model: Fix minor documentation mistakes
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class MEntity
34 # The visibility of the MEntity.
35 #
36 # MPackages, MGroups and MModules are always public.
37 # The visibility of `MClass` and `MProperty` is defined by the keyword used.
38 # `MClassDef` and `MPropDef` return the visibility of `MClass` and `MProperty`.
39 fun visibility: MVisibility do return public_visibility
40 end
41
42 redef class Model
43 # All known classes
44 var mclasses = new Array[MClass]
45
46 # All known properties
47 var mproperties = new Array[MProperty]
48
49 # Hierarchy of class definition.
50 #
51 # Each classdef is associated with its super-classdefs in regard to
52 # its module of definition.
53 var mclassdef_hierarchy = new POSet[MClassDef]
54
55 # Class-type hierarchy restricted to the introduction.
56 #
57 # The idea is that what is true on introduction is always true whatever
58 # the module considered.
59 # Therefore, this hierarchy is used for a fast positive subtype check.
60 #
61 # This poset will evolve in a monotonous way:
62 # * Two non connected nodes will remain unconnected
63 # * New nodes can appear with new edges
64 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
65
66 # Global overlapped class-type hierarchy.
67 # The hierarchy when all modules are combined.
68 # Therefore, this hierarchy is used for a fast negative subtype check.
69 #
70 # This poset will evolve in an anarchic way. Loops can even be created.
71 #
72 # FIXME decide what to do on loops
73 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
74
75 # Collections of classes grouped by their short name
76 private var mclasses_by_name = new MultiHashMap[String, MClass]
77
78 # Return all classes named `name`.
79 #
80 # If such a class does not exist, null is returned
81 # (instead of an empty array)
82 #
83 # Visibility or modules are not considered
84 fun get_mclasses_by_name(name: String): nullable Array[MClass]
85 do
86 return mclasses_by_name.get_or_null(name)
87 end
88
89 # Collections of properties grouped by their short name
90 private var mproperties_by_name = new MultiHashMap[String, MProperty]
91
92 # Return all properties named `name`.
93 #
94 # If such a property does not exist, null is returned
95 # (instead of an empty array)
96 #
97 # Visibility or modules are not considered
98 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
99 do
100 return mproperties_by_name.get_or_null(name)
101 end
102
103 # The only null type
104 var null_type = new MNullType(self)
105
106 # The only bottom type
107 var bottom_type: MBottomType = null_type.as_notnull
108
109 # Build an ordered tree with from `concerns`
110 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
111 var seen = new HashSet[MConcern]
112 var res = new ConcernsTree
113
114 var todo = new Array[MConcern]
115 todo.add_all mconcerns
116
117 while not todo.is_empty do
118 var c = todo.pop
119 if seen.has(c) then continue
120 var pc = c.parent_concern
121 if pc == null then
122 res.add(null, c)
123 else
124 res.add(pc, c)
125 todo.add(pc)
126 end
127 seen.add(c)
128 end
129
130 return res
131 end
132 end
133
134 # An OrderedTree bound to MEntity.
135 #
136 # We introduce a new class so it can be easily refined by tools working
137 # with a Model.
138 class MEntityTree
139 super OrderedTree[MEntity]
140 end
141
142 # A MEntityTree borned to MConcern.
143 #
144 # TODO remove when nitdoc is fully merged with model_collect
145 class ConcernsTree
146 super OrderedTree[MConcern]
147 end
148
149 redef class MModule
150 # All the classes introduced in the module
151 var intro_mclasses = new Array[MClass]
152
153 # All the class definitions of the module
154 # (introduction and refinement)
155 var mclassdefs = new Array[MClassDef]
156
157 # Does the current module has a given class `mclass`?
158 # Return true if the mmodule introduces, refines or imports a class.
159 # Visibility is not considered.
160 fun has_mclass(mclass: MClass): Bool
161 do
162 return self.in_importation <= mclass.intro_mmodule
163 end
164
165 # Full hierarchy of introduced and imported classes.
166 #
167 # Create a new hierarchy got by flattening the classes for the module
168 # and its imported modules.
169 # Visibility is not considered.
170 #
171 # Note: this function is expensive and is usually used for the main
172 # module of a program only. Do not use it to do your own subtype
173 # functions.
174 fun flatten_mclass_hierarchy: POSet[MClass]
175 do
176 var res = self.flatten_mclass_hierarchy_cache
177 if res != null then return res
178 res = new POSet[MClass]
179 for m in self.in_importation.greaters do
180 for cd in m.mclassdefs do
181 var c = cd.mclass
182 res.add_node(c)
183 for s in cd.supertypes do
184 res.add_edge(c, s.mclass)
185 end
186 end
187 end
188 self.flatten_mclass_hierarchy_cache = res
189 return res
190 end
191
192 # Sort a given array of classes using the linearization order of the module
193 # The most general is first, the most specific is last
194 fun linearize_mclasses(mclasses: Array[MClass])
195 do
196 self.flatten_mclass_hierarchy.sort(mclasses)
197 end
198
199 # Sort a given array of class definitions using the linearization order of the module
200 # the refinement link is stronger than the specialisation link
201 # The most general is first, the most specific is last
202 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
203 do
204 var sorter = new MClassDefSorter(self)
205 sorter.sort(mclassdefs)
206 end
207
208 # Sort a given array of property definitions using the linearization order of the module
209 # the refinement link is stronger than the specialisation link
210 # The most general is first, the most specific is last
211 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
212 do
213 var sorter = new MPropDefSorter(self)
214 sorter.sort(mpropdefs)
215 end
216
217 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
218
219 # The primitive type `Object`, the root of the class hierarchy
220 var object_type: MClassType = self.get_primitive_class("Object").mclass_type is lazy
221
222 # The type `Pointer`, super class to all extern classes
223 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
224
225 # The primitive type `Bool`
226 var bool_type: MClassType = self.get_primitive_class("Bool").mclass_type is lazy
227
228 # The primitive type `Int`
229 var int_type: MClassType = self.get_primitive_class("Int").mclass_type is lazy
230
231 # The primitive type `Byte`
232 var byte_type: MClassType = self.get_primitive_class("Byte").mclass_type is lazy
233
234 # The primitive type `Int8`
235 var int8_type: MClassType = self.get_primitive_class("Int8").mclass_type is lazy
236
237 # The primitive type `Int16`
238 var int16_type: MClassType = self.get_primitive_class("Int16").mclass_type is lazy
239
240 # The primitive type `UInt16`
241 var uint16_type: MClassType = self.get_primitive_class("UInt16").mclass_type is lazy
242
243 # The primitive type `Int32`
244 var int32_type: MClassType = self.get_primitive_class("Int32").mclass_type is lazy
245
246 # The primitive type `UInt32`
247 var uint32_type: MClassType = self.get_primitive_class("UInt32").mclass_type is lazy
248
249 # The primitive type `Char`
250 var char_type: MClassType = self.get_primitive_class("Char").mclass_type is lazy
251
252 # The primitive type `Float`
253 var float_type: MClassType = self.get_primitive_class("Float").mclass_type is lazy
254
255 # The primitive type `String`
256 var string_type: MClassType = self.get_primitive_class("String").mclass_type is lazy
257
258 # The primitive type `CString`
259 var c_string_type: MClassType = self.get_primitive_class("CString").mclass_type is lazy
260
261 # A primitive type of `Array`
262 fun array_type(elt_type: MType): MClassType do return array_class.get_mtype([elt_type])
263
264 # The primitive class `Array`
265 var array_class: MClass = self.get_primitive_class("Array") is lazy
266
267 # A primitive type of `NativeArray`
268 fun native_array_type(elt_type: MType): MClassType do return native_array_class.get_mtype([elt_type])
269
270 # The primitive class `NativeArray`
271 var native_array_class: MClass = self.get_primitive_class("NativeArray") is lazy
272
273 # The primitive type `Sys`, the main type of the program, if any
274 fun sys_type: nullable MClassType
275 do
276 var clas = self.model.get_mclasses_by_name("Sys")
277 if clas == null then return null
278 return get_primitive_class("Sys").mclass_type
279 end
280
281 # The primitive type `Finalizable`
282 # Used to tag classes that need to be finalized.
283 fun finalizable_type: nullable MClassType
284 do
285 var clas = self.model.get_mclasses_by_name("Finalizable")
286 if clas == null then return null
287 return get_primitive_class("Finalizable").mclass_type
288 end
289
290 # Force to get the primitive class named `name` or abort
291 fun get_primitive_class(name: String): MClass
292 do
293 var cla = self.model.get_mclasses_by_name(name)
294 # Filter classes by introducing module
295 if cla != null then cla = [for c in cla do if self.in_importation <= c.intro_mmodule then c]
296 if cla == null or cla.is_empty then
297 if name == "Bool" and self.model.get_mclasses_by_name("Object") != null then
298 # Bool is injected because it is needed by engine to code the result
299 # of the implicit casts.
300 var loc = model.no_location
301 var c = new MClass(self, name, loc, null, enum_kind, public_visibility)
302 var cladef = new MClassDef(self, c.mclass_type, loc)
303 cladef.set_supertypes([object_type])
304 cladef.add_in_hierarchy
305 return c
306 end
307 print_error("Fatal Error: no primitive class {name} in {self}")
308 exit(1)
309 abort
310 end
311 if cla.length != 1 then
312 var msg = "Fatal Error: more than one primitive class {name} in {self}:"
313 for c in cla do msg += " {c.full_name}"
314 print_error msg
315 #exit(1)
316 end
317 return cla.first
318 end
319
320 # Try to get the primitive method named `name` on the type `recv`
321 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
322 do
323 var props = self.model.get_mproperties_by_name(name)
324 if props == null then return null
325 var res: nullable MMethod = null
326 var recvtype = recv.intro.bound_mtype
327 for mprop in props do
328 assert mprop isa MMethod
329 if not recvtype.has_mproperty(self, mprop) then continue
330 if res == null then
331 res = mprop
332 else if res != mprop then
333 print_error("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
334 abort
335 end
336 end
337 return res
338 end
339 end
340
341 private class MClassDefSorter
342 super Comparator
343 redef type COMPARED: MClassDef
344 var mmodule: MModule
345 redef fun compare(a, b)
346 do
347 var ca = a.mclass
348 var cb = b.mclass
349 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
350 return mmodule.model.mclassdef_hierarchy.compare(a, b)
351 end
352 end
353
354 private class MPropDefSorter
355 super Comparator
356 redef type COMPARED: MPropDef
357 var mmodule: MModule
358 redef fun compare(pa, pb)
359 do
360 var a = pa.mclassdef
361 var b = pb.mclassdef
362 var ca = a.mclass
363 var cb = b.mclass
364 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
365 return mmodule.model.mclassdef_hierarchy.compare(a, b)
366 end
367 end
368
369 # A named class
370 #
371 # `MClass`es are global to the model; it means that a `MClass` is not bound
372 # to a specific `MModule`.
