Merge: model: Fix a minor documentation mistake
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class MEntity
34 # The visibility of the MEntity.
35 #
36 # MPackages, MGroups and MModules are always public.
37 # The visibility of `MClass` and `MProperty` is defined by the keyword used.
38 # `MClassDef` and `MPropDef` return the visibility of `MClass` and `MProperty`.
39 fun visibility: MVisibility do return public_visibility
40 end
41
42 redef class Model
43 # All known classes
44 var mclasses = new Array[MClass]
45
46 # All known properties
47 var mproperties = new Array[MProperty]
48
49 # Hierarchy of class definition.
50 #
51 # Each classdef is associated with its super-classdefs in regard to
52 # its module of definition.
53 var mclassdef_hierarchy = new POSet[MClassDef]
54
55 # Class-type hierarchy restricted to the introduction.
56 #
57 # The idea is that what is true on introduction is always true whatever
58 # the module considered.
59 # Therefore, this hierarchy is used for a fast positive subtype check.
60 #
61 # This poset will evolve in a monotonous way:
62 # * Two non connected nodes will remain unconnected
63 # * New nodes can appear with new edges
64 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
65
66 # Global overlapped class-type hierarchy.
67 # The hierarchy when all modules are combined.
68 # Therefore, this hierarchy is used for a fast negative subtype check.
69 #
70 # This poset will evolve in an anarchic way. Loops can even be created.
71 #
72 # FIXME decide what to do on loops
73 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
74
75 # Collections of classes grouped by their short name
76 private var mclasses_by_name = new MultiHashMap[String, MClass]
77
78 # Return all classes named `name`.
79 #
80 # If such a class does not exist, null is returned
81 # (instead of an empty array)
82 #
83 # Visibility or modules are not considered
84 fun get_mclasses_by_name(name: String): nullable Array[MClass]
85 do
86 return mclasses_by_name.get_or_null(name)
87 end
88
89 # Collections of properties grouped by their short name
90 private var mproperties_by_name = new MultiHashMap[String, MProperty]
91
92 # Return all properties named `name`.
93 #
94 # If such a property does not exist, null is returned
95 # (instead of an empty array)
96 #
97 # Visibility or modules are not considered
98 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
99 do
100 return mproperties_by_name.get_or_null(name)
101 end
102
103 # The only null type
104 var null_type = new MNullType(self)
105
106 # Build an ordered tree with from `concerns`
107 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
108 var seen = new HashSet[MConcern]
109 var res = new ConcernsTree
110
111 var todo = new Array[MConcern]
112 todo.add_all mconcerns
113
114 while not todo.is_empty do
115 var c = todo.pop
116 if seen.has(c) then continue
117 var pc = c.parent_concern
118 if pc == null then
119 res.add(null, c)
120 else
121 res.add(pc, c)
122 todo.add(pc)
123 end
124 seen.add(c)
125 end
126
127 return res
128 end
129 end
130
131 # An OrderedTree bound to MEntity.
132 #
133 # We introduce a new class so it can be easily refined by tools working
134 # with a Model.
135 class MEntityTree
136 super OrderedTree[MEntity]
137 end
138
139 # A MEntityTree borned to MConcern.
140 #
141 # TODO remove when nitdoc is fully merged with model_collect
142 class ConcernsTree
143 super OrderedTree[MConcern]
144 end
145
146 redef class MModule
147 # All the classes introduced in the module
148 var intro_mclasses = new Array[MClass]
149
150 # All the class definitions of the module
151 # (introduction and refinement)
152 var mclassdefs = new Array[MClassDef]
153
154 # Does the current module has a given class `mclass`?
155 # Return true if the mmodule introduces, refines or imports a class.
156 # Visibility is not considered.
157 fun has_mclass(mclass: MClass): Bool
158 do
159 return self.in_importation <= mclass.intro_mmodule
160 end
161
162 # Full hierarchy of introduced ans imported classes.
163 #
164 # Create a new hierarchy got by flattening the classes for the module
165 # and its imported modules.
166 # Visibility is not considered.
167 #
168 # Note: this function is expensive and is usually used for the main
169 # module of a program only. Do not use it to do you own subtype
170 # functions.
171 fun flatten_mclass_hierarchy: POSet[MClass]
172 do
173 var res = self.flatten_mclass_hierarchy_cache
174 if res != null then return res
175 res = new POSet[MClass]
176 for m in self.in_importation.greaters do
177 for cd in m.mclassdefs do
178 var c = cd.mclass
179 res.add_node(c)
180 for s in cd.supertypes do
181 res.add_edge(c, s.mclass)
182 end
183 end
184 end
185 self.flatten_mclass_hierarchy_cache = res
186 return res
187 end
188
189 # Sort a given array of classes using the linearization order of the module
190 # The most general is first, the most specific is last
191 fun linearize_mclasses(mclasses: Array[MClass])
192 do
193 self.flatten_mclass_hierarchy.sort(mclasses)
194 end
195
196 # Sort a given array of class definitions using the linearization order of the module
197 # the refinement link is stronger than the specialisation link
198 # The most general is first, the most specific is last
199 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
200 do
201 var sorter = new MClassDefSorter(self)
202 sorter.sort(mclassdefs)
203 end
204
205 # Sort a given array of property definitions using the linearization order of the module
206 # the refinement link is stronger than the specialisation link
207 # The most general is first, the most specific is last
208 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
209 do
210 var sorter = new MPropDefSorter(self)
211 sorter.sort(mpropdefs)
212 end
213
214 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
215
216 # The primitive type `Object`, the root of the class hierarchy
217 var object_type: MClassType = self.get_primitive_class("Object").mclass_type is lazy
218
219 # The type `Pointer`, super class to all extern classes
220 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
221
222 # The primitive type `Bool`
223 var bool_type: MClassType = self.get_primitive_class("Bool").mclass_type is lazy
224
225 # The primitive type `Int`
226 var int_type: MClassType = self.get_primitive_class("Int").mclass_type is lazy
227
228 # The primitive type `Byte`
229 var byte_type: MClassType = self.get_primitive_class("Byte").mclass_type is lazy
230
231 # The primitive type `Int8`
232 var int8_type: MClassType = self.get_primitive_class("Int8").mclass_type is lazy
233
234 # The primitive type `Int16`
235 var int16_type: MClassType = self.get_primitive_class("Int16").mclass_type is lazy
236
237 # The primitive type `UInt16`
238 var uint16_type: MClassType = self.get_primitive_class("UInt16").mclass_type is lazy
239
240 # The primitive type `Int32`
241 var int32_type: MClassType = self.get_primitive_class("Int32").mclass_type is lazy
242
243 # The primitive type `UInt32`
244 var uint32_type: MClassType = self.get_primitive_class("UInt32").mclass_type is lazy
245
246 # The primitive type `Char`
247 var char_type: MClassType = self.get_primitive_class("Char").mclass_type is lazy
248
249 # The primitive type `Float`
250 var float_type: MClassType = self.get_primitive_class("Float").mclass_type is lazy
251
252 # The primitive type `String`
253 var string_type: MClassType = self.get_primitive_class("String").mclass_type is lazy
254
255 # The primitive type `NativeString`
256 var native_string_type: MClassType = self.get_primitive_class("NativeString").mclass_type is lazy
257
258 # A primitive type of `Array`
259 fun array_type(elt_type: MType): MClassType do return array_class.get_mtype([elt_type])
260
261 # The primitive class `Array`
262 var array_class: MClass = self.get_primitive_class("Array") is lazy
263
264 # A primitive type of `NativeArray`
265 fun native_array_type(elt_type: MType): MClassType do return native_array_class.get_mtype([elt_type])
266
267 # The primitive class `NativeArray`
268 var native_array_class: MClass = self.get_primitive_class("NativeArray") is lazy
269
270 # The primitive type `Sys`, the main type of the program, if any
271 fun sys_type: nullable MClassType
272 do
273 var clas = self.model.get_mclasses_by_name("Sys")
274 if clas == null then return null
275 return get_primitive_class("Sys").mclass_type
276 end
277
278 # The primitive type `Finalizable`
279 # Used to tag classes that need to be finalized.
280 fun finalizable_type: nullable MClassType
281 do
282 var clas = self.model.get_mclasses_by_name("Finalizable")
283 if clas == null then return null
284 return get_primitive_class("Finalizable").mclass_type
285 end
286
287 # Force to get the primitive class named `name` or abort
288 fun get_primitive_class(name: String): MClass
289 do
290 var cla = self.model.get_mclasses_by_name(name)
291 # Filter classes by introducing module
292 if cla != null then cla = [for c in cla do if self.in_importation <= c.intro_mmodule then c]
293 if cla == null or cla.is_empty then
294 if name == "Bool" and self.model.get_mclasses_by_name("Object") != null then
295 # Bool is injected because it is needed by engine to code the result
296 # of the implicit casts.
