementation available.
2470 #
2471 # Currently used only for the implementation of the `--define`
2472 # command-line option.
2473 # SEE: module `mixin`.
2474 var constant_value: nullable Object = null is writable
2475 end
2476
2477 # A local definition of an attribute
2478 class MAttributeDef
2479 super MPropDef
2480
2481 redef type MPROPERTY: MAttribute
2482 redef type MPROPDEF: MAttributeDef
2483
2484 # The static type of the attribute
2485 var static_mtype: nullable MType = null is writable
2486 end
2487
2488 # A local definition of a virtual type
2489 class MVirtualTypeDef
2490 super MPropDef
2491
2492 redef type MPROPERTY: MVirtualTypeProp
2493 redef type MPROPDEF: MVirtualTypeDef
2494
2495 # The bound of the virtual type
2496 var bound: nullable MType = null is writable
2497
2498 # Is the bound fixed?
2499 var is_fixed = false is writable
2500 end
2501
2502 # A kind of class.
2503 #
2504 # * `abstract_kind`
2505 # * `concrete_kind`
2506 # * `interface_kind`
2507 # * `enum_kind`
2508 # * `extern_kind`
2509 #
2510 # Note this class is basically an enum.
2511 # FIXME: use a real enum once user-defined enums are available
2512 class MClassKind
2513 redef var to_s
2514
2515 # Is a constructor required?
2516 var need_init: Bool
2517
2518 # TODO: private init because enumeration.
2519
2520 # Can a class of kind `self` specializes a class of kine `other`?
2521 fun can_specialize(other: MClassKind): Bool
2522 do
2523 if other == interface_kind then return true # everybody can specialize interfaces
2524 if self == interface_kind or self == enum_kind then
2525 # no other case for interfaces
2526 return false
2527 else if self == extern_kind then
2528 # only compatible with themselves
2529 return self == other
2530 else if other == enum_kind or other == extern_kind then
2531 # abstract_kind and concrete_kind are incompatible
2532 return false
2533 end
2534 # remain only abstract_kind and concrete_kind
2535 return true
2536 end
2537 end
2538
2539 # The class kind `abstract`
2540 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", true)
2541 # The class kind `concrete`
2542 fun concrete_kind: MClassKind do return once new MClassKind("class", true)
2543 # The class kind `interface`
2544 fun interface_kind: MClassKind do return once new MClassKind("interface", false)
2545 # The class kind `enum`
2546 fun enum_kind: MClassKind do return once new MClassKind("enum", false)
2547 # The class kind `extern`
2548 fun extern_kind: MClassKind do return once new MClassKind("extern class", false)