373 #
374 # This characteristic helps the reasoning about classes in a program since a
375 # single `MClass` object always denote the same class.
376 #
377 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
378 # These do not really have properties nor belong to a hierarchy since the property and the
379 # hierarchy of a class depends of the refinement in the modules.
380 #
381 # Most services on classes require the precision of a module, and no one can asks what are
382 # the super-classes of a class nor what are properties of a class without precising what is
383 # the module considered.
384 #
385 # For instance, during the typing of a source-file, the module considered is the module of the file.
386 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
387 # *is the method `foo` exists in the class `Bar` in the current module?*
388 #
389 # During some global analysis, the module considered may be the main module of the program.
390 class MClass
391 super MEntity
392
393 # The module that introduce the class
394 #
395 # While classes are not bound to a specific module,
396 # the introducing module is used for naming and visibility.
397 var intro_mmodule: MModule
398
399 # The short name of the class
400 # In Nit, the name of a class cannot evolve in refinements
401 redef var name
402
403 redef var location
404
405 # The canonical name of the class
406 #
407 # It is the name of the class prefixed by the full_name of the `intro_mmodule`
408 # Example: `"owner::module::MyClass"`
409 redef var full_name is lazy do
410 return "{self.intro_mmodule.namespace_for(visibility)}::{name}"
411 end
412
413 redef var c_name is lazy do
414 return "{intro_mmodule.c_namespace_for(visibility)}__{name.to_cmangle}"
415 end
416
417 # The number of generic formal parameters
418 # 0 if the class is not generic
419 var arity: Int is noinit
420
421 # Each generic formal parameters in order.
422 # is empty if the class is not generic
423 var mparameters = new Array[MParameterType]
424
425 # A string version of the signature a generic class.
426 #
427 # eg. `Map[K: nullable Object, V: nullable Object]`
428 #
429 # If the class in non generic the name is just given.
430 #
431 # eg. `Object`
432 fun signature_to_s: String
433 do
434 if arity == 0 then return name
435 var res = new FlatBuffer
436 res.append name
437 res.append "["
438 for i in [0..arity[ do
439 if i > 0 then res.append ", "
440 res.append mparameters[i].name
441 res.append ": "
442 res.append intro.bound_mtype.arguments[i].to_s
443 end
444 res.append "]"
445 return res.to_s
446 end
447
448 # Initialize `mparameters` from their names.
449 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
450 autoinit
451 do
452 if parameter_names == null then
453 self.arity = 0
454 else
455 self.arity = parameter_names.length
456 end
457
458 # Create the formal parameter types
459 if arity > 0 then
460 assert parameter_names != null
461 var mparametertypes = new Array[MParameterType]
462 for i in [0..arity[ do
463 var mparametertype = new MParameterType(self, i, parameter_names[i])
464 mparametertypes.add(mparametertype)
465 end
466 self.mparameters = mparametertypes
467 var mclass_type = new MGenericType(self, mparametertypes)
468 self.mclass_type = mclass_type
469 self.get_mtype_cache[mparametertypes] = mclass_type
470 else
471 self.mclass_type = new MClassType(self)
472 end
473 end
474
475 # The kind of the class (interface, abstract class, etc.)
476 #
477 # In Nit, the kind of a class cannot evolve in refinements.
478 var kind: MClassKind
479
480 # The visibility of the class
481 #
482 # In Nit, the visibility of a class cannot evolve in refinements.
483 redef var visibility
484
485 init
486 do
487 intro_mmodule.intro_mclasses.add(self)
488 var model = intro_mmodule.model
489 model.mclasses_by_name.add_one(name, self)
490 model.mclasses.add(self)
491 end
492
493 redef fun model do return intro_mmodule.model
494
495 # All class definitions (introduction and refinements)
496 var mclassdefs = new Array[MClassDef]
497
498 # Alias for `name`
499 redef fun to_s do return self.name
500
501 # The definition that introduces the class.
502 #
503 # Warning: such a definition may not exist in the early life of the object.
504 # In this case, the method will abort.
505 #
506 # Use `try_intro` instead.
507 var intro: MClassDef is noinit
508
509 # The definition that introduces the class or `null` if not yet known.
510 #
511 # SEE: `intro`
512 fun try_intro: nullable MClassDef do
513 if isset _intro then return _intro else return null
514 end
515
516 # Return the class `self` in the class hierarchy of the module `mmodule`.
517 #
518 # SEE: `MModule::flatten_mclass_hierarchy`
519 # REQUIRE: `mmodule.has_mclass(self)`
520 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
521 do
522 return mmodule.flatten_mclass_hierarchy[self]
523 end
524
525 # The principal static type of the class.
526 #
527 # For non-generic class, `mclass_type` is the only `MClassType` based
528 # on self.
529 #
530 # For a generic class, the arguments are the formal parameters.
531 # i.e.: for the class `Array[E:Object]`, the `mclass_type` is `Array[E]`.
532 # If you want `Array[Object]`, see `MClassDef::bound_mtype`.
533 #
534 # For generic classes, the mclass_type is also the way to get a formal
535 # generic parameter type.
536 #
537 # To get other types based on a generic class, see `get_mtype`.
538 #
539 # ENSURE: `mclass_type.mclass == self`
540 var mclass_type: MClassType is noinit
541
542 # Return a generic type based on the class
543 # Is the class is not generic, then the result is `mclass_type`
544 #
545 # REQUIRE: `mtype_arguments.length == self.arity`
546 fun get_mtype(mtype_arguments: Array[MType]): MClassType
547 do
548 assert mtype_arguments.length == self.arity
549 if self.arity == 0 then return self.mclass_type
550 var res = get_mtype_cache.get_or_null(mtype_arguments)
551 if res != null then return res
552 res = new MGenericType(self, mtype_arguments)
553 self.get_mtype_cache[mtype_arguments.to_a] = res
554 return res
555 end
556
557 private var get_mtype_cache = new HashMap[Array[MType], MGenericType]
558
559 # Is there a `new` factory to allow the pseudo instantiation?
560 var has_new_factory = false is writable
561
562 # Is `self` a standard or abstract class kind?
563 var is_class: Bool is lazy do return kind == concrete_kind or kind == abstract_kind
564
565 # Is `self` an interface kind?
566 var is_interface: Bool is lazy do return kind == interface_kind
567
568 # Is `self` an enum kind?
569 var is_enum: Bool is lazy do return kind == enum_kind
570
571 # Is `self` and abstract class?
572 var is_abstract: Bool is lazy do return kind == abstract_kind
573
574 redef fun mdoc_or_fallback
575 do
576 # Don’t use `intro.mdoc_or_fallback` because it would create an infinite
577 # recursion.
578 return intro.mdoc
579 end
580 end
581
582
583 # A definition (an introduction or a refinement) of a class in a module
584 #
585 # A `MClassDef` is associated with an explicit (or almost) definition of a
586 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
587 # a specific class and a specific module, and contains declarations like super-classes
588 # or properties.
589 #
590 # It is the class definitions that are the backbone of most things in the model:
591 # ClassDefs are defined with regard with other classdefs.
592 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
593 #
594 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
595 class MClassDef
596 super MEntity
597
598 # The module where the definition is
599 var mmodule: MModule
600
601 # The associated `MClass`
602 var mclass: MClass is noinit
603
604 # The bounded type associated to the mclassdef
605 #
606 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
607 # are the same type.
608 #
609 # Example:
610 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
611 # If you want Array[E], then see `mclass.mclass_type`
612 #
613 # ENSURE: `bound_mtype.mclass == self.mclass`
614 var bound_mtype: MClassType
615
616 redef var location
617
618 redef fun visibility do return mclass.visibility
619
620 # Internal name combining the module and the class
621 # Example: "mymodule$MyClass"
622 redef var to_s is noinit
623
624 init
625 do
626 self.mclass = bound_mtype.mclass
627 mmodule.mclassdefs.add(self)
628 mclass.mclassdefs.add(self)
629 if mclass.intro_mmodule == mmodule then
630 assert not isset mclass._intro
631 mclass.intro = self
632 end
633 self.to_s = "{mmodule}${mclass}"
634 end
635
636 # Actually the name of the `mclass`
637 redef fun name do return mclass.name
638
639 # The module and class name separated by a '$'.
640 #
641 # The short-name of the class is used for introduction.
642 # Example: "my_module$MyClass"
643 #
644 # The full-name of the class is used for refinement.
