model: Make the `anchor` parameter of `MType::anchor_to` nullable
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class MEntity
34 # The visibility of the MEntity.
35 #
36 # MPackages, MGroups and MModules are always public.
37 # The visibility of `MClass` and `MProperty` is defined by the keyword used.
38 # `MClassDef` and `MPropDef` return the visibility of `MClass` and `MProperty`.
39 fun visibility: MVisibility do return public_visibility
40 end
41
42 redef class Model
43 # All known classes
44 var mclasses = new Array[MClass]
45
46 # All known properties
47 var mproperties = new Array[MProperty]
48
49 # Hierarchy of class definition.
50 #
51 # Each classdef is associated with its super-classdefs in regard to
52 # its module of definition.
53 var mclassdef_hierarchy = new POSet[MClassDef]
54
55 # Class-type hierarchy restricted to the introduction.
56 #
57 # The idea is that what is true on introduction is always true whatever
58 # the module considered.
59 # Therefore, this hierarchy is used for a fast positive subtype check.
60 #
61 # This poset will evolve in a monotonous way:
62 # * Two non connected nodes will remain unconnected
63 # * New nodes can appear with new edges
64 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
65
66 # Global overlapped class-type hierarchy.
67 # The hierarchy when all modules are combined.
68 # Therefore, this hierarchy is used for a fast negative subtype check.
69 #
70 # This poset will evolve in an anarchic way. Loops can even be created.
71 #
72 # FIXME decide what to do on loops
73 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
74
75 # Collections of classes grouped by their short name
76 private var mclasses_by_name = new MultiHashMap[String, MClass]
77
78 # Return all classes named `name`.
79 #
80 # If such a class does not exist, null is returned
81 # (instead of an empty array)
82 #
83 # Visibility or modules are not considered
84 fun get_mclasses_by_name(name: String): nullable Array[MClass]
85 do
86 return mclasses_by_name.get_or_null(name)
87 end
88
89 # Collections of properties grouped by their short name
90 private var mproperties_by_name = new MultiHashMap[String, MProperty]
91
92 # Return all properties named `name`.
93 #
94 # If such a property does not exist, null is returned
95 # (instead of an empty array)
96 #
97 # Visibility or modules are not considered
98 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
99 do
100 return mproperties_by_name.get_or_null(name)
101 end
102
103 # The only null type
104 var null_type = new MNullType(self)
105
106 # The only bottom type
107 var bottom_type: MBottomType = null_type.as_notnull
108
109 # Build an ordered tree with from `concerns`
110 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
111 var seen = new HashSet[MConcern]
112 var res = new ConcernsTree
113
114 var todo = new Array[MConcern]
115 todo.add_all mconcerns
116
117 while not todo.is_empty do
118 var c = todo.pop
119 if seen.has(c) then continue
120 var pc = c.parent_concern
121 if pc == null then
122 res.add(null, c)
123 else
124 res.add(pc, c)
125 todo.add(pc)
126 end
127 seen.add(c)
128 end
129
130 return res
131 end
132 end
133
134 # An OrderedTree bound to MEntity.
135 #
136 # We introduce a new class so it can be easily refined by tools working
137 # with a Model.
138 class MEntityTree
139 super OrderedTree[MEntity]
140 end
141
142 # A MEntityTree borned to MConcern.
143 #
144 # TODO remove when nitdoc is fully merged with model_collect
145 class ConcernsTree
146 super OrderedTree[MConcern]
147 end
148
149 redef class MModule
150 # All the classes introduced in the module
151 var intro_mclasses = new Array[MClass]
152
153 # All the class definitions of the module
154 # (introduction and refinement)
155 var mclassdefs = new Array[MClassDef]
156
157 # Does the current module has a given class `mclass`?
158 # Return true if the mmodule introduces, refines or imports a class.
159 # Visibility is not considered.
160 fun has_mclass(mclass: MClass): Bool
161 do
162 return self.in_importation <= mclass.intro_mmodule
163 end
164
165 # Full hierarchy of introduced and imported classes.
166 #
167 # Create a new hierarchy got by flattening the classes for the module
168 # and its imported modules.
169 # Visibility is not considered.
170 #
171 # Note: this function is expensive and is usually used for the main
172 # module of a program only. Do not use it to do you own subtype
173 # functions.
174 fun flatten_mclass_hierarchy: POSet[MClass]
175 do
176 var res = self.flatten_mclass_hierarchy_cache
177 if res != null then return res
178 res = new POSet[MClass]
179 for m in self.in_importation.greaters do
180 for cd in m.mclassdefs do
181 var c = cd.mclass
182 res.add_node(c)
183 for s in cd.supertypes do
184 res.add_edge(c, s.mclass)
185 end
186 end
187 end
188 self.flatten_mclass_hierarchy_cache = res
189 return res
190 end
191
192 # Sort a given array of classes using the linearization order of the module
193 # The most general is first, the most specific is last
194 fun linearize_mclasses(mclasses: Array[MClass])
195 do
196 self.flatten_mclass_hierarchy.sort(mclasses)
197 end
198
199 # Sort a given array of class definitions using the linearization order of the module
200 # the refinement link is stronger than the specialisation link
201 # The most general is first, the most specific is last
202 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
203 do
204 var sorter = new MClassDefSorter(self)
205 sorter.sort(mclassdefs)
206 end
207
208 # Sort a given array of property definitions using the linearization order of the module
209 # the refinement link is stronger than the specialisation link
210 # The most general is first, the most specific is last
211 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
212 do
213 var sorter = new MPropDefSorter(self)
214 sorter.sort(mpropdefs)
215 end
216
217 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
218
219 # The primitive type `Object`, the root of the class hierarchy
220 var object_type: MClassType = self.get_primitive_class("Object").mclass_type is lazy
221
222 # The type `Pointer`, super class to all extern classes
223 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
224
225 # The primitive type `Bool`
226 var bool_type: MClassType = self.get_primitive_class("Bool").mclass_type is lazy
227
228 # The primitive type `Int`
229 var int_type: MClassType = self.get_primitive_class("Int").mclass_type is lazy
230
231 # The primitive type `Byte`
232 var byte_type: MClassType = self.get_primitive_class("Byte").mclass_type is lazy
233
234 # The primitive type `Int8`
235 var int8_type: MClassType = self.get_primitive_class("Int8").mclass_type is lazy
236
237 # The primitive type `Int16`
238 var int16_type: MClassType = self.get_primitive_class("Int16").mclass_type is lazy
239
240 # The primitive type `UInt16`
241 var uint16_type: MClassType = self.get_primitive_class("UInt16").mclass_type is lazy
242
243 # The primitive type `Int32`
244 var int32_type: MClassType = self.get_primitive_class("Int32").mclass_type is lazy
245
246 # The primitive type `UInt32`
247 var uint32_type: MClassType = self.get_primitive_class("UInt32").mclass_type is lazy
248
249 # The primitive type `Char`
250 var char_type: MClassType = self.get_primitive_class("Char").mclass_type is lazy
251
252 # The primitive type `Float`
253 var float_type: MClassType = self.get_primitive_class("Float").mclass_type is lazy
254
255 # The primitive type `String`
256 var string_type: MClassType = self.get_primitive_class("String").mclass_type is lazy
257
258 # The primitive type `CString`
259 var c_string_type: MClassType = self.get_primitive_class("CString").mclass_type is lazy
260
261 # A primitive type of `Array`
262 fun array_type(elt_type: MType): MClassType do return array_class.get_mtype([elt_type])
263
264 # The primitive class `Array`
265 var array_class: MClass = self.get_primitive_class("Array") is lazy
266
267 # A primitive type of `NativeArray`
268 fun native_array_type(elt_type: MType): MClassType do return native_array_class.get_mtype([elt_type])
269
270 # The primitive class `NativeArray`
271 var native_array_class: MClass = self.get_primitive_class("NativeArray") is lazy
272
273 # The primitive type `Sys`, the main type of the program, if any
274 fun sys_type: nullable MClassType
275 do
276 var clas = self.model.get_mclasses_by_name("Sys")
277 if clas == null then return null
278 return get_primitive_class("Sys").mclass_type
279 end
280
281 # The primitive type `Finalizable`
282 # Used to tag classes that need to be finalized.
283 fun finalizable_type: nullable MClassType
284 do
285 var clas = self.model.get_mclasses_by_name("Finalizable")
286 if clas == null then return null
287 return get_primitive_class("Finalizable").mclass_type
288 end
289
290 # Force to get the primitive class named `name` or abort
291 fun get_primitive_class(name: String): MClass
292 do
293 var cla = self.model.get_mclasses_by_name(name)
294 # Filter classes by introducing module
295 if cla != null then cla = [for c in cla do if self.in_importation <= c.intro_mmodule then c]
296 if cla == null or cla.is_empty then
297 if name == "Bool" and self.model.get_mclasses_by_name("Object") != null then
298 # Bool is injected because it is needed by engine to code the result
299 # of the implicit casts.
300 var loc = model.no_location
301 var c = new MClass(self, name, loc, null, enum_kind, public_visibility)
302 var cladef = new MClassDef(self, c.mclass_type, loc)
303 cladef.set_supertypes([object_type])
304 cladef.add_in_hierarchy
305 return c
306 end
307 print_error("Fatal Error: no primitive class {name} in {self}")
308 exit(1)
309 abort
310 end
311 if cla.length != 1 then
312 var msg = "Fatal Error: more than one primitive class {name} in {self}:"
313 for c in cla do msg += " {c.full_name}"
314 print_error msg
315 #exit(1)
316 end
317 return cla.first
318 end
319
320 # Try to get the primitive method named `name` on the type `recv`
321 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
322 do
323 var props = self.model.get_mproperties_by_name(name)
324 if props == null then return null
325 var res: nullable MMethod = null
326 var recvtype = recv.intro.bound_mtype
327 for mprop in props do
328 assert mprop isa MMethod
329 if not recvtype.has_mproperty(self, mprop) then continue
330 if res == null then
331 res = mprop
332 else if res != mprop then
333 print_error("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
334 abort
335 end
336 end
337 return res
338 end
339 end
340
341 private class MClassDefSorter
342 super Comparator
343 redef type COMPARED: MClassDef
344 var mmodule: MModule
345 redef fun compare(a, b)
346 do
347 var ca = a.mclass
348 var cb = b.mclass
349 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
350 return mmodule.model.mclassdef_hierarchy.compare(a, b)
351 end
352 end
353
354 private class MPropDefSorter
355 super Comparator
356 redef type COMPARED: MPropDef
357 var mmodule: MModule
358 redef fun compare(pa, pb)
359 do
360 var a = pa.mclassdef
361 var b = pb.mclassdef
362 var ca = a.mclass
363 var cb = b.mclass
364 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
365 return mmodule.model.mclassdef_hierarchy.compare(a, b)
366 end
367 end
368
369 # A named class
370 #
371 # `MClass` are global to the model; it means that a `MClass` is not bound to a
372 # specific `MModule`.
