model: add `full_name` to entities that miss one
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class Model
34 # All known classes
35 var mclasses = new Array[MClass]
36
37 # All known properties
38 var mproperties = new Array[MProperty]
39
40 # Hierarchy of class definition.
41 #
42 # Each classdef is associated with its super-classdefs in regard to
43 # its module of definition.
44 var mclassdef_hierarchy = new POSet[MClassDef]
45
46 # Class-type hierarchy restricted to the introduction.
47 #
48 # The idea is that what is true on introduction is always true whatever
49 # the module considered.
50 # Therefore, this hierarchy is used for a fast positive subtype check.
51 #
52 # This poset will evolve in a monotonous way:
53 # * Two non connected nodes will remain unconnected
54 # * New nodes can appear with new edges
55 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
56
57 # Global overlapped class-type hierarchy.
58 # The hierarchy when all modules are combined.
59 # Therefore, this hierarchy is used for a fast negative subtype check.
60 #
61 # This poset will evolve in an anarchic way. Loops can even be created.
62 #
63 # FIXME decide what to do on loops
64 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
65
66 # Collections of classes grouped by their short name
67 private var mclasses_by_name = new MultiHashMap[String, MClass]
68
69 # Return all class named `name`.
70 #
71 # If such a class does not exist, null is returned
72 # (instead of an empty array)
73 #
74 # Visibility or modules are not considered
75 fun get_mclasses_by_name(name: String): nullable Array[MClass]
76 do
77 if mclasses_by_name.has_key(name) then
78 return mclasses_by_name[name]
79 else
80 return null
81 end
82 end
83
84 # Collections of properties grouped by their short name
85 private var mproperties_by_name = new MultiHashMap[String, MProperty]
86
87 # Return all properties named `name`.
88 #
89 # If such a property does not exist, null is returned
90 # (instead of an empty array)
91 #
92 # Visibility or modules are not considered
93 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
94 do
95 if not mproperties_by_name.has_key(name) then
96 return null
97 else
98 return mproperties_by_name[name]
99 end
100 end
101
102 # The only null type
103 var null_type = new MNullType(self)
104
105 # Build an ordered tree with from `concerns`
106 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
107 var seen = new HashSet[MConcern]
108 var res = new ConcernsTree
109
110 var todo = new Array[MConcern]
111 todo.add_all mconcerns
112
113 while not todo.is_empty do
114 var c = todo.pop
115 if seen.has(c) then continue
116 var pc = c.parent_concern
117 if pc == null then
118 res.add(null, c)
119 else
120 res.add(pc, c)
121 todo.add(pc)
122 end
123 seen.add(c)
124 end
125
126 return res
127 end
128 end
129
130 # An OrderedTree that can be easily refined for display purposes
131 class ConcernsTree
132 super OrderedTree[MConcern]
133 end
134
135 redef class MModule
136 # All the classes introduced in the module
137 var intro_mclasses = new Array[MClass]
138
139 # All the class definitions of the module
140 # (introduction and refinement)
141 var mclassdefs = new Array[MClassDef]
142
143 # Does the current module has a given class `mclass`?
144 # Return true if the mmodule introduces, refines or imports a class.
145 # Visibility is not considered.
146 fun has_mclass(mclass: MClass): Bool
147 do
148 return self.in_importation <= mclass.intro_mmodule
149 end
150
151 # Full hierarchy of introduced ans imported classes.
152 #
153 # Create a new hierarchy got by flattening the classes for the module
154 # and its imported modules.
155 # Visibility is not considered.
156 #
157 # Note: this function is expensive and is usually used for the main
158 # module of a program only. Do not use it to do you own subtype
159 # functions.
160 fun flatten_mclass_hierarchy: POSet[MClass]
161 do
162 var res = self.flatten_mclass_hierarchy_cache
163 if res != null then return res
164 res = new POSet[MClass]
165 for m in self.in_importation.greaters do
166 for cd in m.mclassdefs do
167 var c = cd.mclass
168 res.add_node(c)
169 for s in cd.supertypes do
170 res.add_edge(c, s.mclass)
171 end
172 end
173 end
174 self.flatten_mclass_hierarchy_cache = res
175 return res
176 end
177
178 # Sort a given array of classes using the linearization order of the module
179 # The most general is first, the most specific is last
180 fun linearize_mclasses(mclasses: Array[MClass])
181 do
182 self.flatten_mclass_hierarchy.sort(mclasses)
183 end
184
185 # Sort a given array of class definitions using the linearization order of the module
186 # the refinement link is stronger than the specialisation link
187 # The most general is first, the most specific is last
188 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
189 do
190 var sorter = new MClassDefSorter(self)
191 sorter.sort(mclassdefs)
192 end
193
194 # Sort a given array of property definitions using the linearization order of the module
195 # the refinement link is stronger than the specialisation link
196 # The most general is first, the most specific is last
197 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
198 do
199 var sorter = new MPropDefSorter(self)
200 sorter.sort(mpropdefs)
201 end
202
203 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
204
205 # The primitive type `Object`, the root of the class hierarchy
206 fun object_type: MClassType
207 do
208 var res = self.object_type_cache
209 if res != null then return res
210 res = self.get_primitive_class("Object").mclass_type
211 self.object_type_cache = res
212 return res
213 end
214
215 private var object_type_cache: nullable MClassType
216
217 # The type `Pointer`, super class to all extern classes
218 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
219
220 # The primitive type `Bool`
221 fun bool_type: MClassType
222 do
223 var res = self.bool_type_cache
224 if res != null then return res
225 res = self.get_primitive_class("Bool").mclass_type
226 self.bool_type_cache = res
227 return res
228 end
229
230 private var bool_type_cache: nullable MClassType
231
232 # The primitive type `Sys`, the main type of the program, if any
233 fun sys_type: nullable MClassType
234 do
235 var clas = self.model.get_mclasses_by_name("Sys")
236 if clas == null then return null
237 return get_primitive_class("Sys").mclass_type
238 end
239
240 # The primitive type `Finalizable`
241 # Used to tag classes that need to be finalized.
242 fun finalizable_type: nullable MClassType
243 do
244 var clas = self.model.get_mclasses_by_name("Finalizable")
245 if clas == null then return null
246 return get_primitive_class("Finalizable").mclass_type
247 end
248
249 # Force to get the primitive class named `name` or abort
250 fun get_primitive_class(name: String): MClass
251 do
252 var cla = self.model.get_mclasses_by_name(name)
253 if cla == null then
254 if name == "Bool" and self.model.get_mclasses_by_name("Object") != null then
255 # Bool is injected because it is needed by engine to code the result
256 # of the implicit casts.
257 var c = new MClass(self, name, null, enum_kind, public_visibility)
258 var cladef = new MClassDef(self, c.mclass_type, new Location(null, 0,0,0,0))
259 cladef.set_supertypes([object_type])
260 cladef.add_in_hierarchy
261 return c
262 end
263 print("Fatal Error: no primitive class {name}")
264 exit(1)
265 end
266 if cla.length != 1 then
267 var msg = "Fatal Error: more than one primitive class {name}:"
268 for c in cla do msg += " {c.full_name}"
269 print msg
270 #exit(1)
271 end
272 return cla.first
273 end
274
275 # Try to get the primitive method named `name` on the type `recv`
276 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
277 do
278 var props = self.model.get_mproperties_by_name(name)
279 if props == null then return null
280 var res: nullable MMethod = null
281 for mprop in props do
282 assert mprop isa MMethod
283 var intro = mprop.intro_mclassdef
284 for mclassdef in recv.mclassdefs do
285 if not self.in_importation.greaters.has(mclassdef.mmodule) then continue
286 if not mclassdef.in_hierarchy.greaters.has(intro) then continue
287 if res == null then
288 res = mprop
289 else if res != mprop then
290 print("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
291 abort
292 end
293 end
294 end
295 return res
296 end
297 end
298
299 private class MClassDefSorter
300 super Comparator
301 redef type COMPARED: MClassDef
302 var mmodule: MModule
303 redef fun compare(a, b)
304 do
305 var ca = a.mclass
306 var cb = b.mclass
307 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
308 return mmodule.model.mclassdef_hierarchy.compare(a, b)
309 end
310 end
311
312 private class MPropDefSorter
313 super Comparator
314 redef type COMPARED: MPropDef
315 var mmodule: MModule
316 redef fun compare(pa, pb)
317 do
318 var a = pa.mclassdef
319 var b = pb.mclassdef
320 var ca = a.mclass
321 var cb = b.mclass
322 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
323 return mmodule.model.mclassdef_hierarchy.compare(a, b)
324 end
325 end
326
327 # A named class
328 #
329 # `MClass` are global to the model; it means that a `MClass` is not bound to a
330 # specific `MModule`.
