model: register the implicitly injected Bool class in its hierarchy.
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class Model
34 # All known classes
35 var mclasses = new Array[MClass]
36
37 # All known properties
38 var mproperties = new Array[MProperty]
39
40 # Hierarchy of class definition.
41 #
42 # Each classdef is associated with its super-classdefs in regard to
43 # its module of definition.
44 var mclassdef_hierarchy = new POSet[MClassDef]
45
46 # Class-type hierarchy restricted to the introduction.
47 #
48 # The idea is that what is true on introduction is always true whatever
49 # the module considered.
50 # Therefore, this hierarchy is used for a fast positive subtype check.
51 #
52 # This poset will evolve in a monotonous way:
53 # * Two non connected nodes will remain unconnected
54 # * New nodes can appear with new edges
55 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
56
57 # Global overlapped class-type hierarchy.
58 # The hierarchy when all modules are combined.
59 # Therefore, this hierarchy is used for a fast negative subtype check.
60 #
61 # This poset will evolve in an anarchic way. Loops can even be created.
62 #
63 # FIXME decide what to do on loops
64 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
65
66 # Collections of classes grouped by their short name
67 private var mclasses_by_name = new MultiHashMap[String, MClass]
68
69 # Return all class named `name`.
70 #
71 # If such a class does not exist, null is returned
72 # (instead of an empty array)
73 #
74 # Visibility or modules are not considered
75 fun get_mclasses_by_name(name: String): nullable Array[MClass]
76 do
77 if mclasses_by_name.has_key(name) then
78 return mclasses_by_name[name]
79 else
80 return null
81 end
82 end
83
84 # Collections of properties grouped by their short name
85 private var mproperties_by_name = new MultiHashMap[String, MProperty]
86
87 # Return all properties named `name`.
88 #
89 # If such a property does not exist, null is returned
90 # (instead of an empty array)
91 #
92 # Visibility or modules are not considered
93 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
94 do
95 if not mproperties_by_name.has_key(name) then
96 return null
97 else
98 return mproperties_by_name[name]
99 end
100 end
101
102 # The only null type
103 var null_type = new MNullType(self)
104
105 # Build an ordered tree with from `concerns`
106 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
107 var seen = new HashSet[MConcern]
108 var res = new ConcernsTree
109
110 var todo = new Array[MConcern]
111 todo.add_all mconcerns
112
113 while not todo.is_empty do
114 var c = todo.pop
115 if seen.has(c) then continue
116 var pc = c.parent_concern
117 if pc == null then
118 res.add(null, c)
119 else
120 res.add(pc, c)
121 todo.add(pc)
122 end
123 seen.add(c)
124 end
125
126 return res
127 end
128 end
129
130 # An OrderedTree that can be easily refined for display purposes
131 class ConcernsTree
132 super OrderedTree[MConcern]
133 end
134
135 redef class MModule
136 # All the classes introduced in the module
137 var intro_mclasses = new Array[MClass]
138
139 # All the class definitions of the module
140 # (introduction and refinement)
141 var mclassdefs = new Array[MClassDef]
142
143 # Does the current module has a given class `mclass`?
144 # Return true if the mmodule introduces, refines or imports a class.
145 # Visibility is not considered.
146 fun has_mclass(mclass: MClass): Bool
147 do
148 return self.in_importation <= mclass.intro_mmodule
149 end
150
151 # Full hierarchy of introduced ans imported classes.
152 #
153 # Create a new hierarchy got by flattening the classes for the module
154 # and its imported modules.
155 # Visibility is not considered.
156 #
157 # Note: this function is expensive and is usually used for the main
158 # module of a program only. Do not use it to do you own subtype
159 # functions.
160 fun flatten_mclass_hierarchy: POSet[MClass]
161 do
162 var res = self.flatten_mclass_hierarchy_cache
163 if res != null then return res
164 res = new POSet[MClass]
165 for m in self.in_importation.greaters do
166 for cd in m.mclassdefs do
167 var c = cd.mclass
168 res.add_node(c)
169 for s in cd.supertypes do
170 res.add_edge(c, s.mclass)
171 end
172 end
173 end
174 self.flatten_mclass_hierarchy_cache = res
175 return res
176 end
177
178 # Sort a given array of classes using the linearization order of the module
179 # The most general is first, the most specific is last
180 fun linearize_mclasses(mclasses: Array[MClass])
181 do
182 self.flatten_mclass_hierarchy.sort(mclasses)
183 end
184
185 # Sort a given array of class definitions using the linearization order of the module
186 # the refinement link is stronger than the specialisation link
187 # The most general is first, the most specific is last
188 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
189 do
190 var sorter = new MClassDefSorter(self)
191 sorter.sort(mclassdefs)
192 end
193
194 # Sort a given array of property definitions using the linearization order of the module
195 # the refinement link is stronger than the specialisation link
196 # The most general is first, the most specific is last
197 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
198 do
199 var sorter = new MPropDefSorter(self)
200 sorter.sort(mpropdefs)
201 end
202
203 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
204
205 # The primitive type `Object`, the root of the class hierarchy
206 fun object_type: MClassType
207 do
208 var res = self.object_type_cache
209 if res != null then return res
210 res = self.get_primitive_class("Object").mclass_type
211 self.object_type_cache = res
212 return res
213 end
214
215 private var object_type_cache: nullable MClassType
216
217 # The type `Pointer`, super class to all extern classes
218 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
219
220 # The primitive type `Bool`
221 fun bool_type: MClassType
222 do
223 var res = self.bool_type_cache
224 if res != null then return res
225 res = self.get_primitive_class("Bool").mclass_type
226 self.bool_type_cache = res
227 return res
228 end
229
230 private var bool_type_cache: nullable MClassType
231
232 # The primitive type `Sys`, the main type of the program, if any
233 fun sys_type: nullable MClassType
234 do
235 var clas = self.model.get_mclasses_by_name("Sys")
236 if clas == null then return null
237 return get_primitive_class("Sys").mclass_type
238 end
239
240 # The primitive type `Finalizable`
241 # Used to tag classes that need to be finalized.
242 fun finalizable_type: nullable MClassType
243 do
244 var clas = self.model.get_mclasses_by_name("Finalizable")
245 if clas == null then return null
246 return get_primitive_class("Finalizable").mclass_type
247 end
248
249 # Force to get the primitive class named `name` or abort
250 fun get_primitive_class(name: String): MClass
251 do
252 var cla = self.model.get_mclasses_by_name(name)
253 if cla == null then
254 if name == "Bool" and self.model.get_mclasses_by_name("Object") != null then
255 # Bool is injected because it is needed by engine to code the result
256 # of the implicit casts.