373 #
374 # This characteristic helps the reasoning about classes in a program since a
375 # single `MClass` object always denote the same class.
376 #
377 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
378 # These do not really have properties nor belong to a hierarchy since the property and the
379 # hierarchy of a class depends of the refinement in the modules.
380 #
381 # Most services on classes require the precision of a module, and no one can asks what are
382 # the super-classes of a class nor what are properties of a class without precising what is
383 # the module considered.
384 #
385 # For instance, during the typing of a source-file, the module considered is the module of the file.
386 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
387 # *is the method `foo` exists in the class `Bar` in the current module?*
388 #
389 # During some global analysis, the module considered may be the main module of the program.
390 class MClass
391 super MEntity
392
393 # The module that introduce the class
394 #
395 # While classes are not bound to a specific module,
396 # the introducing module is used for naming and visibility.
397 var intro_mmodule: MModule
398
399 # The short name of the class
400 # In Nit, the name of a class cannot evolve in refinements
401 redef var name
402
403 redef var location
404
405 # The canonical name of the class
406 #
407 # It is the name of the class prefixed by the full_name of the `intro_mmodule`
408 # Example: `"owner::module::MyClass"`
409 redef var full_name is lazy do
410 return "{self.intro_mmodule.namespace_for(visibility)}::{name}"
411 end
412
413 redef var c_name is lazy do
414 return "{intro_mmodule.c_namespace_for(visibility)}__{name.to_cmangle}"
415 end
416
417 # The number of generic formal parameters
418 # 0 if the class is not generic
419 var arity: Int is noinit
420
421 # Each generic formal parameters in order.
422 # is empty if the class is not generic
423 var mparameters = new Array[MParameterType]
424
425 # A string version of the signature a generic class.
426 #
427 # eg. `Map[K: nullable Object, V: nullable Object]`
428 #
429 # If the class in non generic the name is just given.
430 #
431 # eg. `Object`
432 fun signature_to_s: String
433 do
434 if arity == 0 then return name
435 var res = new FlatBuffer
436 res.append name
437 res.append "["
438 for i in [0..arity[ do
439 if i > 0 then res.append ", "
440 res.append mparameters[i].name
441 res.append ": "
442 res.append intro.bound_mtype.arguments[i].to_s
443 end
444 res.append "]"
445 return res.to_s
446 end
447
448 # Initialize `mparameters` from their names.
449 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
450 autoinit
451 do
452 if parameter_names == null then
453 self.arity = 0
454 else
455 self.arity = parameter_names.length
456 end
457
458 # Create the formal parameter types
459 if arity > 0 then
460 assert parameter_names != null
461 var mparametertypes = new Array[MParameterType]
462 for i in [0..arity[ do
463 var mparametertype = new MParameterType(self, i, parameter_names[i])
464 mparametertypes.add(mparametertype)
465 end
466 self.mparameters = mparametertypes
467 var mclass_type = new MGenericType(self, mparametertypes)
468 self.mclass_type = mclass_type
469 self.get_mtype_cache[mparametertypes] = mclass_type
470 else
471 self.mclass_type = new MClassType(self)
472 end
473 end
474
475 # The kind of the class (interface, abstract class, etc.)
476 # In Nit, the kind of a class cannot evolve in refinements
477 var kind: MClassKind
478
479 # The visibility of the class
480 # In Nit, the visibility of a class cannot evolve in refinements
481 redef var visibility
482
483 init
484 do
485 intro_mmodule.intro_mclasses.add(self)
486 var model = intro_mmodule.model
487 model.mclasses_by_name.add_one(name, self)
488 model.mclasses.add(self)
489 end
490
491 redef fun model do return intro_mmodule.model
492
493 # All class definitions (introduction and refinements)
494 var mclassdefs = new Array[MClassDef]
495
496 # Alias for `name`
497 redef fun to_s do return self.name
498
499 # The definition that introduces the class.
500 #
501 # Warning: such a definition may not exist in the early life of the object.
502 # In this case, the method will abort.
503 #
504 # Use `try_intro` instead
505 var intro: MClassDef is noinit
506
507 # The definition that introduces the class or null if not yet known.
508 #
509 # See `intro`
510 fun try_intro: nullable MClassDef do
511 if isset _intro then return _intro else return null
512 end
513
514 # Return the class `self` in the class hierarchy of the module `mmodule`.
515 #
516 # SEE: `MModule::flatten_mclass_hierarchy`
517 # REQUIRE: `mmodule.has_mclass(self)`
518 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
519 do
520 return mmodule.flatten_mclass_hierarchy[self]
521 end
522
523 # The principal static type of the class.
524 #
525 # For non-generic class, `mclass_type` is the only `MClassType` based
526 # on self.
527 #
528 # For a generic class, the arguments are the formal parameters.
529 # i.e.: for the class `Array[E:Object]`, the `mclass_type` is `Array[E]`.
530 # If you want `Array[Object]`, see `MClassDef::bound_mtype`.
531 #
532 # For generic classes, the mclass_type is also the way to get a formal
533 # generic parameter type.
534 #
535 # To get other types based on a generic class, see `get_mtype`.
536 #
537 # ENSURE: `mclass_type.mclass == self`
538 var mclass_type: MClassType is noinit
539
540 # Return a generic type based on the class
541 # Is the class is not generic, then the result is `mclass_type`
542 #
543 # REQUIRE: `mtype_arguments.length == self.arity`
544 fun get_mtype(mtype_arguments: Array[MType]): MClassType
545 do
546 assert mtype_arguments.length == self.arity
547 if self.arity == 0 then return self.mclass_type
548 var res = get_mtype_cache.get_or_null(mtype_arguments)
549 if res != null then return res
550 res = new MGenericType(self, mtype_arguments)
551 self.get_mtype_cache[mtype_arguments.to_a] = res
552 return res
553 end
554
555 private var get_mtype_cache = new HashMap[Array[MType], MGenericType]
556
557 # Is there a `new` factory to allow the pseudo instantiation?
558 var has_new_factory = false is writable
559
560 # Is `self` a standard or abstract class kind?
561 var is_class: Bool is lazy do return kind == concrete_kind or kind == abstract_kind
562
563 # Is `self` an interface kind?
564 var is_interface: Bool is lazy do return kind == interface_kind
565
566 # Is `self` an enum kind?
567 var is_enum: Bool is lazy do return kind == enum_kind
568
569 # Is `self` and abstract class?
570 var is_abstract: Bool is lazy do return kind == abstract_kind
571
572 redef fun mdoc_or_fallback do return intro.mdoc_or_fallback
573 end
574
575
576 # A definition (an introduction or a refinement) of a class in a module
577 #
578 # A `MClassDef` is associated with an explicit (or almost) definition of a
579 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
580 # a specific class and a specific module, and contains declarations like super-classes
581 # or properties.
582 #
583 # It is the class definitions that are the backbone of most things in the model:
584 # ClassDefs are defined with regard with other classdefs.
585 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
586 #
587 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
588 class MClassDef
589 super MEntity
590
591 # The module where the definition is
592 var mmodule: MModule
593
594 # The associated `MClass`
595 var mclass: MClass is noinit
596
597 # The bounded type associated to the mclassdef
598 #
599 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
600 # are the same type.
601 #
602 # Example:
603 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
604 # If you want Array[E], then see `mclass.mclass_type`
605 #
606 # ENSURE: `bound_mtype.mclass == self.mclass`
607 var bound_mtype: MClassType
608
609 redef var location
610
611 redef fun visibility do return mclass.visibility
612
613 # Internal name combining the module and the class
614 # Example: "mymodule$MyClass"
615 redef var to_s is noinit
616
617 init
618 do
619 self.mclass = bound_mtype.mclass
620 mmodule.mclassdefs.add(self)
621 mclass.mclassdefs.add(self)
622 if mclass.intro_mmodule == mmodule then
623 assert not isset mclass._intro
624 mclass.intro = self
625 end
626 self.to_s = "{mmodule}${mclass}"
627 end
628
629 # Actually the name of the `mclass`
630 redef fun name do return mclass.name
631
632 # The module and class name separated by a '$'.
633 #
634 # The short-name of the class is used for introduction.
635 # Example: "my_module$MyClass"
636 #
637 # The full-name of the class is used for refinement.