645 # Example: "my_module$intro_module::MyClass"
646 redef var full_name is lazy do
647 if is_intro then
648 # public gives 'p$A'
649 # private gives 'p::m$A'
650 return "{mmodule.namespace_for(mclass.visibility)}${mclass.name}"
651 else if mclass.intro_mmodule.mpackage != mmodule.mpackage then
652 # public gives 'q::n$p::A'
653 # private gives 'q::n$p::m::A'
654 return "{mmodule.full_name}${mclass.full_name}"
655 else if mclass.visibility > private_visibility then
656 # public gives 'p::n$A'
657 return "{mmodule.full_name}${mclass.name}"
658 else
659 # private gives 'p::n$::m::A' (redundant p is omitted)
660 return "{mmodule.full_name}$::{mclass.intro_mmodule.name}::{mclass.name}"
661 end
662 end
663
664 redef var c_name is lazy do
665 if is_intro then
666 return "{mmodule.c_namespace_for(mclass.visibility)}___{mclass.c_name}"
667 else if mclass.intro_mmodule.mpackage == mmodule.mpackage and mclass.visibility > private_visibility then
668 return "{mmodule.c_name}___{mclass.name.to_cmangle}"
669 else
670 return "{mmodule.c_name}___{mclass.c_name}"
671 end
672 end
673
674 redef fun model do return mmodule.model
675
676 # All declared super-types
677 # FIXME: quite ugly but not better idea yet
678 var supertypes = new Array[MClassType]
679
680 # Register some super-types for the class (ie "super SomeType")
681 #
682 # The hierarchy must not already be set
683 # REQUIRE: `self.in_hierarchy == null`
684 fun set_supertypes(supertypes: Array[MClassType])
685 do
686 assert unique_invocation: self.in_hierarchy == null
687 var mmodule = self.mmodule
688 var model = mmodule.model
689 var mtype = self.bound_mtype
690
691 for supertype in supertypes do
692 self.supertypes.add(supertype)
693
694 # Register in full_type_specialization_hierarchy
695 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
696 # Register in intro_type_specialization_hierarchy
697 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
698 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
699 end
700 end
701
702 end
703
704 # Collect the super-types (set by set_supertypes) to build the hierarchy
705 #
706 # This function can only invoked once by class
707 # REQUIRE: `self.in_hierarchy == null`
708 # ENSURE: `self.in_hierarchy != null`
709 fun add_in_hierarchy
710 do
711 assert unique_invocation: self.in_hierarchy == null
712 var model = mmodule.model
713 var res = model.mclassdef_hierarchy.add_node(self)
714 self.in_hierarchy = res
715 var mtype = self.bound_mtype
716
717 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
718 # The simpliest way is to attach it to collect_mclassdefs
719 for mclassdef in mtype.collect_mclassdefs(mmodule) do
720 res.poset.add_edge(self, mclassdef)
721 end
722 end
723
724 # The view of the class definition in `mclassdef_hierarchy`
725 var in_hierarchy: nullable POSetElement[MClassDef] = null
726
727 # Is the definition the one that introduced `mclass`?
728 fun is_intro: Bool do return isset mclass._intro and mclass.intro == self
729
730 # All properties introduced by the classdef
731 var intro_mproperties = new Array[MProperty]
732
733 # All property introductions and redefinitions in `self` (not inheritance).
734 var mpropdefs = new Array[MPropDef]
735
736 # All property introductions and redefinitions (not inheritance) in `self` by its associated property.
737 var mpropdefs_by_property = new HashMap[MProperty, MPropDef]
738
739 redef fun mdoc_or_fallback do return mdoc or else mclass.mdoc_or_fallback
740 end
741
742 # A global static type
743 #
744 # MType are global to the model; it means that a `MType` is not bound to a
745 # specific `MModule`.
746 # This characteristic helps the reasoning about static types in a program
747 # since a single `MType` object always denote the same type.
748 #
749 # However, because a `MType` is global, it does not really have properties
750 # nor have subtypes to a hierarchy since the property and the class hierarchy
751 # depends of a module.
752 # Moreover, virtual types an formal generic parameter types also depends on
753 # a receiver to have sense.
754 #
755 # Therefore, most method of the types require a module and an anchor.
756 # The module is used to know what are the classes and the specialization
757 # links.
758 # The anchor is used to know what is the bound of the virtual types and formal
759 # generic parameter types.
760 #
761 # MType are not directly usable to get properties. See the `anchor_to` method
762 # and the `MClassType` class.
763 #
764 # FIXME: the order of the parameters is not the best. We mus pick on from:
765 # * foo(mmodule, anchor, othertype)
766 # * foo(othertype, anchor, mmodule)
767 # * foo(anchor, mmodule, othertype)
768 # * foo(othertype, mmodule, anchor)
769 abstract class MType
770 super MEntity
771
772 redef fun name do return to_s
773
774 # Return true if `self` is an subtype of `sup`.
775 # The typing is done using the standard typing policy of Nit.
776 #
777 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
778 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
779 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
780 do
781 var sub = self
782 if sub == sup then return true
783
784 #print "1.is {sub} a {sup}? ===="
785
786 if anchor == null then
787 assert not sub.need_anchor
788 assert not sup.need_anchor
789 else
790 # First, resolve the formal types to the simplest equivalent forms in the receiver
791 assert sub.can_resolve_for(anchor, null, mmodule)
792 sub = sub.lookup_fixed(mmodule, anchor)
793 assert sup.can_resolve_for(anchor, null, mmodule)
794 sup = sup.lookup_fixed(mmodule, anchor)
795 end
796
797 # Does `sup` accept null or not?
798 # Discard the nullable marker if it exists
799 var sup_accept_null = false
800 if sup isa MNullableType then
801 sup_accept_null = true
802 sup = sup.mtype
803 else if sup isa MNotNullType then
804 sup = sup.mtype
805 else if sup isa MNullType then
806 sup_accept_null = true
807 end
808
809 # Can `sub` provide null or not?
810 # Thus we can match with `sup_accept_null`
811 # Also discard the nullable marker if it exists
812 var sub_reject_null = false
813 if sub isa MNullableType then
814 if not sup_accept_null then return false
815 sub = sub.mtype
816 else if sub isa MNotNullType then
817 sub_reject_null = true
818 sub = sub.mtype
819 else if sub isa MNullType then
820 return sup_accept_null
821 end
822 # Now the case of direct null and nullable is over.
823
824 # If `sub` is a formal type, then it is accepted if its bound is accepted
825 while sub isa MFormalType do
826 #print "3.is {sub} a {sup}?"
827
828 # A unfixed formal type can only accept itself
829 if sub == sup then return true
830
831 assert anchor != null
832 sub = sub.lookup_bound(mmodule, anchor)
833 if sub_reject_null then sub = sub.as_notnull
834
835 #print "3.is {sub} a {sup}?"
836
837 # Manage the second layer of null/nullable
838 if sub isa MNullableType then
839 if not sup_accept_null and not sub_reject_null then return false
840 sub = sub.mtype
841 else if sub isa MNotNullType then
842 sub_reject_null = true
843 sub = sub.mtype
844 else if sub isa MNullType then
845 return sup_accept_null
846 end
847 end
848 #print "4.is {sub} a {sup}? <- no more resolution"
849
850 if sub isa MBottomType or sub isa MErrorType then
851 return true
852 end
853
854 assert sub isa MClassType else print_error "{sub} <? {sup}" # It is the only remaining type
855
856 # Handle sup-type when the sub-type is class-based (other cases must have be identified before).
857 if sup isa MFormalType or sup isa MNullType or sup isa MBottomType or sup isa MErrorType then
858 # These types are not super-types of Class-based types.
859 return false
860 end
861
862 assert sup isa MClassType else print_error "got {sup} {sub.inspect}" # It is the only remaining type
863
864 # Now both are MClassType, we need to dig
865
866 if sub == sup then return true
867
868 if anchor == null then anchor = sub # UGLY: any anchor will work
869 var resolved_sub = sub.anchor_to(mmodule, anchor)
870 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
871 if res == false then return false
872 if not sup isa MGenericType then return true
873 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
874 assert sub2.mclass == sup.mclass
875 for i in [0..sup.mclass.arity[ do
876 var sub_arg = sub2.arguments[i]
877 var sup_arg = sup.arguments[i]
878 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
879 if res == false then return false
880 end
881 return true
882 end
883
884 # The base class type on which self is based
885 #
886 # This base type is used to get property (an internally to perform
887 # unsafe type comparison).
888 #
889 # Beware: some types (like null) are not based on a class thus this
890 # method will crash
891 #
892 # Basically, this function transform the virtual types and parameter
893 # types to their bounds.
894 #
895 # Example
896 #
897 # class A end
898 # class B super A end
899 # class X end
900 # class Y super X end
901 # class G[T: A]
902 # type U: X
903 # end
904 # class H
905 # super G[B]
906 # redef type U: Y
907 # end
908 #
909 # Map[T,U] anchor_to H #-> Map[B,Y]
910 #
911 # Explanation of the example:
912 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
913 # because "redef type U: Y". Therefore, Map[T, U] is bound to
914 # Map[B, Y]
915 #
916 # REQUIRE: `self.need_anchor implies anchor != null`
917 # ENSURE: `not self.need_anchor implies result == self`
918 # ENSURE: `not result.need_anchor`
919 fun anchor_to(mmodule: MModule, anchor: nullable MClassType): MType
920 do
921 if not need_anchor then return self
922 assert anchor != null and not anchor.need_anchor
923 # Just resolve to the anchor and clear all the virtual types
924 var res = self.resolve_for(anchor, null, mmodule, true)
925 assert not res.need_anchor
926 return res
927 end
928
929 # Does `self` contain a virtual type or a formal generic parameter type?
930 # In order to remove those types, you usually want to use `anchor_to`.
931 fun need_anchor: Bool do return true
932
933 # Return the supertype when adapted to a class.
934 #
935 # In Nit, for each super-class of a type, there is a equivalent super-type.
936 #
937 # Example:
938 #
939 # ~~~nitish
940 # class G[T, U] end
941 # class H[V] super G[V, Bool] end
942 #
943 # H[Int] supertype_to G #-> G[Int, Bool]
944 # ~~~
945 #
946 # REQUIRE: `super_mclass` is a super-class of `self`
947 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
948 # ENSURE: `result.mclass = super_mclass`
949 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
950 do
951 if super_mclass.arity == 0 then return super_mclass.mclass_type
952 if self isa MClassType and self.mclass == super_mclass then return self
953 var resolved_self
954 if self.need_anchor then
955 assert anchor != null
956 resolved_self = self.anchor_to(mmodule, anchor)
957 else
958 resolved_self = self
959 end
960 var supertypes = resolved_self.collect_mtypes(mmodule)
961 for supertype in supertypes do
962 if supertype.mclass == super_mclass then
963 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
964 return supertype.resolve_for(self, anchor, mmodule, false)
965 end
966 end
967 abort
968 end
969
970 # Replace formals generic types in self with resolved values in `mtype`
971 # If `cleanup_virtual` is true, then virtual types are also replaced
972 # with their bounds.