331 #
332 # This characteristic helps the reasoning about classes in a program since a
333 # single `MClass` object always denote the same class.
334 #
335 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
336 # These do not really have properties nor belong to a hierarchy since the property and the
337 # hierarchy of a class depends of the refinement in the modules.
338 #
339 # Most services on classes require the precision of a module, and no one can asks what are
340 # the super-classes of a class nor what are properties of a class without precising what is
341 # the module considered.
342 #
343 # For instance, during the typing of a source-file, the module considered is the module of the file.
344 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
345 # *is the method `foo` exists in the class `Bar` in the current module?*
346 #
347 # During some global analysis, the module considered may be the main module of the program.
348 class MClass
349 super MEntity
350
351 # The module that introduce the class
352 # While classes are not bound to a specific module,
353 # the introducing module is used for naming an visibility
354 var intro_mmodule: MModule
355
356 # The short name of the class
357 # In Nit, the name of a class cannot evolve in refinements
358 redef var name: String
359
360 # The canonical name of the class
361 #
362 # It is the name of the class prefixed by the full_name of the `intro_mmodule`
363 # Example: `"owner::module::MyClass"`
364 redef var full_name is lazy do return "{self.intro_mmodule.full_name}::{name}"
365
366 # The number of generic formal parameters
367 # 0 if the class is not generic
368 var arity: Int is noinit
369
370 # Each generic formal parameters in order.
371 # is empty if the class is not generic
372 var mparameters = new Array[MParameterType]
373
374 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
375 autoinit
376 do
377 if parameter_names == null then
378 self.arity = 0
379 else
380 self.arity = parameter_names.length
381 end
382
383 # Create the formal parameter types
384 if arity > 0 then
385 assert parameter_names != null
386 var mparametertypes = new Array[MParameterType]
387 for i in [0..arity[ do
388 var mparametertype = new MParameterType(self, i, parameter_names[i])
389 mparametertypes.add(mparametertype)
390 end
391 self.mparameters = mparametertypes
392 var mclass_type = new MGenericType(self, mparametertypes)
393 self.mclass_type = mclass_type
394 self.get_mtype_cache[mparametertypes] = mclass_type
395 else
396 self.mclass_type = new MClassType(self)
397 end
398 end
399
400 # The kind of the class (interface, abstract class, etc.)
401 # In Nit, the kind of a class cannot evolve in refinements
402 var kind: MClassKind
403
404 # The visibility of the class
405 # In Nit, the visibility of a class cannot evolve in refinements
406 var visibility: MVisibility
407
408 init
409 do
410 intro_mmodule.intro_mclasses.add(self)
411 var model = intro_mmodule.model
412 model.mclasses_by_name.add_one(name, self)
413 model.mclasses.add(self)
414 end
415
416 redef fun model do return intro_mmodule.model
417
418 # All class definitions (introduction and refinements)
419 var mclassdefs = new Array[MClassDef]
420
421 # Alias for `name`
422 redef fun to_s do return self.name
423
424 # The definition that introduces the class.
425 #
426 # Warning: such a definition may not exist in the early life of the object.
427 # In this case, the method will abort.
428 var intro: MClassDef is noinit
429
430 # Return the class `self` in the class hierarchy of the module `mmodule`.
431 #
432 # SEE: `MModule::flatten_mclass_hierarchy`
433 # REQUIRE: `mmodule.has_mclass(self)`
434 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
435 do
436 return mmodule.flatten_mclass_hierarchy[self]
437 end
438
439 # The principal static type of the class.
440 #
441 # For non-generic class, mclass_type is the only `MClassType` based
442 # on self.
443 #
444 # For a generic class, the arguments are the formal parameters.
445 # i.e.: for the class Array[E:Object], the `mclass_type` is Array[E].
446 # If you want Array[Object] the see `MClassDef::bound_mtype`
447 #
448 # For generic classes, the mclass_type is also the way to get a formal
449 # generic parameter type.
450 #
451 # To get other types based on a generic class, see `get_mtype`.
452 #
453 # ENSURE: `mclass_type.mclass == self`
454 var mclass_type: MClassType is noinit
455
456 # Return a generic type based on the class
457 # Is the class is not generic, then the result is `mclass_type`
458 #
459 # REQUIRE: `mtype_arguments.length == self.arity`
460 fun get_mtype(mtype_arguments: Array[MType]): MClassType
461 do
462 assert mtype_arguments.length == self.arity
463 if self.arity == 0 then return self.mclass_type
464 var res = get_mtype_cache.get_or_null(mtype_arguments)
465 if res != null then return res
466 res = new MGenericType(self, mtype_arguments)
467 self.get_mtype_cache[mtype_arguments.to_a] = res
468 return res
469 end
470
471 private var get_mtype_cache = new HashMap[Array[MType], MGenericType]
472 end
473
474
475 # A definition (an introduction or a refinement) of a class in a module
476 #
477 # A `MClassDef` is associated with an explicit (or almost) definition of a
478 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
479 # a specific class and a specific module, and contains declarations like super-classes
480 # or properties.
481 #
482 # It is the class definitions that are the backbone of most things in the model:
483 # ClassDefs are defined with regard with other classdefs.
484 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
485 #
486 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
487 class MClassDef
488 super MEntity
489
490 # The module where the definition is
491 var mmodule: MModule
492
493 # The associated `MClass`
494 var mclass: MClass is noinit
495
496 # The bounded type associated to the mclassdef
497 #
498 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
499 # are the same type.
500 #
501 # Example:
502 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
503 # If you want Array[E], then see `mclass.mclass_type`
504 #
505 # ENSURE: `bound_mtype.mclass == self.mclass`
506 var bound_mtype: MClassType
507
508 # The origin of the definition
509 var location: Location
510
511 # Internal name combining the module and the class
512 # Example: "mymodule#MyClass"
513 redef var to_s: String is noinit
514
515 init
516 do
517 self.mclass = bound_mtype.mclass
518 mmodule.mclassdefs.add(self)
519 mclass.mclassdefs.add(self)
520 if mclass.intro_mmodule == mmodule then
521 assert not isset mclass._intro
522 mclass.intro = self
523 end
524 self.to_s = "{mmodule}#{mclass}"
525 end
526
527 # Actually the name of the `mclass`
528 redef fun name do return mclass.name
529
530 # The module and class name separated by a '#'.
531 #
532 # The short-name of the class is used for introduction.
533 # Example: "my_module#MyClass"
534 #
535 # The full-name of the class is used for refinement.