638 # Example: "my_module$intro_module::MyClass"
639 redef var full_name is lazy do
640 if is_intro then
641 # public gives 'p$A'
642 # private gives 'p::m$A'
643 return "{mmodule.namespace_for(mclass.visibility)}${mclass.name}"
644 else if mclass.intro_mmodule.mpackage != mmodule.mpackage then
645 # public gives 'q::n$p::A'
646 # private gives 'q::n$p::m::A'
647 return "{mmodule.full_name}${mclass.full_name}"
648 else if mclass.visibility > private_visibility then
649 # public gives 'p::n$A'
650 return "{mmodule.full_name}${mclass.name}"
651 else
652 # private gives 'p::n$::m::A' (redundant p is omitted)
653 return "{mmodule.full_name}$::{mclass.intro_mmodule.name}::{mclass.name}"
654 end
655 end
656
657 redef var c_name is lazy do
658 if is_intro then
659 return "{mmodule.c_namespace_for(mclass.visibility)}___{mclass.c_name}"
660 else if mclass.intro_mmodule.mpackage == mmodule.mpackage and mclass.visibility > private_visibility then
661 return "{mmodule.c_name}___{mclass.name.to_cmangle}"
662 else
663 return "{mmodule.c_name}___{mclass.c_name}"
664 end
665 end
666
667 redef fun model do return mmodule.model
668
669 # All declared super-types
670 # FIXME: quite ugly but not better idea yet
671 var supertypes = new Array[MClassType]
672
673 # Register some super-types for the class (ie "super SomeType")
674 #
675 # The hierarchy must not already be set
676 # REQUIRE: `self.in_hierarchy == null`
677 fun set_supertypes(supertypes: Array[MClassType])
678 do
679 assert unique_invocation: self.in_hierarchy == null
680 var mmodule = self.mmodule
681 var model = mmodule.model
682 var mtype = self.bound_mtype
683
684 for supertype in supertypes do
685 self.supertypes.add(supertype)
686
687 # Register in full_type_specialization_hierarchy
688 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
689 # Register in intro_type_specialization_hierarchy
690 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
691 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
692 end
693 end
694
695 end
696
697 # Collect the super-types (set by set_supertypes) to build the hierarchy
698 #
699 # This function can only invoked once by class
700 # REQUIRE: `self.in_hierarchy == null`
701 # ENSURE: `self.in_hierarchy != null`
702 fun add_in_hierarchy
703 do
704 assert unique_invocation: self.in_hierarchy == null
705 var model = mmodule.model
706 var res = model.mclassdef_hierarchy.add_node(self)
707 self.in_hierarchy = res
708 var mtype = self.bound_mtype
709
710 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
711 # The simpliest way is to attach it to collect_mclassdefs
712 for mclassdef in mtype.collect_mclassdefs(mmodule) do
713 res.poset.add_edge(self, mclassdef)
714 end
715 end
716
717 # The view of the class definition in `mclassdef_hierarchy`
718 var in_hierarchy: nullable POSetElement[MClassDef] = null
719
720 # Is the definition the one that introduced `mclass`?
721 fun is_intro: Bool do return isset mclass._intro and mclass.intro == self
722
723 # All properties introduced by the classdef
724 var intro_mproperties = new Array[MProperty]
725
726 # All property introductions and redefinitions in `self` (not inheritance).
727 var mpropdefs = new Array[MPropDef]
728
729 # All property introductions and redefinitions (not inheritance) in `self` by its associated property.
730 var mpropdefs_by_property = new HashMap[MProperty, MPropDef]
731 end
732
733 # A global static type
734 #
735 # MType are global to the model; it means that a `MType` is not bound to a
736 # specific `MModule`.
737 # This characteristic helps the reasoning about static types in a program
738 # since a single `MType` object always denote the same type.
739 #
740 # However, because a `MType` is global, it does not really have properties
741 # nor have subtypes to a hierarchy since the property and the class hierarchy
742 # depends of a module.
743 # Moreover, virtual types an formal generic parameter types also depends on
744 # a receiver to have sense.
745 #
746 # Therefore, most method of the types require a module and an anchor.
747 # The module is used to know what are the classes and the specialization
748 # links.
749 # The anchor is used to know what is the bound of the virtual types and formal
750 # generic parameter types.
751 #
752 # MType are not directly usable to get properties. See the `anchor_to` method
753 # and the `MClassType` class.
754 #
755 # FIXME: the order of the parameters is not the best. We mus pick on from:
756 # * foo(mmodule, anchor, othertype)
757 # * foo(othertype, anchor, mmodule)
758 # * foo(anchor, mmodule, othertype)
759 # * foo(othertype, mmodule, anchor)
760 abstract class MType
761 super MEntity
762
763 redef fun name do return to_s
764
765 # Return true if `self` is an subtype of `sup`.
766 # The typing is done using the standard typing policy of Nit.
767 #
768 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
769 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
770 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
771 do
772 var sub = self
773 if sub == sup then return true
774
775 #print "1.is {sub} a {sup}? ===="
776
777 if anchor == null then
778 assert not sub.need_anchor
779 assert not sup.need_anchor
780 else
781 # First, resolve the formal types to the simplest equivalent forms in the receiver
782 assert sub.can_resolve_for(anchor, null, mmodule)
783 sub = sub.lookup_fixed(mmodule, anchor)
784 assert sup.can_resolve_for(anchor, null, mmodule)
785 sup = sup.lookup_fixed(mmodule, anchor)
786 end
787
788 # Does `sup` accept null or not?
789 # Discard the nullable marker if it exists
790 var sup_accept_null = false
791 if sup isa MNullableType then
792 sup_accept_null = true
793 sup = sup.mtype
794 else if sup isa MNotNullType then
795 sup = sup.mtype
796 else if sup isa MNullType then
797 sup_accept_null = true
798 end
799
800 # Can `sub` provide null or not?
801 # Thus we can match with `sup_accept_null`
802 # Also discard the nullable marker if it exists
803 var sub_reject_null = false
804 if sub isa MNullableType then
805 if not sup_accept_null then return false
806 sub = sub.mtype
807 else if sub isa MNotNullType then
808 sub_reject_null = true
809 sub = sub.mtype
810 else if sub isa MNullType then
811 return sup_accept_null
812 end
813 # Now the case of direct null and nullable is over.
814
815 # If `sub` is a formal type, then it is accepted if its bound is accepted
816 while sub isa MFormalType do
817 #print "3.is {sub} a {sup}?"
818
819 # A unfixed formal type can only accept itself
820 if sub == sup then return true
821
822 assert anchor != null
823 sub = sub.lookup_bound(mmodule, anchor)
824 if sub_reject_null then sub = sub.as_notnull
825
826 #print "3.is {sub} a {sup}?"
827
828 # Manage the second layer of null/nullable
829 if sub isa MNullableType then
830 if not sup_accept_null and not sub_reject_null then return false
831 sub = sub.mtype
832 else if sub isa MNotNullType then
833 sub_reject_null = true
834 sub = sub.mtype
835 else if sub isa MNullType then
836 return sup_accept_null
837 end
838 end
839 #print "4.is {sub} a {sup}? <- no more resolution"
840
841 if sub isa MBottomType or sub isa MErrorType then
842 return true
843 end
844
845 assert sub isa MClassType else print_error "{sub} <? {sup}" # It is the only remaining type
846
847 # Handle sup-type when the sub-type is class-based (other cases must have be identified before).
848 if sup isa MFormalType or sup isa MNullType or sup isa MBottomType or sup isa MErrorType then
849 # These types are not super-types of Class-based types.
850 return false
851 end
852
853 assert sup isa MClassType else print_error "got {sup} {sub.inspect}" # It is the only remaining type
854
855 # Now both are MClassType, we need to dig
856
857 if sub == sup then return true
858
859 if anchor == null then anchor = sub # UGLY: any anchor will work
860 var resolved_sub = sub.anchor_to(mmodule, anchor)
861 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
862 if res == false then return false
863 if not sup isa MGenericType then return true
864 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
865 assert sub2.mclass == sup.mclass
866 for i in [0..sup.mclass.arity[ do
867 var sub_arg = sub2.arguments[i]
868 var sup_arg = sup.arguments[i]
869 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
870 if res == false then return false
871 end
872 return true
873 end
874
875 # The base class type on which self is based
876 #
877 # This base type is used to get property (an internally to perform
878 # unsafe type comparison).
879 #
880 # Beware: some types (like null) are not based on a class thus this
881 # method will crash
882 #
883 # Basically, this function transform the virtual types and parameter
884 # types to their bounds.
885 #
886 # Example
887 #
888 # class A end
889 # class B super A end
890 # class X end
891 # class Y super X end
892 # class G[T: A]
893 # type U: X
894 # end
895 # class H
896 # super G[B]
897 # redef type U: Y
898 # end
899 #
900 # Map[T,U] anchor_to H #-> Map[B,Y]
901 #
902 # Explanation of the example:
903 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
904 # because "redef type U: Y". Therefore, Map[T, U] is bound to
905 # Map[B, Y]
906 #
907 # REQUIRE: `self.need_anchor implies anchor != null`
908 # ENSURE: `not self.need_anchor implies result == self`
909 # ENSURE: `not result.need_anchor`
910 fun anchor_to(mmodule: MModule, anchor: nullable MClassType): MType
911 do
912 if not need_anchor then return self
913 assert anchor != null and not anchor.need_anchor
914 # Just resolve to the anchor and clear all the virtual types
915 var res = self.resolve_for(anchor, null, mmodule, true)
916 assert not res.need_anchor
917 return res
918 end
919
920 # Does `self` contain a virtual type or a formal generic parameter type?
921 # In order to remove those types, you usually want to use `anchor_to`.
922 fun need_anchor: Bool do return true
923
924 # Return the supertype when adapted to a class.
925 #
926 # In Nit, for each super-class of a type, there is a equivalent super-type.
927 #
928 # Example:
929 #
930 # ~~~nitish
931 # class G[T, U] end
932 # class H[V] super G[V, Bool] end
933 #
934 # H[Int] supertype_to G #-> G[Int, Bool]
935 # ~~~
936 #
937 # REQUIRE: `super_mclass` is a super-class of `self`
938 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
939 # ENSURE: `result.mclass = super_mclass`
940 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
941 do
942 if super_mclass.arity == 0 then return super_mclass.mclass_type
943 if self isa MClassType and self.mclass == super_mclass then return self
944 var resolved_self
945 if self.need_anchor then
946 assert anchor != null
947 resolved_self = self.anchor_to(mmodule, anchor)
948 else
949 resolved_self = self
950 end
951 var supertypes = resolved_self.collect_mtypes(mmodule)
952 for supertype in supertypes do
953 if supertype.mclass == super_mclass then
954 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
955 return supertype.resolve_for(self, anchor, mmodule, false)
956 end
957 end
958 abort
959 end
960
961 # Replace formals generic types in self with resolved values in `mtype`
962 # If `cleanup_virtual` is true, then virtual types are also replaced
963 # with their bounds.