973 #
974 # This function returns self if `need_anchor` is false.
975 #
976 # ## Example 1
977 #
978 # ~~~
979 # class G[E] end
980 # class H[F] super G[F] end
981 # class X[Z] end
982 # ~~~
983 #
984 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
985 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
986 #
987 # Explanation of the example:
988 # * Array[E].need_anchor is true because there is a formal generic parameter type E
989 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
990 # * Since "H[F] super G[F]", E is in fact F for H
991 # * More specifically, in H[Int], E is Int
992 # * So, in H[Int], Array[E] is Array[Int]
993 #
994 # This function is mainly used to inherit a signature.
995 # Because, unlike `anchor_to`, we do not want a full resolution of
996 # a type but only an adapted version of it.
997 #
998 # ## Example 2
999 #
1000 # ~~~
1001 # class A[E]
1002 # fun foo(e:E):E is abstract
1003 # end
1004 # class B super A[Int] end
1005 # ~~~
1006 #
1007 # The signature on foo is (e: E): E
1008 # If we resolve the signature for B, we get (e:Int):Int
1009 #
1010 # ## Example 3
1011 #
1012 # ~~~nitish
1013 # class A[E]
1014 # fun foo(e:E):E is abstract
1015 # end
1016 # class C[F]
1017 # var a: A[Array[F]]
1018 # fun bar do a.foo(x) # <- x is here
1019 # end
1020 # ~~~
1021 #
1022 # The first question is: is foo available on `a`?
1023 #
1024 # The static type of a is `A[Array[F]]`, that is an open type.
1025 # in order to find a method `foo`, whe must look at a resolved type.
1026 #
1027 # A[Array[F]].anchor_to(C[nullable Object]) #-> A[Array[nullable Object]]
1028 #
1029 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
1030 #
1031 # The next question is: what is the accepted types for `x`?
1032 #
1033 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
1034 #
1035 # E.resolve_for(A[Array[F]],C[nullable Object]) #-> Array[F]
1036 #
1037 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
1038 #
1039 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
1040 # two function instead of one seems also to be a bad idea.
1041 #
1042 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
1043 # ENSURE: `not self.need_anchor implies result == self`
1044 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
1045
1046 # Resolve formal type to its verbatim bound.
1047 # If the type is not formal, just return self
1048 #
1049 # The result is returned exactly as declared in the "type" property (verbatim).
1050 # So it could be another formal type.
1051 #
1052 # In case of conflicts or inconsistencies in the model, the method returns a `MErrorType`.
1053 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self
1054
1055 # Resolve the formal type to its simplest equivalent form.
1056 #
1057 # Formal types are either free or fixed.
1058 # When it is fixed, it means that it is equivalent with a simpler type.
1059 # When a formal type is free, it means that it is only equivalent with itself.
1060 # This method return the most simple equivalent type of `self`.
1061 #
1062 # This method is mainly used for subtype test in order to sanely compare fixed.
1063 #
1064 # By default, return self.
1065 # See the redefinitions for specific behavior in each kind of type.
1066 #
1067 # In case of conflicts or inconsistencies in the model, the method returns a `MErrorType`.
1068 fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self
1069
1070 # Is the type a `MErrorType` or contains an `MErrorType`?
1071 #
1072 # `MErrorType` are used in result with conflict or inconsistencies.
1073 #
1074 # See `is_legal_in` to check conformity with generic bounds.
1075 fun is_ok: Bool do return true
1076
1077 # Is the type legal in a given `mmodule` (with an optional `anchor`)?
1078 #
1079 # A type is valid if:
1080 #
1081 # * it does not contain a `MErrorType` (see `is_ok`).
1082 # * its generic formal arguments are within their bounds.
1083 fun is_legal_in(mmodule: MModule, anchor: nullable MClassType): Bool do return is_ok
1084
1085 # Can the type be resolved?
1086 #
1087 # In order to resolve open types, the formal types must make sence.
1088 #
1089 # ## Example
1090 #
1091 # class A[E]
1092 # end
1093 # class B[F]
1094 # end
1095 #
1096 # ~~~nitish
1097 # E.can_resolve_for(A[Int]) #-> true, E make sense in A
1098 #
1099 # E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
1100 #
1101 # B[E].can_resolve_for(A[F], B[Object]) #-> true,
1102 # # B[E] is a red hearing only the E is important,
1103 # # E make sense in A
1104 # ~~~
1105 #
1106 # REQUIRE: `anchor != null implies not anchor.need_anchor`
1107 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
1108 # ENSURE: `not self.need_anchor implies result == true`
1109 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
1110
1111 # Return the nullable version of the type
1112 # If the type is already nullable then self is returned
1113 fun as_nullable: MType
1114 do
1115 var res = self.as_nullable_cache
1116 if res != null then return res
1117 res = new MNullableType(self)
1118 self.as_nullable_cache = res
1119 return res
1120 end
1121
1122 # Remove the base type of a decorated (proxy) type.
1123 # Is the type is not decorated, then self is returned.
1124 #
1125 # Most of the time it is used to return the not nullable version of a nullable type.
1126 # In this case, this just remove the `nullable` notation, but the result can still contains null.
1127 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
1128 # If you really want to exclude the `null` value, then use `as_notnull`
1129 fun undecorate: MType
1130 do
1131 return self
1132 end
1133
1134 # Returns the not null version of the type.
1135 # That is `self` minus the `null` value.
1136 #
1137 # For most types, this return `self`.
1138 # For formal types, this returns a special `MNotNullType`
1139 fun as_notnull: MType do return self
1140
1141 private var as_nullable_cache: nullable MType = null
1142
1143
1144 # The depth of the type seen as a tree.
1145 #
1146 # * A -> 1
1147 # * G[A] -> 2
1148 # * H[A, B] -> 2
1149 # * H[G[A], B] -> 3
1150 #
1151 # Formal types have a depth of 1.
1152 # Only `MClassType` and `MFormalType` nodes are counted.
1153 fun depth: Int
1154 do
1155 return 1
1156 end
1157
1158 # The length of the type seen as a tree.
1159 #
1160 # * A -> 1
1161 # * G[A] -> 2
1162 # * H[A, B] -> 3
1163 # * H[G[A], B] -> 4
1164 #
1165 # Formal types have a length of 1.
1166 # Only `MClassType` and `MFormalType` nodes are counted.
1167 fun length: Int
1168 do
1169 return 1
1170 end
1171
1172 # Compute all the classdefs inherited/imported.
1173 # The returned set contains:
1174 # * the class definitions from `mmodule` and its imported modules
1175 # * the class definitions of this type and its super-types
1176 #
1177 # This function is used mainly internally.
1178 #
1179 # REQUIRE: `not self.need_anchor`
1180 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
1181
1182 # Compute all the super-classes.
1183 # This function is used mainly internally.
1184 #
1185 # REQUIRE: `not self.need_anchor`
1186 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
1187
1188 # Compute all the declared super-types.
1189 # Super-types are returned as declared in the classdefs (verbatim).
1190 # This function is used mainly internally.
1191 #
1192 # REQUIRE: `not self.need_anchor`
1193 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
1194
1195 # Is the property in self for a given module
1196 # This method does not filter visibility or whatever
1197 #
1198 # REQUIRE: `not self.need_anchor`
1199 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
1200 do
1201 assert not self.need_anchor
1202 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
1203 end
1204 end
1205
1206 # A type based on a class.
1207 #
1208 # `MClassType` have properties (see `has_mproperty`).
1209 class MClassType
1210 super MType
1211
1212 # The associated class
1213 var mclass: MClass
1214
1215 redef fun model do return self.mclass.intro_mmodule.model
1216
1217 redef fun location do return mclass.location
1218
1219 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1220
1221 # The formal arguments of the type
1222 # ENSURE: `result.length == self.mclass.arity`
1223 var arguments = new Array[MType]
1224
1225 redef fun to_s do return mclass.to_s
1226
1227 redef fun full_name do return mclass.full_name
1228
1229 redef fun c_name do return mclass.c_name
1230
1231 redef fun need_anchor do return false
1232
1233 redef fun anchor_to(mmodule, anchor): MClassType
1234 do
1235 return super.as(MClassType)
1236 end
1237
1238 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1239
1240 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1241
1242 redef fun collect_mclassdefs(mmodule)
1243 do
1244 assert not self.need_anchor
1245 var cache = self.collect_mclassdefs_cache
1246 if not cache.has_key(mmodule) then
1247 self.collect_things(mmodule)
1248 end
1249 return cache[mmodule]
1250 end
1251
1252 redef fun collect_mclasses(mmodule)
1253 do
1254 if collect_mclasses_last_module == mmodule then return collect_mclasses_last_module_cache
1255 assert not self.need_anchor
1256 var cache = self.collect_mclasses_cache
1257 if not cache.has_key(mmodule) then
1258 self.collect_things(mmodule)
1259 end
1260 var res = cache[mmodule]
1261 collect_mclasses_last_module = mmodule
1262 collect_mclasses_last_module_cache = res
1263 return res
1264 end
1265
1266 private var collect_mclasses_last_module: nullable MModule = null
1267 private var collect_mclasses_last_module_cache: Set[MClass] is noinit
1268
1269 redef fun collect_mtypes(mmodule)
1270 do
1271 assert not self.need_anchor
1272 var cache = self.collect_mtypes_cache
1273 if not cache.has_key(mmodule) then
1274 self.collect_things(mmodule)
1275 end
1276 return cache[mmodule]
1277 end
1278
1279 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1280 private fun collect_things(mmodule: MModule)
1281 do
1282 var res = new HashSet[MClassDef]
1283 var seen = new HashSet[MClass]
1284 var types = new HashSet[MClassType]
1285 seen.add(self.mclass)
1286 var todo = [self.mclass]
1287 while not todo.is_empty do
1288 var mclass = todo.pop
1289 #print "process {mclass}"
1290 for mclassdef in mclass.mclassdefs do
1291 if not mmodule.in_importation <= mclassdef.mmodule then continue
1292 #print " process {mclassdef}"
1293 res.add(mclassdef)
1294 for supertype in mclassdef.supertypes do
1295 types.add(supertype)
1296 var superclass = supertype.mclass
1297 if seen.has(superclass) then continue
1298 #print " add {superclass}"
1299 seen.add(superclass)
1300 todo.add(superclass)
1301 end
1302 end
1303 end
1304 collect_mclassdefs_cache[mmodule] = res
1305 collect_mclasses_cache[mmodule] = seen
1306 collect_mtypes_cache[mmodule] = types
1307 end
1308
1309 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1310 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1311 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1312
1313 redef fun mdoc_or_fallback do return mclass.mdoc_or_fallback
1314 end
1315
1316 # A type based on a generic class.