297 var loc = model.no_location
298 var c = new MClass(self, name, loc, null, enum_kind, public_visibility)
299 var cladef = new MClassDef(self, c.mclass_type, loc)
300 cladef.set_supertypes([object_type])
301 cladef.add_in_hierarchy
302 return c
303 end
304 print("Fatal Error: no primitive class {name} in {self}")
305 exit(1)
306 abort
307 end
308 if cla.length != 1 then
309 var msg = "Fatal Error: more than one primitive class {name} in {self}:"
310 for c in cla do msg += " {c.full_name}"
311 print msg
312 #exit(1)
313 end
314 return cla.first
315 end
316
317 # Try to get the primitive method named `name` on the type `recv`
318 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
319 do
320 var props = self.model.get_mproperties_by_name(name)
321 if props == null then return null
322 var res: nullable MMethod = null
323 var recvtype = recv.intro.bound_mtype
324 for mprop in props do
325 assert mprop isa MMethod
326 if not recvtype.has_mproperty(self, mprop) then continue
327 if res == null then
328 res = mprop
329 else if res != mprop then
330 print("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
331 abort
332 end
333 end
334 return res
335 end
336 end
337
338 private class MClassDefSorter
339 super Comparator
340 redef type COMPARED: MClassDef
341 var mmodule: MModule
342 redef fun compare(a, b)
343 do
344 var ca = a.mclass
345 var cb = b.mclass
346 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
347 return mmodule.model.mclassdef_hierarchy.compare(a, b)
348 end
349 end
350
351 private class MPropDefSorter
352 super Comparator
353 redef type COMPARED: MPropDef
354 var mmodule: MModule
355 redef fun compare(pa, pb)
356 do
357 var a = pa.mclassdef
358 var b = pb.mclassdef
359 var ca = a.mclass
360 var cb = b.mclass
361 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
362 return mmodule.model.mclassdef_hierarchy.compare(a, b)
363 end
364 end
365
366 # A named class
367 #
368 # `MClass` are global to the model; it means that a `MClass` is not bound to a
369 # specific `MModule`.
370 #
371 # This characteristic helps the reasoning about classes in a program since a
372 # single `MClass` object always denote the same class.
373 #
374 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
375 # These do not really have properties nor belong to a hierarchy since the property and the
376 # hierarchy of a class depends of the refinement in the modules.
377 #
378 # Most services on classes require the precision of a module, and no one can asks what are
379 # the super-classes of a class nor what are properties of a class without precising what is
380 # the module considered.
381 #
382 # For instance, during the typing of a source-file, the module considered is the module of the file.
383 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
384 # *is the method `foo` exists in the class `Bar` in the current module?*
385 #
386 # During some global analysis, the module considered may be the main module of the program.
387 class MClass
388 super MEntity
389
390 # The module that introduce the class
391 #
392 # While classes are not bound to a specific module,
393 # the introducing module is used for naming and visibility.
394 var intro_mmodule: MModule
395
396 # The short name of the class
397 # In Nit, the name of a class cannot evolve in refinements
398 redef var name
399
400 redef var location
401
402 # The canonical name of the class
403 #
404 # It is the name of the class prefixed by the full_name of the `intro_mmodule`
405 # Example: `"owner::module::MyClass"`
406 redef var full_name is lazy do
407 return "{self.intro_mmodule.namespace_for(visibility)}::{name}"
408 end
409
410 redef var c_name is lazy do
411 return "{intro_mmodule.c_namespace_for(visibility)}__{name.to_cmangle}"
412 end
413
414 # The number of generic formal parameters
415 # 0 if the class is not generic
416 var arity: Int is noinit
417
418 # Each generic formal parameters in order.
419 # is empty if the class is not generic
420 var mparameters = new Array[MParameterType]
421
422 # A string version of the signature a generic class.
423 #
424 # eg. `Map[K: nullable Object, V: nullable Object]`
425 #
426 # If the class in non generic the name is just given.
427 #
428 # eg. `Object`
429 fun signature_to_s: String
430 do
431 if arity == 0 then return name
432 var res = new FlatBuffer
433 res.append name
434 res.append "["
435 for i in [0..arity[ do
436 if i > 0 then res.append ", "
437 res.append mparameters[i].name
438 res.append ": "
439 res.append intro.bound_mtype.arguments[i].to_s
440 end
441 res.append "]"
442 return res.to_s
443 end
444
445 # Initialize `mparameters` from their names.
446 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
447 autoinit
448 do
449 if parameter_names == null then
450 self.arity = 0
451 else
452 self.arity = parameter_names.length
453 end
454
455 # Create the formal parameter types
456 if arity > 0 then
457 assert parameter_names != null
458 var mparametertypes = new Array[MParameterType]
459 for i in [0..arity[ do
460 var mparametertype = new MParameterType(self, i, parameter_names[i])
461 mparametertypes.add(mparametertype)
462 end
463 self.mparameters = mparametertypes
464 var mclass_type = new MGenericType(self, mparametertypes)
465 self.mclass_type = mclass_type
466 self.get_mtype_cache[mparametertypes] = mclass_type
467 else
468 self.mclass_type = new MClassType(self)
469 end
470 end
471
472 # The kind of the class (interface, abstract class, etc.)
473 # In Nit, the kind of a class cannot evolve in refinements
474 var kind: MClassKind
475
476 # The visibility of the class
477 # In Nit, the visibility of a class cannot evolve in refinements
478 redef var visibility
479
480 init
481 do
482 intro_mmodule.intro_mclasses.add(self)
483 var model = intro_mmodule.model
484 model.mclasses_by_name.add_one(name, self)
485 model.mclasses.add(self)
486 end
487
488 redef fun model do return intro_mmodule.model
489
490 # All class definitions (introduction and refinements)
491 var mclassdefs = new Array[MClassDef]
492
493 # Alias for `name`
494 redef fun to_s do return self.name
495
496 # The definition that introduces the class.
497 #
498 # Warning: such a definition may not exist in the early life of the object.
499 # In this case, the method will abort.
500 #
501 # Use `try_intro` instead
502 var intro: MClassDef is noinit
503
504 # The definition that introduces the class or null if not yet known.
505 #
506 # See `intro`
507 fun try_intro: nullable MClassDef do
508 if isset _intro then return _intro else return null
509 end
510
511 # Return the class `self` in the class hierarchy of the module `mmodule`.
512 #
513 # SEE: `MModule::flatten_mclass_hierarchy`
514 # REQUIRE: `mmodule.has_mclass(self)`
515 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
516 do
517 return mmodule.flatten_mclass_hierarchy[self]
518 end
519
520 # The principal static type of the class.
521 #
522 # For non-generic class, `mclass_type` is the only `MClassType` based
523 # on self.
524 #
525 # For a generic class, the arguments are the formal parameters.
526 # i.e.: for the class `Array[E:Object]`, the `mclass_type` is `Array[E]`.
527 # If you want `Array[Object]`, see `MClassDef::bound_mtype`.
528 #
529 # For generic classes, the mclass_type is also the way to get a formal
530 # generic parameter type.
531 #
532 # To get other types based on a generic class, see `get_mtype`.
533 #
534 # ENSURE: `mclass_type.mclass == self`
535 var mclass_type: MClassType is noinit
536
537 # Return a generic type based on the class
538 # Is the class is not generic, then the result is `mclass_type`
539 #
540 # REQUIRE: `mtype_arguments.length == self.arity`
541 fun get_mtype(mtype_arguments: Array[MType]): MClassType
542 do
543 assert mtype_arguments.length == self.arity
544 if self.arity == 0 then return self.mclass_type
545 var res = get_mtype_cache.get_or_null(mtype_arguments)
546 if res != null then return res
547 res = new MGenericType(self, mtype_arguments)
548 self.get_mtype_cache[mtype_arguments.to_a] = res
549 return res
550 end
551
552 private var get_mtype_cache = new HashMap[Array[MType], MGenericType]
553
554 # Is there a `new` factory to allow the pseudo instantiation?
555 var has_new_factory = false is writable
556
557 # Is `self` a standard or abstract class kind?
558 var is_class: Bool is lazy do return kind == concrete_kind or kind == abstract_kind
559
560 # Is `self` an interface kind?
561 var is_interface: Bool is lazy do return kind == interface_kind
562
563 # Is `self` an enum kind?
564 var is_enum: Bool is lazy do return kind == enum_kind
565
566 # Is `self` and abstract class?
567 var is_abstract: Bool is lazy do return kind == abstract_kind
568
569 redef fun mdoc_or_fallback do return intro.mdoc_or_fallback
570 end
571
572
573 # A definition (an introduction or a refinement) of a class in a module
574 #
575 # A `MClassDef` is associated with an explicit (or almost) definition of a
576 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
577 # a specific class and a specific module, and contains declarations like super-classes
578 # or properties.
579 #
580 # It is the class definitions that are the backbone of most things in the model:
581 # ClassDefs are defined with regard with other classdefs.
582 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
583 #
584 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
585 class MClassDef
586 super MEntity
587
588 # The module where the definition is
589 var mmodule: MModule
590
591 # The associated `MClass`
592 var mclass: MClass is noinit
593
594 # The bounded type associated to the mclassdef
595 #
596 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
597 # are the same type.
598 #
599 # Example:
600 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
601 # If you want Array[E], then see `mclass.mclass_type`
602 #
603 # ENSURE: `bound_mtype.mclass == self.mclass`
604 var bound_mtype: MClassType
605
606 redef var location: Location
607
608 redef fun visibility do return mclass.visibility
609
610 # Internal name combining the module and the class
611 # Example: "mymodule$MyClass"
612 redef var to_s is noinit
613
614 init
615 do
616 self.mclass = bound_mtype.mclass
617 mmodule.mclassdefs.add(self)
618 mclass.mclassdefs.add(self)
619 if mclass.intro_mmodule == mmodule then
620 assert not isset mclass._intro
621 mclass.intro = self
622 end
623 self.to_s = "{mmodule}${mclass}"
624 end
625
626 # Actually the name of the `mclass`
627 redef fun name do return mclass.name
628
629 # The module and class name separated by a '$'.
630 #
631 # The short-name of the class is used for introduction.
632 # Example: "my_module$MyClass"
633 #
634 # The full-name of the class is used for refinement.