964 #
965 # This function returns self if `need_anchor` is false.
966 #
967 # ## Example 1
968 #
969 # ~~~
970 # class G[E] end
971 # class H[F] super G[F] end
972 # class X[Z] end
973 # ~~~
974 #
975 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
976 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
977 #
978 # Explanation of the example:
979 # * Array[E].need_anchor is true because there is a formal generic parameter type E
980 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
981 # * Since "H[F] super G[F]", E is in fact F for H
982 # * More specifically, in H[Int], E is Int
983 # * So, in H[Int], Array[E] is Array[Int]
984 #
985 # This function is mainly used to inherit a signature.
986 # Because, unlike `anchor_to`, we do not want a full resolution of
987 # a type but only an adapted version of it.
988 #
989 # ## Example 2
990 #
991 # ~~~
992 # class A[E]
993 # fun foo(e:E):E is abstract
994 # end
995 # class B super A[Int] end
996 # ~~~
997 #
998 # The signature on foo is (e: E): E
999 # If we resolve the signature for B, we get (e:Int):Int
1000 #
1001 # ## Example 3
1002 #
1003 # ~~~nitish
1004 # class A[E]
1005 # fun foo(e:E):E is abstract
1006 # end
1007 # class C[F]
1008 # var a: A[Array[F]]
1009 # fun bar do a.foo(x) # <- x is here
1010 # end
1011 # ~~~
1012 #
1013 # The first question is: is foo available on `a`?
1014 #
1015 # The static type of a is `A[Array[F]]`, that is an open type.
1016 # in order to find a method `foo`, whe must look at a resolved type.
1017 #
1018 # A[Array[F]].anchor_to(C[nullable Object]) #-> A[Array[nullable Object]]
1019 #
1020 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
1021 #
1022 # The next question is: what is the accepted types for `x`?
1023 #
1024 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
1025 #
1026 # E.resolve_for(A[Array[F]],C[nullable Object]) #-> Array[F]
1027 #
1028 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
1029 #
1030 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
1031 # two function instead of one seems also to be a bad idea.
1032 #
1033 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
1034 # ENSURE: `not self.need_anchor implies result == self`
1035 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
1036
1037 # Resolve formal type to its verbatim bound.
1038 # If the type is not formal, just return self
1039 #
1040 # The result is returned exactly as declared in the "type" property (verbatim).
1041 # So it could be another formal type.
1042 #
1043 # In case of conflicts or inconsistencies in the model, the method returns a `MErrorType`.
1044 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self
1045
1046 # Resolve the formal type to its simplest equivalent form.
1047 #
1048 # Formal types are either free or fixed.
1049 # When it is fixed, it means that it is equivalent with a simpler type.
1050 # When a formal type is free, it means that it is only equivalent with itself.
1051 # This method return the most simple equivalent type of `self`.
1052 #
1053 # This method is mainly used for subtype test in order to sanely compare fixed.
1054 #
1055 # By default, return self.
1056 # See the redefinitions for specific behavior in each kind of type.
1057 #
1058 # In case of conflicts or inconsistencies in the model, the method returns a `MErrorType`.
1059 fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self
1060
1061 # Is the type a `MErrorType` or contains an `MErrorType`?
1062 #
1063 # `MErrorType` are used in result with conflict or inconsistencies.
1064 #
1065 # See `is_legal_in` to check conformity with generic bounds.
1066 fun is_ok: Bool do return true
1067
1068 # Is the type legal in a given `mmodule` (with an optional `anchor`)?
1069 #
1070 # A type is valid if:
1071 #
1072 # * it does not contain a `MErrorType` (see `is_ok`).
1073 # * its generic formal arguments are within their bounds.
1074 fun is_legal_in(mmodule: MModule, anchor: nullable MClassType): Bool do return is_ok
1075
1076 # Can the type be resolved?
1077 #
1078 # In order to resolve open types, the formal types must make sence.
1079 #
1080 # ## Example
1081 #
1082 # class A[E]
1083 # end
1084 # class B[F]
1085 # end
1086 #
1087 # ~~~nitish
1088 # E.can_resolve_for(A[Int]) #-> true, E make sense in A
1089 #
1090 # E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
1091 #
1092 # B[E].can_resolve_for(A[F], B[Object]) #-> true,
1093 # # B[E] is a red hearing only the E is important,
1094 # # E make sense in A
1095 # ~~~
1096 #
1097 # REQUIRE: `anchor != null implies not anchor.need_anchor`
1098 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
1099 # ENSURE: `not self.need_anchor implies result == true`
1100 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
1101
1102 # Return the nullable version of the type
1103 # If the type is already nullable then self is returned
1104 fun as_nullable: MType
1105 do
1106 var res = self.as_nullable_cache
1107 if res != null then return res
1108 res = new MNullableType(self)
1109 self.as_nullable_cache = res
1110 return res
1111 end
1112
1113 # Remove the base type of a decorated (proxy) type.
1114 # Is the type is not decorated, then self is returned.
1115 #
1116 # Most of the time it is used to return the not nullable version of a nullable type.
1117 # In this case, this just remove the `nullable` notation, but the result can still contains null.
1118 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
1119 # If you really want to exclude the `null` value, then use `as_notnull`
1120 fun undecorate: MType
1121 do
1122 return self
1123 end
1124
1125 # Returns the not null version of the type.
1126 # That is `self` minus the `null` value.
1127 #
1128 # For most types, this return `self`.
1129 # For formal types, this returns a special `MNotNullType`
1130 fun as_notnull: MType do return self
1131
1132 private var as_nullable_cache: nullable MType = null
1133
1134
1135 # The depth of the type seen as a tree.
1136 #
1137 # * A -> 1
1138 # * G[A] -> 2
1139 # * H[A, B] -> 2
1140 # * H[G[A], B] -> 3
1141 #
1142 # Formal types have a depth of 1.
1143 # Only `MClassType` and `MFormalType` nodes are counted.
1144 fun depth: Int
1145 do
1146 return 1
1147 end
1148
1149 # The length of the type seen as a tree.
1150 #
1151 # * A -> 1
1152 # * G[A] -> 2
1153 # * H[A, B] -> 3
1154 # * H[G[A], B] -> 4
1155 #
1156 # Formal types have a length of 1.
1157 # Only `MClassType` and `MFormalType` nodes are counted.
1158 fun length: Int
1159 do
1160 return 1
1161 end
1162
1163 # Compute all the classdefs inherited/imported.
1164 # The returned set contains:
1165 # * the class definitions from `mmodule` and its imported modules
1166 # * the class definitions of this type and its super-types
1167 #
1168 # This function is used mainly internally.
1169 #
1170 # REQUIRE: `not self.need_anchor`
1171 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
1172
1173 # Compute all the super-classes.
1174 # This function is used mainly internally.
1175 #
1176 # REQUIRE: `not self.need_anchor`
1177 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
1178
1179 # Compute all the declared super-types.
1180 # Super-types are returned as declared in the classdefs (verbatim).
1181 # This function is used mainly internally.
1182 #
1183 # REQUIRE: `not self.need_anchor`
1184 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
1185
1186 # Is the property in self for a given module
1187 # This method does not filter visibility or whatever
1188 #
1189 # REQUIRE: `not self.need_anchor`
1190 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
1191 do
1192 assert not self.need_anchor
1193 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
1194 end
1195 end
1196
1197 # A type based on a class.
1198 #
1199 # `MClassType` have properties (see `has_mproperty`).
1200 class MClassType
1201 super MType
1202
1203 # The associated class
1204 var mclass: MClass
1205
1206 redef fun model do return self.mclass.intro_mmodule.model
1207
1208 redef fun location do return mclass.location
1209
1210 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1211
1212 # The formal arguments of the type
1213 # ENSURE: `result.length == self.mclass.arity`
1214 var arguments = new Array[MType]
1215
1216 redef fun to_s do return mclass.to_s
1217
1218 redef fun full_name do return mclass.full_name
1219
1220 redef fun c_name do return mclass.c_name
1221
1222 redef fun need_anchor do return false
1223
1224 redef fun anchor_to(mmodule, anchor): MClassType
1225 do
1226 return super.as(MClassType)
1227 end
1228
1229 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1230
1231 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1232
1233 redef fun collect_mclassdefs(mmodule)
1234 do
1235 assert not self.need_anchor
1236 var cache = self.collect_mclassdefs_cache
1237 if not cache.has_key(mmodule) then
1238 self.collect_things(mmodule)
1239 end
1240 return cache[mmodule]
1241 end
1242
1243 redef fun collect_mclasses(mmodule)
1244 do
1245 if collect_mclasses_last_module == mmodule then return collect_mclasses_last_module_cache
1246 assert not self.need_anchor
1247 var cache = self.collect_mclasses_cache
1248 if not cache.has_key(mmodule) then
1249 self.collect_things(mmodule)
1250 end
1251 var res = cache[mmodule]
1252 collect_mclasses_last_module = mmodule
1253 collect_mclasses_last_module_cache = res
1254 return res
1255 end
1256
1257 private var collect_mclasses_last_module: nullable MModule = null
1258 private var collect_mclasses_last_module_cache: Set[MClass] is noinit
1259
1260 redef fun collect_mtypes(mmodule)
1261 do
1262 assert not self.need_anchor
1263 var cache = self.collect_mtypes_cache
1264 if not cache.has_key(mmodule) then
1265 self.collect_things(mmodule)
1266 end
1267 return cache[mmodule]
1268 end
1269
1270 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1271 private fun collect_things(mmodule: MModule)
1272 do
1273 var res = new HashSet[MClassDef]
1274 var seen = new HashSet[MClass]
1275 var types = new HashSet[MClassType]
1276 seen.add(self.mclass)
1277 var todo = [self.mclass]
1278 while not todo.is_empty do
1279 var mclass = todo.pop
1280 #print "process {mclass}"
1281 for mclassdef in mclass.mclassdefs do
1282 if not mmodule.in_importation <= mclassdef.mmodule then continue
1283 #print " process {mclassdef}"
1284 res.add(mclassdef)
1285 for supertype in mclassdef.supertypes do
1286 types.add(supertype)
1287 var superclass = supertype.mclass
1288 if seen.has(superclass) then continue
1289 #print " add {superclass}"
1290 seen.add(superclass)
1291 todo.add(superclass)
1292 end
1293 end
1294 end
1295 collect_mclassdefs_cache[mmodule] = res
1296 collect_mclasses_cache[mmodule] = seen
1297 collect_mtypes_cache[mmodule] = types
1298 end
1299
1300 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1301 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1302 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1303
1304 end
1305
1306 # A type based on a generic class.