536 # Example: "my_module#intro_module::MyClass"
537 redef var full_name is lazy do
538 if is_intro then
539 return "{mmodule.full_name}#{mclass.name}"
540 else
541 return "{mmodule.full_name}#{mclass.full_name}"
542 end
543 end
544
545 redef fun model do return mmodule.model
546
547 # All declared super-types
548 # FIXME: quite ugly but not better idea yet
549 var supertypes = new Array[MClassType]
550
551 # Register some super-types for the class (ie "super SomeType")
552 #
553 # The hierarchy must not already be set
554 # REQUIRE: `self.in_hierarchy == null`
555 fun set_supertypes(supertypes: Array[MClassType])
556 do
557 assert unique_invocation: self.in_hierarchy == null
558 var mmodule = self.mmodule
559 var model = mmodule.model
560 var mtype = self.bound_mtype
561
562 for supertype in supertypes do
563 self.supertypes.add(supertype)
564
565 # Register in full_type_specialization_hierarchy
566 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
567 # Register in intro_type_specialization_hierarchy
568 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
569 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
570 end
571 end
572
573 end
574
575 # Collect the super-types (set by set_supertypes) to build the hierarchy
576 #
577 # This function can only invoked once by class
578 # REQUIRE: `self.in_hierarchy == null`
579 # ENSURE: `self.in_hierarchy != null`
580 fun add_in_hierarchy
581 do
582 assert unique_invocation: self.in_hierarchy == null
583 var model = mmodule.model
584 var res = model.mclassdef_hierarchy.add_node(self)
585 self.in_hierarchy = res
586 var mtype = self.bound_mtype
587
588 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
589 # The simpliest way is to attach it to collect_mclassdefs
590 for mclassdef in mtype.collect_mclassdefs(mmodule) do
591 res.poset.add_edge(self, mclassdef)
592 end
593 end
594
595 # The view of the class definition in `mclassdef_hierarchy`
596 var in_hierarchy: nullable POSetElement[MClassDef] = null
597
598 # Is the definition the one that introduced `mclass`?
599 fun is_intro: Bool do return mclass.intro == self
600
601 # All properties introduced by the classdef
602 var intro_mproperties = new Array[MProperty]
603
604 # All property definitions in the class (introductions and redefinitions)
605 var mpropdefs = new Array[MPropDef]
606 end
607
608 # A global static type
609 #
610 # MType are global to the model; it means that a `MType` is not bound to a
611 # specific `MModule`.
612 # This characteristic helps the reasoning about static types in a program
613 # since a single `MType` object always denote the same type.
614 #
615 # However, because a `MType` is global, it does not really have properties
616 # nor have subtypes to a hierarchy since the property and the class hierarchy
617 # depends of a module.
618 # Moreover, virtual types an formal generic parameter types also depends on
619 # a receiver to have sense.
620 #
621 # Therefore, most method of the types require a module and an anchor.
622 # The module is used to know what are the classes and the specialization
623 # links.
624 # The anchor is used to know what is the bound of the virtual types and formal
625 # generic parameter types.
626 #
627 # MType are not directly usable to get properties. See the `anchor_to` method
628 # and the `MClassType` class.
629 #
630 # FIXME: the order of the parameters is not the best. We mus pick on from:
631 # * foo(mmodule, anchor, othertype)
632 # * foo(othertype, anchor, mmodule)
633 # * foo(anchor, mmodule, othertype)
634 # * foo(othertype, mmodule, anchor)
635 abstract class MType
636 super MEntity
637
638 redef fun name do return to_s
639
640 # Return true if `self` is an subtype of `sup`.
641 # The typing is done using the standard typing policy of Nit.
642 #
643 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
644 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
645 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
646 do
647 var sub = self
648 if sub == sup then return true
649
650 #print "1.is {sub} a {sup}? ===="
651
652 if anchor == null then
653 assert not sub.need_anchor
654 assert not sup.need_anchor
655 else
656 # First, resolve the formal types to the simplest equivalent forms in the receiver
657 assert sub.can_resolve_for(anchor, null, mmodule)
658 sub = sub.lookup_fixed(mmodule, anchor)
659 assert sup.can_resolve_for(anchor, null, mmodule)
660 sup = sup.lookup_fixed(mmodule, anchor)
661 end
662
663 # Does `sup` accept null or not?
664 # Discard the nullable marker if it exists
665 var sup_accept_null = false
666 if sup isa MNullableType then
667 sup_accept_null = true
668 sup = sup.mtype
669 else if sup isa MNullType then
670 sup_accept_null = true
671 end
672
673 # Can `sub` provide null or not?
674 # Thus we can match with `sup_accept_null`
675 # Also discard the nullable marker if it exists
676 if sub isa MNullableType then
677 if not sup_accept_null then return false
678 sub = sub.mtype
679 else if sub isa MNullType then
680 return sup_accept_null
681 end
682 # Now the case of direct null and nullable is over.
683
684 # If `sub` is a formal type, then it is accepted if its bound is accepted
685 while sub isa MParameterType or sub isa MVirtualType do
686 #print "3.is {sub} a {sup}?"
687
688 # A unfixed formal type can only accept itself
689 if sub == sup then return true
690
691 assert anchor != null
692 sub = sub.lookup_bound(mmodule, anchor)
693
694 #print "3.is {sub} a {sup}?"
695
696 # Manage the second layer of null/nullable
697 if sub isa MNullableType then
698 if not sup_accept_null then return false
699 sub = sub.mtype
700 else if sub isa MNullType then
701 return sup_accept_null
702 end
703 end
704 #print "4.is {sub} a {sup}? <- no more resolution"
705
706 assert sub isa MClassType # It is the only remaining type
707
708 # A unfixed formal type can only accept itself
709 if sup isa MParameterType or sup isa MVirtualType then
710 return false
711 end
712
713 if sup isa MNullType then
714 # `sup` accepts only null
715 return false
716 end
717
718 assert sup isa MClassType # It is the only remaining type
719
720 # Now both are MClassType, we need to dig
721
722 if sub == sup then return true
723
724 if anchor == null then anchor = sub # UGLY: any anchor will work
725 var resolved_sub = sub.anchor_to(mmodule, anchor)
726 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
727 if res == false then return false
728 if not sup isa MGenericType then return true
729 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
730 assert sub2.mclass == sup.mclass
731 for i in [0..sup.mclass.arity[ do
732 var sub_arg = sub2.arguments[i]
733 var sup_arg = sup.arguments[i]
734 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
735 if res == false then return false
736 end
737 return true
738 end
739
740 # The base class type on which self is based
741 #
742 # This base type is used to get property (an internally to perform
743 # unsafe type comparison).
744 #
745 # Beware: some types (like null) are not based on a class thus this
746 # method will crash
747 #
748 # Basically, this function transform the virtual types and parameter
749 # types to their bounds.
750 #
751 # Example
752 #
753 # class A end
754 # class B super A end
755 # class X end
756 # class Y super X end
757 # class G[T: A]
758 # type U: X
759 # end
760 # class H
761 # super G[B]
762 # redef type U: Y
763 # end
764 #
765 # Map[T,U] anchor_to H #-> Map[B,Y]
766 #
767 # Explanation of the example:
768 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
769 # because "redef type U: Y". Therefore, Map[T, U] is bound to
770 # Map[B, Y]
771 #
772 # ENSURE: `not self.need_anchor implies result == self`
773 # ENSURE: `not result.need_anchor`
774 fun anchor_to(mmodule: MModule, anchor: MClassType): MType
775 do
776 if not need_anchor then return self
777 assert not anchor.need_anchor
778 # Just resolve to the anchor and clear all the virtual types
779 var res = self.resolve_for(anchor, null, mmodule, true)
780 assert not res.need_anchor
781 return res
782 end
783
784 # Does `self` contain a virtual type or a formal generic parameter type?
785 # In order to remove those types, you usually want to use `anchor_to`.
786 fun need_anchor: Bool do return true
787
788 # Return the supertype when adapted to a class.
789 #
790 # In Nit, for each super-class of a type, there is a equivalent super-type.
791 #
792 # Example:
793 #
794 # ~~~nitish
795 # class G[T, U] end
796 # class H[V] super G[V, Bool] end
797 #
798 # H[Int] supertype_to G #-> G[Int, Bool]
799 # ~~~
800 #
801 # REQUIRE: `super_mclass` is a super-class of `self`
802 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
803 # ENSURE: `result.mclass = super_mclass`
804 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
805 do
806 if super_mclass.arity == 0 then return super_mclass.mclass_type
807 if self isa MClassType and self.mclass == super_mclass then return self
808 var resolved_self
809 if self.need_anchor then
810 assert anchor != null
811 resolved_self = self.anchor_to(mmodule, anchor)
812 else
813 resolved_self = self
814 end
815 var supertypes = resolved_self.collect_mtypes(mmodule)
816 for supertype in supertypes do
817 if supertype.mclass == super_mclass then
818 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
819 return supertype.resolve_for(self, anchor, mmodule, false)
820 end
821 end
822 abort
823 end
824
825 # Replace formals generic types in self with resolved values in `mtype`
826 # If `cleanup_virtual` is true, then virtual types are also replaced
827 # with their bounds.