257 var c = new MClass(self, name, null, enum_kind, public_visibility)
258 var cladef = new MClassDef(self, c.mclass_type, new Location(null, 0,0,0,0))
259 cladef.set_supertypes([object_type])
260 cladef.add_in_hierarchy
261 return c
262 end
263 print("Fatal Error: no primitive class {name}")
264 exit(1)
265 end
266 if cla.length != 1 then
267 var msg = "Fatal Error: more than one primitive class {name}:"
268 for c in cla do msg += " {c.full_name}"
269 print msg
270 #exit(1)
271 end
272 return cla.first
273 end
274
275 # Try to get the primitive method named `name` on the type `recv`
276 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
277 do
278 var props = self.model.get_mproperties_by_name(name)
279 if props == null then return null
280 var res: nullable MMethod = null
281 for mprop in props do
282 assert mprop isa MMethod
283 var intro = mprop.intro_mclassdef
284 for mclassdef in recv.mclassdefs do
285 if not self.in_importation.greaters.has(mclassdef.mmodule) then continue
286 if not mclassdef.in_hierarchy.greaters.has(intro) then continue
287 if res == null then
288 res = mprop
289 else if res != mprop then
290 print("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
291 abort
292 end
293 end
294 end
295 return res
296 end
297 end
298
299 private class MClassDefSorter
300 super Comparator
301 redef type COMPARED: MClassDef
302 var mmodule: MModule
303 redef fun compare(a, b)
304 do
305 var ca = a.mclass
306 var cb = b.mclass
307 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
308 return mmodule.model.mclassdef_hierarchy.compare(a, b)
309 end
310 end
311
312 private class MPropDefSorter
313 super Comparator
314 redef type COMPARED: MPropDef
315 var mmodule: MModule
316 redef fun compare(pa, pb)
317 do
318 var a = pa.mclassdef
319 var b = pb.mclassdef
320 var ca = a.mclass
321 var cb = b.mclass
322 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
323 return mmodule.model.mclassdef_hierarchy.compare(a, b)
324 end
325 end
326
327 # A named class
328 #
329 # `MClass` are global to the model; it means that a `MClass` is not bound to a
330 # specific `MModule`.
331 #
332 # This characteristic helps the reasoning about classes in a program since a
333 # single `MClass` object always denote the same class.
334 #
335 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
336 # These do not really have properties nor belong to a hierarchy since the property and the
337 # hierarchy of a class depends of the refinement in the modules.
338 #
339 # Most services on classes require the precision of a module, and no one can asks what are
340 # the super-classes of a class nor what are properties of a class without precising what is
341 # the module considered.
342 #
343 # For instance, during the typing of a source-file, the module considered is the module of the file.
344 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
345 # *is the method `foo` exists in the class `Bar` in the current module?*
346 #
347 # During some global analysis, the module considered may be the main module of the program.
348 class MClass
349 super MEntity
350
351 # The module that introduce the class
352 # While classes are not bound to a specific module,
353 # the introducing module is used for naming an visibility
354 var intro_mmodule: MModule
355
356 # The short name of the class
357 # In Nit, the name of a class cannot evolve in refinements
358 redef var name: String
359
360 # The canonical name of the class
361 # Example: `"owner::module::MyClass"`
362 fun full_name: String
363 do
364 return "{self.intro_mmodule.full_name}::{name}"
365 end
366
367 # The number of generic formal parameters
368 # 0 if the class is not generic
369 var arity: Int is noinit
370
371 # Each generic formal parameters in order.
372 # is empty if the class is not generic
373 var mparameters = new Array[MParameterType]
374
375 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
376 autoinit
377 do
378 if parameter_names == null then
379 self.arity = 0
380 else
381 self.arity = parameter_names.length
382 end
383
384 # Create the formal parameter types
385 if arity > 0 then
386 assert parameter_names != null
387 var mparametertypes = new Array[MParameterType]
388 for i in [0..arity[ do
389 var mparametertype = new MParameterType(self, i, parameter_names[i])
390 mparametertypes.add(mparametertype)
391 end
392 self.mparameters = mparametertypes
393 var mclass_type = new MGenericType(self, mparametertypes)
394 self.mclass_type = mclass_type
395 self.get_mtype_cache[mparametertypes] = mclass_type
396 else
397 self.mclass_type = new MClassType(self)
398 end
399 end
400
401 # The kind of the class (interface, abstract class, etc.)
402 # In Nit, the kind of a class cannot evolve in refinements
403 var kind: MClassKind
404
405 # The visibility of the class
406 # In Nit, the visibility of a class cannot evolve in refinements
407 var visibility: MVisibility
408
409 init
410 do
411 intro_mmodule.intro_mclasses.add(self)
412 var model = intro_mmodule.model
413 model.mclasses_by_name.add_one(name, self)
414 model.mclasses.add(self)
415 end
416
417 redef fun model do return intro_mmodule.model
418
419 # All class definitions (introduction and refinements)
420 var mclassdefs = new Array[MClassDef]
421
422 # Alias for `name`
423 redef fun to_s do return self.name
424
425 # The definition that introduces the class.
426 #
427 # Warning: such a definition may not exist in the early life of the object.
428 # In this case, the method will abort.
429 var intro: MClassDef is noinit
430
431 # Return the class `self` in the class hierarchy of the module `mmodule`.
432 #
433 # SEE: `MModule::flatten_mclass_hierarchy`
434 # REQUIRE: `mmodule.has_mclass(self)`
435 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
436 do
437 return mmodule.flatten_mclass_hierarchy[self]
438 end
439
440 # The principal static type of the class.
441 #
442 # For non-generic class, mclass_type is the only `MClassType` based
443 # on self.
444 #
445 # For a generic class, the arguments are the formal parameters.
446 # i.e.: for the class Array[E:Object], the `mclass_type` is Array[E].
447 # If you want Array[Object] the see `MClassDef::bound_mtype`
448 #
449 # For generic classes, the mclass_type is also the way to get a formal
450 # generic parameter type.
451 #
452 # To get other types based on a generic class, see `get_mtype`.
453 #
454 # ENSURE: `mclass_type.mclass == self`
455 var mclass_type: MClassType is noinit
456
457 # Return a generic type based on the class
458 # Is the class is not generic, then the result is `mclass_type`
459 #
460 # REQUIRE: `mtype_arguments.length == self.arity`
461 fun get_mtype(mtype_arguments: Array[MType]): MClassType
462 do
463 assert mtype_arguments.length == self.arity
464 if self.arity == 0 then return self.mclass_type
465 var res = get_mtype_cache.get_or_null(mtype_arguments)
466 if res != null then return res
467 res = new MGenericType(self, mtype_arguments)
468 self.get_mtype_cache[mtype_arguments.to_a] = res
469 return res
470 end
471
472 private var get_mtype_cache = new HashMap[Array[MType], MGenericType]
473 end
474
475
476 # A definition (an introduction or a refinement) of a class in a module
477 #
478 # A `MClassDef` is associated with an explicit (or almost) definition of a
479 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
480 # a specific class and a specific module, and contains declarations like super-classes
481 # or properties.
482 #
483 # It is the class definitions that are the backbone of most things in the model:
484 # ClassDefs are defined with regard with other classdefs.
485 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
486 #
487 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
488 class MClassDef
489 super MEntity
490
491 # The module where the definition is
492 var mmodule: MModule
493
494 # The associated `MClass`
495 var mclass: MClass is noinit
496
497 # The bounded type associated to the mclassdef
498 #
499 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
500 # are the same type.