1307 # A generic type a just a class with additional formal generic arguments.
1308 class MGenericType
1309 super MClassType
1310
1311 redef var arguments
1312
1313 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1314
1315 init
1316 do
1317 assert self.mclass.arity == arguments.length
1318
1319 self.need_anchor = false
1320 for t in arguments do
1321 if t.need_anchor then
1322 self.need_anchor = true
1323 break
1324 end
1325 end
1326
1327 self.to_s = "{mclass}[{arguments.join(", ")}]"
1328 end
1329
1330 # The short-name of the class, then the full-name of each type arguments within brackets.
1331 # Example: `"Map[String, List[Int]]"`
1332 redef var to_s is noinit
1333
1334 # The full-name of the class, then the full-name of each type arguments within brackets.
1335 # Example: `"core::Map[core::String, core::List[core::Int]]"`
1336 redef var full_name is lazy do
1337 var args = new Array[String]
1338 for t in arguments do
1339 args.add t.full_name
1340 end
1341 return "{mclass.full_name}[{args.join(", ")}]"
1342 end
1343
1344 redef var c_name is lazy do
1345 var res = mclass.c_name
1346 # Note: because the arity is known, a prefix notation is enough
1347 for t in arguments do
1348 res += "__"
1349 res += t.c_name
1350 end
1351 return res.to_s
1352 end
1353
1354 redef var need_anchor is noinit
1355
1356 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1357 do
1358 if not need_anchor then return self
1359 assert can_resolve_for(mtype, anchor, mmodule)
1360 var types = new Array[MType]
1361 for t in arguments do
1362 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1363 end
1364 return mclass.get_mtype(types)
1365 end
1366
1367 redef fun can_resolve_for(mtype, anchor, mmodule)
1368 do
1369 if not need_anchor then return true
1370 for t in arguments do
1371 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1372 end
1373 return true
1374 end
1375
1376 redef fun is_ok
1377 do
1378 for t in arguments do if not t.is_ok then return false
1379 return super
1380 end
1381
1382 redef fun is_legal_in(mmodule, anchor)
1383 do
1384 var mtype
1385 if need_anchor then
1386 assert anchor != null
1387 mtype = anchor_to(mmodule, anchor)
1388 else
1389 mtype = self
1390 end
1391 if not mtype.is_ok then return false
1392 return mtype.is_subtype(mmodule, null, mtype.mclass.intro.bound_mtype)
1393 end
1394
1395 redef fun depth
1396 do
1397 var dmax = 0
1398 for a in self.arguments do
1399 var d = a.depth
1400 if d > dmax then dmax = d
1401 end
1402 return dmax + 1
1403 end
1404
1405 redef fun length
1406 do
1407 var res = 1
1408 for a in self.arguments do
1409 res += a.length
1410 end
1411 return res
1412 end
1413 end
1414
1415 # A formal type (either virtual of parametric).
1416 #
1417 # The main issue with formal types is that they offer very little information on their own
1418 # and need a context (anchor and mmodule) to be useful.
1419 abstract class MFormalType
1420 super MType
1421
1422 redef var as_notnull = new MNotNullType(self) is lazy
1423 end
1424
1425 # A virtual formal type.
1426 class MVirtualType
1427 super MFormalType
1428
1429 # The property associated with the type.
1430 # Its the definitions of this property that determine the bound or the virtual type.
1431 var mproperty: MVirtualTypeProp
1432
1433 redef fun location do return mproperty.location
1434
1435 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1436
1437 redef fun lookup_bound(mmodule, resolved_receiver)
1438 do
1439 # There is two possible invalid cases: the vt does not exists in resolved_receiver or the bound is broken
1440 if not resolved_receiver.has_mproperty(mmodule, mproperty) then return new MErrorType(model)
1441 return lookup_single_definition(mmodule, resolved_receiver).bound or else new MErrorType(model)
1442 end
1443
1444 private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef
1445 do
1446 assert not resolved_receiver.need_anchor
1447 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1448 if props.is_empty then
1449 abort
1450 else if props.length == 1 then
1451 return props.first
1452 end
1453 var types = new ArraySet[MType]
1454 var res = props.first
1455 for p in props do
1456 types.add(p.bound.as(not null))
1457 if not res.is_fixed then res = p
1458 end
1459 if types.length == 1 then
1460 return res
1461 end
1462 abort
1463 end
1464
1465 # A VT is fixed when:
1466 # * the VT is (re-)defined with the annotation `is fixed`
1467 # * the VT is (indirectly) bound to an enum class (see `enum_kind`) since there is no subtype possible
1468 # * the receiver is an enum class since there is no subtype possible
1469 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1470 do
1471 assert not resolved_receiver.need_anchor
1472 resolved_receiver = resolved_receiver.undecorate
1473 assert resolved_receiver isa MClassType # It is the only remaining type
1474
1475 var prop = lookup_single_definition(mmodule, resolved_receiver)
1476 var res = prop.bound
1477 if res == null then return new MErrorType(model)
1478
1479 # Recursively lookup the fixed result
1480 res = res.lookup_fixed(mmodule, resolved_receiver)
1481
1482 # 1. For a fixed VT, return the resolved bound
1483 if prop.is_fixed then return res
1484
1485 # 2. For a enum boud, return the bound
1486 if res isa MClassType and res.mclass.kind == enum_kind then return res
1487
1488 # 3. for a enum receiver return the bound
1489 if resolved_receiver.mclass.kind == enum_kind then return res
1490
1491 return self
1492 end
1493
1494 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1495 do
1496 if not cleanup_virtual then return self
1497 assert can_resolve_for(mtype, anchor, mmodule)
1498
1499 if mproperty.is_selftype then return mtype
1500
1501 # self is a virtual type declared (or inherited) in mtype
1502 # The point of the function it to get the bound of the virtual type that make sense for mtype
1503 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1504 #print "{class_name}: {self}/{mtype}/{anchor}?"
1505 var resolved_receiver
1506 if mtype.need_anchor then
1507 assert anchor != null
1508 resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true)
1509 else
1510 resolved_receiver = mtype
1511 end
1512 # Now, we can get the bound
1513 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1514 # The bound is exactly as declared in the "type" property, so we must resolve it again
1515 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1516
1517 return res
1518 end
1519
1520 redef fun can_resolve_for(mtype, anchor, mmodule)
1521 do
1522 if mtype.need_anchor then
1523 assert anchor != null
1524 mtype = mtype.anchor_to(mmodule, anchor)
1525 end
1526 return mtype.has_mproperty(mmodule, mproperty)
1527 end
1528
1529 redef fun to_s do return self.mproperty.to_s
1530
1531 redef fun full_name do return self.mproperty.full_name
1532
1533 redef fun c_name do return self.mproperty.c_name
1534 end
1535
1536 # The type associated to a formal parameter generic type of a class
1537 #
1538 # Each parameter type is associated to a specific class.
1539 # It means that all refinements of a same class "share" the parameter type,
1540 # but that a generic subclass has its own parameter types.
1541 #
1542 # However, in the sense of the meta-model, a parameter type of a class is
1543 # a valid type in a subclass. The "in the sense of the meta-model" is
1544 # important because, in the Nit language, the programmer cannot refers
1545 # directly to the parameter types of the super-classes.
1546 #
1547 # Example:
1548 #
1549 # class A[E]
1550 # fun e: E is abstract
1551 # end
1552 # class B[F]
1553 # super A[Array[F]]
1554 # end
1555 #
1556 # In the class definition B[F], `F` is a valid type but `E` is not.
1557 # However, `self.e` is a valid method call, and the signature of `e` is
1558 # declared `e: E`.
1559 #
1560 # Note that parameter types are shared among class refinements.
1561 # Therefore parameter only have an internal name (see `to_s` for details).
1562 class MParameterType
1563 super MFormalType
1564
1565 # The generic class where the parameter belong
1566 var mclass: MClass
1567
1568 redef fun model do return self.mclass.intro_mmodule.model
1569
1570 redef fun location do return mclass.location
1571
1572 # The position of the parameter (0 for the first parameter)
1573 # FIXME: is `position` a better name?
1574 var rank: Int
1575
1576 redef var name
1577
1578 redef fun to_s do return name
1579
1580 redef var full_name is lazy do return "{mclass.full_name}::{name}"
1581
1582 redef var c_name is lazy do return mclass.c_name + "__" + "#{name}".to_cmangle
1583
1584 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1585 do
1586 assert not resolved_receiver.need_anchor
1587 resolved_receiver = resolved_receiver.undecorate
1588 assert resolved_receiver isa MClassType # It is the only remaining type
1589 var goalclass = self.mclass
1590 if resolved_receiver.mclass == goalclass then
1591 return resolved_receiver.arguments[self.rank]
1592 end
1593 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1594 for t in supertypes do
1595 if t.mclass == goalclass then
1596 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1597 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1598 var res = t.arguments[self.rank]
1599 return res
1600 end
1601 end
1602 # Cannot found `self` in `resolved_receiver`
1603 return new MErrorType(model)
1604 end
1605
1606 # A PT is fixed when:
1607 # * Its bound is a enum class (see `enum_kind`).
1608 # The PT is just useless, but it is still a case.
1609 # * More usually, the `resolved_receiver` is a subclass of `self.mclass`,
1610 # so it is necessarily fixed in a `super` clause, either with a normal type
1611 # or with another PT.