828 #
829 # This function returns self if `need_anchor` is false.
830 #
831 # ## Example 1
832 #
833 # ~~~
834 # class G[E] end
835 # class H[F] super G[F] end
836 # class X[Z] end
837 # ~~~
838 #
839 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
840 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
841 #
842 # Explanation of the example:
843 # * Array[E].need_anchor is true because there is a formal generic parameter type E
844 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
845 # * Since "H[F] super G[F]", E is in fact F for H
846 # * More specifically, in H[Int], E is Int
847 # * So, in H[Int], Array[E] is Array[Int]
848 #
849 # This function is mainly used to inherit a signature.
850 # Because, unlike `anchor_to`, we do not want a full resolution of
851 # a type but only an adapted version of it.
852 #
853 # ## Example 2
854 #
855 # ~~~
856 # class A[E]
857 # fun foo(e:E):E is abstract
858 # end
859 # class B super A[Int] end
860 # ~~~
861 #
862 # The signature on foo is (e: E): E
863 # If we resolve the signature for B, we get (e:Int):Int
864 #
865 # ## Example 3
866 #
867 # ~~~nitish
868 # class A[E]
869 # fun foo(e:E):E is abstract
870 # end
871 # class C[F]
872 # var a: A[Array[F]]
873 # fun bar do a.foo(x) # <- x is here
874 # end
875 # ~~~
876 #
877 # The first question is: is foo available on `a`?
878 #
879 # The static type of a is `A[Array[F]]`, that is an open type.
880 # in order to find a method `foo`, whe must look at a resolved type.
881 #
882 # A[Array[F]].anchor_to(C[nullable Object]) #-> A[Array[nullable Object]]
883 #
884 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
885 #
886 # The next question is: what is the accepted types for `x`?
887 #
888 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
889 #
890 # E.resolve_for(A[Array[F]],C[nullable Object]) #-> Array[F]
891 #
892 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
893 #
894 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
895 # two function instead of one seems also to be a bad idea.
896 #
897 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
898 # ENSURE: `not self.need_anchor implies result == self`
899 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
900
901 # Resolve formal type to its verbatim bound.
902 # If the type is not formal, just return self
903 #
904 # The result is returned exactly as declared in the "type" property (verbatim).
905 # So it could be another formal type.
906 #
907 # In case of conflict, the method aborts.
908 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self
909
910 # Resolve the formal type to its simplest equivalent form.
911 #
912 # Formal types are either free or fixed.
913 # When it is fixed, it means that it is equivalent with a simpler type.
914 # When a formal type is free, it means that it is only equivalent with itself.
915 # This method return the most simple equivalent type of `self`.
916 #
917 # This method is mainly used for subtype test in order to sanely compare fixed.
918 #
919 # By default, return self.
920 # See the redefinitions for specific behavior in each kind of type.
921 fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self
922
923 # Can the type be resolved?
924 #
925 # In order to resolve open types, the formal types must make sence.
926 #
927 # ## Example
928 #
929 # class A[E]
930 # end
931 # class B[F]
932 # end
933 #
934 # ~~~nitish
935 # E.can_resolve_for(A[Int]) #-> true, E make sense in A
936 #
937 # E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
938 #
939 # B[E].can_resolve_for(A[F], B[Object]) #-> true,
940 # # B[E] is a red hearing only the E is important,
941 # # E make sense in A
942 # ~~~
943 #
944 # REQUIRE: `anchor != null implies not anchor.need_anchor`
945 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
946 # ENSURE: `not self.need_anchor implies result == true`
947 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
948
949 # Return the nullable version of the type
950 # If the type is already nullable then self is returned
951 fun as_nullable: MType
952 do
953 var res = self.as_nullable_cache
954 if res != null then return res
955 res = new MNullableType(self)
956 self.as_nullable_cache = res
957 return res
958 end
959
960 # Return the not nullable version of the type
961 # Is the type is already not nullable, then self is returned.
962 #
963 # Note: this just remove the `nullable` notation, but the result can still contains null.
964 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
965 fun as_notnullable: MType
966 do
967 return self
968 end
969
970 private var as_nullable_cache: nullable MType = null
971
972
973 # The depth of the type seen as a tree.
974 #
975 # * A -> 1
976 # * G[A] -> 2
977 # * H[A, B] -> 2
978 # * H[G[A], B] -> 3
979 #
980 # Formal types have a depth of 1.
981 fun depth: Int
982 do
983 return 1
984 end
985
986 # The length of the type seen as a tree.
987 #
988 # * A -> 1
989 # * G[A] -> 2
990 # * H[A, B] -> 3
991 # * H[G[A], B] -> 4
992 #
993 # Formal types have a length of 1.
994 fun length: Int
995 do
996 return 1
997 end
998
999 # Compute all the classdefs inherited/imported.
1000 # The returned set contains:
1001 # * the class definitions from `mmodule` and its imported modules
1002 # * the class definitions of this type and its super-types
1003 #
1004 # This function is used mainly internally.
1005 #
1006 # REQUIRE: `not self.need_anchor`
1007 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
1008
1009 # Compute all the super-classes.
1010 # This function is used mainly internally.
1011 #
1012 # REQUIRE: `not self.need_anchor`
1013 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
1014
1015 # Compute all the declared super-types.
1016 # Super-types are returned as declared in the classdefs (verbatim).
1017 # This function is used mainly internally.
1018 #
1019 # REQUIRE: `not self.need_anchor`
1020 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
1021
1022 # Is the property in self for a given module
1023 # This method does not filter visibility or whatever
1024 #
1025 # REQUIRE: `not self.need_anchor`
1026 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
1027 do
1028 assert not self.need_anchor
1029 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
1030 end
1031 end
1032
1033 # A type based on a class.
1034 #
1035 # `MClassType` have properties (see `has_mproperty`).
1036 class MClassType
1037 super MType
1038
1039 # The associated class
1040 var mclass: MClass
1041
1042 redef fun model do return self.mclass.intro_mmodule.model
1043
1044 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1045
1046 # The formal arguments of the type
1047 # ENSURE: `result.length == self.mclass.arity`
1048 var arguments = new Array[MType]
1049
1050 redef fun to_s do return mclass.to_s
1051
1052 redef fun full_name do return mclass.full_name
1053
1054 redef fun need_anchor do return false
1055
1056 redef fun anchor_to(mmodule: MModule, anchor: MClassType): MClassType
1057 do
1058 return super.as(MClassType)
1059 end
1060
1061 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1062
1063 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1064
1065 redef fun collect_mclassdefs(mmodule)
1066 do
1067 assert not self.need_anchor
1068 var cache = self.collect_mclassdefs_cache
1069 if not cache.has_key(mmodule) then
1070 self.collect_things(mmodule)
1071 end
1072 return cache[mmodule]
1073 end
1074
1075 redef fun collect_mclasses(mmodule)
1076 do
1077 if collect_mclasses_last_module == mmodule then return collect_mclasses_last_module_cache
1078 assert not self.need_anchor
1079 var cache = self.collect_mclasses_cache
1080 if not cache.has_key(mmodule) then
1081 self.collect_things(mmodule)
1082 end
1083 var res = cache[mmodule]
1084 collect_mclasses_last_module = mmodule
1085 collect_mclasses_last_module_cache = res
1086 return res
1087 end
1088
1089 private var collect_mclasses_last_module: nullable MModule = null
1090 private var collect_mclasses_last_module_cache: Set[MClass] is noinit
1091
1092 redef fun collect_mtypes(mmodule)
1093 do
1094 assert not self.need_anchor
1095 var cache = self.collect_mtypes_cache
1096 if not cache.has_key(mmodule) then
1097 self.collect_things(mmodule)
1098 end
1099 return cache[mmodule]
1100 end
1101
1102 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1103 private fun collect_things(mmodule: MModule)
1104 do
1105 var res = new HashSet[MClassDef]
1106 var seen = new HashSet[MClass]
1107 var types = new HashSet[MClassType]
1108 seen.add(self.mclass)
1109 var todo = [self.mclass]
1110 while not todo.is_empty do
1111 var mclass = todo.pop
1112 #print "process {mclass}"
1113 for mclassdef in mclass.mclassdefs do
1114 if not mmodule.in_importation <= mclassdef.mmodule then continue
1115 #print " process {mclassdef}"
1116 res.add(mclassdef)
1117 for supertype in mclassdef.supertypes do
1118 types.add(supertype)
1119 var superclass = supertype.mclass
1120 if seen.has(superclass) then continue
1121 #print " add {superclass}"
1122 seen.add(superclass)
1123 todo.add(superclass)
1124 end
1125 end
1126 end
1127 collect_mclassdefs_cache[mmodule] = res
1128 collect_mclasses_cache[mmodule] = seen
1129 collect_mtypes_cache[mmodule] = types
1130 end
1131
1132 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1133 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1134 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1135
1136 end
1137
1138 # A type based on a generic class.