635 # Example: "my_module$intro_module::MyClass"
636 redef var full_name is lazy do
637 if is_intro then
638 # public gives 'p$A'
639 # private gives 'p::m$A'
640 return "{mmodule.namespace_for(mclass.visibility)}${mclass.name}"
641 else if mclass.intro_mmodule.mpackage != mmodule.mpackage then
642 # public gives 'q::n$p::A'
643 # private gives 'q::n$p::m::A'
644 return "{mmodule.full_name}${mclass.full_name}"
645 else if mclass.visibility > private_visibility then
646 # public gives 'p::n$A'
647 return "{mmodule.full_name}${mclass.name}"
648 else
649 # private gives 'p::n$::m::A' (redundant p is omitted)
650 return "{mmodule.full_name}$::{mclass.intro_mmodule.name}::{mclass.name}"
651 end
652 end
653
654 redef var c_name is lazy do
655 if is_intro then
656 return "{mmodule.c_namespace_for(mclass.visibility)}___{mclass.c_name}"
657 else if mclass.intro_mmodule.mpackage == mmodule.mpackage and mclass.visibility > private_visibility then
658 return "{mmodule.c_name}___{mclass.name.to_cmangle}"
659 else
660 return "{mmodule.c_name}___{mclass.c_name}"
661 end
662 end
663
664 redef fun model do return mmodule.model
665
666 # All declared super-types
667 # FIXME: quite ugly but not better idea yet
668 var supertypes = new Array[MClassType]
669
670 # Register some super-types for the class (ie "super SomeType")
671 #
672 # The hierarchy must not already be set
673 # REQUIRE: `self.in_hierarchy == null`
674 fun set_supertypes(supertypes: Array[MClassType])
675 do
676 assert unique_invocation: self.in_hierarchy == null
677 var mmodule = self.mmodule
678 var model = mmodule.model
679 var mtype = self.bound_mtype
680
681 for supertype in supertypes do
682 self.supertypes.add(supertype)
683
684 # Register in full_type_specialization_hierarchy
685 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
686 # Register in intro_type_specialization_hierarchy
687 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
688 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
689 end
690 end
691
692 end
693
694 # Collect the super-types (set by set_supertypes) to build the hierarchy
695 #
696 # This function can only invoked once by class
697 # REQUIRE: `self.in_hierarchy == null`
698 # ENSURE: `self.in_hierarchy != null`
699 fun add_in_hierarchy
700 do
701 assert unique_invocation: self.in_hierarchy == null
702 var model = mmodule.model
703 var res = model.mclassdef_hierarchy.add_node(self)
704 self.in_hierarchy = res
705 var mtype = self.bound_mtype
706
707 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
708 # The simpliest way is to attach it to collect_mclassdefs
709 for mclassdef in mtype.collect_mclassdefs(mmodule) do
710 res.poset.add_edge(self, mclassdef)
711 end
712 end
713
714 # The view of the class definition in `mclassdef_hierarchy`
715 var in_hierarchy: nullable POSetElement[MClassDef] = null
716
717 # Is the definition the one that introduced `mclass`?
718 fun is_intro: Bool do return isset mclass._intro and mclass.intro == self
719
720 # All properties introduced by the classdef
721 var intro_mproperties = new Array[MProperty]
722
723 # All property definitions in the class (introductions and redefinitions)
724 var mpropdefs = new Array[MPropDef]
725 end
726
727 # A global static type
728 #
729 # MType are global to the model; it means that a `MType` is not bound to a
730 # specific `MModule`.
731 # This characteristic helps the reasoning about static types in a program
732 # since a single `MType` object always denote the same type.
733 #
734 # However, because a `MType` is global, it does not really have properties
735 # nor have subtypes to a hierarchy since the property and the class hierarchy
736 # depends of a module.
737 # Moreover, virtual types an formal generic parameter types also depends on
738 # a receiver to have sense.
739 #
740 # Therefore, most method of the types require a module and an anchor.
741 # The module is used to know what are the classes and the specialization
742 # links.
743 # The anchor is used to know what is the bound of the virtual types and formal
744 # generic parameter types.
745 #
746 # MType are not directly usable to get properties. See the `anchor_to` method
747 # and the `MClassType` class.
748 #
749 # FIXME: the order of the parameters is not the best. We mus pick on from:
750 # * foo(mmodule, anchor, othertype)
751 # * foo(othertype, anchor, mmodule)
752 # * foo(anchor, mmodule, othertype)
753 # * foo(othertype, mmodule, anchor)
754 abstract class MType
755 super MEntity
756
757 redef fun name do return to_s
758
759 # Return true if `self` is an subtype of `sup`.
760 # The typing is done using the standard typing policy of Nit.
761 #
762 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
763 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
764 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
765 do
766 var sub = self
767 if sub == sup then return true
768
769 #print "1.is {sub} a {sup}? ===="
770
771 if anchor == null then
772 assert not sub.need_anchor
773 assert not sup.need_anchor
774 else
775 # First, resolve the formal types to the simplest equivalent forms in the receiver
776 assert sub.can_resolve_for(anchor, null, mmodule)
777 sub = sub.lookup_fixed(mmodule, anchor)
778 assert sup.can_resolve_for(anchor, null, mmodule)
779 sup = sup.lookup_fixed(mmodule, anchor)
780 end
781
782 # Does `sup` accept null or not?
783 # Discard the nullable marker if it exists
784 var sup_accept_null = false
785 if sup isa MNullableType then
786 sup_accept_null = true
787 sup = sup.mtype
788 else if sup isa MNotNullType then
789 sup = sup.mtype
790 else if sup isa MNullType then
791 sup_accept_null = true
792 end
793
794 # Can `sub` provide null or not?
795 # Thus we can match with `sup_accept_null`
796 # Also discard the nullable marker if it exists
797 var sub_reject_null = false
798 if sub isa MNullableType then
799 if not sup_accept_null then return false
800 sub = sub.mtype
801 else if sub isa MNotNullType then
802 sub_reject_null = true
803 sub = sub.mtype
804 else if sub isa MNullType then
805 return sup_accept_null
806 end
807 # Now the case of direct null and nullable is over.
808
809 # If `sub` is a formal type, then it is accepted if its bound is accepted
810 while sub isa MFormalType do
811 #print "3.is {sub} a {sup}?"
812
813 # A unfixed formal type can only accept itself
814 if sub == sup then return true
815
816 assert anchor != null
817 sub = sub.lookup_bound(mmodule, anchor)
818 if sub_reject_null then sub = sub.as_notnull
819
820 #print "3.is {sub} a {sup}?"
821
822 # Manage the second layer of null/nullable
823 if sub isa MNullableType then
824 if not sup_accept_null and not sub_reject_null then return false
825 sub = sub.mtype
826 else if sub isa MNotNullType then
827 sub_reject_null = true
828 sub = sub.mtype
829 else if sub isa MNullType then
830 return sup_accept_null
831 end
832 end
833 #print "4.is {sub} a {sup}? <- no more resolution"
834
835 if sub isa MBottomType then
836 return true
837 end
838
839 assert sub isa MClassType else print "{sub} <? {sub}" # It is the only remaining type
840
841 # Handle sup-type when the sub-type is class-based (other cases must have be identified before).
842 if sup isa MFormalType or sup isa MNullType or sup isa MBottomType then
843 # These types are not super-types of Class-based types.
844 return false
845 end
846
847 assert sup isa MClassType else print "got {sup} {sub.inspect}" # It is the only remaining type
848
849 # Now both are MClassType, we need to dig
850
851 if sub == sup then return true
852
853 if anchor == null then anchor = sub # UGLY: any anchor will work
854 var resolved_sub = sub.anchor_to(mmodule, anchor)
855 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
856 if res == false then return false
857 if not sup isa MGenericType then return true
858 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
859 assert sub2.mclass == sup.mclass
860 for i in [0..sup.mclass.arity[ do
861 var sub_arg = sub2.arguments[i]
862 var sup_arg = sup.arguments[i]
863 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
864 if res == false then return false
865 end
866 return true
867 end
868
869 # The base class type on which self is based
870 #
871 # This base type is used to get property (an internally to perform
872 # unsafe type comparison).
873 #
874 # Beware: some types (like null) are not based on a class thus this
875 # method will crash
876 #
877 # Basically, this function transform the virtual types and parameter
878 # types to their bounds.
879 #
880 # Example
881 #
882 # class A end
883 # class B super A end
884 # class X end
885 # class Y super X end
886 # class G[T: A]
887 # type U: X
888 # end
889 # class H
890 # super G[B]
891 # redef type U: Y
892 # end
893 #
894 # Map[T,U] anchor_to H #-> Map[B,Y]
895 #
896 # Explanation of the example:
897 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
898 # because "redef type U: Y". Therefore, Map[T, U] is bound to
899 # Map[B, Y]
900 #
901 # ENSURE: `not self.need_anchor implies result == self`
902 # ENSURE: `not result.need_anchor`
903 fun anchor_to(mmodule: MModule, anchor: MClassType): MType
904 do
905 if not need_anchor then return self
906 assert not anchor.need_anchor
907 # Just resolve to the anchor and clear all the virtual types
908 var res = self.resolve_for(anchor, null, mmodule, true)
909 assert not res.need_anchor
910 return res
911 end
912
913 # Does `self` contain a virtual type or a formal generic parameter type?
914 # In order to remove those types, you usually want to use `anchor_to`.
915 fun need_anchor: Bool do return true
916
917 # Return the supertype when adapted to a class.
918 #
919 # In Nit, for each super-class of a type, there is a equivalent super-type.