1612 # See `resolve_for` for examples about related issues.
1613 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1614 do
1615 assert not resolved_receiver.need_anchor
1616 resolved_receiver = resolved_receiver.undecorate
1617 assert resolved_receiver isa MClassType # It is the only remaining type
1618 var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false)
1619 return res
1620 end
1621
1622 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1623 do
1624 assert can_resolve_for(mtype, anchor, mmodule)
1625 #print "{class_name}: {self}/{mtype}/{anchor}?"
1626
1627 if mtype isa MGenericType and mtype.mclass == self.mclass then
1628 var res = mtype.arguments[self.rank]
1629 if anchor != null and res.need_anchor then
1630 # Maybe the result can be resolved more if are bound to a final class
1631 var r2 = res.anchor_to(mmodule, anchor)
1632 if r2 isa MClassType and r2.mclass.kind == enum_kind then return r2
1633 end
1634 return res
1635 end
1636
1637 # self is a parameter type of mtype (or of a super-class of mtype)
1638 # The point of the function it to get the bound of the virtual type that make sense for mtype
1639 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1640 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1641 var resolved_receiver
1642 if mtype.need_anchor then
1643 assert anchor != null
1644 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1645 else
1646 resolved_receiver = mtype
1647 end
1648 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1649 if resolved_receiver isa MParameterType then
1650 assert anchor != null
1651 assert resolved_receiver.mclass == anchor.mclass
1652 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1653 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1654 end
1655 assert resolved_receiver isa MClassType # It is the only remaining type
1656
1657 # Eh! The parameter is in the current class.
1658 # So we return the corresponding argument, no mater what!
1659 if resolved_receiver.mclass == self.mclass then
1660 var res = resolved_receiver.arguments[self.rank]
1661 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1662 return res
1663 end
1664
1665 if resolved_receiver.need_anchor then
1666 assert anchor != null
1667 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1668 end
1669 # Now, we can get the bound
1670 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1671 # The bound is exactly as declared in the "type" property, so we must resolve it again
1672 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1673
1674 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1675
1676 return res
1677 end
1678
1679 redef fun can_resolve_for(mtype, anchor, mmodule)
1680 do
1681 if mtype.need_anchor then
1682 assert anchor != null
1683 mtype = mtype.anchor_to(mmodule, anchor)
1684 end
1685 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1686 end
1687 end
1688
1689 # A type that decorates another type.
1690 #
1691 # The point of this class is to provide a common implementation of sevices that just forward to the original type.
1692 # Specific decorator are expected to redefine (or to extend) the default implementation as this suit them.
1693 abstract class MProxyType
1694 super MType
1695 # The base type
1696 var mtype: MType
1697
1698 redef fun location do return mtype.location
1699
1700 redef fun model do return self.mtype.model
1701 redef fun need_anchor do return mtype.need_anchor
1702 redef fun as_nullable do return mtype.as_nullable
1703 redef fun as_notnull do return mtype.as_notnull
1704 redef fun undecorate do return mtype.undecorate
1705 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1706 do
1707 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1708 return res
1709 end
1710
1711 redef fun can_resolve_for(mtype, anchor, mmodule)
1712 do
1713 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1714 end
1715
1716 redef fun is_ok do return mtype.is_ok
1717
1718 redef fun is_legal_in(mmodule, anchor) do return mtype.is_legal_in(mmodule, anchor)
1719
1720 redef fun lookup_fixed(mmodule, resolved_receiver)
1721 do
1722 var t = mtype.lookup_fixed(mmodule, resolved_receiver)
1723 return t
1724 end
1725
1726 redef fun depth do return self.mtype.depth
1727
1728 redef fun length do return self.mtype.length
1729
1730 redef fun collect_mclassdefs(mmodule)
1731 do
1732 assert not self.need_anchor
1733 return self.mtype.collect_mclassdefs(mmodule)
1734 end
1735
1736 redef fun collect_mclasses(mmodule)
1737 do
1738 assert not self.need_anchor
1739 return self.mtype.collect_mclasses(mmodule)
1740 end
1741
1742 redef fun collect_mtypes(mmodule)
1743 do
1744 assert not self.need_anchor
1745 return self.mtype.collect_mtypes(mmodule)
1746 end
1747 end
1748
1749 # A type prefixed with "nullable"
1750 class MNullableType
1751 super MProxyType
1752
1753 init
1754 do
1755 self.to_s = "nullable {mtype}"
1756 end
1757
1758 redef var to_s is noinit
1759
1760 redef var full_name is lazy do return "nullable {mtype.full_name}"
1761
1762 redef var c_name is lazy do return "nullable__{mtype.c_name}"
1763
1764 redef fun as_nullable do return self
1765 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1766 do
1767 var res = super
1768 return res.as_nullable
1769 end
1770
1771 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable`
1772 redef fun lookup_fixed(mmodule, resolved_receiver)
1773 do
1774 var t = super
1775 if t == mtype then return self
1776 return t.as_nullable
1777 end
1778 end
1779
1780 # A non-null version of a formal type.
1781 #
1782 # When a formal type in bounded to a nullable type, this is the type of the not null version of it.
1783 class MNotNullType
1784 super MProxyType
1785
1786 redef fun to_s do return "not null {mtype}"
1787 redef var full_name is lazy do return "not null {mtype.full_name}"
1788 redef var c_name is lazy do return "notnull__{mtype.c_name}"
1789
1790 redef fun as_notnull do return self
1791
1792 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1793 do
1794 var res = super
1795 return res.as_notnull
1796 end
1797
1798 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_notnull`
1799 redef fun lookup_fixed(mmodule, resolved_receiver)
1800 do
1801 var t = super
1802 if t == mtype then return self
1803 return t.as_notnull
1804 end
1805 end
1806
1807 # The type of the only value null
1808 #
1809 # The is only one null type per model, see `MModel::null_type`.
1810 class MNullType
1811 super MType
1812 redef var model
1813 redef fun to_s do return "null"
1814 redef fun full_name do return "null"
1815 redef fun c_name do return "null"
1816 redef fun as_nullable do return self
1817
1818 redef var as_notnull: MBottomType = new MBottomType(model) is lazy
1819 redef fun need_anchor do return false
1820 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1821 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1822
1823 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1824
1825 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1826
1827 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1828 end
1829
1830 # The special universal most specific type.
1831 #
1832 # This type is intended to be only used internally for type computation or analysis and should not be exposed to the user.
1833 # The bottom type can de used to denote things that are dead (no instance).
1834 #
1835 # Semantically it is the singleton `null.as_notnull`.
1836 # Is also means that `self.as_nullable == null`.
1837 class MBottomType
1838 super MType
1839 redef var model
1840 redef fun to_s do return "bottom"
1841 redef fun full_name do return "bottom"
1842 redef fun c_name do return "bottom"
1843 redef fun as_nullable do return model.null_type
1844 redef fun as_notnull do return self
1845 redef fun need_anchor do return false
1846 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1847 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1848
1849 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1850
1851 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1852
1853 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1854 end
1855
1856 # A special type used as a silent error marker when building types.
1857 #
1858 # This type is intended to be only used internally for type operation and should not be exposed to the user.
1859 # The error type can de used to denote things that are conflicting or inconsistent.
1860 #
1861 # Some methods on types can return a `MErrorType` to denote a broken or a conflicting result.
1862 # Use `is_ok` to check if a type is (or contains) a `MErrorType` .
1863 class MErrorType
1864 super MType
1865 redef var model
1866 redef fun to_s do return "error"
1867 redef fun full_name do return "error"
1868 redef fun c_name do return "error"
1869 redef fun need_anchor do return false
1870 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1871 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1872 redef fun is_ok do return false
1873
1874 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1875
1876 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1877
1878 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1879 end
1880
1881 # A signature of a method
1882 class MSignature
1883 super MType
1884
1885 # The each parameter (in order)
1886 var mparameters: Array[MParameter]
1887
1888 # Returns a parameter named `name`, if any.
1889 fun mparameter_by_name(name: String): nullable MParameter
1890 do
1891 for p in mparameters do
1892 if p.name == name then return p
1893 end
1894 return null
1895 end
1896
1897 # The return type (null for a procedure)
1898 var return_mtype: nullable MType
1899
1900 redef fun depth
1901 do
1902 var dmax = 0
1903 var t = self.return_mtype
1904 if t != null then dmax = t.depth
1905 for p in mparameters do
1906 var d = p.mtype.depth
1907 if d > dmax then dmax = d
1908 end
1909 return dmax + 1
1910 end
1911
1912 redef fun length
1913 do
1914 var res = 1
1915 var t = self.return_mtype
1916 if t != null then res += t.length
1917 for p in mparameters do
1918 res += p.mtype.length
1919 end
1920 return res
1921 end
1922
1923 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1924 init
1925 do
1926 var vararg_rank = -1
1927 for i in [0..mparameters.length[ do
1928 var parameter = mparameters[i]
1929 if parameter.is_vararg then
1930 if vararg_rank >= 0 then
1931 # If there is more than one vararg,
1932 # consider that additional arguments cannot be mapped.
1933 vararg_rank = -1
1934 break
1935 end
1936 vararg_rank = i
1937 end
1938 end
1939 self.vararg_rank = vararg_rank
1940 end
1941
1942 # The rank of the main ellipsis (`...`) for vararg (starting from 0).
1943 # value is -1 if there is no vararg.
1944 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1945 #
1946 # From a model POV, a signature can contain more than one vararg parameter,
1947 # the `vararg_rank` just indicates the one that will receive the additional arguments.
1948 # However, currently, if there is more that one vararg parameter, no one will be the main one,
1949 # and additional arguments will be refused.
1950 var vararg_rank: Int is noinit
1951
1952 # The number of parameters
1953 fun arity: Int do return mparameters.length
1954
1955 redef fun to_s
1956 do
1957 var b = new FlatBuffer
1958 if not mparameters.is_empty then
1959 b.append("(")
1960 for i in [0..mparameters.length[ do
1961 var mparameter = mparameters[i]
1962 if i > 0 then b.append(", ")
1963 b.append(mparameter.name)
1964 b.append(": ")
1965 b.append(mparameter.mtype.to_s)
1966 if mparameter.is_vararg then
1967 b.append("...")