1139 # A generic type a just a class with additional formal generic arguments.
1140 class MGenericType
1141 super MClassType
1142
1143 redef var arguments
1144
1145 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1146
1147 init
1148 do
1149 assert self.mclass.arity == arguments.length
1150
1151 self.need_anchor = false
1152 for t in arguments do
1153 if t.need_anchor then
1154 self.need_anchor = true
1155 break
1156 end
1157 end
1158
1159 self.to_s = "{mclass}[{arguments.join(", ")}]"
1160 end
1161
1162 # The short-name of the class, then the full-name of each type arguments within brackets.
1163 # Example: `"Map[String, List[Int]]"`
1164 redef var to_s: String is noinit
1165
1166 # The full-name of the class, then the full-name of each type arguments within brackets.
1167 # Example: `"standard::Map[standard::String, standard::List[standard::Int]]"`
1168 redef var full_name is lazy do
1169 var args = new Array[String]
1170 for t in arguments do
1171 args.add t.full_name
1172 end
1173 return "{mclass.full_name}[{args.join(", ")}]}"
1174 end
1175
1176 redef var need_anchor: Bool is noinit
1177
1178 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1179 do
1180 if not need_anchor then return self
1181 assert can_resolve_for(mtype, anchor, mmodule)
1182 var types = new Array[MType]
1183 for t in arguments do
1184 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1185 end
1186 return mclass.get_mtype(types)
1187 end
1188
1189 redef fun can_resolve_for(mtype, anchor, mmodule)
1190 do
1191 if not need_anchor then return true
1192 for t in arguments do
1193 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1194 end
1195 return true
1196 end
1197
1198
1199 redef fun depth
1200 do
1201 var dmax = 0
1202 for a in self.arguments do
1203 var d = a.depth
1204 if d > dmax then dmax = d
1205 end
1206 return dmax + 1
1207 end
1208
1209 redef fun length
1210 do
1211 var res = 1
1212 for a in self.arguments do
1213 res += a.length
1214 end
1215 return res
1216 end
1217 end
1218
1219 # A virtual formal type.
1220 class MVirtualType
1221 super MType
1222
1223 # The property associated with the type.
1224 # Its the definitions of this property that determine the bound or the virtual type.
1225 var mproperty: MVirtualTypeProp
1226
1227 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1228
1229 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1230 do
1231 return lookup_single_definition(mmodule, resolved_receiver).bound.as(not null)
1232 end
1233
1234 private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef
1235 do
1236 assert not resolved_receiver.need_anchor
1237 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1238 if props.is_empty then
1239 abort
1240 else if props.length == 1 then
1241 return props.first
1242 end
1243 var types = new ArraySet[MType]
1244 var res = props.first
1245 for p in props do
1246 types.add(p.bound.as(not null))
1247 if not res.is_fixed then res = p
1248 end
1249 if types.length == 1 then
1250 return res
1251 end
1252 abort
1253 end
1254
1255 # A VT is fixed when:
1256 # * the VT is (re-)defined with the annotation `is fixed`
1257 # * the VT is (indirectly) bound to an enum class (see `enum_kind`) since there is no subtype possible
1258 # * the receiver is an enum class since there is no subtype possible
1259 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1260 do
1261 assert not resolved_receiver.need_anchor
1262 resolved_receiver = resolved_receiver.as_notnullable
1263 assert resolved_receiver isa MClassType # It is the only remaining type
1264
1265 var prop = lookup_single_definition(mmodule, resolved_receiver)
1266 var res = prop.bound.as(not null)
1267
1268 # Recursively lookup the fixed result
1269 res = res.lookup_fixed(mmodule, resolved_receiver)
1270
1271 # 1. For a fixed VT, return the resolved bound
1272 if prop.is_fixed then return res
1273
1274 # 2. For a enum boud, return the bound
1275 if res isa MClassType and res.mclass.kind == enum_kind then return res
1276
1277 # 3. for a enum receiver return the bound
1278 if resolved_receiver.mclass.kind == enum_kind then return res
1279
1280 return self
1281 end
1282
1283 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1284 do
1285 if not cleanup_virtual then return self
1286 assert can_resolve_for(mtype, anchor, mmodule)
1287 # self is a virtual type declared (or inherited) in mtype
1288 # The point of the function it to get the bound of the virtual type that make sense for mtype
1289 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1290 #print "{class_name}: {self}/{mtype}/{anchor}?"
1291 var resolved_receiver
1292 if mtype.need_anchor then
1293 assert anchor != null
1294 resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true)
1295 else
1296 resolved_receiver = mtype
1297 end
1298 # Now, we can get the bound
1299 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1300 # The bound is exactly as declared in the "type" property, so we must resolve it again
1301 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1302
1303 return res
1304 end
1305
1306 redef fun can_resolve_for(mtype, anchor, mmodule)
1307 do
1308 if mtype.need_anchor then
1309 assert anchor != null
1310 mtype = mtype.anchor_to(mmodule, anchor)
1311 end
1312 return mtype.has_mproperty(mmodule, mproperty)
1313 end
1314
1315 redef fun to_s do return self.mproperty.to_s
1316
1317 redef fun full_name do return self.mproperty.full_name
1318 end
1319
1320 # The type associated to a formal parameter generic type of a class
1321 #
1322 # Each parameter type is associated to a specific class.
1323 # It means that all refinements of a same class "share" the parameter type,
1324 # but that a generic subclass has its own parameter types.
1325 #
1326 # However, in the sense of the meta-model, a parameter type of a class is
1327 # a valid type in a subclass. The "in the sense of the meta-model" is
1328 # important because, in the Nit language, the programmer cannot refers
1329 # directly to the parameter types of the super-classes.
1330 #
1331 # Example:
1332 #
1333 # class A[E]
1334 # fun e: E is abstract
1335 # end
1336 # class B[F]
1337 # super A[Array[F]]
1338 # end
1339 #
1340 # In the class definition B[F], `F` is a valid type but `E` is not.
1341 # However, `self.e` is a valid method call, and the signature of `e` is
1342 # declared `e: E`.
1343 #
1344 # Note that parameter types are shared among class refinements.
1345 # Therefore parameter only have an internal name (see `to_s` for details).
1346 class MParameterType
1347 super MType
1348
1349 # The generic class where the parameter belong
1350 var mclass: MClass
1351
1352 redef fun model do return self.mclass.intro_mmodule.model
1353
1354 # The position of the parameter (0 for the first parameter)
1355 # FIXME: is `position` a better name?