920 #
921 # Example:
922 #
923 # ~~~nitish
924 # class G[T, U] end
925 # class H[V] super G[V, Bool] end
926 #
927 # H[Int] supertype_to G #-> G[Int, Bool]
928 # ~~~
929 #
930 # REQUIRE: `super_mclass` is a super-class of `self`
931 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
932 # ENSURE: `result.mclass = super_mclass`
933 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
934 do
935 if super_mclass.arity == 0 then return super_mclass.mclass_type
936 if self isa MClassType and self.mclass == super_mclass then return self
937 var resolved_self
938 if self.need_anchor then
939 assert anchor != null
940 resolved_self = self.anchor_to(mmodule, anchor)
941 else
942 resolved_self = self
943 end
944 var supertypes = resolved_self.collect_mtypes(mmodule)
945 for supertype in supertypes do
946 if supertype.mclass == super_mclass then
947 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
948 return supertype.resolve_for(self, anchor, mmodule, false)
949 end
950 end
951 abort
952 end
953
954 # Replace formals generic types in self with resolved values in `mtype`
955 # If `cleanup_virtual` is true, then virtual types are also replaced
956 # with their bounds.
957 #
958 # This function returns self if `need_anchor` is false.
959 #
960 # ## Example 1
961 #
962 # ~~~
963 # class G[E] end
964 # class H[F] super G[F] end
965 # class X[Z] end
966 # ~~~
967 #
968 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
969 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
970 #
971 # Explanation of the example:
972 # * Array[E].need_anchor is true because there is a formal generic parameter type E
973 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
974 # * Since "H[F] super G[F]", E is in fact F for H
975 # * More specifically, in H[Int], E is Int
976 # * So, in H[Int], Array[E] is Array[Int]
977 #
978 # This function is mainly used to inherit a signature.
979 # Because, unlike `anchor_to`, we do not want a full resolution of
980 # a type but only an adapted version of it.
981 #
982 # ## Example 2
983 #
984 # ~~~
985 # class A[E]
986 # fun foo(e:E):E is abstract
987 # end
988 # class B super A[Int] end
989 # ~~~
990 #
991 # The signature on foo is (e: E): E
992 # If we resolve the signature for B, we get (e:Int):Int
993 #
994 # ## Example 3
995 #
996 # ~~~nitish
997 # class A[E]
998 # fun foo(e:E):E is abstract
999 # end
1000 # class C[F]
1001 # var a: A[Array[F]]
1002 # fun bar do a.foo(x) # <- x is here
1003 # end
1004 # ~~~
1005 #
1006 # The first question is: is foo available on `a`?
1007 #
1008 # The static type of a is `A[Array[F]]`, that is an open type.
1009 # in order to find a method `foo`, whe must look at a resolved type.
1010 #
1011 # A[Array[F]].anchor_to(C[nullable Object]) #-> A[Array[nullable Object]]
1012 #
1013 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
1014 #
1015 # The next question is: what is the accepted types for `x`?
1016 #
1017 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
1018 #
1019 # E.resolve_for(A[Array[F]],C[nullable Object]) #-> Array[F]
1020 #
1021 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
1022 #
1023 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
1024 # two function instead of one seems also to be a bad idea.
1025 #
1026 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
1027 # ENSURE: `not self.need_anchor implies result == self`
1028 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
1029
1030 # Resolve formal type to its verbatim bound.
1031 # If the type is not formal, just return self
1032 #
1033 # The result is returned exactly as declared in the "type" property (verbatim).
1034 # So it could be another formal type.
1035 #
1036 # In case of conflicts or inconsistencies in the model, the method returns a `MBottomType`.
1037 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self
1038
1039 # Resolve the formal type to its simplest equivalent form.
1040 #
1041 # Formal types are either free or fixed.
1042 # When it is fixed, it means that it is equivalent with a simpler type.
1043 # When a formal type is free, it means that it is only equivalent with itself.
1044 # This method return the most simple equivalent type of `self`.
1045 #
1046 # This method is mainly used for subtype test in order to sanely compare fixed.
1047 #
1048 # By default, return self.
1049 # See the redefinitions for specific behavior in each kind of type.
1050 #
1051 # In case of conflicts or inconsistencies in the model, the method returns a `MBottomType`.
1052 fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self
1053
1054 # Can the type be resolved?
1055 #
1056 # In order to resolve open types, the formal types must make sence.
1057 #
1058 # ## Example
1059 #
1060 # class A[E]
1061 # end
1062 # class B[F]
1063 # end
1064 #
1065 # ~~~nitish
1066 # E.can_resolve_for(A[Int]) #-> true, E make sense in A
1067 #
1068 # E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
1069 #
1070 # B[E].can_resolve_for(A[F], B[Object]) #-> true,
1071 # # B[E] is a red hearing only the E is important,
1072 # # E make sense in A
1073 # ~~~
1074 #
1075 # REQUIRE: `anchor != null implies not anchor.need_anchor`
1076 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
1077 # ENSURE: `not self.need_anchor implies result == true`
1078 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
1079
1080 # Return the nullable version of the type
1081 # If the type is already nullable then self is returned
1082 fun as_nullable: MType
1083 do
1084 var res = self.as_nullable_cache
1085 if res != null then return res
1086 res = new MNullableType(self)
1087 self.as_nullable_cache = res
1088 return res
1089 end
1090
1091 # Remove the base type of a decorated (proxy) type.
1092 # Is the type is not decorated, then self is returned.
1093 #
1094 # Most of the time it is used to return the not nullable version of a nullable type.
1095 # In this case, this just remove the `nullable` notation, but the result can still contains null.
1096 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
1097 # If you really want to exclude the `null` value, then use `as_notnull`
1098 fun undecorate: MType
1099 do
1100 return self
1101 end
1102
1103 # Returns the not null version of the type.
1104 # That is `self` minus the `null` value.
1105 #
1106 # For most types, this return `self`.
1107 # For formal types, this returns a special `MNotNullType`
1108 fun as_notnull: MType do return self
1109
1110 private var as_nullable_cache: nullable MType = null
1111
1112
1113 # The depth of the type seen as a tree.
1114 #
1115 # * A -> 1
1116 # * G[A] -> 2
1117 # * H[A, B] -> 2
1118 # * H[G[A], B] -> 3
1119 #
1120 # Formal types have a depth of 1.
1121 fun depth: Int
1122 do
1123 return 1
1124 end
1125
1126 # The length of the type seen as a tree.
1127 #
1128 # * A -> 1
1129 # * G[A] -> 2
1130 # * H[A, B] -> 3
1131 # * H[G[A], B] -> 4
1132 #
1133 # Formal types have a length of 1.
1134 fun length: Int
1135 do
1136 return 1
1137 end
1138
1139 # Compute all the classdefs inherited/imported.
1140 # The returned set contains:
1141 # * the class definitions from `mmodule` and its imported modules
1142 # * the class definitions of this type and its super-types
1143 #
1144 # This function is used mainly internally.
1145 #
1146 # REQUIRE: `not self.need_anchor`
1147 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
1148
1149 # Compute all the super-classes.
1150 # This function is used mainly internally.
1151 #
1152 # REQUIRE: `not self.need_anchor`
1153 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
1154
1155 # Compute all the declared super-types.
1156 # Super-types are returned as declared in the classdefs (verbatim).
1157 # This function is used mainly internally.
1158 #
1159 # REQUIRE: `not self.need_anchor`
1160 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
1161
1162 # Is the property in self for a given module
1163 # This method does not filter visibility or whatever
1164 #
1165 # REQUIRE: `not self.need_anchor`
1166 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
1167 do
1168 assert not self.need_anchor
1169 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
1170 end
1171 end
1172
1173 # A type based on a class.
1174 #
1175 # `MClassType` have properties (see `has_mproperty`).
1176 class MClassType
1177 super MType
1178
1179 # The associated class
1180 var mclass: MClass
1181
1182 redef fun model do return self.mclass.intro_mmodule.model
1183
1184 redef fun location do return mclass.location
1185
1186 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1187
1188 # The formal arguments of the type
1189 # ENSURE: `result.length == self.mclass.arity`
1190 var arguments = new Array[MType]
1191
1192 redef fun to_s do return mclass.to_s
1193
1194 redef fun full_name do return mclass.full_name
1195
1196 redef fun c_name do return mclass.c_name
1197
1198 redef fun need_anchor do return false
1199
1200 redef fun anchor_to(mmodule: MModule, anchor: MClassType): MClassType
1201 do
1202 return super.as(MClassType)
1203 end
1204
1205 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1206
1207 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1208
1209 redef fun collect_mclassdefs(mmodule)
1210 do
1211 assert not self.need_anchor
1212 var cache = self.collect_mclassdefs_cache
1213 if not cache.has_key(mmodule) then
1214 self.collect_things(mmodule)
1215 end
1216 return cache[mmodule]
1217 end
1218
1219 redef fun collect_mclasses(mmodule)
1220 do
1221 if collect_mclasses_last_module == mmodule then return collect_mclasses_last_module_cache
1222 assert not self.need_anchor
1223 var cache = self.collect_mclasses_cache
1224 if not cache.has_key(mmodule) then
1225 self.collect_things(mmodule)
1226 end
1227 var res = cache[mmodule]
1228 collect_mclasses_last_module = mmodule
1229 collect_mclasses_last_module_cache = res
1230 return res
1231 end
1232
1233 private var collect_mclasses_last_module: nullable MModule = null
1234 private var collect_mclasses_last_module_cache: Set[MClass] is noinit
1235
1236 redef fun collect_mtypes(mmodule)
1237 do
1238 assert not self.need_anchor
1239 var cache = self.collect_mtypes_cache
1240 if not cache.has_key(mmodule) then
1241 self.collect_things(mmodule)
1242 end
1243 return cache[mmodule]
1244 end
1245
1246 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1247 private fun collect_things(mmodule: MModule)
1248 do
1249 var res = new HashSet[MClassDef]
1250 var seen = new HashSet[MClass]
1251 var types = new HashSet[MClassType]
1252 seen.add(self.mclass)
1253 var todo = [self.mclass]
1254 while not todo.is_empty do
1255 var mclass = todo.pop
1256 #print "process {mclass}"
1257 for mclassdef in mclass.mclassdefs do
1258 if not mmodule.in_importation <= mclassdef.mmodule then continue
1259 #print " process {mclassdef}"
1260 res.add(mclassdef)
1261 for supertype in mclassdef.supertypes do
1262 types.add(supertype)
1263 var superclass = supertype.mclass
1264 if seen.has(superclass) then continue
1265 #print " add {superclass}"
1266 seen.add(superclass)
1267 todo.add(superclass)
1268 end
1269 end
1270 end
1271 collect_mclassdefs_cache[mmodule] = res
1272 collect_mclasses_cache[mmodule] = seen
1273 collect_mtypes_cache[mmodule] = types
1274 end
1275
1276 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1277 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1278 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1279
1280 end
1281
1282 # A type based on a generic class.