1317 # A generic type a just a class with additional formal generic arguments.
1318 class MGenericType
1319 super MClassType
1320
1321 redef var arguments
1322
1323 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1324
1325 init
1326 do
1327 assert self.mclass.arity == arguments.length
1328
1329 self.need_anchor = false
1330 for t in arguments do
1331 if t.need_anchor then
1332 self.need_anchor = true
1333 break
1334 end
1335 end
1336
1337 self.to_s = "{mclass}[{arguments.join(", ")}]"
1338 end
1339
1340 # The short-name of the class, then the full-name of each type arguments within brackets.
1341 # Example: `"Map[String, List[Int]]"`
1342 redef var to_s is noinit
1343
1344 # The full-name of the class, then the full-name of each type arguments within brackets.
1345 # Example: `"core::Map[core::String, core::List[core::Int]]"`
1346 redef var full_name is lazy do
1347 var args = new Array[String]
1348 for t in arguments do
1349 args.add t.full_name
1350 end
1351 return "{mclass.full_name}[{args.join(", ")}]"
1352 end
1353
1354 redef var c_name is lazy do
1355 var res = mclass.c_name
1356 # Note: because the arity is known, a prefix notation is enough
1357 for t in arguments do
1358 res += "__"
1359 res += t.c_name
1360 end
1361 return res.to_s
1362 end
1363
1364 redef var need_anchor is noinit
1365
1366 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1367 do
1368 if not need_anchor then return self
1369 assert can_resolve_for(mtype, anchor, mmodule)
1370 var types = new Array[MType]
1371 for t in arguments do
1372 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1373 end
1374 return mclass.get_mtype(types)
1375 end
1376
1377 redef fun can_resolve_for(mtype, anchor, mmodule)
1378 do
1379 if not need_anchor then return true
1380 for t in arguments do
1381 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1382 end
1383 return true
1384 end
1385
1386 redef fun is_ok
1387 do
1388 for t in arguments do if not t.is_ok then return false
1389 return super
1390 end
1391
1392 redef fun is_legal_in(mmodule, anchor)
1393 do
1394 var mtype
1395 if need_anchor then
1396 assert anchor != null
1397 mtype = anchor_to(mmodule, anchor)
1398 else
1399 mtype = self
1400 end
1401 if not mtype.is_ok then return false
1402 return mtype.is_subtype(mmodule, null, mtype.mclass.intro.bound_mtype)
1403 end
1404
1405 redef fun depth
1406 do
1407 var dmax = 0
1408 for a in self.arguments do
1409 var d = a.depth
1410 if d > dmax then dmax = d
1411 end
1412 return dmax + 1
1413 end
1414
1415 redef fun length
1416 do
1417 var res = 1
1418 for a in self.arguments do
1419 res += a.length
1420 end
1421 return res
1422 end
1423 end
1424
1425 # A formal type (either virtual of parametric).
1426 #
1427 # The main issue with formal types is that they offer very little information on their own
1428 # and need a context (anchor and mmodule) to be useful.
1429 abstract class MFormalType
1430 super MType
1431
1432 redef var as_notnull = new MNotNullType(self) is lazy
1433 end
1434
1435 # A virtual formal type.
1436 class MVirtualType
1437 super MFormalType
1438
1439 # The property associated with the type.
1440 # Its the definitions of this property that determine the bound or the virtual type.
1441 var mproperty: MVirtualTypeProp
1442
1443 redef fun location do return mproperty.location
1444
1445 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1446
1447 redef fun lookup_bound(mmodule, resolved_receiver)
1448 do
1449 # There is two possible invalid cases: the vt does not exists in resolved_receiver or the bound is broken
1450 if not resolved_receiver.has_mproperty(mmodule, mproperty) then return new MErrorType(model)
1451 return lookup_single_definition(mmodule, resolved_receiver).bound or else new MErrorType(model)
1452 end
1453
1454 private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef
1455 do
1456 assert not resolved_receiver.need_anchor
1457 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1458 if props.is_empty then
1459 abort
1460 else if props.length == 1 then
1461 return props.first
1462 end
1463 var types = new ArraySet[MType]
1464 var res = props.first
1465 for p in props do
1466 types.add(p.bound.as(not null))
1467 if not res.is_fixed then res = p
1468 end
1469 if types.length == 1 then
1470 return res
1471 end
1472 abort
1473 end
1474
1475 # A VT is fixed when:
1476 # * the VT is (re-)defined with the annotation `is fixed`
1477 # * the VT is (indirectly) bound to an enum class (see `enum_kind`) since there is no subtype possible
1478 # * the receiver is an enum class since there is no subtype possible
1479 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1480 do
1481 assert not resolved_receiver.need_anchor
1482 resolved_receiver = resolved_receiver.undecorate
1483 assert resolved_receiver isa MClassType # It is the only remaining type
1484
1485 var prop = lookup_single_definition(mmodule, resolved_receiver)
1486 var res = prop.bound
1487 if res == null then return new MErrorType(model)
1488
1489 # Recursively lookup the fixed result
1490 res = res.lookup_fixed(mmodule, resolved_receiver)
1491
1492 # 1. For a fixed VT, return the resolved bound
1493 if prop.is_fixed then return res
1494
1495 # 2. For a enum boud, return the bound
1496 if res isa MClassType and res.mclass.kind == enum_kind then return res
1497
1498 # 3. for a enum receiver return the bound
1499 if resolved_receiver.mclass.kind == enum_kind then return res
1500
1501 return self
1502 end
1503
1504 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1505 do
1506 if not cleanup_virtual then return self
1507 assert can_resolve_for(mtype, anchor, mmodule)
1508
1509 if mproperty.is_selftype then return mtype
1510
1511 # self is a virtual type declared (or inherited) in mtype
1512 # The point of the function it to get the bound of the virtual type that make sense for mtype
1513 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1514 #print "{class_name}: {self}/{mtype}/{anchor}?"
1515 var resolved_receiver
1516 if mtype.need_anchor then
1517 assert anchor != null
1518 resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true)
1519 else
1520 resolved_receiver = mtype
1521 end
1522 # Now, we can get the bound
1523 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1524 # The bound is exactly as declared in the "type" property, so we must resolve it again
1525 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1526
1527 return res
1528 end
1529
1530 redef fun can_resolve_for(mtype, anchor, mmodule)
1531 do
1532 if mtype.need_anchor then
1533 assert anchor != null
1534 mtype = mtype.anchor_to(mmodule, anchor)
1535 end
1536 return mtype.has_mproperty(mmodule, mproperty)
1537 end
1538
1539 redef fun to_s do return self.mproperty.to_s
1540
1541 redef fun full_name do return self.mproperty.full_name
1542
1543 redef fun c_name do return self.mproperty.c_name
1544
1545 redef fun mdoc_or_fallback do return mproperty.mdoc_or_fallback
1546 end
1547
1548 # The type associated to a formal parameter generic type of a class
1549 #
1550 # Each parameter type is associated to a specific class.
1551 # It means that all refinements of a same class "share" the parameter type,
1552 # but that a generic subclass has its own parameter types.
1553 #
1554 # However, in the sense of the meta-model, a parameter type of a class is
1555 # a valid type in a subclass. The "in the sense of the meta-model" is
1556 # important because, in the Nit language, the programmer cannot refers
1557 # directly to the parameter types of the super-classes.
1558 #
1559 # Example:
1560 #
1561 # class A[E]
1562 # fun e: E is abstract
1563 # end
1564 # class B[F]
1565 # super A[Array[F]]
1566 # end
1567 #
1568 # In the class definition B[F], `F` is a valid type but `E` is not.
1569 # However, `self.e` is a valid method call, and the signature of `e` is
1570 # declared `e: E`.
1571 #
1572 # Note that parameter types are shared among class refinements.
1573 # Therefore parameter only have an internal name (see `to_s` for details).
1574 class MParameterType
1575 super MFormalType
1576
1577 # The generic class where the parameter belong
1578 var mclass: MClass
1579
1580 redef fun model do return self.mclass.intro_mmodule.model
1581
1582 redef fun location do return mclass.location
1583
1584 # The position of the parameter (0 for the first parameter)
1585 # FIXME: is `position` a better name?
1586 var rank: Int
1587
1588 redef var name
1589
1590 redef fun to_s do return name
1591
1592 redef var full_name is lazy do return "{mclass.full_name}::{name}"
1593
1594 redef var c_name is lazy do return mclass.c_name + "__" + "#{name}".to_cmangle
1595
1596 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1597 do
1598 assert not resolved_receiver.need_anchor
1599 resolved_receiver = resolved_receiver.undecorate
1600 assert resolved_receiver isa MClassType # It is the only remaining type
1601 var goalclass = self.mclass
1602 if resolved_receiver.mclass == goalclass then
1603 return resolved_receiver.arguments[self.rank]
1604 end
1605 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1606 for t in supertypes do
1607 if t.mclass == goalclass then
1608 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1609 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1610 var res = t.arguments[self.rank]
1611 return res
1612 end
1613 end
1614 # Cannot found `self` in `resolved_receiver`
1615 return new MErrorType(model)
1616 end
1617
1618 # A PT is fixed when:
1619 # * Its bound is a enum class (see `enum_kind`).
1620 # The PT is just useless, but it is still a case.
1621 # * More usually, the `resolved_receiver` is a subclass of `self.mclass`,
1622 # so it is necessarily fixed in a `super` clause, either with a normal type
1623 # or with another PT.