1356 var rank: Int
1357
1358 redef var name
1359
1360 redef fun to_s do return name
1361
1362 redef var full_name is lazy do return "{mclass.full_name}::{name}"
1363
1364 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1365 do
1366 assert not resolved_receiver.need_anchor
1367 resolved_receiver = resolved_receiver.as_notnullable
1368 assert resolved_receiver isa MClassType # It is the only remaining type
1369 var goalclass = self.mclass
1370 if resolved_receiver.mclass == goalclass then
1371 return resolved_receiver.arguments[self.rank]
1372 end
1373 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1374 for t in supertypes do
1375 if t.mclass == goalclass then
1376 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1377 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1378 var res = t.arguments[self.rank]
1379 return res
1380 end
1381 end
1382 abort
1383 end
1384
1385 # A PT is fixed when:
1386 # * Its bound is a enum class (see `enum_kind`).
1387 # The PT is just useless, but it is still a case.
1388 # * More usually, the `resolved_receiver` is a subclass of `self.mclass`,
1389 # so it is necessarily fixed in a `super` clause, either with a normal type
1390 # or with another PT.
1391 # See `resolve_for` for examples about related issues.
1392 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1393 do
1394 assert not resolved_receiver.need_anchor
1395 resolved_receiver = resolved_receiver.as_notnullable
1396 assert resolved_receiver isa MClassType # It is the only remaining type
1397 var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false)
1398 return res
1399 end
1400
1401 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1402 do
1403 assert can_resolve_for(mtype, anchor, mmodule)
1404 #print "{class_name}: {self}/{mtype}/{anchor}?"
1405
1406 if mtype isa MGenericType and mtype.mclass == self.mclass then
1407 var res = mtype.arguments[self.rank]
1408 if anchor != null and res.need_anchor then
1409 # Maybe the result can be resolved more if are bound to a final class
1410 var r2 = res.anchor_to(mmodule, anchor)
1411 if r2 isa MClassType and r2.mclass.kind == enum_kind then return r2
1412 end
1413 return res
1414 end
1415
1416 # self is a parameter type of mtype (or of a super-class of mtype)
1417 # The point of the function it to get the bound of the virtual type that make sense for mtype
1418 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1419 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1420 var resolved_receiver
1421 if mtype.need_anchor then
1422 assert anchor != null
1423 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1424 else
1425 resolved_receiver = mtype
1426 end
1427 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1428 if resolved_receiver isa MParameterType then
1429 assert resolved_receiver.mclass == anchor.mclass
1430 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1431 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1432 end
1433 assert resolved_receiver isa MClassType # It is the only remaining type
1434
1435 # Eh! The parameter is in the current class.
1436 # So we return the corresponding argument, no mater what!
1437 if resolved_receiver.mclass == self.mclass then
1438 var res = resolved_receiver.arguments[self.rank]
1439 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1440 return res
1441 end
1442
1443 if resolved_receiver.need_anchor then
1444 assert anchor != null
1445 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1446 end
1447 # Now, we can get the bound
1448 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1449 # The bound is exactly as declared in the "type" property, so we must resolve it again
1450 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1451
1452 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1453
1454 return res
1455 end
1456
1457 redef fun can_resolve_for(mtype, anchor, mmodule)
1458 do
1459 if mtype.need_anchor then
1460 assert anchor != null
1461 mtype = mtype.anchor_to(mmodule, anchor)
1462 end
1463 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1464 end
1465 end
1466
1467 # A type prefixed with "nullable"
1468 class MNullableType
1469 super MType
1470
1471 # The base type of the nullable type
1472 var mtype: MType
1473
1474 redef fun model do return self.mtype.model
1475
1476 init
1477 do
1478 self.to_s = "nullable {mtype}"
1479 end
1480
1481 redef var to_s: String is noinit
1482
1483 redef var full_name is lazy do return "nullable {mtype.full_name}"
1484
1485 redef fun need_anchor do return mtype.need_anchor
1486 redef fun as_nullable do return self
1487 redef fun as_notnullable do return mtype
1488 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1489 do
1490 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1491 return res.as_nullable
1492 end
1493
1494 redef fun can_resolve_for(mtype, anchor, mmodule)
1495 do
1496 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1497 end
1498
1499 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable`
1500 redef fun lookup_fixed(mmodule, resolved_receiver)
1501 do
1502 var t = mtype.lookup_fixed(mmodule, resolved_receiver)
1503 if t == mtype then return self
1504 return t.as_nullable
1505 end
1506
1507 redef fun depth do return self.mtype.depth
1508
1509 redef fun length do return self.mtype.length
1510
1511 redef fun collect_mclassdefs(mmodule)
1512 do
1513 assert not self.need_anchor
1514 return self.mtype.collect_mclassdefs(mmodule)
1515 end
1516
1517 redef fun collect_mclasses(mmodule)
1518 do
1519 assert not self.need_anchor
1520 return self.mtype.collect_mclasses(mmodule)
1521 end
1522
1523 redef fun collect_mtypes(mmodule)
1524 do
1525 assert not self.need_anchor
1526 return self.mtype.collect_mtypes(mmodule)
1527 end
1528 end
1529
1530 # The type of the only value null
1531 #
1532 # The is only one null type per model, see `MModel::null_type`.
1533 class MNullType
1534 super MType
1535 redef var model: Model
1536 redef fun to_s do return "null"
1537 redef fun full_name do return "null"
1538 redef fun as_nullable do return self
1539 redef fun need_anchor do return false
1540 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1541 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1542
1543 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1544
1545 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1546
1547 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1548 end
1549
1550 # A signature of a method
1551 class MSignature
1552 super MType
1553
1554 # The each parameter (in order)
1555 var mparameters: Array[MParameter]
1556
1557 # The return type (null for a procedure)
1558 var return_mtype: nullable MType
1559
1560 redef fun depth
1561 do
1562 var dmax = 0
1563 var t = self.return_mtype
1564 if t != null then dmax = t.depth
1565 for p in mparameters do
1566 var d = p.mtype.depth
1567 if d > dmax then dmax = d
1568 end
1569 return dmax + 1
1570 end
1571
1572 redef fun length
1573 do
1574 var res = 1
1575 var t = self.return_mtype
1576 if t != null then res += t.length
1577 for p in mparameters do
1578 res += p.mtype.length
1579 end
1580 return res
1581 end
1582
1583 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1584 init
1585 do
1586 var vararg_rank = -1
1587 for i in [0..mparameters.length[ do
1588 var parameter = mparameters[i]
1589 if parameter.is_vararg then
1590 assert vararg_rank == -1
1591 vararg_rank = i
1592 end
1593 end
1594 self.vararg_rank = vararg_rank
1595 end
1596
1597 # The rank of the ellipsis (`...`) for vararg (starting from 0).
1598 # value is -1 if there is no vararg.
1599 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1600 var vararg_rank: Int is noinit
1601
1602 # The number or parameters
1603 fun arity: Int do return mparameters.length
1604
1605 redef fun to_s
1606 do
1607 var b = new FlatBuffer
1608 if not mparameters.is_empty then
1609 b.append("(")
1610 for i in [0..mparameters.length[ do
1611 var mparameter = mparameters[i]
1612 if i > 0 then b.append(", ")
1613 b.append(mparameter.name)
1614 b.append(": ")
1615 b.append(mparameter.mtype.to_s)
1616 if mparameter.is_vararg then
1617 b.append("...")
1618 end
1619 end
1620 b.append(")")
1621 end
1622 var ret = self.return_mtype
1623 if ret != null then
1624 b.append(": ")
1625 b.append(ret.to_s)
1626 end
1627 return b.to_s
1628 end
1629
1630 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
1631 do
1632 var params = new Array[MParameter]
1633 for p in self.mparameters do
1634 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1635 end
1636 var ret = self.return_mtype
1637 if ret != null then
1638 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1639 end
1640 var res = new MSignature(params, ret)
1641 return res
1642 end
1643 end
1644
1645 # A parameter in a signature
1646 class MParameter
1647 super MEntity
1648
1649 # The name of the parameter
1650 redef var name: String
1651
1652 # The static type of the parameter
1653 var mtype: MType
1654
1655 # Is the parameter a vararg?