1283 # A generic type a just a class with additional formal generic arguments.
1284 class MGenericType
1285 super MClassType
1286
1287 redef var arguments
1288
1289 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1290
1291 init
1292 do
1293 assert self.mclass.arity == arguments.length
1294
1295 self.need_anchor = false
1296 for t in arguments do
1297 if t.need_anchor then
1298 self.need_anchor = true
1299 break
1300 end
1301 end
1302
1303 self.to_s = "{mclass}[{arguments.join(", ")}]"
1304 end
1305
1306 # The short-name of the class, then the full-name of each type arguments within brackets.
1307 # Example: `"Map[String, List[Int]]"`
1308 redef var to_s is noinit
1309
1310 # The full-name of the class, then the full-name of each type arguments within brackets.
1311 # Example: `"core::Map[core::String, core::List[core::Int]]"`
1312 redef var full_name is lazy do
1313 var args = new Array[String]
1314 for t in arguments do
1315 args.add t.full_name
1316 end
1317 return "{mclass.full_name}[{args.join(", ")}]"
1318 end
1319
1320 redef var c_name is lazy do
1321 var res = mclass.c_name
1322 # Note: because the arity is known, a prefix notation is enough
1323 for t in arguments do
1324 res += "__"
1325 res += t.c_name
1326 end
1327 return res.to_s
1328 end
1329
1330 redef var need_anchor is noinit
1331
1332 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1333 do
1334 if not need_anchor then return self
1335 assert can_resolve_for(mtype, anchor, mmodule)
1336 var types = new Array[MType]
1337 for t in arguments do
1338 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1339 end
1340 return mclass.get_mtype(types)
1341 end
1342
1343 redef fun can_resolve_for(mtype, anchor, mmodule)
1344 do
1345 if not need_anchor then return true
1346 for t in arguments do
1347 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1348 end
1349 return true
1350 end
1351
1352
1353 redef fun depth
1354 do
1355 var dmax = 0
1356 for a in self.arguments do
1357 var d = a.depth
1358 if d > dmax then dmax = d
1359 end
1360 return dmax + 1
1361 end
1362
1363 redef fun length
1364 do
1365 var res = 1
1366 for a in self.arguments do
1367 res += a.length
1368 end
1369 return res
1370 end
1371 end
1372
1373 # A formal type (either virtual of parametric).
1374 #
1375 # The main issue with formal types is that they offer very little information on their own
1376 # and need a context (anchor and mmodule) to be useful.
1377 abstract class MFormalType
1378 super MType
1379
1380 redef var as_notnull = new MNotNullType(self) is lazy
1381 end
1382
1383 # A virtual formal type.
1384 class MVirtualType
1385 super MFormalType
1386
1387 # The property associated with the type.
1388 # Its the definitions of this property that determine the bound or the virtual type.
1389 var mproperty: MVirtualTypeProp
1390
1391 redef fun location do return mproperty.location
1392
1393 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1394
1395 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1396 do
1397 return lookup_single_definition(mmodule, resolved_receiver).bound or else new MBottomType(model)
1398 end
1399
1400 private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef
1401 do
1402 assert not resolved_receiver.need_anchor
1403 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1404 if props.is_empty then
1405 abort
1406 else if props.length == 1 then
1407 return props.first
1408 end
1409 var types = new ArraySet[MType]
1410 var res = props.first
1411 for p in props do
1412 types.add(p.bound.as(not null))
1413 if not res.is_fixed then res = p
1414 end
1415 if types.length == 1 then
1416 return res
1417 end
1418 abort
1419 end
1420
1421 # A VT is fixed when:
1422 # * the VT is (re-)defined with the annotation `is fixed`
1423 # * the VT is (indirectly) bound to an enum class (see `enum_kind`) since there is no subtype possible
1424 # * the receiver is an enum class since there is no subtype possible
1425 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1426 do
1427 assert not resolved_receiver.need_anchor
1428 resolved_receiver = resolved_receiver.undecorate
1429 assert resolved_receiver isa MClassType # It is the only remaining type
1430
1431 var prop = lookup_single_definition(mmodule, resolved_receiver)
1432 var res = prop.bound
1433 if res == null then return new MBottomType(model)
1434
1435 # Recursively lookup the fixed result
1436 res = res.lookup_fixed(mmodule, resolved_receiver)
1437
1438 # 1. For a fixed VT, return the resolved bound
1439 if prop.is_fixed then return res
1440
1441 # 2. For a enum boud, return the bound
1442 if res isa MClassType and res.mclass.kind == enum_kind then return res
1443
1444 # 3. for a enum receiver return the bound
1445 if resolved_receiver.mclass.kind == enum_kind then return res
1446
1447 return self
1448 end
1449
1450 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1451 do
1452 if not cleanup_virtual then return self
1453 assert can_resolve_for(mtype, anchor, mmodule)
1454 # self is a virtual type declared (or inherited) in mtype
1455 # The point of the function it to get the bound of the virtual type that make sense for mtype
1456 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1457 #print "{class_name}: {self}/{mtype}/{anchor}?"
1458 var resolved_receiver
1459 if mtype.need_anchor then
1460 assert anchor != null
1461 resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true)
1462 else
1463 resolved_receiver = mtype
1464 end
1465 # Now, we can get the bound
1466 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1467 # The bound is exactly as declared in the "type" property, so we must resolve it again
1468 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1469
1470 return res
1471 end
1472
1473 redef fun can_resolve_for(mtype, anchor, mmodule)
1474 do
1475 if mtype.need_anchor then
1476 assert anchor != null
1477 mtype = mtype.anchor_to(mmodule, anchor)
1478 end
1479 return mtype.has_mproperty(mmodule, mproperty)
1480 end
1481
1482 redef fun to_s do return self.mproperty.to_s
1483
1484 redef fun full_name do return self.mproperty.full_name
1485
1486 redef fun c_name do return self.mproperty.c_name
1487 end
1488
1489 # The type associated to a formal parameter generic type of a class
1490 #
1491 # Each parameter type is associated to a specific class.
1492 # It means that all refinements of a same class "share" the parameter type,
1493 # but that a generic subclass has its own parameter types.
1494 #
1495 # However, in the sense of the meta-model, a parameter type of a class is
1496 # a valid type in a subclass. The "in the sense of the meta-model" is
1497 # important because, in the Nit language, the programmer cannot refers
1498 # directly to the parameter types of the super-classes.
1499 #
1500 # Example:
1501 #
1502 # class A[E]
1503 # fun e: E is abstract
1504 # end
1505 # class B[F]
1506 # super A[Array[F]]
1507 # end
1508 #
1509 # In the class definition B[F], `F` is a valid type but `E` is not.
1510 # However, `self.e` is a valid method call, and the signature of `e` is
1511 # declared `e: E`.
1512 #
1513 # Note that parameter types are shared among class refinements.
1514 # Therefore parameter only have an internal name (see `to_s` for details).
1515 class MParameterType
1516 super MFormalType
1517
1518 # The generic class where the parameter belong
1519 var mclass: MClass
1520
1521 redef fun model do return self.mclass.intro_mmodule.model
1522
1523 redef fun location do return mclass.location
1524
1525 # The position of the parameter (0 for the first parameter)
1526 # FIXME: is `position` a better name?
1527 var rank: Int
1528
1529 redef var name
1530
1531 redef fun to_s do return name
1532
1533 redef var full_name is lazy do return "{mclass.full_name}::{name}"
1534
1535 redef var c_name is lazy do return mclass.c_name + "__" + "#{name}".to_cmangle
1536
1537 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1538 do
1539 assert not resolved_receiver.need_anchor
1540 resolved_receiver = resolved_receiver.undecorate
1541 assert resolved_receiver isa MClassType # It is the only remaining type
1542 var goalclass = self.mclass
1543 if resolved_receiver.mclass == goalclass then
1544 return resolved_receiver.arguments[self.rank]
1545 end
1546 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1547 for t in supertypes do
1548 if t.mclass == goalclass then
1549 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1550 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1551 var res = t.arguments[self.rank]
1552 return res
1553 end
1554 end
1555 abort
1556 end
1557
1558 # A PT is fixed when:
1559 # * Its bound is a enum class (see `enum_kind`).