501 #
502 # Example:
503 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
504 # If you want Array[E], then see `mclass.mclass_type`
505 #
506 # ENSURE: `bound_mtype.mclass == self.mclass`
507 var bound_mtype: MClassType
508
509 # The origin of the definition
510 var location: Location
511
512 # Internal name combining the module and the class
513 # Example: "mymodule#MyClass"
514 redef var to_s: String is noinit
515
516 init
517 do
518 self.mclass = bound_mtype.mclass
519 mmodule.mclassdefs.add(self)
520 mclass.mclassdefs.add(self)
521 if mclass.intro_mmodule == mmodule then
522 assert not isset mclass._intro
523 mclass.intro = self
524 end
525 self.to_s = "{mmodule}#{mclass}"
526 end
527
528 # Actually the name of the `mclass`
529 redef fun name do return mclass.name
530
531 redef fun model do return mmodule.model
532
533 # All declared super-types
534 # FIXME: quite ugly but not better idea yet
535 var supertypes = new Array[MClassType]
536
537 # Register some super-types for the class (ie "super SomeType")
538 #
539 # The hierarchy must not already be set
540 # REQUIRE: `self.in_hierarchy == null`
541 fun set_supertypes(supertypes: Array[MClassType])
542 do
543 assert unique_invocation: self.in_hierarchy == null
544 var mmodule = self.mmodule
545 var model = mmodule.model
546 var mtype = self.bound_mtype
547
548 for supertype in supertypes do
549 self.supertypes.add(supertype)
550
551 # Register in full_type_specialization_hierarchy
552 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
553 # Register in intro_type_specialization_hierarchy
554 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
555 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
556 end
557 end
558
559 end
560
561 # Collect the super-types (set by set_supertypes) to build the hierarchy
562 #
563 # This function can only invoked once by class
564 # REQUIRE: `self.in_hierarchy == null`
565 # ENSURE: `self.in_hierarchy != null`
566 fun add_in_hierarchy
567 do
568 assert unique_invocation: self.in_hierarchy == null
569 var model = mmodule.model
570 var res = model.mclassdef_hierarchy.add_node(self)
571 self.in_hierarchy = res
572 var mtype = self.bound_mtype
573
574 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
575 # The simpliest way is to attach it to collect_mclassdefs
576 for mclassdef in mtype.collect_mclassdefs(mmodule) do
577 res.poset.add_edge(self, mclassdef)
578 end
579 end
580
581 # The view of the class definition in `mclassdef_hierarchy`
582 var in_hierarchy: nullable POSetElement[MClassDef] = null
583
584 # Is the definition the one that introduced `mclass`?
585 fun is_intro: Bool do return mclass.intro == self
586
587 # All properties introduced by the classdef
588 var intro_mproperties = new Array[MProperty]
589
590 # All property definitions in the class (introductions and redefinitions)
591 var mpropdefs = new Array[MPropDef]
592 end
593
594 # A global static type
595 #
596 # MType are global to the model; it means that a `MType` is not bound to a
597 # specific `MModule`.
598 # This characteristic helps the reasoning about static types in a program
599 # since a single `MType` object always denote the same type.
600 #
601 # However, because a `MType` is global, it does not really have properties
602 # nor have subtypes to a hierarchy since the property and the class hierarchy
603 # depends of a module.
604 # Moreover, virtual types an formal generic parameter types also depends on
605 # a receiver to have sense.
606 #
607 # Therefore, most method of the types require a module and an anchor.
608 # The module is used to know what are the classes and the specialization
609 # links.
610 # The anchor is used to know what is the bound of the virtual types and formal
611 # generic parameter types.
612 #
613 # MType are not directly usable to get properties. See the `anchor_to` method
614 # and the `MClassType` class.
615 #
616 # FIXME: the order of the parameters is not the best. We mus pick on from:
617 # * foo(mmodule, anchor, othertype)
618 # * foo(othertype, anchor, mmodule)
619 # * foo(anchor, mmodule, othertype)
620 # * foo(othertype, mmodule, anchor)
621 abstract class MType
622 super MEntity
623
624 redef fun name do return to_s
625
626 # Return true if `self` is an subtype of `sup`.
627 # The typing is done using the standard typing policy of Nit.
628 #
629 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
630 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
631 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
632 do
633 var sub = self
634 if sub == sup then return true
635
636 #print "1.is {sub} a {sup}? ===="
637
638 if anchor == null then
639 assert not sub.need_anchor
640 assert not sup.need_anchor
641 else
642 # First, resolve the formal types to the simplest equivalent forms in the receiver
643 assert sub.can_resolve_for(anchor, null, mmodule)
644 sub = sub.lookup_fixed(mmodule, anchor)
645 assert sup.can_resolve_for(anchor, null, mmodule)
646 sup = sup.lookup_fixed(mmodule, anchor)
647 end
648
649 # Does `sup` accept null or not?
650 # Discard the nullable marker if it exists
651 var sup_accept_null = false
652 if sup isa MNullableType then
653 sup_accept_null = true
654 sup = sup.mtype
655 else if sup isa MNullType then
656 sup_accept_null = true
657 end
658
659 # Can `sub` provide null or not?
660 # Thus we can match with `sup_accept_null`
661 # Also discard the nullable marker if it exists
662 if sub isa MNullableType then
663 if not sup_accept_null then return false
664 sub = sub.mtype
665 else if sub isa MNullType then
666 return sup_accept_null
667 end
668 # Now the case of direct null and nullable is over.
669
670 # If `sub` is a formal type, then it is accepted if its bound is accepted
671 while sub isa MParameterType or sub isa MVirtualType do
672 #print "3.is {sub} a {sup}?"
673
674 # A unfixed formal type can only accept itself
675 if sub == sup then return true
676
677 assert anchor != null
678 sub = sub.lookup_bound(mmodule, anchor)
679
680 #print "3.is {sub} a {sup}?"
681
682 # Manage the second layer of null/nullable
683 if sub isa MNullableType then
684 if not sup_accept_null then return false
685 sub = sub.mtype
686 else if sub isa MNullType then
687 return sup_accept_null
688 end
689 end
690 #print "4.is {sub} a {sup}? <- no more resolution"
691
692 assert sub isa MClassType # It is the only remaining type
693
694 # A unfixed formal type can only accept itself
695 if sup isa MParameterType or sup isa MVirtualType then
696 return false
697 end
698
699 if sup isa MNullType then
700 # `sup` accepts only null
701 return false
702 end
703
704 assert sup isa MClassType # It is the only remaining type
705
706 # Now both are MClassType, we need to dig
707
708 if sub == sup then return true
709
710 if anchor == null then anchor = sub # UGLY: any anchor will work
711 var resolved_sub = sub.anchor_to(mmodule, anchor)
712 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
713 if res == false then return false
714 if not sup isa MGenericType then return true
715 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
716 assert sub2.mclass == sup.mclass
717 for i in [0..sup.mclass.arity[ do
718 var sub_arg = sub2.arguments[i]
719 var sup_arg = sup.arguments[i]
720 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
721 if res == false then return false
722 end
723 return true
724 end
725
726 # The base class type on which self is based
727 #
728 # This base type is used to get property (an internally to perform
729 # unsafe type comparison).
730 #
731 # Beware: some types (like null) are not based on a class thus this
732 # method will crash
733 #
734 # Basically, this function transform the virtual types and parameter
735 # types to their bounds.
736 #
737 # Example
738 #
739 # class A end
740 # class B super A end
741 # class X end
742 # class Y super X end
743 # class G[T: A]
744 # type U: X
745 # end
746 # class H
747 # super G[B]
748 # redef type U: Y
749 # end
750 #
751 # Map[T,U] anchor_to H #-> Map[B,Y]
752 #
753 # Explanation of the example:
754 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
755 # because "redef type U: Y". Therefore, Map[T, U] is bound to
756 # Map[B, Y]
757 #
758 # ENSURE: `not self.need_anchor implies result == self`
759 # ENSURE: `not result.need_anchor`
760 fun anchor_to(mmodule: MModule, anchor: MClassType): MType
761 do
762 if not need_anchor then return self
763 assert not anchor.need_anchor
764 # Just resolve to the anchor and clear all the virtual types
765 var res = self.resolve_for(anchor, null, mmodule, true)
766 assert not res.need_anchor
767 return res
768 end
769
770 # Does `self` contain a virtual type or a formal generic parameter type?
771 # In order to remove those types, you usually want to use `anchor_to`.
772 fun need_anchor: Bool do return true
773
774 # Return the supertype when adapted to a class.
775 #
776 # In Nit, for each super-class of a type, there is a equivalent super-type.