1656 var is_vararg: Bool
1657
1658 redef fun to_s
1659 do
1660 if is_vararg then
1661 return "{name}: {mtype}..."
1662 else
1663 return "{name}: {mtype}"
1664 end
1665 end
1666
1667 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
1668 do
1669 if not self.mtype.need_anchor then return self
1670 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1671 var res = new MParameter(self.name, newtype, self.is_vararg)
1672 return res
1673 end
1674
1675 redef fun model do return mtype.model
1676 end
1677
1678 # A service (global property) that generalize method, attribute, etc.
1679 #
1680 # `MProperty` are global to the model; it means that a `MProperty` is not bound
1681 # to a specific `MModule` nor a specific `MClass`.
1682 #
1683 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
1684 # and the other in subclasses and in refinements.
1685 #
1686 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
1687 # of any dynamic type).
1688 # For instance, a call site "x.foo" is associated to a `MProperty`.
1689 abstract class MProperty
1690 super MEntity
1691
1692 # The associated MPropDef subclass.
1693 # The two specialization hierarchy are symmetric.
1694 type MPROPDEF: MPropDef
1695
1696 # The classdef that introduce the property
1697 # While a property is not bound to a specific module, or class,
1698 # the introducing mclassdef is used for naming and visibility
1699 var intro_mclassdef: MClassDef
1700
1701 # The (short) name of the property
1702 redef var name: String
1703
1704 # The canonical name of the property.
1705 #
1706 # It is the short-`name` prefixed by the short-name of the class and the full-name of the module.
1707 # Example: "my_project::my_module::MyClass::my_method"
1708 redef var full_name is lazy do
1709 return "{intro_mclassdef.mmodule.full_name}::{intro_mclassdef.mclass.name}::{name}"
1710 end
1711
1712 # The visibility of the property
1713 var visibility: MVisibility
1714
1715 init
1716 do
1717 intro_mclassdef.intro_mproperties.add(self)
1718 var model = intro_mclassdef.mmodule.model
1719 model.mproperties_by_name.add_one(name, self)
1720 model.mproperties.add(self)
1721 end
1722
1723 # All definitions of the property.
1724 # The first is the introduction,
1725 # The other are redefinitions (in refinements and in subclasses)
1726 var mpropdefs = new Array[MPROPDEF]
1727
1728 # The definition that introduces the property.
1729 #
1730 # Warning: such a definition may not exist in the early life of the object.
1731 # In this case, the method will abort.
1732 var intro: MPROPDEF is noinit
1733
1734 redef fun model do return intro.model
1735
1736 # Alias for `name`
1737 redef fun to_s do return name
1738
1739 # Return the most specific property definitions defined or inherited by a type.
1740 # The selection knows that refinement is stronger than specialization;
1741 # however, in case of conflict more than one property are returned.
1742 # If mtype does not know mproperty then an empty array is returned.
1743 #
1744 # If you want the really most specific property, then look at `lookup_first_definition`
1745 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1746 do
1747 assert not mtype.need_anchor
1748 mtype = mtype.as_notnullable
1749
1750 var cache = self.lookup_definitions_cache[mmodule, mtype]
1751 if cache != null then return cache
1752
1753 #print "select prop {mproperty} for {mtype} in {self}"
1754 # First, select all candidates
1755 var candidates = new Array[MPROPDEF]
1756 for mpropdef in self.mpropdefs do
1757 # If the definition is not imported by the module, then skip
1758 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1759 # If the definition is not inherited by the type, then skip
1760 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1761 # Else, we keep it
1762 candidates.add(mpropdef)
1763 end
1764 # Fast track for only one candidate
1765 if candidates.length <= 1 then
1766 self.lookup_definitions_cache[mmodule, mtype] = candidates
1767 return candidates
1768 end
1769
1770 # Second, filter the most specific ones
1771 return select_most_specific(mmodule, candidates)
1772 end
1773
1774 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
1775
1776 # Return the most specific property definitions inherited by a type.
1777 # The selection knows that refinement is stronger than specialization;
1778 # however, in case of conflict more than one property are returned.
1779 # If mtype does not know mproperty then an empty array is returned.
1780 #
1781 # If you want the really most specific property, then look at `lookup_next_definition`
1782 #
1783 # FIXME: Move to `MPropDef`?
1784 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1785 do
1786 assert not mtype.need_anchor
1787 mtype = mtype.as_notnullable
1788
1789 # First, select all candidates
1790 var candidates = new Array[MPROPDEF]
1791 for mpropdef in self.mpropdefs do
1792 # If the definition is not imported by the module, then skip
1793 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1794 # If the definition is not inherited by the type, then skip
1795 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1796 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
1797 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
1798 # Else, we keep it
1799 candidates.add(mpropdef)
1800 end
1801 # Fast track for only one candidate
1802 if candidates.length <= 1 then return candidates
1803
1804 # Second, filter the most specific ones
1805 return select_most_specific(mmodule, candidates)
1806 end
1807
1808 # Return an array containing olny the most specific property definitions
1809 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
1810 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
1811 do
1812 var res = new Array[MPROPDEF]
1813 for pd1 in candidates do
1814 var cd1 = pd1.mclassdef
1815 var c1 = cd1.mclass
1816 var keep = true
1817 for pd2 in candidates do
1818 if pd2 == pd1 then continue # do not compare with self!
1819 var cd2 = pd2.mclassdef
1820 var c2 = cd2.mclass
1821 if c2.mclass_type == c1.mclass_type then
1822 if cd2.mmodule.in_importation < cd1.mmodule then
1823 # cd2 refines cd1; therefore we skip pd1
1824 keep = false
1825 break
1826 end
1827 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
1828 # cd2 < cd1; therefore we skip pd1
1829 keep = false
1830 break
1831 end
1832 end
1833 if keep then
1834 res.add(pd1)
1835 end
1836 end
1837 if res.is_empty then
1838 print "All lost! {candidates.join(", ")}"
1839 # FIXME: should be abort!
1840 end
1841 return res
1842 end
1843
1844 # Return the most specific definition in the linearization of `mtype`.
1845 #
1846 # If you want to know the next properties in the linearization,
1847 # look at `MPropDef::lookup_next_definition`.
1848 #
1849 # FIXME: the linearization is still unspecified
1850 #
1851 # REQUIRE: `not mtype.need_anchor`
1852 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
1853 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
1854 do
1855 assert mtype.has_mproperty(mmodule, self)
1856 return lookup_all_definitions(mmodule, mtype).first
1857 end
1858
1859 # Return all definitions in a linearization order
1860 # Most specific first, most general last
1861 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1862 do
1863 assert not mtype.need_anchor
1864 mtype = mtype.as_notnullable
1865
1866 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
1867 if cache != null then return cache
1868
1869 #print "select prop {mproperty} for {mtype} in {self}"
1870 # First, select all candidates
1871 var candidates = new Array[MPROPDEF]
1872 for mpropdef in self.mpropdefs do
1873 # If the definition is not imported by the module, then skip
1874 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1875 # If the definition is not inherited by the type, then skip
1876 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1877 # Else, we keep it
1878 candidates.add(mpropdef)
1879 end
1880 # Fast track for only one candidate
1881 if candidates.length <= 1 then
1882 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
1883 return candidates
1884 end
1885
1886 mmodule.linearize_mpropdefs(candidates)
1887 candidates = candidates.reversed
1888 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
1889 return candidates
1890 end
1891
1892 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
1893 end
1894
1895 # A global method
1896 class MMethod
1897 super MProperty
1898
1899 redef type MPROPDEF: MMethodDef
1900
1901 # Is the property defined at the top_level of the module?
1902 # Currently such a property are stored in `Object`
1903 var is_toplevel: Bool = false is writable
1904
1905 # Is the property a constructor?