1560 # The PT is just useless, but it is still a case.
1561 # * More usually, the `resolved_receiver` is a subclass of `self.mclass`,
1562 # so it is necessarily fixed in a `super` clause, either with a normal type
1563 # or with another PT.
1564 # See `resolve_for` for examples about related issues.
1565 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1566 do
1567 assert not resolved_receiver.need_anchor
1568 resolved_receiver = resolved_receiver.undecorate
1569 assert resolved_receiver isa MClassType # It is the only remaining type
1570 var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false)
1571 return res
1572 end
1573
1574 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1575 do
1576 assert can_resolve_for(mtype, anchor, mmodule)
1577 #print "{class_name}: {self}/{mtype}/{anchor}?"
1578
1579 if mtype isa MGenericType and mtype.mclass == self.mclass then
1580 var res = mtype.arguments[self.rank]
1581 if anchor != null and res.need_anchor then
1582 # Maybe the result can be resolved more if are bound to a final class
1583 var r2 = res.anchor_to(mmodule, anchor)
1584 if r2 isa MClassType and r2.mclass.kind == enum_kind then return r2
1585 end
1586 return res
1587 end
1588
1589 # self is a parameter type of mtype (or of a super-class of mtype)
1590 # The point of the function it to get the bound of the virtual type that make sense for mtype
1591 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1592 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1593 var resolved_receiver
1594 if mtype.need_anchor then
1595 assert anchor != null
1596 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1597 else
1598 resolved_receiver = mtype
1599 end
1600 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1601 if resolved_receiver isa MParameterType then
1602 assert anchor != null
1603 assert resolved_receiver.mclass == anchor.mclass
1604 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1605 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1606 end
1607 assert resolved_receiver isa MClassType # It is the only remaining type
1608
1609 # Eh! The parameter is in the current class.
1610 # So we return the corresponding argument, no mater what!
1611 if resolved_receiver.mclass == self.mclass then
1612 var res = resolved_receiver.arguments[self.rank]
1613 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1614 return res
1615 end
1616
1617 if resolved_receiver.need_anchor then
1618 assert anchor != null
1619 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1620 end
1621 # Now, we can get the bound
1622 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1623 # The bound is exactly as declared in the "type" property, so we must resolve it again
1624 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1625
1626 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1627
1628 return res
1629 end
1630
1631 redef fun can_resolve_for(mtype, anchor, mmodule)
1632 do
1633 if mtype.need_anchor then
1634 assert anchor != null
1635 mtype = mtype.anchor_to(mmodule, anchor)
1636 end
1637 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1638 end
1639 end
1640
1641 # A type that decorates another type.
1642 #
1643 # The point of this class is to provide a common implementation of sevices that just forward to the original type.
1644 # Specific decorator are expected to redefine (or to extend) the default implementation as this suit them.
1645 abstract class MProxyType
1646 super MType
1647 # The base type
1648 var mtype: MType
1649
1650 redef fun location do return mtype.location
1651
1652 redef fun model do return self.mtype.model
1653 redef fun need_anchor do return mtype.need_anchor
1654 redef fun as_nullable do return mtype.as_nullable
1655 redef fun as_notnull do return mtype.as_notnull
1656 redef fun undecorate do return mtype.undecorate
1657 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1658 do
1659 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1660 return res
1661 end
1662
1663 redef fun can_resolve_for(mtype, anchor, mmodule)
1664 do
1665 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1666 end
1667
1668 redef fun lookup_fixed(mmodule, resolved_receiver)
1669 do
1670 var t = mtype.lookup_fixed(mmodule, resolved_receiver)
1671 return t
1672 end
1673
1674 redef fun depth do return self.mtype.depth
1675
1676 redef fun length do return self.mtype.length
1677
1678 redef fun collect_mclassdefs(mmodule)
1679 do
1680 assert not self.need_anchor
1681 return self.mtype.collect_mclassdefs(mmodule)
1682 end
1683
1684 redef fun collect_mclasses(mmodule)
1685 do
1686 assert not self.need_anchor
1687 return self.mtype.collect_mclasses(mmodule)
1688 end
1689
1690 redef fun collect_mtypes(mmodule)
1691 do
1692 assert not self.need_anchor
1693 return self.mtype.collect_mtypes(mmodule)
1694 end
1695 end
1696
1697 # A type prefixed with "nullable"
1698 class MNullableType
1699 super MProxyType
1700
1701 init
1702 do
1703 self.to_s = "nullable {mtype}"
1704 end
1705
1706 redef var to_s is noinit
1707
1708 redef var full_name is lazy do return "nullable {mtype.full_name}"
1709
1710 redef var c_name is lazy do return "nullable__{mtype.c_name}"
1711
1712 redef fun as_nullable do return self
1713 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1714 do
1715 var res = super
1716 return res.as_nullable
1717 end
1718
1719 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable`
1720 redef fun lookup_fixed(mmodule, resolved_receiver)
1721 do
1722 var t = super
1723 if t == mtype then return self
1724 return t.as_nullable
1725 end
1726 end
1727
1728 # A non-null version of a formal type.
1729 #
1730 # When a formal type in bounded to a nullable type, this is the type of the not null version of it.
1731 class MNotNullType
1732 super MProxyType
1733
1734 redef fun to_s do return "not null {mtype}"
1735 redef var full_name is lazy do return "not null {mtype.full_name}"
1736 redef var c_name is lazy do return "notnull__{mtype.c_name}"
1737
1738 redef fun as_notnull do return self
1739
1740 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1741 do
1742 var res = super
1743 return res.as_notnull
1744 end
1745
1746 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_notnull`
1747 redef fun lookup_fixed(mmodule, resolved_receiver)
1748 do
1749 var t = super
1750 if t == mtype then return self
1751 return t.as_notnull
1752 end
1753 end
1754
1755 # The type of the only value null
1756 #
1757 # The is only one null type per model, see `MModel::null_type`.
1758 class MNullType
1759 super MType
1760 redef var model
1761 redef fun to_s do return "null"
1762 redef fun full_name do return "null"
1763 redef fun c_name do return "null"
1764 redef fun as_nullable do return self
1765
1766 redef var as_notnull = new MBottomType(model) is lazy
1767 redef fun need_anchor do return false
1768 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1769 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1770
1771 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1772
1773 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1774
1775 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1776 end
1777
1778 # The special universal most specific type.
1779 #
1780 # This type is intended to be only used internally for type computation or analysis and should not be exposed to the user.
1781 # The bottom type can de used to denote things that are absurd, dead, or the absence of knowledge.
1782 #
1783 # Semantically it is the singleton `null.as_notnull`.
1784 class MBottomType
1785 super MType
1786 redef var model
1787 redef fun to_s do return "bottom"
1788 redef fun full_name do return "bottom"
1789 redef fun c_name do return "bottom"
1790 redef fun as_nullable do return model.null_type
1791 redef fun as_notnull do return self
1792 redef fun need_anchor do return false
1793 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1794 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1795
1796 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1797
1798 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1799
1800 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1801 end
1802
1803 # A signature of a method
1804 class MSignature
1805 super MType
1806
1807 # The each parameter (in order)
1808 var mparameters: Array[MParameter]
1809
1810 # Returns a parameter named `name`, if any.
1811 fun mparameter_by_name(name: String): nullable MParameter
1812 do
1813 for p in mparameters do
1814 if p.name == name then return p
1815 end
1816 return null
1817 end
1818
1819 # The return type (null for a procedure)
1820 var return_mtype: nullable MType
1821
1822 redef fun depth
1823 do
1824 var dmax = 0
1825 var t = self.return_mtype
1826 if t != null then dmax = t.depth
1827 for p in mparameters do
1828 var d = p.mtype.depth
1829 if d > dmax then dmax = d
1830 end
1831 return dmax + 1
1832 end
1833
1834 redef fun length
1835 do
1836 var res = 1
1837 var t = self.return_mtype
1838 if t != null then res += t.length
1839 for p in mparameters do
1840 res += p.mtype.length
1841 end
1842 return res
1843 end
1844
1845 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1846 init
1847 do
1848 var vararg_rank = -1
1849 for i in [0..mparameters.length[ do
1850 var parameter = mparameters[i]
1851 if parameter.is_vararg then
1852 if vararg_rank >= 0 then
1853 # If there is more than one vararg,
1854 # consider that additional arguments cannot be mapped.
1855 vararg_rank = -1
1856 break
1857 end
1858 vararg_rank = i
1859 end
1860 end
1861 self.vararg_rank = vararg_rank
1862 end
1863
1864 # The rank of the main ellipsis (`...`) for vararg (starting from 0).
1865 # value is -1 if there is no vararg.
1866 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1867 #
1868 # From a model POV, a signature can contain more than one vararg parameter,
1869 # the `vararg_rank` just indicates the one that will receive the additional arguments.
1870 # However, currently, if there is more that one vararg parameter, no one will be the main one,
1871 # and additional arguments will be refused.
1872 var vararg_rank: Int is noinit
1873
1874 # The number of parameters
1875 fun arity: Int do return mparameters.length
1876
1877 redef fun to_s
1878 do
1879 var b = new FlatBuffer
1880 if not mparameters.is_empty then
1881 b.append("(")
1882 for i in [0..mparameters.length[ do
1883 var mparameter = mparameters[i]
1884 if i > 0 then b.append(", ")
1885 b.append(mparameter.name)
1886 b.append(": ")
1887 b.append(mparameter.mtype.to_s)
1888 if mparameter.is_vararg then
1889 b.append("...")