777 #
778 # Example:
779 #
780 # ~~~nitish
781 # class G[T, U] end
782 # class H[V] super G[V, Bool] end
783 #
784 # H[Int] supertype_to G #-> G[Int, Bool]
785 # ~~~
786 #
787 # REQUIRE: `super_mclass` is a super-class of `self`
788 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
789 # ENSURE: `result.mclass = super_mclass`
790 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
791 do
792 if super_mclass.arity == 0 then return super_mclass.mclass_type
793 if self isa MClassType and self.mclass == super_mclass then return self
794 var resolved_self
795 if self.need_anchor then
796 assert anchor != null
797 resolved_self = self.anchor_to(mmodule, anchor)
798 else
799 resolved_self = self
800 end
801 var supertypes = resolved_self.collect_mtypes(mmodule)
802 for supertype in supertypes do
803 if supertype.mclass == super_mclass then
804 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
805 return supertype.resolve_for(self, anchor, mmodule, false)
806 end
807 end
808 abort
809 end
810
811 # Replace formals generic types in self with resolved values in `mtype`
812 # If `cleanup_virtual` is true, then virtual types are also replaced
813 # with their bounds.
814 #
815 # This function returns self if `need_anchor` is false.
816 #
817 # ## Example 1
818 #
819 # ~~~
820 # class G[E] end
821 # class H[F] super G[F] end
822 # class X[Z] end
823 # ~~~
824 #
825 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
826 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
827 #
828 # Explanation of the example:
829 # * Array[E].need_anchor is true because there is a formal generic parameter type E
830 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
831 # * Since "H[F] super G[F]", E is in fact F for H
832 # * More specifically, in H[Int], E is Int
833 # * So, in H[Int], Array[E] is Array[Int]
834 #
835 # This function is mainly used to inherit a signature.
836 # Because, unlike `anchor_to`, we do not want a full resolution of
837 # a type but only an adapted version of it.
838 #
839 # ## Example 2
840 #
841 # ~~~
842 # class A[E]
843 # fun foo(e:E):E is abstract
844 # end
845 # class B super A[Int] end
846 # ~~~
847 #
848 # The signature on foo is (e: E): E
849 # If we resolve the signature for B, we get (e:Int):Int
850 #
851 # ## Example 3
852 #
853 # ~~~nitish
854 # class A[E]
855 # fun foo(e:E):E is abstract
856 # end
857 # class C[F]
858 # var a: A[Array[F]]
859 # fun bar do a.foo(x) # <- x is here
860 # end
861 # ~~~
862 #
863 # The first question is: is foo available on `a`?
864 #
865 # The static type of a is `A[Array[F]]`, that is an open type.
866 # in order to find a method `foo`, whe must look at a resolved type.
867 #
868 # A[Array[F]].anchor_to(C[nullable Object]) #-> A[Array[nullable Object]]
869 #
870 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
871 #
872 # The next question is: what is the accepted types for `x`?
873 #
874 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
875 #
876 # E.resolve_for(A[Array[F]],C[nullable Object]) #-> Array[F]
877 #
878 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
879 #
880 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
881 # two function instead of one seems also to be a bad idea.
882 #
883 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
884 # ENSURE: `not self.need_anchor implies result == self`
885 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
886
887 # Resolve formal type to its verbatim bound.
888 # If the type is not formal, just return self
889 #
890 # The result is returned exactly as declared in the "type" property (verbatim).
891 # So it could be another formal type.
892 #
893 # In case of conflict, the method aborts.
894 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self
895
896 # Resolve the formal type to its simplest equivalent form.
897 #
898 # Formal types are either free or fixed.
899 # When it is fixed, it means that it is equivalent with a simpler type.
900 # When a formal type is free, it means that it is only equivalent with itself.
901 # This method return the most simple equivalent type of `self`.
902 #
903 # This method is mainly used for subtype test in order to sanely compare fixed.
904 #
905 # By default, return self.
906 # See the redefinitions for specific behavior in each kind of type.
907 fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self
908
909 # Can the type be resolved?
910 #
911 # In order to resolve open types, the formal types must make sence.
912 #
913 # ## Example
914 #
915 # class A[E]
916 # end
917 # class B[F]
918 # end
919 #
920 # ~~~nitish
921 # E.can_resolve_for(A[Int]) #-> true, E make sense in A
922 #
923 # E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
924 #
925 # B[E].can_resolve_for(A[F], B[Object]) #-> true,
926 # # B[E] is a red hearing only the E is important,
927 # # E make sense in A
928 # ~~~
929 #
930 # REQUIRE: `anchor != null implies not anchor.need_anchor`
931 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
932 # ENSURE: `not self.need_anchor implies result == true`
933 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
934
935 # Return the nullable version of the type
936 # If the type is already nullable then self is returned
937 fun as_nullable: MType
938 do
939 var res = self.as_nullable_cache
940 if res != null then return res
941 res = new MNullableType(self)
942 self.as_nullable_cache = res
943 return res
944 end
945
946 # Return the not nullable version of the type
947 # Is the type is already not nullable, then self is returned.
948 #
949 # Note: this just remove the `nullable` notation, but the result can still contains null.
950 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
951 fun as_notnullable: MType
952 do
953 return self
954 end
955
956 private var as_nullable_cache: nullable MType = null
957
958
959 # The depth of the type seen as a tree.
960 #
961 # * A -> 1
962 # * G[A] -> 2
963 # * H[A, B] -> 2
964 # * H[G[A], B] -> 3
965 #
966 # Formal types have a depth of 1.
967 fun depth: Int
968 do
969 return 1
970 end
971
972 # The length of the type seen as a tree.
973 #
974 # * A -> 1
975 # * G[A] -> 2
976 # * H[A, B] -> 3
977 # * H[G[A], B] -> 4
978 #
979 # Formal types have a length of 1.
980 fun length: Int
981 do
982 return 1
983 end
984
985 # Compute all the classdefs inherited/imported.
986 # The returned set contains:
987 # * the class definitions from `mmodule` and its imported modules
988 # * the class definitions of this type and its super-types
989 #
990 # This function is used mainly internally.
991 #
992 # REQUIRE: `not self.need_anchor`
993 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
994
995 # Compute all the super-classes.
996 # This function is used mainly internally.
997 #
998 # REQUIRE: `not self.need_anchor`
999 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
1000
1001 # Compute all the declared super-types.
1002 # Super-types are returned as declared in the classdefs (verbatim).
1003 # This function is used mainly internally.
1004 #
1005 # REQUIRE: `not self.need_anchor`
1006 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
1007
1008 # Is the property in self for a given module
1009 # This method does not filter visibility or whatever
1010 #
1011 # REQUIRE: `not self.need_anchor`
1012 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
1013 do
1014 assert not self.need_anchor
1015 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
1016 end
1017 end
1018
1019 # A type based on a class.
1020 #
1021 # `MClassType` have properties (see `has_mproperty`).