1968 end
1969 end
1970 b.append(")")
1971 end
1972 var ret = self.return_mtype
1973 if ret != null then
1974 b.append(": ")
1975 b.append(ret.to_s)
1976 end
1977 return b.to_s
1978 end
1979
1980 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
1981 do
1982 var params = new Array[MParameter]
1983 for p in self.mparameters do
1984 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1985 end
1986 var ret = self.return_mtype
1987 if ret != null then
1988 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1989 end
1990 var res = new MSignature(params, ret)
1991 return res
1992 end
1993 end
1994
1995 # A parameter in a signature
1996 class MParameter
1997 super MEntity
1998
1999 # The name of the parameter
2000 redef var name
2001
2002 # The static type of the parameter
2003 var mtype: MType
2004
2005 # Is the parameter a vararg?
2006 var is_vararg: Bool
2007
2008 redef fun to_s
2009 do
2010 if is_vararg then
2011 return "{name}: {mtype}..."
2012 else
2013 return "{name}: {mtype}"
2014 end
2015 end
2016
2017 # Returns a new parameter with the `mtype` resolved.
2018 # See `MType::resolve_for` for details.
2019 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
2020 do
2021 if not self.mtype.need_anchor then return self
2022 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
2023 var res = new MParameter(self.name, newtype, self.is_vararg)
2024 return res
2025 end
2026
2027 redef fun model do return mtype.model
2028 end
2029
2030 # A service (global property) that generalize method, attribute, etc.
2031 #
2032 # `MProperty` are global to the model; it means that a `MProperty` is not bound
2033 # to a specific `MModule` nor a specific `MClass`.
2034 #
2035 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
2036 # and the other in subclasses and in refinements.
2037 #
2038 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
2039 # of any dynamic type).
2040 # For instance, a call site "x.foo" is associated to a `MProperty`.
2041 abstract class MProperty
2042 super MEntity
2043
2044 # The associated MPropDef subclass.
2045 # The two specialization hierarchy are symmetric.
2046 type MPROPDEF: MPropDef
2047
2048 # The classdef that introduce the property
2049 # While a property is not bound to a specific module, or class,
2050 # the introducing mclassdef is used for naming and visibility
2051 var intro_mclassdef: MClassDef
2052
2053 # The (short) name of the property
2054 redef var name
2055
2056 redef var location
2057
2058 redef fun mdoc_or_fallback do return intro.mdoc_or_fallback
2059
2060 # The canonical name of the property.
2061 #
2062 # It is currently the short-`name` prefixed by the short-name of the class and the full-name of the module.
2063 # Example: "my_package::my_module::MyClass::my_method"
2064 #
2065 # The full-name of the module is needed because two distinct modules of the same package can
2066 # still refine the same class and introduce homonym properties.
2067 #
2068 # For public properties not introduced by refinement, the module name is not used.
2069 #
2070 # Example: `my_package::MyClass::My_method`
2071 redef var full_name is lazy do
2072 if intro_mclassdef.is_intro then
2073 return "{intro_mclassdef.mmodule.namespace_for(visibility)}::{intro_mclassdef.mclass.name}::{name}"
2074 else
2075 return "{intro_mclassdef.mmodule.full_name}::{intro_mclassdef.mclass.name}::{name}"
2076 end
2077 end
2078
2079 redef var c_name is lazy do
2080 # FIXME use `namespace_for`
2081 return "{intro_mclassdef.mmodule.c_name}__{intro_mclassdef.mclass.name.to_cmangle}__{name.to_cmangle}"
2082 end
2083
2084 # The visibility of the property
2085 redef var visibility
2086
2087 # Is the property usable as an initializer?
2088 var is_autoinit = false is writable
2089
2090 init
2091 do
2092 intro_mclassdef.intro_mproperties.add(self)
2093 var model = intro_mclassdef.mmodule.model
2094 model.mproperties_by_name.add_one(name, self)
2095 model.mproperties.add(self)
2096 end
2097
2098 # All definitions of the property.
2099 # The first is the introduction,
2100 # The other are redefinitions (in refinements and in subclasses)
2101 var mpropdefs = new Array[MPROPDEF]
2102
2103 # The definition that introduces the property.
2104 #
2105 # Warning: such a definition may not exist in the early life of the object.
2106 # In this case, the method will abort.
2107 var intro: MPROPDEF is noinit
2108
2109 redef fun model do return intro.model
2110
2111 # Alias for `name`
2112 redef fun to_s do return name
2113
2114 # Return the most specific property definitions defined or inherited by a type.
2115 # The selection knows that refinement is stronger than specialization;
2116 # however, in case of conflict more than one property are returned.
2117 # If mtype does not know mproperty then an empty array is returned.
2118 #
2119 # If you want the really most specific property, then look at `lookup_first_definition`
2120 #
2121 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2122 # ENSURE: `not mtype.has_mproperty(mmodule, self) == result.is_empty`
2123 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2124 do
2125 assert not mtype.need_anchor
2126 mtype = mtype.undecorate
2127
2128 var cache = self.lookup_definitions_cache[mmodule, mtype]
2129 if cache != null then return cache
2130
2131 #print "select prop {mproperty} for {mtype} in {self}"
2132 # First, select all candidates
2133 var candidates = new Array[MPROPDEF]
2134
2135 # Here we have two strategies: iterate propdefs or iterate classdefs.
2136 var mpropdefs = self.mpropdefs
2137 if mpropdefs.length <= 1 or mpropdefs.length < mtype.collect_mclassdefs(mmodule).length then
2138 # Iterate on all definitions of `self`, keep only those inherited by `mtype` in `mmodule`
2139 for mpropdef in mpropdefs do
2140 # If the definition is not imported by the module, then skip
2141 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2142 # If the definition is not inherited by the type, then skip
2143 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2144 # Else, we keep it
2145 candidates.add(mpropdef)
2146 end
2147 else
2148 # Iterate on all super-classdefs of `mtype`, keep only the definitions of `self`, if any.
2149 for mclassdef in mtype.collect_mclassdefs(mmodule) do
2150 var p = mclassdef.mpropdefs_by_property.get_or_null(self)
2151 if p != null then candidates.add p
2152 end
2153 end
2154
2155 # Fast track for only one candidate
2156 if candidates.length <= 1 then
2157 self.lookup_definitions_cache[mmodule, mtype] = candidates
2158 return candidates
2159 end
2160
2161 # Second, filter the most specific ones
2162 return select_most_specific(mmodule, candidates)
2163 end
2164
2165 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2166
2167 # Return the most specific property definitions inherited by a type.
2168 # The selection knows that refinement is stronger than specialization;
2169 # however, in case of conflict more than one property are returned.
2170 # If mtype does not know mproperty then an empty array is returned.
2171 #
2172 # If you want the really most specific property, then look at `lookup_next_definition`
2173 #
2174 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2175 # ENSURE: `not mtype.has_mproperty(mmodule, self) implies result.is_empty`
2176 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2177 do
2178 assert not mtype.need_anchor
2179 mtype = mtype.undecorate
2180
2181 # First, select all candidates
2182 var candidates = new Array[MPROPDEF]
2183 for mpropdef in self.mpropdefs do
2184 # If the definition is not imported by the module, then skip
2185 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2186 # If the definition is not inherited by the type, then skip
2187 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2188 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
2189 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
2190 # Else, we keep it
2191 candidates.add(mpropdef)
2192 end
2193 # Fast track for only one candidate
2194 if candidates.length <= 1 then return candidates
2195
2196 # Second, filter the most specific ones
2197 return select_most_specific(mmodule, candidates)
2198 end
2199
2200 # Return an array containing olny the most specific property definitions
2201 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
2202 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
2203 do
2204 var res = new Array[MPROPDEF]
2205 for pd1 in candidates do
2206 var cd1 = pd1.mclassdef
2207 var c1 = cd1.mclass
2208 var keep = true
2209 for pd2 in candidates do
2210 if pd2 == pd1 then continue # do not compare with self!
2211 var cd2 = pd2.mclassdef
2212 var c2 = cd2.mclass
2213 if c2.mclass_type == c1.mclass_type then
2214 if cd2.mmodule.in_importation < cd1.mmodule then
2215 # cd2 refines cd1; therefore we skip pd1
2216 keep = false
2217 break
2218 end
2219 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
2220 # cd2 < cd1; therefore we skip pd1
2221 keep = false
2222 break
2223 end
2224 end
2225 if keep then
2226 res.add(pd1)
2227 end
2228 end
2229 if res.is_empty then
2230 print_error "All lost! {candidates.join(", ")}"
2231 # FIXME: should be abort!
2232 end
2233 return res
2234 end
2235
2236 # Return the most specific definition in the linearization of `mtype`.
2237 #
2238 # If you want to know the next properties in the linearization,
2239 # look at `MPropDef::lookup_next_definition`.
2240 #
2241 # FIXME: the linearization is still unspecified
2242 #
2243 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2244 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2245 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
2246 do
2247 return lookup_all_definitions(mmodule, mtype).first
2248 end
2249
2250 # Return all definitions in a linearization order
2251 # Most specific first, most general last
2252 #
2253 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2254 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2255 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2256 do
2257 mtype = mtype.undecorate
2258
2259 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
2260 if cache != null then return cache
2261
2262 assert not mtype.need_anchor
2263 assert mtype.has_mproperty(mmodule, self)
2264
2265 #print "select prop {mproperty} for {mtype} in {self}"
2266 # First, select all candidates
2267 var candidates = new Array[MPROPDEF]
2268 for mpropdef in self.mpropdefs do
2269 # If the definition is not imported by the module, then skip
2270 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2271 # If the definition is not inherited by the type, then skip
2272 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2273 # Else, we keep it
2274 candidates.add(mpropdef)
2275 end
2276 # Fast track for only one candidate
2277 if candidates.length <= 1 then
2278 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2279 return candidates
2280 end
2281
2282 mmodule.linearize_mpropdefs(candidates)
2283 candidates = candidates.reversed
2284 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2285 return candidates
2286 end
2287
2288 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2289 end
2290
2291 # A global method
2292 class MMethod
2293 super MProperty
2294
2295 redef type MPROPDEF: MMethodDef
2296
2297 # Is the property defined at the top_level of the module?