1624 # See `resolve_for` for examples about related issues.
1625 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1626 do
1627 assert not resolved_receiver.need_anchor
1628 resolved_receiver = resolved_receiver.undecorate
1629 assert resolved_receiver isa MClassType # It is the only remaining type
1630 var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false)
1631 return res
1632 end
1633
1634 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1635 do
1636 assert can_resolve_for(mtype, anchor, mmodule)
1637 #print "{class_name}: {self}/{mtype}/{anchor}?"
1638
1639 if mtype isa MGenericType and mtype.mclass == self.mclass then
1640 var res = mtype.arguments[self.rank]
1641 if anchor != null and res.need_anchor then
1642 # Maybe the result can be resolved more if are bound to a final class
1643 var r2 = res.anchor_to(mmodule, anchor)
1644 if r2 isa MClassType and r2.mclass.kind == enum_kind then return r2
1645 end
1646 return res
1647 end
1648
1649 # self is a parameter type of mtype (or of a super-class of mtype)
1650 # The point of the function it to get the bound of the virtual type that make sense for mtype
1651 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1652 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1653 var resolved_receiver
1654 if mtype.need_anchor then
1655 assert anchor != null
1656 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1657 else
1658 resolved_receiver = mtype
1659 end
1660 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1661 if resolved_receiver isa MParameterType then
1662 assert anchor != null
1663 assert resolved_receiver.mclass == anchor.mclass
1664 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1665 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1666 end
1667 assert resolved_receiver isa MClassType # It is the only remaining type
1668
1669 # Eh! The parameter is in the current class.
1670 # So we return the corresponding argument, no mater what!
1671 if resolved_receiver.mclass == self.mclass then
1672 var res = resolved_receiver.arguments[self.rank]
1673 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1674 return res
1675 end
1676
1677 if resolved_receiver.need_anchor then
1678 assert anchor != null
1679 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1680 end
1681 # Now, we can get the bound
1682 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1683 # The bound is exactly as declared in the "type" property, so we must resolve it again
1684 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1685
1686 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1687
1688 return res
1689 end
1690
1691 redef fun can_resolve_for(mtype, anchor, mmodule)
1692 do
1693 if mtype.need_anchor then
1694 assert anchor != null
1695 mtype = mtype.anchor_to(mmodule, anchor)
1696 end
1697 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1698 end
1699 end
1700
1701 # A type that decorates another type.
1702 #
1703 # The point of this class is to provide a common implementation of sevices that just forward to the original type.
1704 # Specific decorator are expected to redefine (or to extend) the default implementation as this suit them.
1705 abstract class MProxyType
1706 super MType
1707 # The base type
1708 var mtype: MType
1709
1710 redef fun location do return mtype.location
1711
1712 redef fun model do return self.mtype.model
1713 redef fun need_anchor do return mtype.need_anchor
1714 redef fun as_nullable do return mtype.as_nullable
1715 redef fun as_notnull do return mtype.as_notnull
1716 redef fun undecorate do return mtype.undecorate
1717 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1718 do
1719 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1720 return res
1721 end
1722
1723 redef fun can_resolve_for(mtype, anchor, mmodule)
1724 do
1725 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1726 end
1727
1728 redef fun is_ok do return mtype.is_ok
1729
1730 redef fun is_legal_in(mmodule, anchor) do return mtype.is_legal_in(mmodule, anchor)
1731
1732 redef fun lookup_fixed(mmodule, resolved_receiver)
1733 do
1734 var t = mtype.lookup_fixed(mmodule, resolved_receiver)
1735 return t
1736 end
1737
1738 redef fun depth do return self.mtype.depth
1739
1740 redef fun length do return self.mtype.length
1741
1742 redef fun collect_mclassdefs(mmodule)
1743 do
1744 assert not self.need_anchor
1745 return self.mtype.collect_mclassdefs(mmodule)
1746 end
1747
1748 redef fun collect_mclasses(mmodule)
1749 do
1750 assert not self.need_anchor
1751 return self.mtype.collect_mclasses(mmodule)
1752 end
1753
1754 redef fun collect_mtypes(mmodule)
1755 do
1756 assert not self.need_anchor
1757 return self.mtype.collect_mtypes(mmodule)
1758 end
1759 end
1760
1761 # A type prefixed with "nullable"
1762 class MNullableType
1763 super MProxyType
1764
1765 init
1766 do
1767 self.to_s = "nullable {mtype}"
1768 end
1769
1770 redef var to_s is noinit
1771
1772 redef var full_name is lazy do return "nullable {mtype.full_name}"
1773
1774 redef var c_name is lazy do return "nullable__{mtype.c_name}"
1775
1776 redef fun as_nullable do return self
1777 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1778 do
1779 var res = super
1780 return res.as_nullable
1781 end
1782
1783 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable`
1784 redef fun lookup_fixed(mmodule, resolved_receiver)
1785 do
1786 var t = super
1787 if t == mtype then return self
1788 return t.as_nullable
1789 end
1790 end
1791
1792 # A non-null version of a formal type.
1793 #
1794 # When a formal type in bounded to a nullable type, this is the type of the not null version of it.
1795 class MNotNullType
1796 super MProxyType
1797
1798 redef fun to_s do return "not null {mtype}"
1799 redef var full_name is lazy do return "not null {mtype.full_name}"
1800 redef var c_name is lazy do return "notnull__{mtype.c_name}"
1801
1802 redef fun as_notnull do return self
1803
1804 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1805 do
1806 var res = super
1807 return res.as_notnull
1808 end
1809
1810 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_notnull`
1811 redef fun lookup_fixed(mmodule, resolved_receiver)
1812 do
1813 var t = super
1814 if t == mtype then return self
1815 return t.as_notnull
1816 end
1817 end
1818
1819 # The type of the only value null
1820 #
1821 # The is only one null type per model, see `MModel::null_type`.
1822 class MNullType
1823 super MType
1824 redef var model
1825 redef fun to_s do return "null"
1826 redef fun full_name do return "null"
1827 redef fun c_name do return "null"
1828 redef fun as_nullable do return self
1829
1830 redef var as_notnull: MBottomType = new MBottomType(model) is lazy
1831 redef fun need_anchor do return false
1832 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1833 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1834
1835 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1836
1837 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1838
1839 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1840 end
1841
1842 # The special universal most specific type.
1843 #
1844 # This type is intended to be only used internally for type computation or analysis and should not be exposed to the user.
1845 # The bottom type can de used to denote things that are dead (no instance).
1846 #
1847 # Semantically it is the singleton `null.as_notnull`.
1848 # Is also means that `self.as_nullable == null`.
1849 class MBottomType
1850 super MType
1851 redef var model
1852 redef fun to_s do return "bottom"
1853 redef fun full_name do return "bottom"
1854 redef fun c_name do return "bottom"
1855 redef fun as_nullable do return model.null_type
1856 redef fun as_notnull do return self
1857 redef fun need_anchor do return false
1858 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1859 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1860
1861 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1862
1863 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1864
1865 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1866 end
1867
1868 # A special type used as a silent error marker when building types.
1869 #
1870 # This type is intended to be only used internally for type operation and should not be exposed to the user.
1871 # The error type can de used to denote things that are conflicting or inconsistent.
1872 #
1873 # Some methods on types can return a `MErrorType` to denote a broken or a conflicting result.
1874 # Use `is_ok` to check if a type is (or contains) a `MErrorType` .
1875 class MErrorType
1876 super MType
1877 redef var model
1878 redef fun to_s do return "error"
1879 redef fun full_name do return "error"
1880 redef fun c_name do return "error"
1881 redef fun need_anchor do return false
1882 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1883 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1884 redef fun is_ok do return false
1885
1886 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1887
1888 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1889
1890 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1891 end
1892
1893 # A signature of a method
1894 class MSignature
1895 super MType
1896
1897 # The each parameter (in order)
1898 var mparameters: Array[MParameter]
1899
1900 # Returns a parameter named `name`, if any.
1901 fun mparameter_by_name(name: String): nullable MParameter
1902 do
1903 for p in mparameters do
1904 if p.name == name then return p
1905 end
1906 return null
1907 end
1908
1909 # The return type (null for a procedure)
1910 var return_mtype: nullable MType
1911
1912 redef fun depth
1913 do
1914 var dmax = 0
1915 var t = self.return_mtype
1916 if t != null then dmax = t.depth
1917 for p in mparameters do
1918 var d = p.mtype.depth
1919 if d > dmax then dmax = d
1920 end
1921 return dmax + 1
1922 end
1923
1924 redef fun length
1925 do
1926 var res = 1
1927 var t = self.return_mtype
1928 if t != null then res += t.length
1929 for p in mparameters do
1930 res += p.mtype.length
1931 end
1932 return res
1933 end
1934
1935 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1936 init
1937 do
1938 var vararg_rank = -1
1939 for i in [0..mparameters.length[ do
1940 var parameter = mparameters[i]
1941 if parameter.is_vararg then
1942 if vararg_rank >= 0 then
1943 # If there is more than one vararg,
1944 # consider that additional arguments cannot be mapped.
1945 vararg_rank = -1
1946 break
1947 end
1948 vararg_rank = i
1949 end
1950 end
1951 self.vararg_rank = vararg_rank
1952 end
1953
1954 # The rank of the main ellipsis (`...`) for vararg (starting from 0).
1955 # value is -1 if there is no vararg.
1956 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1957 #
1958 # From a model POV, a signature can contain more than one vararg parameter,
1959 # the `vararg_rank` just indicates the one that will receive the additional arguments.
1960 # However, currently, if there is more that one vararg parameter, no one will be the main one,
1961 # and additional arguments will be refused.
1962 var vararg_rank: Int is noinit
1963
1964 # The number of parameters
1965 fun arity: Int do return mparameters.length
1966
1967 redef fun to_s
1968 do
1969 var b = new FlatBuffer
1970 if not mparameters.is_empty then
1971 b.append("(")
1972 for i in [0..mparameters.length[ do
1973 var mparameter = mparameters[i]
1974 if i > 0 then b.append(", ")
1975 b.append(mparameter.name)
1976 b.append(": ")
1977 b.append(mparameter.mtype.to_s)
1978 if mparameter.is_vararg then
1979 b.append("...")