1022 class MClassType
1023 super MType
1024
1025 # The associated class
1026 var mclass: MClass
1027
1028 redef fun model do return self.mclass.intro_mmodule.model
1029
1030 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1031
1032 # The formal arguments of the type
1033 # ENSURE: `result.length == self.mclass.arity`
1034 var arguments = new Array[MType]
1035
1036 redef fun to_s do return mclass.to_s
1037
1038 redef fun need_anchor do return false
1039
1040 redef fun anchor_to(mmodule: MModule, anchor: MClassType): MClassType
1041 do
1042 return super.as(MClassType)
1043 end
1044
1045 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1046
1047 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1048
1049 redef fun collect_mclassdefs(mmodule)
1050 do
1051 assert not self.need_anchor
1052 var cache = self.collect_mclassdefs_cache
1053 if not cache.has_key(mmodule) then
1054 self.collect_things(mmodule)
1055 end
1056 return cache[mmodule]
1057 end
1058
1059 redef fun collect_mclasses(mmodule)
1060 do
1061 if collect_mclasses_last_module == mmodule then return collect_mclasses_last_module_cache
1062 assert not self.need_anchor
1063 var cache = self.collect_mclasses_cache
1064 if not cache.has_key(mmodule) then
1065 self.collect_things(mmodule)
1066 end
1067 var res = cache[mmodule]
1068 collect_mclasses_last_module = mmodule
1069 collect_mclasses_last_module_cache = res
1070 return res
1071 end
1072
1073 private var collect_mclasses_last_module: nullable MModule = null
1074 private var collect_mclasses_last_module_cache: Set[MClass] is noinit
1075
1076 redef fun collect_mtypes(mmodule)
1077 do
1078 assert not self.need_anchor
1079 var cache = self.collect_mtypes_cache
1080 if not cache.has_key(mmodule) then
1081 self.collect_things(mmodule)
1082 end
1083 return cache[mmodule]
1084 end
1085
1086 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1087 private fun collect_things(mmodule: MModule)
1088 do
1089 var res = new HashSet[MClassDef]
1090 var seen = new HashSet[MClass]
1091 var types = new HashSet[MClassType]
1092 seen.add(self.mclass)
1093 var todo = [self.mclass]
1094 while not todo.is_empty do
1095 var mclass = todo.pop
1096 #print "process {mclass}"
1097 for mclassdef in mclass.mclassdefs do
1098 if not mmodule.in_importation <= mclassdef.mmodule then continue
1099 #print " process {mclassdef}"
1100 res.add(mclassdef)
1101 for supertype in mclassdef.supertypes do
1102 types.add(supertype)
1103 var superclass = supertype.mclass
1104 if seen.has(superclass) then continue
1105 #print " add {superclass}"
1106 seen.add(superclass)
1107 todo.add(superclass)
1108 end
1109 end
1110 end
1111 collect_mclassdefs_cache[mmodule] = res
1112 collect_mclasses_cache[mmodule] = seen
1113 collect_mtypes_cache[mmodule] = types
1114 end
1115
1116 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1117 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1118 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1119
1120 end
1121
1122 # A type based on a generic class.
1123 # A generic type a just a class with additional formal generic arguments.
1124 class MGenericType
1125 super MClassType
1126
1127 redef var arguments
1128
1129 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1130
1131 init
1132 do
1133 assert self.mclass.arity == arguments.length
1134
1135 self.need_anchor = false
1136 for t in arguments do
1137 if t.need_anchor then
1138 self.need_anchor = true
1139 break
1140 end
1141 end
1142
1143 self.to_s = "{mclass}[{arguments.join(", ")}]"
1144 end
1145
1146 # Recursively print the type of the arguments within brackets.
1147 # Example: `"Map[String, List[Int]]"`
1148 redef var to_s: String is noinit
1149
1150 redef var need_anchor: Bool is noinit
1151
1152 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1153 do
1154 if not need_anchor then return self
1155 assert can_resolve_for(mtype, anchor, mmodule)
1156 var types = new Array[MType]
1157 for t in arguments do
1158 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1159 end
1160 return mclass.get_mtype(types)
1161 end
1162
1163 redef fun can_resolve_for(mtype, anchor, mmodule)
1164 do
1165 if not need_anchor then return true
1166 for t in arguments do
1167 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1168 end
1169 return true
1170 end
1171
1172
1173 redef fun depth
1174 do
1175 var dmax = 0
1176 for a in self.arguments do
1177 var d = a.depth
1178 if d > dmax then dmax = d
1179 end
1180 return dmax + 1
1181 end
1182
1183 redef fun length
1184 do
1185 var res = 1
1186 for a in self.arguments do
1187 res += a.length
1188 end
1189 return res
1190 end
1191 end
1192
1193 # A virtual formal type.
1194 class MVirtualType
1195 super MType
1196
1197 # The property associated with the type.
1198 # Its the definitions of this property that determine the bound or the virtual type.
1199 var mproperty: MVirtualTypeProp
1200
1201 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1202
1203 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1204 do
1205 return lookup_single_definition(mmodule, resolved_receiver).bound.as(not null)
1206 end
1207
1208 private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef
1209 do
1210 assert not resolved_receiver.need_anchor
1211 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1212 if props.is_empty then
1213 abort
1214 else if props.length == 1 then
1215 return props.first
1216 end
1217 var types = new ArraySet[MType]
1218 var res = props.first
1219 for p in props do
1220 types.add(p.bound.as(not null))
1221 if not res.is_fixed then res = p
1222 end
1223 if types.length == 1 then
1224 return res
1225 end
1226 abort
1227 end
1228
1229 # A VT is fixed when:
1230 # * the VT is (re-)defined with the annotation `is fixed`
1231 # * the VT is (indirectly) bound to an enum class (see `enum_kind`) since there is no subtype possible
1232 # * the receiver is an enum class since there is no subtype possible
1233 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1234 do
1235 assert not resolved_receiver.need_anchor
1236 resolved_receiver = resolved_receiver.as_notnullable
1237 assert resolved_receiver isa MClassType # It is the only remaining type
1238
1239 var prop = lookup_single_definition(mmodule, resolved_receiver)
1240 var res = prop.bound.as(not null)
1241
1242 # Recursively lookup the fixed result
1243 res = res.lookup_fixed(mmodule, resolved_receiver)
1244
1245 # 1. For a fixed VT, return the resolved bound
1246 if prop.is_fixed then return res
1247
1248 # 2. For a enum boud, return the bound
1249 if res isa MClassType and res.mclass.kind == enum_kind then return res
1250
1251 # 3. for a enum receiver return the bound
1252 if resolved_receiver.mclass.kind == enum_kind then return res
1253
1254 return self
1255 end
1256
1257 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1258 do
1259 if not cleanup_virtual then return self
1260 assert can_resolve_for(mtype, anchor, mmodule)
1261 # self is a virtual type declared (or inherited) in mtype
1262 # The point of the function it to get the bound of the virtual type that make sense for mtype
1263 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1264 #print "{class_name}: {self}/{mtype}/{anchor}?"
1265 var resolved_receiver
1266 if mtype.need_anchor then
1267 assert anchor != null
1268 resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true)
1269 else
1270 resolved_receiver = mtype
1271 end
1272 # Now, we can get the bound
1273 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1274 # The bound is exactly as declared in the "type" property, so we must resolve it again
1275 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1276
1277 return res
1278 end
1279
1280 redef fun can_resolve_for(mtype, anchor, mmodule)
1281 do
1282 if mtype.need_anchor then
1283 assert anchor != null
1284 mtype = mtype.anchor_to(mmodule, anchor)
1285 end
1286 return mtype.has_mproperty(mmodule, mproperty)
1287 end
1288
1289 redef fun to_s do return self.mproperty.to_s
1290 end
1291
1292 # The type associated to a formal parameter generic type of a class
1293 #
1294 # Each parameter type is associated to a specific class.
1295 # It means that all refinements of a same class "share" the parameter type,
1296 # but that a generic subclass has its own parameter types.
1297 #
1298 # However, in the sense of the meta-model, a parameter type of a class is
1299 # a valid type in a subclass. The "in the sense of the meta-model" is
1300 # important because, in the Nit language, the programmer cannot refers
1301 # directly to the parameter types of the super-classes.
1302 #
1303 # Example:
1304 #
1305 # class A[E]
1306 # fun e: E is abstract
1307 # end
1308 # class B[F]
1309 # super A[Array[F]]
1310 # end
1311 #
1312 # In the class definition B[F], `F` is a valid type but `E` is not.