1890 end
1891 end
1892 b.append(")")
1893 end
1894 var ret = self.return_mtype
1895 if ret != null then
1896 b.append(": ")
1897 b.append(ret.to_s)
1898 end
1899 return b.to_s
1900 end
1901
1902 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
1903 do
1904 var params = new Array[MParameter]
1905 for p in self.mparameters do
1906 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1907 end
1908 var ret = self.return_mtype
1909 if ret != null then
1910 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1911 end
1912 var res = new MSignature(params, ret)
1913 return res
1914 end
1915 end
1916
1917 # A parameter in a signature
1918 class MParameter
1919 super MEntity
1920
1921 # The name of the parameter
1922 redef var name
1923
1924 # The static type of the parameter
1925 var mtype: MType
1926
1927 # Is the parameter a vararg?
1928 var is_vararg: Bool
1929
1930 redef fun to_s
1931 do
1932 if is_vararg then
1933 return "{name}: {mtype}..."
1934 else
1935 return "{name}: {mtype}"
1936 end
1937 end
1938
1939 # Returns a new parameter with the `mtype` resolved.
1940 # See `MType::resolve_for` for details.
1941 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
1942 do
1943 if not self.mtype.need_anchor then return self
1944 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1945 var res = new MParameter(self.name, newtype, self.is_vararg)
1946 return res
1947 end
1948
1949 redef fun model do return mtype.model
1950 end
1951
1952 # A service (global property) that generalize method, attribute, etc.
1953 #
1954 # `MProperty` are global to the model; it means that a `MProperty` is not bound
1955 # to a specific `MModule` nor a specific `MClass`.
1956 #
1957 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
1958 # and the other in subclasses and in refinements.
1959 #
1960 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
1961 # of any dynamic type).
1962 # For instance, a call site "x.foo" is associated to a `MProperty`.
1963 abstract class MProperty
1964 super MEntity
1965
1966 # The associated MPropDef subclass.
1967 # The two specialization hierarchy are symmetric.
1968 type MPROPDEF: MPropDef
1969
1970 # The classdef that introduce the property
1971 # While a property is not bound to a specific module, or class,
1972 # the introducing mclassdef is used for naming and visibility
1973 var intro_mclassdef: MClassDef
1974
1975 # The (short) name of the property
1976 redef var name
1977
1978 redef var location
1979
1980 redef fun mdoc_or_fallback do return intro.mdoc_or_fallback
1981
1982 # The canonical name of the property.
1983 #
1984 # It is currently the short-`name` prefixed by the short-name of the class and the full-name of the module.
1985 # Example: "my_package::my_module::MyClass::my_method"
1986 #
1987 # The full-name of the module is needed because two distinct modules of the same package can
1988 # still refine the same class and introduce homonym properties.
1989 #
1990 # For public properties not introduced by refinement, the module name is not used.
1991 #
1992 # Example: `my_package::MyClass::My_method`
1993 redef var full_name is lazy do
1994 if intro_mclassdef.is_intro then
1995 return "{intro_mclassdef.mmodule.namespace_for(visibility)}::{intro_mclassdef.mclass.name}::{name}"
1996 else
1997 return "{intro_mclassdef.mmodule.full_name}::{intro_mclassdef.mclass.name}::{name}"
1998 end
1999 end
2000
2001 redef var c_name is lazy do
2002 # FIXME use `namespace_for`
2003 return "{intro_mclassdef.mmodule.c_name}__{intro_mclassdef.mclass.name.to_cmangle}__{name.to_cmangle}"
2004 end
2005
2006 # The visibility of the property
2007 redef var visibility
2008
2009 # Is the property usable as an initializer?
2010 var is_autoinit = false is writable
2011
2012 init
2013 do
2014 intro_mclassdef.intro_mproperties.add(self)
2015 var model = intro_mclassdef.mmodule.model
2016 model.mproperties_by_name.add_one(name, self)
2017 model.mproperties.add(self)
2018 end
2019
2020 # All definitions of the property.
2021 # The first is the introduction,
2022 # The other are redefinitions (in refinements and in subclasses)
2023 var mpropdefs = new Array[MPROPDEF]
2024
2025 # The definition that introduces the property.
2026 #
2027 # Warning: such a definition may not exist in the early life of the object.
2028 # In this case, the method will abort.
2029 var intro: MPROPDEF is noinit
2030
2031 redef fun model do return intro.model
2032
2033 # Alias for `name`
2034 redef fun to_s do return name
2035
2036 # Return the most specific property definitions defined or inherited by a type.
2037 # The selection knows that refinement is stronger than specialization;
2038 # however, in case of conflict more than one property are returned.
2039 # If mtype does not know mproperty then an empty array is returned.
2040 #
2041 # If you want the really most specific property, then look at `lookup_first_definition`
2042 #
2043 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2044 # ENSURE: `not mtype.has_mproperty(mmodule, self) == result.is_empty`
2045 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2046 do
2047 assert not mtype.need_anchor
2048 mtype = mtype.undecorate
2049
2050 var cache = self.lookup_definitions_cache[mmodule, mtype]
2051 if cache != null then return cache
2052
2053 #print "select prop {mproperty} for {mtype} in {self}"
2054 # First, select all candidates
2055 var candidates = new Array[MPROPDEF]
2056 for mpropdef in self.mpropdefs do
2057 # If the definition is not imported by the module, then skip
2058 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2059 # If the definition is not inherited by the type, then skip
2060 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2061 # Else, we keep it
2062 candidates.add(mpropdef)
2063 end
2064 # Fast track for only one candidate
2065 if candidates.length <= 1 then
2066 self.lookup_definitions_cache[mmodule, mtype] = candidates
2067 return candidates
2068 end
2069
2070 # Second, filter the most specific ones
2071 return select_most_specific(mmodule, candidates)
2072 end
2073
2074 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2075
2076 # Return the most specific property definitions inherited by a type.
2077 # The selection knows that refinement is stronger than specialization;
2078 # however, in case of conflict more than one property are returned.
2079 # If mtype does not know mproperty then an empty array is returned.
2080 #
2081 # If you want the really most specific property, then look at `lookup_next_definition`
2082 #
2083 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2084 # ENSURE: `not mtype.has_mproperty(mmodule, self) implies result.is_empty`
2085 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2086 do
2087 assert not mtype.need_anchor
2088 mtype = mtype.undecorate
2089
2090 # First, select all candidates
2091 var candidates = new Array[MPROPDEF]
2092 for mpropdef in self.mpropdefs do
2093 # If the definition is not imported by the module, then skip
2094 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2095 # If the definition is not inherited by the type, then skip
2096 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2097 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
2098 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
2099 # Else, we keep it
2100 candidates.add(mpropdef)
2101 end
2102 # Fast track for only one candidate
2103 if candidates.length <= 1 then return candidates
2104
2105 # Second, filter the most specific ones
2106 return select_most_specific(mmodule, candidates)
2107 end
2108
2109 # Return an array containing olny the most specific property definitions
2110 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
2111 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
2112 do
2113 var res = new Array[MPROPDEF]
2114 for pd1 in candidates do
2115 var cd1 = pd1.mclassdef
2116 var c1 = cd1.mclass
2117 var keep = true
2118 for pd2 in candidates do
2119 if pd2 == pd1 then continue # do not compare with self!
2120 var cd2 = pd2.mclassdef
2121 var c2 = cd2.mclass
2122 if c2.mclass_type == c1.mclass_type then
2123 if cd2.mmodule.in_importation < cd1.mmodule then
2124 # cd2 refines cd1; therefore we skip pd1
2125 keep = false
2126 break
2127 end
2128 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
2129 # cd2 < cd1; therefore we skip pd1
2130 keep = false
2131 break
2132 end
2133 end
2134 if keep then
2135 res.add(pd1)
2136 end
2137 end
2138 if res.is_empty then
2139 print "All lost! {candidates.join(", ")}"
2140 # FIXME: should be abort!
2141 end
2142 return res
2143 end
2144
2145 # Return the most specific definition in the linearization of `mtype`.
2146 #
2147 # If you want to know the next properties in the linearization,
2148 # look at `MPropDef::lookup_next_definition`.
2149 #
2150 # FIXME: the linearization is still unspecified
2151 #
2152 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2153 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2154 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
2155 do
2156 return lookup_all_definitions(mmodule, mtype).first
2157 end
2158
2159 # Return all definitions in a linearization order
2160 # Most specific first, most general last
2161 #
2162 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2163 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2164 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2165 do
2166 mtype = mtype.undecorate
2167
2168 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
2169 if cache != null then return cache
2170
2171 assert not mtype.need_anchor
2172 assert mtype.has_mproperty(mmodule, self)
2173
2174 #print "select prop {mproperty} for {mtype} in {self}"
2175 # First, select all candidates
2176 var candidates = new Array[MPROPDEF]
2177 for mpropdef in self.mpropdefs do
2178 # If the definition is not imported by the module, then skip
2179 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2180 # If the definition is not inherited by the type, then skip
2181 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2182 # Else, we keep it
2183 candidates.add(mpropdef)
2184 end
2185 # Fast track for only one candidate
2186 if candidates.length <= 1 then
2187 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2188 return candidates
2189 end
2190
2191 mmodule.linearize_mpropdefs(candidates)
2192 candidates = candidates.reversed
2193 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2194 return candidates
2195 end
2196
2197 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2198 end
2199
2200 # A global method
2201 class MMethod
2202 super MProperty
2203
2204 redef type MPROPDEF: MMethodDef
2205
2206 # Is the property defined at the top_level of the module?