1980 end
1981 end
1982 b.append(")")
1983 end
1984 var ret = self.return_mtype
1985 if ret != null then
1986 b.append(": ")
1987 b.append(ret.to_s)
1988 end
1989 return b.to_s
1990 end
1991
1992 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
1993 do
1994 var params = new Array[MParameter]
1995 for p in self.mparameters do
1996 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1997 end
1998 var ret = self.return_mtype
1999 if ret != null then
2000 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
2001 end
2002 var res = new MSignature(params, ret)
2003 return res
2004 end
2005 end
2006
2007 # A parameter in a signature
2008 class MParameter
2009 super MEntity
2010
2011 # The name of the parameter
2012 redef var name
2013
2014 # The static type of the parameter
2015 var mtype: MType
2016
2017 # Is the parameter a vararg?
2018 var is_vararg: Bool
2019
2020 redef fun to_s
2021 do
2022 if is_vararg then
2023 return "{name}: {mtype}..."
2024 else
2025 return "{name}: {mtype}"
2026 end
2027 end
2028
2029 # Returns a new parameter with the `mtype` resolved.
2030 # See `MType::resolve_for` for details.
2031 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
2032 do
2033 if not self.mtype.need_anchor then return self
2034 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
2035 var res = new MParameter(self.name, newtype, self.is_vararg)
2036 return res
2037 end
2038
2039 redef fun model do return mtype.model
2040 end
2041
2042 # A service (global property) that generalize method, attribute, etc.
2043 #
2044 # `MProperty` are global to the model; it means that a `MProperty` is not bound
2045 # to a specific `MModule` nor a specific `MClass`.
2046 #
2047 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
2048 # and the other in subclasses and in refinements.
2049 #
2050 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
2051 # of any dynamic type).
2052 # For instance, a call site "x.foo" is associated to a `MProperty`.
2053 abstract class MProperty
2054 super MEntity
2055
2056 # The associated MPropDef subclass.
2057 # The two specialization hierarchy are symmetric.
2058 type MPROPDEF: MPropDef
2059
2060 # The classdef that introduce the property
2061 # While a property is not bound to a specific module, or class,
2062 # the introducing mclassdef is used for naming and visibility
2063 var intro_mclassdef: MClassDef
2064
2065 # The (short) name of the property
2066 redef var name
2067
2068 redef var location
2069
2070 redef fun mdoc_or_fallback
2071 do
2072 # Don’t use `intro.mdoc_or_fallback` because it would create an infinite
2073 # recursion.
2074 return intro.mdoc
2075 end
2076
2077 # The canonical name of the property.
2078 #
2079 # It is currently the short-`name` prefixed by the short-name of the class and the full-name of the module.
2080 # Example: "my_package::my_module::MyClass::my_method"
2081 #
2082 # The full-name of the module is needed because two distinct modules of the same package can
2083 # still refine the same class and introduce homonym properties.
2084 #
2085 # For public properties not introduced by refinement, the module name is not used.
2086 #
2087 # Example: `my_package::MyClass::My_method`
2088 redef var full_name is lazy do
2089 if intro_mclassdef.is_intro then
2090 return "{intro_mclassdef.mmodule.namespace_for(visibility)}::{intro_mclassdef.mclass.name}::{name}"
2091 else
2092 return "{intro_mclassdef.mmodule.full_name}::{intro_mclassdef.mclass.name}::{name}"
2093 end
2094 end
2095
2096 redef var c_name is lazy do
2097 # FIXME use `namespace_for`
2098 return "{intro_mclassdef.mmodule.c_name}__{intro_mclassdef.mclass.name.to_cmangle}__{name.to_cmangle}"
2099 end
2100
2101 # The visibility of the property
2102 redef var visibility
2103
2104 # Is the property usable as an initializer?
2105 var is_autoinit = false is writable
2106
2107 init
2108 do
2109 intro_mclassdef.intro_mproperties.add(self)
2110 var model = intro_mclassdef.mmodule.model
2111 model.mproperties_by_name.add_one(name, self)
2112 model.mproperties.add(self)
2113 end
2114
2115 # All definitions of the property.
2116 # The first is the introduction,
2117 # The other are redefinitions (in refinements and in subclasses)
2118 var mpropdefs = new Array[MPROPDEF]
2119
2120 # The definition that introduces the property.
2121 #
2122 # Warning: such a definition may not exist in the early life of the object.
2123 # In this case, the method will abort.
2124 var intro: MPROPDEF is noinit
2125
2126 redef fun model do return intro.model
2127
2128 # Alias for `name`
2129 redef fun to_s do return name
2130
2131 # Return the most specific property definitions defined or inherited by a type.
2132 # The selection knows that refinement is stronger than specialization;
2133 # however, in case of conflict more than one property are returned.
2134 # If mtype does not know mproperty then an empty array is returned.
2135 #
2136 # If you want the really most specific property, then look at `lookup_first_definition`
2137 #
2138 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2139 # ENSURE: `not mtype.has_mproperty(mmodule, self) == result.is_empty`
2140 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2141 do
2142 assert not mtype.need_anchor
2143 mtype = mtype.undecorate
2144
2145 var cache = self.lookup_definitions_cache[mmodule, mtype]
2146 if cache != null then return cache
2147
2148 #print "select prop {mproperty} for {mtype} in {self}"
2149 # First, select all candidates
2150 var candidates = new Array[MPROPDEF]
2151
2152 # Here we have two strategies: iterate propdefs or iterate classdefs.
2153 var mpropdefs = self.mpropdefs
2154 if mpropdefs.length <= 1 or mpropdefs.length < mtype.collect_mclassdefs(mmodule).length then
2155 # Iterate on all definitions of `self`, keep only those inherited by `mtype` in `mmodule`
2156 for mpropdef in mpropdefs do
2157 # If the definition is not imported by the module, then skip
2158 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2159 # If the definition is not inherited by the type, then skip
2160 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2161 # Else, we keep it
2162 candidates.add(mpropdef)
2163 end
2164 else
2165 # Iterate on all super-classdefs of `mtype`, keep only the definitions of `self`, if any.
2166 for mclassdef in mtype.collect_mclassdefs(mmodule) do
2167 var p = mclassdef.mpropdefs_by_property.get_or_null(self)
2168 if p != null then candidates.add p
2169 end
2170 end
2171
2172 # Fast track for only one candidate
2173 if candidates.length <= 1 then
2174 self.lookup_definitions_cache[mmodule, mtype] = candidates
2175 return candidates
2176 end
2177
2178 # Second, filter the most specific ones
2179 return select_most_specific(mmodule, candidates)
2180 end
2181
2182 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2183
2184 # Return the most specific property definitions inherited by a type.
2185 # The selection knows that refinement is stronger than specialization;
2186 # however, in case of conflict more than one property are returned.
2187 # If mtype does not know mproperty then an empty array is returned.
2188 #
2189 # If you want the really most specific property, then look at `lookup_next_definition`
2190 #
2191 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2192 # ENSURE: `not mtype.has_mproperty(mmodule, self) implies result.is_empty`
2193 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2194 do
2195 assert not mtype.need_anchor
2196 mtype = mtype.undecorate
2197
2198 # First, select all candidates
2199 var candidates = new Array[MPROPDEF]
2200 for mpropdef in self.mpropdefs do
2201 # If the definition is not imported by the module, then skip
2202 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2203 # If the definition is not inherited by the type, then skip
2204 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2205 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
2206 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
2207 # Else, we keep it
2208 candidates.add(mpropdef)
2209 end
2210 # Fast track for only one candidate
2211 if candidates.length <= 1 then return candidates
2212
2213 # Second, filter the most specific ones
2214 return select_most_specific(mmodule, candidates)
2215 end
2216
2217 # Return an array containing olny the most specific property definitions
2218 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
2219 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
2220 do
2221 var res = new Array[MPROPDEF]
2222 for pd1 in candidates do
2223 var cd1 = pd1.mclassdef
2224 var c1 = cd1.mclass
2225 var keep = true
2226 for pd2 in candidates do
2227 if pd2 == pd1 then continue # do not compare with self!
2228 var cd2 = pd2.mclassdef
2229 var c2 = cd2.mclass
2230 if c2.mclass_type == c1.mclass_type then
2231 if cd2.mmodule.in_importation < cd1.mmodule then
2232 # cd2 refines cd1; therefore we skip pd1
2233 keep = false
2234 break
2235 end
2236 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
2237 # cd2 < cd1; therefore we skip pd1
2238 keep = false
2239 break
2240 end
2241 end
2242 if keep then
2243 res.add(pd1)
2244 end
2245 end
2246 if res.is_empty then
2247 print_error "All lost! {candidates.join(", ")}"
2248 # FIXME: should be abort!
2249 end
2250 return res
2251 end
2252
2253 # Return the most specific definition in the linearization of `mtype`.
2254 #
2255 # If you want to know the next properties in the linearization,
2256 # look at `MPropDef::lookup_next_definition`.
2257 #
2258 # FIXME: the linearization is still unspecified
2259 #
2260 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2261 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2262 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
2263 do
2264 return lookup_all_definitions(mmodule, mtype).first
2265 end
2266
2267 # Return all definitions in a linearization order
2268 # Most specific first, most general last
2269 #
2270 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2271 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2272 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2273 do
2274 mtype = mtype.undecorate
2275
2276 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
2277 if cache != null then return cache
2278
2279 assert not mtype.need_anchor
2280 assert mtype.has_mproperty(mmodule, self)
2281
2282 #print "select prop {mproperty} for {mtype} in {self}"
2283 # First, select all candidates
2284 var candidates = new Array[MPROPDEF]
2285 for mpropdef in self.mpropdefs do
2286 # If the definition is not imported by the module, then skip
2287 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2288 # If the definition is not inherited by the type, then skip
2289 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2290 # Else, we keep it
2291 candidates.add(mpropdef)
2292 end
2293 # Fast track for only one candidate
2294 if candidates.length <= 1 then
2295 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2296 return candidates
2297 end
2298
2299 mmodule.linearize_mpropdefs(candidates)
2300 candidates = candidates.reversed
2301 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2302 return candidates
2303 end
2304
2305 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2306 end
2307
2308 # A global method
2309 class MMethod
2310 super MProperty
2311
2312 redef type MPROPDEF: MMethodDef
2313
2314 # Is the property defined at the top_level of the module?