2298 # Currently such a property are stored in `Object`
2299 var is_toplevel: Bool = false is writable
2300
2301 # Is the property a constructor?
2302 # Warning, this property can be inherited by subclasses with or without being a constructor
2303 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
2304 var is_init: Bool = false is writable
2305
2306 # The constructor is a (the) root init with empty signature but a set of initializers
2307 var is_root_init: Bool = false is writable
2308
2309 # Is the property a 'new' constructor?
2310 var is_new: Bool = false is writable
2311
2312 # Is the property a legal constructor for a given class?
2313 # As usual, visibility is not considered.
2314 # FIXME not implemented
2315 fun is_init_for(mclass: MClass): Bool
2316 do
2317 return self.is_init
2318 end
2319
2320 # A specific method that is safe to call on null.
2321 # Currently, only `==`, `!=` and `is_same_instance` are safe
2322 fun is_null_safe: Bool do return name == "==" or name == "!=" or name == "is_same_instance"
2323 end
2324
2325 # A global attribute
2326 class MAttribute
2327 super MProperty
2328
2329 redef type MPROPDEF: MAttributeDef
2330
2331 end
2332
2333 # A global virtual type
2334 class MVirtualTypeProp
2335 super MProperty
2336
2337 redef type MPROPDEF: MVirtualTypeDef
2338
2339 # The formal type associated to the virtual type property
2340 var mvirtualtype = new MVirtualType(self)
2341
2342 # Is `self` the special virtual type `SELF`?
2343 var is_selftype: Bool is lazy do return name == "SELF"
2344 end
2345
2346 # A definition of a property (local property)
2347 #
2348 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
2349 # specific class definition (which belong to a specific module)
2350 abstract class MPropDef
2351 super MEntity
2352
2353 # The associated `MProperty` subclass.
2354 # the two specialization hierarchy are symmetric
2355 type MPROPERTY: MProperty
2356
2357 # Self class
2358 type MPROPDEF: MPropDef
2359
2360 # The class definition where the property definition is
2361 var mclassdef: MClassDef
2362
2363 # The associated global property
2364 var mproperty: MPROPERTY
2365
2366 redef var location: Location
2367
2368 redef fun visibility do return mproperty.visibility
2369
2370 init
2371 do
2372 mclassdef.mpropdefs.add(self)
2373 mproperty.mpropdefs.add(self)
2374 mclassdef.mpropdefs_by_property[mproperty] = self
2375 if mproperty.intro_mclassdef == mclassdef then
2376 assert not isset mproperty._intro
2377 mproperty.intro = self
2378 end
2379 self.to_s = "{mclassdef}${mproperty}"
2380 end
2381
2382 # Actually the name of the `mproperty`
2383 redef fun name do return mproperty.name
2384
2385 # The full-name of mpropdefs combine the information about the `classdef` and the `mproperty`.
2386 #
2387 # Therefore the combination of identifiers is awful,
2388 # the worst case being
2389 #
2390 # * a property "p::m::A::x"
2391 # * redefined in a refinement of a class "q::n::B"
2392 # * in a module "r::o"
2393 # * so "r::o$q::n::B$p::m::A::x"
2394 #
2395 # Fortunately, the full-name is simplified when entities are repeated.
2396 # For the previous case, the simplest form is "p$A$x".
2397 redef var full_name is lazy do
2398 var res = new FlatBuffer
2399
2400 # The first part is the mclassdef. Worst case is "r::o$q::n::B"
2401 res.append mclassdef.full_name
2402
2403 res.append "$"
2404
2405 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2406 # intro are unambiguous in a class
2407 res.append name
2408 else
2409 # Just try to simplify each part
2410 if mclassdef.mmodule.mpackage != mproperty.intro_mclassdef.mmodule.mpackage then
2411 # precise "p::m" only if "p" != "r"
2412 res.append mproperty.intro_mclassdef.mmodule.namespace_for(mproperty.visibility)
2413 res.append "::"
2414 else if mproperty.visibility <= private_visibility then
2415 # Same package ("p"=="q"), but private visibility,
2416 # does the module part ("::m") need to be displayed
2417 if mclassdef.mmodule.namespace_for(mclassdef.mclass.visibility) != mproperty.intro_mclassdef.mmodule.mpackage then
2418 res.append "::"
2419 res.append mproperty.intro_mclassdef.mmodule.name
2420 res.append "::"
2421 end
2422 end
2423 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2424 # precise "B" only if not the same class than "A"
2425 res.append mproperty.intro_mclassdef.name
2426 res.append "::"
2427 end
2428 # Always use the property name "x"
2429 res.append mproperty.name
2430 end
2431 return res.to_s
2432 end
2433
2434 redef var c_name is lazy do
2435 var res = new FlatBuffer
2436 res.append mclassdef.c_name
2437 res.append "___"
2438 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2439 res.append name.to_cmangle
2440 else
2441 if mclassdef.mmodule != mproperty.intro_mclassdef.mmodule then
2442 res.append mproperty.intro_mclassdef.mmodule.c_name
2443 res.append "__"
2444 end
2445 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2446 res.append mproperty.intro_mclassdef.name.to_cmangle
2447 res.append "__"
2448 end
2449 res.append mproperty.name.to_cmangle
2450 end
2451 return res.to_s
2452 end
2453
2454 redef fun model do return mclassdef.model
2455
2456 # Internal name combining the module, the class and the property
2457 # Example: "mymodule$MyClass$mymethod"
2458 redef var to_s is noinit
2459
2460 # Is self the definition that introduce the property?
2461 fun is_intro: Bool do return isset mproperty._intro and mproperty.intro == self
2462
2463 # Return the next definition in linearization of `mtype`.
2464 #
2465 # This method is used to determine what method is called by a super.
2466 #
2467 # REQUIRE: `not mtype.need_anchor`
2468 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
2469 do
2470 assert not mtype.need_anchor
2471
2472 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
2473 var i = mpropdefs.iterator
2474 while i.is_ok and i.item != self do i.next
2475 assert has_property: i.is_ok
2476 i.next
2477 assert has_next_property: i.is_ok
2478 return i.item
2479 end
2480 end
2481
2482 # A local definition of a method
2483 class MMethodDef
2484 super MPropDef
2485
2486 redef type MPROPERTY: MMethod
2487 redef type MPROPDEF: MMethodDef
2488
2489 # The signature attached to the property definition
2490 var msignature: nullable MSignature = null is writable
2491
2492 # The signature attached to the `new` call on a root-init
2493 # This is a concatenation of the signatures of the initializers
2494 #
2495 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2496 var new_msignature: nullable MSignature = null is writable
2497
2498 # List of initialisers to call in root-inits
2499 #
2500 # They could be setters or attributes
2501 #
2502 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2503 var initializers = new Array[MProperty]
2504
2505 # Is the method definition abstract?
2506 var is_abstract: Bool = false is writable
2507
2508 # Is the method definition intern?
2509 var is_intern = false is writable
2510
2511 # Is the method definition extern?
2512 var is_extern = false is writable
2513
2514 # An optional constant value returned in functions.
2515 #
2516 # Only some specific primitife value are accepted by engines.
2517 # Is used when there is no better implementation available.
2518 #
2519 # Currently used only for the implementation of the `--define`
2520 # command-line option.
2521 # SEE: module `mixin`.
2522 var constant_value: nullable Object = null is writable
2523 end
2524
2525 # A local definition of an attribute
2526 class MAttributeDef
2527 super MPropDef
2528
2529 redef type MPROPERTY: MAttribute
2530 redef type MPROPDEF: MAttributeDef
2531
2532 # The static type of the attribute
2533 var static_mtype: nullable MType = null is writable
2534 end
2535
2536 # A local definition of a virtual type
2537 class MVirtualTypeDef
2538 super MPropDef
2539
2540 redef type MPROPERTY: MVirtualTypeProp
2541 redef type MPROPDEF: MVirtualTypeDef
2542
2543 # The bound of the virtual type
2544 var bound: nullable MType = null is writable
2545
2546 # Is the bound fixed?
2547 var is_fixed = false is writable
2548 end
2549
2550 # A kind of class.
2551 #
2552 # * `abstract_kind`
2553 # * `concrete_kind`
2554 # * `interface_kind`
2555 # * `enum_kind`
2556 # * `extern_kind`
2557 #
2558 # Note this class is basically an enum.
2559 # FIXME: use a real enum once user-defined enums are available
2560 class MClassKind
2561 redef var to_s
2562
2563 # Is a constructor required?
2564 var need_init: Bool
2565
2566 # TODO: private init because enumeration.
2567
2568 # Can a class of kind `self` specializes a class of kine `other`?
2569 fun can_specialize(other: MClassKind): Bool
2570 do
2571 if other == interface_kind then return true # everybody can specialize interfaces
2572 if self == interface_kind or self == enum_kind then
2573 # no other case for interfaces
2574 return false
2575 else if self == extern_kind then
2576 # only compatible with themselves
2577 return self == other
2578 else if other == enum_kind or other == extern_kind then
2579 # abstract_kind and concrete_kind are incompatible
2580 return false
2581 end
2582 # remain only abstract_kind and concrete_kind
2583 return true
2584 end
2585 end
2586
2587 # The class kind `abstract`
2588 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", true)
2589 # The class kind `concrete`
2590 fun concrete_kind: MClassKind do return once new MClassKind("class", true)
2591 # The class kind `interface`
2592 fun interface_kind: MClassKind do return once new MClassKind("interface", false)
2593 # The class kind `enum`
2594 fun enum_kind: MClassKind do return once new MClassKind("enum", false)
2595 # The class kind `extern`
2596 fun extern_kind: MClassKind do return once new MClassKind("extern class", false)