2207 # Currently such a property are stored in `Object`
2208 var is_toplevel: Bool = false is writable
2209
2210 # Is the property a constructor?
2211 # Warning, this property can be inherited by subclasses with or without being a constructor
2212 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
2213 var is_init: Bool = false is writable
2214
2215 # The constructor is a (the) root init with empty signature but a set of initializers
2216 var is_root_init: Bool = false is writable
2217
2218 # Is the property a 'new' constructor?
2219 var is_new: Bool = false is writable
2220
2221 # Is the property a legal constructor for a given class?
2222 # As usual, visibility is not considered.
2223 # FIXME not implemented
2224 fun is_init_for(mclass: MClass): Bool
2225 do
2226 return self.is_init
2227 end
2228
2229 # A specific method that is safe to call on null.
2230 # Currently, only `==`, `!=` and `is_same_instance` are safe
2231 fun is_null_safe: Bool do return name == "==" or name == "!=" or name == "is_same_instance"
2232 end
2233
2234 # A global attribute
2235 class MAttribute
2236 super MProperty
2237
2238 redef type MPROPDEF: MAttributeDef
2239
2240 end
2241
2242 # A global virtual type
2243 class MVirtualTypeProp
2244 super MProperty
2245
2246 redef type MPROPDEF: MVirtualTypeDef
2247
2248 # The formal type associated to the virtual type property
2249 var mvirtualtype = new MVirtualType(self)
2250 end
2251
2252 # A definition of a property (local property)
2253 #
2254 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
2255 # specific class definition (which belong to a specific module)
2256 abstract class MPropDef
2257 super MEntity
2258
2259 # The associated `MProperty` subclass.
2260 # the two specialization hierarchy are symmetric
2261 type MPROPERTY: MProperty
2262
2263 # Self class
2264 type MPROPDEF: MPropDef
2265
2266 # The class definition where the property definition is
2267 var mclassdef: MClassDef
2268
2269 # The associated global property
2270 var mproperty: MPROPERTY
2271
2272 redef var location: Location
2273
2274 redef fun visibility do return mproperty.visibility
2275
2276 init
2277 do
2278 mclassdef.mpropdefs.add(self)
2279 mproperty.mpropdefs.add(self)
2280 if mproperty.intro_mclassdef == mclassdef then
2281 assert not isset mproperty._intro
2282 mproperty.intro = self
2283 end
2284 self.to_s = "{mclassdef}${mproperty}"
2285 end
2286
2287 # Actually the name of the `mproperty`
2288 redef fun name do return mproperty.name
2289
2290 # The full-name of mpropdefs combine the information about the `classdef` and the `mproperty`.
2291 #
2292 # Therefore the combination of identifiers is awful,
2293 # the worst case being
2294 #
2295 # * a property "p::m::A::x"
2296 # * redefined in a refinement of a class "q::n::B"
2297 # * in a module "r::o"
2298 # * so "r::o$q::n::B$p::m::A::x"
2299 #
2300 # Fortunately, the full-name is simplified when entities are repeated.
2301 # For the previous case, the simplest form is "p$A$x".
2302 redef var full_name is lazy do
2303 var res = new FlatBuffer
2304
2305 # The first part is the mclassdef. Worst case is "r::o$q::n::B"
2306 res.append mclassdef.full_name
2307
2308 res.append "$"
2309
2310 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2311 # intro are unambiguous in a class
2312 res.append name
2313 else
2314 # Just try to simplify each part
2315 if mclassdef.mmodule.mpackage != mproperty.intro_mclassdef.mmodule.mpackage then
2316 # precise "p::m" only if "p" != "r"
2317 res.append mproperty.intro_mclassdef.mmodule.namespace_for(mproperty.visibility)
2318 res.append "::"
2319 else if mproperty.visibility <= private_visibility then
2320 # Same package ("p"=="q"), but private visibility,
2321 # does the module part ("::m") need to be displayed
2322 if mclassdef.mmodule.namespace_for(mclassdef.mclass.visibility) != mproperty.intro_mclassdef.mmodule.mpackage then
2323 res.append "::"
2324 res.append mproperty.intro_mclassdef.mmodule.name
2325 res.append "::"
2326 end
2327 end
2328 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2329 # precise "B" only if not the same class than "A"
2330 res.append mproperty.intro_mclassdef.name
2331 res.append "::"
2332 end
2333 # Always use the property name "x"
2334 res.append mproperty.name
2335 end
2336 return res.to_s
2337 end
2338
2339 redef var c_name is lazy do
2340 var res = new FlatBuffer
2341 res.append mclassdef.c_name
2342 res.append "___"
2343 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2344 res.append name.to_cmangle
2345 else
2346 if mclassdef.mmodule != mproperty.intro_mclassdef.mmodule then
2347 res.append mproperty.intro_mclassdef.mmodule.c_name
2348 res.append "__"
2349 end
2350 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2351 res.append mproperty.intro_mclassdef.name.to_cmangle
2352 res.append "__"
2353 end
2354 res.append mproperty.name.to_cmangle
2355 end
2356 return res.to_s
2357 end
2358
2359 redef fun model do return mclassdef.model
2360
2361 # Internal name combining the module, the class and the property
2362 # Example: "mymodule$MyClass$mymethod"
2363 redef var to_s is noinit
2364
2365 # Is self the definition that introduce the property?
2366 fun is_intro: Bool do return isset mproperty._intro and mproperty.intro == self
2367
2368 # Return the next definition in linearization of `mtype`.
2369 #
2370 # This method is used to determine what method is called by a super.
2371 #
2372 # REQUIRE: `not mtype.need_anchor`
2373 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
2374 do
2375 assert not mtype.need_anchor
2376
2377 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
2378 var i = mpropdefs.iterator
2379 while i.is_ok and i.item != self do i.next
2380 assert has_property: i.is_ok
2381 i.next
2382 assert has_next_property: i.is_ok
2383 return i.item
2384 end
2385 end
2386
2387 # A local definition of a method
2388 class MMethodDef
2389 super MPropDef
2390
2391 redef type MPROPERTY: MMethod
2392 redef type MPROPDEF: MMethodDef
2393
2394 # The signature attached to the property definition
2395 var msignature: nullable MSignature = null is writable
2396
2397 # The signature attached to the `new` call on a root-init
2398 # This is a concatenation of the signatures of the initializers
2399 #
2400 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2401 var new_msignature: nullable MSignature = null is writable
2402
2403 # List of initialisers to call in root-inits
2404 #
2405 # They could be setters or attributes
2406 #
2407 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2408 var initializers = new Array[MProperty]
2409
2410 # Is the method definition abstract?
2411 var is_abstract: Bool = false is writable
2412
2413 # Is the method definition intern?
2414 var is_intern = false is writable
2415
2416 # Is the method definition extern?
2417 var is_extern = false is writable
2418
2419 # An optional constant value returned in functions.
2420 #
2421 # Only some specific primitife value are accepted by engines.
2422 # Is used when there is no better implementation available.
2423 #
2424 # Currently used only for the implementation of the `--define`
2425 # command-line option.
2426 # SEE: module `mixin`.
2427 var constant_value: nullable Object = null is writable
2428 end
2429
2430 # A local definition of an attribute
2431 class MAttributeDef
2432 super MPropDef
2433
2434 redef type MPROPERTY: MAttribute
2435 redef type MPROPDEF: MAttributeDef
2436
2437 # The static type of the attribute
2438 var static_mtype: nullable MType = null is writable
2439 end
2440
2441 # A local definition of a virtual type
2442 class MVirtualTypeDef
2443 super MPropDef
2444
2445 redef type MPROPERTY: MVirtualTypeProp
2446 redef type MPROPDEF: MVirtualTypeDef
2447
2448 # The bound of the virtual type
2449 var bound: nullable MType = null is writable
2450
2451 # Is the bound fixed?
2452 var is_fixed = false is writable
2453 end
2454
2455 # A kind of class.
2456 #
2457 # * `abstract_kind`
2458 # * `concrete_kind`
2459 # * `interface_kind`
2460 # * `enum_kind`
2461 # * `extern_kind`
2462 #
2463 # Note this class is basically an enum.
2464 # FIXME: use a real enum once user-defined enums are available
2465 class MClassKind
2466 redef var to_s
2467
2468 # Is a constructor required?
2469 var need_init: Bool
2470
2471 # TODO: private init because enumeration.
2472
2473 # Can a class of kind `self` specializes a class of kine `other`?
2474 fun can_specialize(other: MClassKind): Bool
2475 do
2476 if other == interface_kind then return true # everybody can specialize interfaces
2477 if self == interface_kind or self == enum_kind then
2478 # no other case for interfaces
2479 return false
2480 else if self == extern_kind then
2481 # only compatible with themselves
2482 return self == other
2483 else if other == enum_kind or other == extern_kind then
2484 # abstract_kind and concrete_kind are incompatible
2485 return false
2486 end
2487 # remain only abstract_kind and concrete_kind
2488 return true
2489 end
2490 end
2491
2492 # The class kind `abstract`
2493 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", true)
2494 # The class kind `concrete`
2495 fun concrete_kind: MClassKind do return once new MClassKind("class", true)
2496 # The class kind `interface`
2497 fun interface_kind: MClassKind do return once new MClassKind("interface", false)
2498 # The class kind `enum`
2499 fun enum_kind: MClassKind do return once new MClassKind("enum", false)
2500 # The class kind `extern`
2501 fun extern_kind: MClassKind do return once new MClassKind("extern class", false)