1906 # Warning, this property can be inherited by subclasses with or without being a constructor
1907 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
1908 var is_init: Bool = false is writable
1909
1910 # The constructor is a (the) root init with empty signature but a set of initializers
1911 var is_root_init: Bool = false is writable
1912
1913 # Is the property a 'new' constructor?
1914 var is_new: Bool = false is writable
1915
1916 # Is the property a legal constructor for a given class?
1917 # As usual, visibility is not considered.
1918 # FIXME not implemented
1919 fun is_init_for(mclass: MClass): Bool
1920 do
1921 return self.is_init
1922 end
1923 end
1924
1925 # A global attribute
1926 class MAttribute
1927 super MProperty
1928
1929 redef type MPROPDEF: MAttributeDef
1930
1931 end
1932
1933 # A global virtual type
1934 class MVirtualTypeProp
1935 super MProperty
1936
1937 redef type MPROPDEF: MVirtualTypeDef
1938
1939 # The formal type associated to the virtual type property
1940 var mvirtualtype = new MVirtualType(self)
1941 end
1942
1943 # A definition of a property (local property)
1944 #
1945 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
1946 # specific class definition (which belong to a specific module)
1947 abstract class MPropDef
1948 super MEntity
1949
1950 # The associated `MProperty` subclass.
1951 # the two specialization hierarchy are symmetric
1952 type MPROPERTY: MProperty
1953
1954 # Self class
1955 type MPROPDEF: MPropDef
1956
1957 # The class definition where the property definition is
1958 var mclassdef: MClassDef
1959
1960 # The associated global property
1961 var mproperty: MPROPERTY
1962
1963 # The origin of the definition
1964 var location: Location
1965
1966 init
1967 do
1968 mclassdef.mpropdefs.add(self)
1969 mproperty.mpropdefs.add(self)
1970 if mproperty.intro_mclassdef == mclassdef then
1971 assert not isset mproperty._intro
1972 mproperty.intro = self
1973 end
1974 self.to_s = "{mclassdef}#{mproperty}"
1975 end
1976
1977 # Actually the name of the `mproperty`
1978 redef fun name do return mproperty.name
1979
1980 # The full-name of mpropdefs combine the information about the `classdef` and the `mproperty`.
1981 #
1982 # Therefore the combination of identifiers is awful,
1983 # the worst case being
1984 #
1985 # ~~~nitish
1986 # "{mclassdef.mmodule.full_name}#{mclassdef.mclass.intro_mmodule.full_name}::{mclassdef.name}#{mproperty.intro_mclassdef.mmodule.full_name}::{mproperty.intro_mclassdef.name}::{name}"
1987 # ~~~
1988 #
1989 # Fortunately, the full-name is simplified when entities are repeated.
1990 # The simplest form is "my_module#MyClass#my_property".
1991 redef var full_name is lazy do
1992 var res = new FlatBuffer
1993 res.append mclassdef.mmodule.full_name
1994 res.append "#"
1995 if not mclassdef.is_intro then
1996 res.append mclassdef.mclass.intro_mmodule.full_name
1997 res.append "::"
1998 end
1999 res.append mclassdef.name
2000 res.append "#"
2001 if mproperty.intro_mclassdef.mmodule != mclassdef.mmodule then
2002 res.append mproperty.intro_mclassdef.mmodule.full_name
2003 res.append "::"
2004 end
2005 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2006 res.append mproperty.intro_mclassdef.mclass.name
2007 res.append "::"
2008 end
2009 res.append name
2010 return res.to_s
2011 end
2012
2013 redef fun model do return mclassdef.model
2014
2015 # Internal name combining the module, the class and the property
2016 # Example: "mymodule#MyClass#mymethod"
2017 redef var to_s: String is noinit
2018
2019 # Is self the definition that introduce the property?
2020 fun is_intro: Bool do return mproperty.intro == self
2021
2022 # Return the next definition in linearization of `mtype`.
2023 #
2024 # This method is used to determine what method is called by a super.
2025 #
2026 # REQUIRE: `not mtype.need_anchor`
2027 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
2028 do
2029 assert not mtype.need_anchor
2030
2031 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
2032 var i = mpropdefs.iterator
2033 while i.is_ok and i.item != self do i.next
2034 assert has_property: i.is_ok
2035 i.next
2036 assert has_next_property: i.is_ok
2037 return i.item
2038 end
2039 end
2040
2041 # A local definition of a method
2042 class MMethodDef
2043 super MPropDef
2044
2045 redef type MPROPERTY: MMethod
2046 redef type MPROPDEF: MMethodDef
2047
2048 # The signature attached to the property definition
2049 var msignature: nullable MSignature = null is writable
2050
2051 # The signature attached to the `new` call on a root-init
2052 # This is a concatenation of the signatures of the initializers
2053 #
2054 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2055 var new_msignature: nullable MSignature = null is writable
2056
2057 # List of initialisers to call in root-inits
2058 #
2059 # They could be setters or attributes
2060 #
2061 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2062 var initializers = new Array[MProperty]
2063
2064 # Is the method definition abstract?
2065 var is_abstract: Bool = false is writable
2066
2067 # Is the method definition intern?
2068 var is_intern = false is writable
2069
2070 # Is the method definition extern?
2071 var is_extern = false is writable
2072
2073 # An optional constant value returned in functions.
2074 #
2075 # Only some specific primitife value are accepted by engines.
2076 # Is used when there is no better implementation available.
2077 #
2078 # Currently used only for the implementation of the `--define`
2079 # command-line option.
2080 # SEE: module `mixin`.
2081 var constant_value: nullable Object = null is writable
2082 end
2083
2084 # A local definition of an attribute
2085 class MAttributeDef
2086 super MPropDef
2087
2088 redef type MPROPERTY: MAttribute
2089 redef type MPROPDEF: MAttributeDef
2090
2091 # The static type of the attribute
2092 var static_mtype: nullable MType = null is writable
2093 end
2094
2095 # A local definition of a virtual type
2096 class MVirtualTypeDef
2097 super MPropDef
2098
2099 redef type MPROPERTY: MVirtualTypeProp
2100 redef type MPROPDEF: MVirtualTypeDef
2101
2102 # The bound of the virtual type
2103 var bound: nullable MType = null is writable
2104
2105 # Is the bound fixed?
2106 var is_fixed = false is writable
2107 end
2108
2109 # A kind of class.
2110 #
2111 # * `abstract_kind`
2112 # * `concrete_kind`
2113 # * `interface_kind`
2114 # * `enum_kind`
2115 # * `extern_kind`
2116 #
2117 # Note this class is basically an enum.
2118 # FIXME: use a real enum once user-defined enums are available
2119 class MClassKind
2120 redef var to_s: String
2121
2122 # Is a constructor required?
2123 var need_init: Bool
2124
2125 # TODO: private init because enumeration.
2126
2127 # Can a class of kind `self` specializes a class of kine `other`?
2128 fun can_specialize(other: MClassKind): Bool
2129 do
2130 if other == interface_kind then return true # everybody can specialize interfaces
2131 if self == interface_kind or self == enum_kind then
2132 # no other case for interfaces
2133 return false
2134 else if self == extern_kind then
2135 # only compatible with themselves
2136 return self == other
2137 else if other == enum_kind or other == extern_kind then
2138 # abstract_kind and concrete_kind are incompatible
2139 return false
2140 end
2141 # remain only abstract_kind and concrete_kind
2142 return true
2143 end
2144 end
2145
2146 # The class kind `abstract`
2147 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", true)
2148 # The class kind `concrete`
2149 fun concrete_kind: MClassKind do return once new MClassKind("class", true)
2150 # The class kind `interface`
2151 fun interface_kind: MClassKind do return once new MClassKind("interface", false)
2152 # The class kind `enum`
2153 fun enum_kind: MClassKind do return once new MClassKind("enum", false)
2154 # The class kind `extern`
2155 fun extern_kind: MClassKind do return once new MClassKind("extern class", false)