1313 # However, `self.e` is a valid method call, and the signature of `e` is
1314 # declared `e: E`.
1315 #
1316 # Note that parameter types are shared among class refinements.
1317 # Therefore parameter only have an internal name (see `to_s` for details).
1318 class MParameterType
1319 super MType
1320
1321 # The generic class where the parameter belong
1322 var mclass: MClass
1323
1324 redef fun model do return self.mclass.intro_mmodule.model
1325
1326 # The position of the parameter (0 for the first parameter)
1327 # FIXME: is `position` a better name?
1328 var rank: Int
1329
1330 redef var name
1331
1332 redef fun to_s do return name
1333
1334 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1335 do
1336 assert not resolved_receiver.need_anchor
1337 resolved_receiver = resolved_receiver.as_notnullable
1338 assert resolved_receiver isa MClassType # It is the only remaining type
1339 var goalclass = self.mclass
1340 if resolved_receiver.mclass == goalclass then
1341 return resolved_receiver.arguments[self.rank]
1342 end
1343 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1344 for t in supertypes do
1345 if t.mclass == goalclass then
1346 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1347 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1348 var res = t.arguments[self.rank]
1349 return res
1350 end
1351 end
1352 abort
1353 end
1354
1355 # A PT is fixed when:
1356 # * Its bound is a enum class (see `enum_kind`).
1357 # The PT is just useless, but it is still a case.
1358 # * More usually, the `resolved_receiver` is a subclass of `self.mclass`,
1359 # so it is necessarily fixed in a `super` clause, either with a normal type
1360 # or with another PT.
1361 # See `resolve_for` for examples about related issues.
1362 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1363 do
1364 assert not resolved_receiver.need_anchor
1365 resolved_receiver = resolved_receiver.as_notnullable
1366 assert resolved_receiver isa MClassType # It is the only remaining type
1367 var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false)
1368 return res
1369 end
1370
1371 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1372 do
1373 assert can_resolve_for(mtype, anchor, mmodule)
1374 #print "{class_name}: {self}/{mtype}/{anchor}?"
1375
1376 if mtype isa MGenericType and mtype.mclass == self.mclass then
1377 var res = mtype.arguments[self.rank]
1378 if anchor != null and res.need_anchor then
1379 # Maybe the result can be resolved more if are bound to a final class
1380 var r2 = res.anchor_to(mmodule, anchor)
1381 if r2 isa MClassType and r2.mclass.kind == enum_kind then return r2
1382 end
1383 return res
1384 end
1385
1386 # self is a parameter type of mtype (or of a super-class of mtype)
1387 # The point of the function it to get the bound of the virtual type that make sense for mtype
1388 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1389 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1390 var resolved_receiver
1391 if mtype.need_anchor then
1392 assert anchor != null
1393 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1394 else
1395 resolved_receiver = mtype
1396 end
1397 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1398 if resolved_receiver isa MParameterType then
1399 assert resolved_receiver.mclass == anchor.mclass
1400 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1401 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1402 end
1403 assert resolved_receiver isa MClassType # It is the only remaining type
1404
1405 # Eh! The parameter is in the current class.
1406 # So we return the corresponding argument, no mater what!
1407 if resolved_receiver.mclass == self.mclass then
1408 var res = resolved_receiver.arguments[self.rank]
1409 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1410 return res
1411 end
1412
1413 if resolved_receiver.need_anchor then
1414 assert anchor != null
1415 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1416 end
1417 # Now, we can get the bound
1418 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1419 # The bound is exactly as declared in the "type" property, so we must resolve it again
1420 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1421
1422 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1423
1424 return res
1425 end
1426
1427 redef fun can_resolve_for(mtype, anchor, mmodule)
1428 do
1429 if mtype.need_anchor then
1430 assert anchor != null
1431 mtype = mtype.anchor_to(mmodule, anchor)
1432 end
1433 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1434 end
1435 end
1436
1437 # A type prefixed with "nullable"
1438 class MNullableType
1439 super MType
1440
1441 # The base type of the nullable type
1442 var mtype: MType
1443
1444 redef fun model do return self.mtype.model
1445
1446 init
1447 do
1448 self.to_s = "nullable {mtype}"
1449 end
1450
1451 redef var to_s: String is noinit
1452
1453 redef fun need_anchor do return mtype.need_anchor
1454 redef fun as_nullable do return self
1455 redef fun as_notnullable do return mtype
1456 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1457 do
1458 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1459 return res.as_nullable
1460 end
1461
1462 redef fun can_resolve_for(mtype, anchor, mmodule)
1463 do
1464 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1465 end
1466
1467 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable`
1468 redef fun lookup_fixed(mmodule, resolved_receiver)
1469 do
1470 var t = mtype.lookup_fixed(mmodule, resolved_receiver)
1471 if t == mtype then return self
1472 return t.as_nullable
1473 end
1474
1475 redef fun depth do return self.mtype.depth
1476
1477 redef fun length do return self.mtype.length
1478
1479 redef fun collect_mclassdefs(mmodule)
1480 do
1481 assert not self.need_anchor
1482 return self.mtype.collect_mclassdefs(mmodule)
1483 end
1484
1485 redef fun collect_mclasses(mmodule)
1486 do
1487 assert not self.need_anchor
1488 return self.mtype.collect_mclasses(mmodule)
1489 end
1490
1491 redef fun collect_mtypes(mmodule)
1492 do
1493 assert not self.need_anchor
1494 return self.mtype.collect_mtypes(mmodule)
1495 end
1496 end
1497
1498 # The type of the only value null
1499 #
1500 # The is only one null type per model, see `MModel::null_type`.
1501 class MNullType
1502 super MType
1503 redef var model: Model
1504 redef fun to_s do return "null"
1505 redef fun as_nullable do return self
1506 redef fun need_anchor do return false
1507 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1508 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1509
1510 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1511
1512 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1513
1514 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1515 end
1516
1517 # A signature of a method
1518 class MSignature
1519 super MType
1520
1521 # The each parameter (in order)
1522 var mparameters: Array[MParameter]
1523
1524 # The return type (null for a procedure)
1525 var return_mtype: nullable MType
1526
1527 redef fun depth
1528 do
1529 var dmax = 0
1530 var t = self.return_mtype
1531 if t != null then dmax = t.depth
1532 for p in mparameters do
1533 var d = p.mtype.depth
1534 if d > dmax then dmax = d
1535 end
1536 return dmax + 1
1537 end
1538
1539 redef fun length
1540 do
1541 var res = 1
1542 var t = self.return_mtype
1543 if t != null then res += t.length
1544 for p in mparameters do
1545 res += p.mtype.length
1546 end
1547 return res
1548 end
1549
1550 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1551 init
1552 do
1553 var vararg_rank = -1
1554 for i in [0..mparameters.length[ do
1555 var parameter = mparameters[i]
1556 if parameter.is_vararg then
1557 assert vararg_rank == -1
1558 vararg_rank = i
1559 end
1560 end
1561 self.vararg_rank = vararg_rank
1562 end
1563
1564 # The rank of the ellipsis (`...`) for vararg (starting from 0).
1565 # value is -1 if there is no vararg.
1566 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1567 var vararg_rank: Int is noinit
1568
1569 # The number or parameters
1570 fun arity: Int do return mparameters.length
1571
1572 redef fun to_s
1573 do
1574 var b = new FlatBuffer
1575 if not mparameters.is_empty then
1576 b.append("(")
1577 for i in [0..mparameters.length[ do
1578 var mparameter = mparameters[i]
1579 if i > 0 then b.append(", ")
1580 b.append(mparameter.name)
1581 b.append(": ")
1582 b.append(mparameter.mtype.to_s)
1583 if mparameter.is_vararg then
1584 b.append("...")