2315 # Currently such a property are stored in `Object`
2316 var is_toplevel: Bool = false is writable
2317
2318 # Is the property a constructor?
2319 # Warning, this property can be inherited by subclasses with or without being a constructor
2320 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
2321 var is_init: Bool = false is writable
2322
2323 # The constructor is a (the) root init with empty signature but a set of initializers
2324 var is_root_init: Bool = false is writable
2325
2326 # Is the property a 'new' constructor?
2327 var is_new: Bool = false is writable
2328
2329 # Is the property a legal constructor for a given class?
2330 # As usual, visibility is not considered.
2331 # FIXME not implemented
2332 fun is_init_for(mclass: MClass): Bool
2333 do
2334 return self.is_init
2335 end
2336
2337 # A specific method that is safe to call on null.
2338 # Currently, only `==`, `!=` and `is_same_instance` are safe
2339 fun is_null_safe: Bool do return name == "==" or name == "!=" or name == "is_same_instance"
2340 end
2341
2342 # A global attribute
2343 class MAttribute
2344 super MProperty
2345
2346 redef type MPROPDEF: MAttributeDef
2347
2348 end
2349
2350 # A global virtual type
2351 class MVirtualTypeProp
2352 super MProperty
2353
2354 redef type MPROPDEF: MVirtualTypeDef
2355
2356 # The formal type associated to the virtual type property
2357 var mvirtualtype = new MVirtualType(self)
2358
2359 # Is `self` the special virtual type `SELF`?
2360 var is_selftype: Bool is lazy do return name == "SELF"
2361 end
2362
2363 # A definition of a property (local property)
2364 #
2365 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
2366 # specific class definition (which belong to a specific module)
2367 abstract class MPropDef
2368 super MEntity
2369
2370 # The associated `MProperty` subclass.
2371 # the two specialization hierarchy are symmetric
2372 type MPROPERTY: MProperty
2373
2374 # Self class
2375 type MPROPDEF: MPropDef
2376
2377 # The class definition where the property definition is
2378 var mclassdef: MClassDef
2379
2380 # The associated global property
2381 var mproperty: MPROPERTY
2382
2383 redef var location: Location
2384
2385 redef fun visibility do return mproperty.visibility
2386
2387 init
2388 do
2389 mclassdef.mpropdefs.add(self)
2390 mproperty.mpropdefs.add(self)
2391 mclassdef.mpropdefs_by_property[mproperty] = self
2392 if mproperty.intro_mclassdef == mclassdef then
2393 assert not isset mproperty._intro
2394 mproperty.intro = self
2395 end
2396 self.to_s = "{mclassdef}${mproperty}"
2397 end
2398
2399 # Actually the name of the `mproperty`
2400 redef fun name do return mproperty.name
2401
2402 # The full-name of mpropdefs combine the information about the `classdef` and the `mproperty`.
2403 #
2404 # Therefore the combination of identifiers is awful,
2405 # the worst case being
2406 #
2407 # * a property "p::m::A::x"
2408 # * redefined in a refinement of a class "q::n::B"
2409 # * in a module "r::o"
2410 # * so "r::o$q::n::B$p::m::A::x"
2411 #
2412 # Fortunately, the full-name is simplified when entities are repeated.
2413 # For the previous case, the simplest form is "p$A$x".
2414 redef var full_name is lazy do
2415 var res = new FlatBuffer
2416
2417 # The first part is the mclassdef. Worst case is "r::o$q::n::B"
2418 res.append mclassdef.full_name
2419
2420 res.append "$"
2421
2422 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2423 # intro are unambiguous in a class
2424 res.append name
2425 else
2426 # Just try to simplify each part
2427 if mclassdef.mmodule.mpackage != mproperty.intro_mclassdef.mmodule.mpackage then
2428 # precise "p::m" only if "p" != "r"
2429 res.append mproperty.intro_mclassdef.mmodule.namespace_for(mproperty.visibility)
2430 res.append "::"
2431 else if mproperty.visibility <= private_visibility then
2432 # Same package ("p"=="q"), but private visibility,
2433 # does the module part ("::m") need to be displayed
2434 if mclassdef.mmodule.namespace_for(mclassdef.mclass.visibility) != mproperty.intro_mclassdef.mmodule.mpackage then
2435 res.append "::"
2436 res.append mproperty.intro_mclassdef.mmodule.name
2437 res.append "::"
2438 end
2439 end
2440 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2441 # precise "B" only if not the same class than "A"
2442 res.append mproperty.intro_mclassdef.name
2443 res.append "::"
2444 end
2445 # Always use the property name "x"
2446 res.append mproperty.name
2447 end
2448 return res.to_s
2449 end
2450
2451 redef var c_name is lazy do
2452 var res = new FlatBuffer
2453 res.append mclassdef.c_name
2454 res.append "___"
2455 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2456 res.append name.to_cmangle
2457 else
2458 if mclassdef.mmodule != mproperty.intro_mclassdef.mmodule then
2459 res.append mproperty.intro_mclassdef.mmodule.c_name
2460 res.append "__"
2461 end
2462 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2463 res.append mproperty.intro_mclassdef.name.to_cmangle
2464 res.append "__"
2465 end
2466 res.append mproperty.name.to_cmangle
2467 end
2468 return res.to_s
2469 end
2470
2471 redef fun model do return mclassdef.model
2472
2473 # Internal name combining the module, the class and the property
2474 # Example: "mymodule$MyClass$mymethod"
2475 redef var to_s is noinit
2476
2477 # Is self the definition that introduce the property?
2478 fun is_intro: Bool do return isset mproperty._intro and mproperty.intro == self
2479
2480 # Return the next definition in linearization of `mtype`.
2481 #
2482 # This method is used to determine what method is called by a super.
2483 #
2484 # REQUIRE: `not mtype.need_anchor`
2485 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
2486 do
2487 assert not mtype.need_anchor
2488
2489 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
2490 var i = mpropdefs.iterator
2491 while i.is_ok and i.item != self do i.next
2492 assert has_property: i.is_ok
2493 i.next
2494 assert has_next_property: i.is_ok
2495 return i.item
2496 end
2497
2498 redef fun mdoc_or_fallback do return mdoc or else mproperty.mdoc_or_fallback
2499 end
2500
2501 # A local definition of a method
2502 class MMethodDef
2503 super MPropDef
2504
2505 redef type MPROPERTY: MMethod
2506 redef type MPROPDEF: MMethodDef
2507
2508 # The signature attached to the property definition
2509 var msignature: nullable MSignature = null is writable
2510
2511 # The signature attached to the `new` call on a root-init
2512 # This is a concatenation of the signatures of the initializers
2513 #
2514 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2515 var new_msignature: nullable MSignature = null is writable
2516
2517 # List of initialisers to call in root-inits
2518 #
2519 # They could be setters or attributes
2520 #
2521 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2522 var initializers = new Array[MProperty]
2523
2524 # Is the method definition abstract?
2525 var is_abstract: Bool = false is writable
2526
2527 # Is the method definition intern?
2528 var is_intern = false is writable
2529
2530 # Is the method definition extern?
2531 var is_extern = false is writable
2532
2533 # An optional constant value returned in functions.
2534 #
2535 # Only some specific primitife value are accepted by engines.
2536 # Is used when there is no better implementation available.
2537 #
2538 # Currently used only for the implementation of the `--define`
2539 # command-line option.
2540 # SEE: module `mixin`.
2541 var constant_value: nullable Object = null is writable
2542 end
2543
2544 # A local definition of an attribute
2545 class MAttributeDef
2546 super MPropDef
2547
2548 redef type MPROPERTY: MAttribute
2549 redef type MPROPDEF: MAttributeDef
2550
2551 # The static type of the attribute
2552 var static_mtype: nullable MType = null is writable
2553 end
2554
2555 # A local definition of a virtual type
2556 class MVirtualTypeDef
2557 super MPropDef
2558
2559 redef type MPROPERTY: MVirtualTypeProp
2560 redef type MPROPDEF: MVirtualTypeDef
2561
2562 # The bound of the virtual type
2563 var bound: nullable MType = null is writable
2564
2565 # Is the bound fixed?
2566 var is_fixed = false is writable
2567 end
2568
2569 # A kind of class.
2570 #
2571 # * `abstract_kind`
2572 # * `concrete_kind`
2573 # * `interface_kind`
2574 # * `enum_kind`
2575 # * `extern_kind`
2576 #
2577 # Note this class is basically an enum.
2578 # FIXME: use a real enum once user-defined enums are available
2579 class MClassKind
2580 redef var to_s
2581
2582 # Is a constructor required?
2583 var need_init: Bool
2584
2585 # TODO: private init because enumeration.
2586
2587 # Can a class of kind `self` specializes a class of kind `other`?
2588 fun can_specialize(other: MClassKind): Bool
2589 do
2590 if other == interface_kind then return true # everybody can specialize interfaces
2591 if self == interface_kind or self == enum_kind then
2592 # no other case for interfaces
2593 return false
2594 else if self == extern_kind then
2595 # only compatible with themselves
2596 return self == other
2597 else if other == enum_kind or other == extern_kind then
2598 # abstract_kind and concrete_kind are incompatible
2599 return false
2600 end
2601 # remain only abstract_kind and concrete_kind
2602 return true
2603 end
2604 end
2605
2606 # The class kind `abstract`
2607 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", true)
2608 # The class kind `concrete`
2609 fun concrete_kind: MClassKind do return once new MClassKind("class", true)
2610 # The class kind `interface`
2611 fun interface_kind: MClassKind do return once new MClassKind("interface", false)
2612 # The class kind `enum`
2613 fun enum_kind: MClassKind do return once new MClassKind("enum", false)
2614 # The class kind `extern`
2615 fun extern_kind: MClassKind do return once new MClassKind("extern class", false)