1585 end
1586 end
1587 b.append(")")
1588 end
1589 var ret = self.return_mtype
1590 if ret != null then
1591 b.append(": ")
1592 b.append(ret.to_s)
1593 end
1594 return b.to_s
1595 end
1596
1597 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
1598 do
1599 var params = new Array[MParameter]
1600 for p in self.mparameters do
1601 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1602 end
1603 var ret = self.return_mtype
1604 if ret != null then
1605 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1606 end
1607 var res = new MSignature(params, ret)
1608 return res
1609 end
1610 end
1611
1612 # A parameter in a signature
1613 class MParameter
1614 super MEntity
1615
1616 # The name of the parameter
1617 redef var name: String
1618
1619 # The static type of the parameter
1620 var mtype: MType
1621
1622 # Is the parameter a vararg?
1623 var is_vararg: Bool
1624
1625 redef fun to_s
1626 do
1627 if is_vararg then
1628 return "{name}: {mtype}..."
1629 else
1630 return "{name}: {mtype}"
1631 end
1632 end
1633
1634 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
1635 do
1636 if not self.mtype.need_anchor then return self
1637 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1638 var res = new MParameter(self.name, newtype, self.is_vararg)
1639 return res
1640 end
1641
1642 redef fun model do return mtype.model
1643 end
1644
1645 # A service (global property) that generalize method, attribute, etc.
1646 #
1647 # `MProperty` are global to the model; it means that a `MProperty` is not bound
1648 # to a specific `MModule` nor a specific `MClass`.
1649 #
1650 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
1651 # and the other in subclasses and in refinements.
1652 #
1653 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
1654 # of any dynamic type).
1655 # For instance, a call site "x.foo" is associated to a `MProperty`.
1656 abstract class MProperty
1657 super MEntity
1658
1659 # The associated MPropDef subclass.
1660 # The two specialization hierarchy are symmetric.
1661 type MPROPDEF: MPropDef
1662
1663 # The classdef that introduce the property
1664 # While a property is not bound to a specific module, or class,
1665 # the introducing mclassdef is used for naming and visibility
1666 var intro_mclassdef: MClassDef
1667
1668 # The (short) name of the property
1669 redef var name: String
1670
1671 # The canonical name of the property
1672 # Example: "owner::my_module::MyClass::my_method"
1673 fun full_name: String
1674 do
1675 return "{self.intro_mclassdef.mmodule.full_name}::{self.intro_mclassdef.mclass.name}::{name}"
1676 end
1677
1678 # The visibility of the property
1679 var visibility: MVisibility
1680
1681 init
1682 do
1683 intro_mclassdef.intro_mproperties.add(self)
1684 var model = intro_mclassdef.mmodule.model
1685 model.mproperties_by_name.add_one(name, self)
1686 model.mproperties.add(self)
1687 end
1688
1689 # All definitions of the property.
1690 # The first is the introduction,
1691 # The other are redefinitions (in refinements and in subclasses)
1692 var mpropdefs = new Array[MPROPDEF]
1693
1694 # The definition that introduces the property.
1695 #
1696 # Warning: such a definition may not exist in the early life of the object.
1697 # In this case, the method will abort.
1698 var intro: MPROPDEF is noinit
1699
1700 redef fun model do return intro.model
1701
1702 # Alias for `name`
1703 redef fun to_s do return name
1704
1705 # Return the most specific property definitions defined or inherited by a type.
1706 # The selection knows that refinement is stronger than specialization;
1707 # however, in case of conflict more than one property are returned.
1708 # If mtype does not know mproperty then an empty array is returned.
1709 #
1710 # If you want the really most specific property, then look at `lookup_first_definition`
1711 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1712 do
1713 assert not mtype.need_anchor
1714 mtype = mtype.as_notnullable
1715
1716 var cache = self.lookup_definitions_cache[mmodule, mtype]
1717 if cache != null then return cache
1718
1719 #print "select prop {mproperty} for {mtype} in {self}"
1720 # First, select all candidates
1721 var candidates = new Array[MPROPDEF]
1722 for mpropdef in self.mpropdefs do
1723 # If the definition is not imported by the module, then skip
1724 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1725 # If the definition is not inherited by the type, then skip
1726 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1727 # Else, we keep it
1728 candidates.add(mpropdef)
1729 end
1730 # Fast track for only one candidate
1731 if candidates.length <= 1 then
1732 self.lookup_definitions_cache[mmodule, mtype] = candidates
1733 return candidates
1734 end
1735
1736 # Second, filter the most specific ones
1737 return select_most_specific(mmodule, candidates)
1738 end
1739
1740 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
1741
1742 # Return the most specific property definitions inherited by a type.
1743 # The selection knows that refinement is stronger than specialization;
1744 # however, in case of conflict more than one property are returned.
1745 # If mtype does not know mproperty then an empty array is returned.
1746 #
1747 # If you want the really most specific property, then look at `lookup_next_definition`
1748 #
1749 # FIXME: Move to `MPropDef`?
1750 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1751 do
1752 assert not mtype.need_anchor
1753 mtype = mtype.as_notnullable
1754
1755 # First, select all candidates
1756 var candidates = new Array[MPROPDEF]
1757 for mpropdef in self.mpropdefs do
1758 # If the definition is not imported by the module, then skip
1759 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1760 # If the definition is not inherited by the type, then skip
1761 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1762 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
1763 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
1764 # Else, we keep it
1765 candidates.add(mpropdef)
1766 end
1767 # Fast track for only one candidate
1768 if candidates.length <= 1 then return candidates
1769
1770 # Second, filter the most specific ones
1771 return select_most_specific(mmodule, candidates)
1772 end
1773
1774 # Return an array containing olny the most specific property definitions
1775 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
1776 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
1777 do
1778 var res = new Array[MPROPDEF]
1779 for pd1 in candidates do
1780 var cd1 = pd1.mclassdef
1781 var c1 = cd1.mclass
1782 var keep = true
1783 for pd2 in candidates do
1784 if pd2 == pd1 then continue # do not compare with self!
1785 var cd2 = pd2.mclassdef
1786 var c2 = cd2.mclass
1787 if c2.mclass_type == c1.mclass_type then
1788 if cd2.mmodule.in_importation < cd1.mmodule then
1789 # cd2 refines cd1; therefore we skip pd1
1790 keep = false
1791 break
1792 end
1793 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
1794 # cd2 < cd1; therefore we skip pd1
1795 keep = false
1796 break
1797 end
1798 end
1799 if keep then
1800 res.add(pd1)
1801 end
1802 end
1803 if res.is_empty then
1804 print "All lost! {candidates.join(", ")}"
1805 # FIXME: should be abort!
1806 end
1807 return res
1808 end
1809
1810 # Return the most specific definition in the linearization of `mtype`.
1811 #
1812 # If you want to know the next properties in the linearization,
1813 # look at `MPropDef::lookup_next_definition`.
1814 #
1815 # FIXME: the linearization is still unspecified
1816 #
1817 # REQUIRE: `not mtype.need_anchor`
1818 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
1819 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
1820 do
1821 assert mtype.has_mproperty(mmodule, self)
1822 return lookup_all_definitions(mmodule, mtype).first
1823 end
1824
1825 # Return all definitions in a linearization order
1826 # Most specific first, most general last
1827 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1828 do
1829 assert not mtype.need_anchor
1830 mtype = mtype.as_notnullable
1831
1832 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
1833 if cache != null then return cache
1834
1835 #print "select prop {mproperty} for {mtype} in {self}"
1836 # First, select all candidates
1837 var candidates = new Array[MPROPDEF]
1838 for mpropdef in self.mpropdefs do
1839 # If the definition is not imported by the module, then skip
1840 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1841 # If the definition is not inherited by the type, then skip
1842 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1843 # Else, we keep it
1844 candidates.add(mpropdef)
1845 end
1846 # Fast track for only one candidate
1847 if candidates.length <= 1 then
1848 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
1849 return candidates
1850 end
1851
1852 mmodule.linearize_mpropdefs(candidates)
1853 candidates = candidates.reversed
1854 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
1855 return candidates
1856 end
1857
1858 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
1859 end
1860
1861 # A global method
1862 class MMethod
1863 super MProperty
1864
1865 redef type MPROPDEF: MMethodDef
1866
1867 # Is the property defined at the top_level of the module?
1868 # Currently such a property are stored in `Object`
1869 var is_toplevel: Bool = false is writable
1870
1871 # Is the property a constructor?
1872 # Warning, this property can be inherited by subclasses with or without being a constructor
1873 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
1874 var is_init: Bool = false is writable
1875
1876 # The constructor is a (the) root init with empty signature but a set of initializers
1877 var is_root_init: Bool = false is writable
1878
1879 # Is the property a 'new' constructor?
1880 var is_new: Bool = false is writable
1881
1882 # Is the property a legal constructor for a given class?
1883 # As usual, visibility is not considered.
1884 # FIXME not implemented
1885 fun is_init_for(mclass: MClass): Bool
1886 do
1887 return self.is_init
1888 end
1889 end
1890
1891 # A global attribute
1892 class MAttribute
1893 super MProperty
1894
1895 redef type MPROPDEF: MAttributeDef
1896
1897 end
1898
1899 # A global virtual type
1900 class MVirtualTypeProp
1901 super MProperty
1902
1903 redef type MPROPDEF: MVirtualTypeDef
1904
1905 # The formal type associated to the virtual type property
1906 var mvirtualtype = new MVirtualType(self)
1907 end
1908
1909 # A definition of a property (local property)
1910 #
1911 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
1912 # specific class definition (which belong to a specific module)
1913 abstract class MPropDef
1914 super MEntity
1915
1916 # The associated `MProperty` subclass.
1917 # the two specialization hierarchy are symmetric
1918 type MPROPERTY: MProperty
1919
1920 # Self class
1921 type MPROPDEF: MPropDef
1922
1923 # The class definition where the property definition is
1924 var mclassdef: MClassDef
1925
1926 # The associated global property
1927 var mproperty: MPROPERTY
1928
1929 # The origin of the definition
1930 var location: Location
1931
1932 init
1933 do
1934 mclassdef.mpropdefs.add(self)
1935 mproperty.mpropdefs.add(self)
1936 if mproperty.intro_mclassdef == mclassdef then
1937 assert not isset mproperty._intro
1938 mproperty.intro = self
1939 end
1940 self.to_s = "{mclassdef}#{mproperty}"
1941 end
1942
1943 # Actually the name of the `mproperty`
1944 redef fun name do return mproperty.name
1945
1946 redef fun model do return mclassdef.model
1947
1948 # Internal name combining the module, the class and the property
1949 # Example: "mymodule#MyClass#mymethod"
1950 redef var to_s: String is noinit
1951
1952 # Is self the definition that introduce the property?
1953 fun is_intro: Bool do return mproperty.intro == self
1954
1955 # Return the next definition in linearization of `mtype`.
1956 #
1957 # This method is used to determine what method is called by a super.
1958 #
1959 # REQUIRE: `not mtype.need_anchor`
1960 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
1961 do
1962 assert not mtype.need_anchor
1963
1964 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
1965 var i = mpropdefs.iterator
1966 while i.is_ok and i.item != self do i.next
1967 assert has_property: i.is_ok
1968 i.next
1969 assert has_next_property: i.is_ok
1970 return i.item
1971 end
1972 end
1973
1974 # A local definition of a method
1975 class MMethodDef
1976 super MPropDef
1977
1978 redef type MPROPERTY: MMethod
1979 redef type MPROPDEF: MMethodDef
1980
1981 # The signature attached to the property definition
1982 var msignature: nullable MSignature = null is writable
1983
1984 # The signature attached to the `new` call on a root-init
1985 # This is a concatenation of the signatures of the initializers
1986 #
1987 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
1988 var new_msignature: nullable MSignature = null is writable
1989
1990 # List of initialisers to call in root-inits
1991 #
1992 # They could be setters or attributes
1993 #
1994 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
1995 var initializers = new Array[MProperty]
1996
1997 # Is the method definition abstract?
1998 var is_abstract: Bool = false is writable
1999
2000 # Is the method definition intern?
2001 var is_intern = false is writable
2002
2003 # Is the method definition extern?
2004 var is_extern = false is writable
2005
2006 # An optional constant value returned in functions.
2007 #
2008 # Only some specific primitife value are accepted by engines.
2009 # Is used when there is no better implementation available.
2010 #
2011 # Currently used only for the implementation of the `--define`
2012 # command-line option.
2013 # SEE: module `mixin`.
2014 var constant_value: nullable Object = null is writable
2015 end
2016
2017 # A local definition of an attribute
2018 class MAttributeDef
2019 super MPropDef
2020
2021 redef type MPROPERTY: MAttribute
2022 redef type MPROPDEF: MAttributeDef
2023
2024 # The static type of the attribute
2025 var static_mtype: nullable MType = null is writable
2026 end
2027
2028 # A local definition of a virtual type
2029 class MVirtualTypeDef
2030 super MPropDef
2031
2032 redef type MPROPERTY: MVirtualTypeProp
2033 redef type MPROPDEF: MVirtualTypeDef
2034
2035 # The bound of the virtual type
2036 var bound: nullable MType = null is writable
2037
2038 # Is the bound fixed?
2039 var is_fixed = false is writable
2040 end
2041
2042 # A kind of class.
2043 #
2044 # * `abstract_kind`
2045 # * `concrete_kind`
2046 # * `interface_kind`
2047 # * `enum_kind`
2048 # * `extern_kind`
2049 #
2050 # Note this class is basically an enum.
2051 # FIXME: use a real enum once user-defined enums are available
2052 class MClassKind
2053 redef var to_s: String
2054
2055 # Is a constructor required?
2056 var need_init: Bool
2057
2058 # TODO: private init because enumeration.
2059
2060 # Can a class of kind `self` specializes a class of kine `other`?
2061 fun can_specialize(other: MClassKind): Bool
2062 do
2063 if other == interface_kind then return true # everybody can specialize interfaces
2064 if self == interface_kind or self == enum_kind then
2065 # no other case for interfaces
2066 return false
2067 else if self == extern_kind then
2068 # only compatible with themselves
2069 return self == other
2070 else if other == enum_kind or other == extern_kind then
2071 # abstract_kind and concrete_kind are incompatible
2072 return false
2073 end
2074 # remain only abstract_kind and concrete_kind
2075 return true
2076 end
2077 end
2078
2079 # The class kind `abstract`
2080 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", true)
2081 # The class kind `concrete`
2082 fun concrete_kind: MClassKind do return once new MClassKind("class", true)
2083 # The class kind `interface`
2084 fun interface_kind: MClassKind do return once new MClassKind("interface", false)
2085 # The class kind `enum`
2086 fun enum_kind: MClassKind do return once new MClassKind("enum", false)
2087 # The class kind `extern`
2088 fun extern_kind: MClassKind do return once new MClassKind("extern class", false)