model: MParameterType.resolve_for handle the case of primitive bounds
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import poset
29 import location
30 import mmodule
31 import mdoc
32 import ordered_tree
33 private import more_collections
34
35 redef class Model
36 # All known classes
37 var mclasses: Array[MClass] = new Array[MClass]
38
39 # All known properties
40 var mproperties: Array[MProperty] = new Array[MProperty]
41
42 # Hierarchy of class definition.
43 #
44 # Each classdef is associated with its super-classdefs in regard to
45 # its module of definition.
46 var mclassdef_hierarchy: POSet[MClassDef] = new POSet[MClassDef]
47
48 # Class-type hierarchy restricted to the introduction.
49 #
50 # The idea is that what is true on introduction is always true whatever
51 # the module considered.
52 # Therefore, this hierarchy is used for a fast positive subtype check.
53 #
54 # This poset will evolve in a monotonous way:
55 # * Two non connected nodes will remain unconnected
56 # * New nodes can appear with new edges
57 private var intro_mtype_specialization_hierarchy: POSet[MClassType] = new POSet[MClassType]
58
59 # Global overlapped class-type hierarchy.
60 # The hierarchy when all modules are combined.
61 # Therefore, this hierarchy is used for a fast negative subtype check.
62 #
63 # This poset will evolve in an anarchic way. Loops can even be created.
64 #
65 # FIXME decide what to do on loops
66 private var full_mtype_specialization_hierarchy: POSet[MClassType] = new POSet[MClassType]
67
68 # Collections of classes grouped by their short name
69 private var mclasses_by_name: MultiHashMap[String, MClass] = new MultiHashMap[String, MClass]
70
71 # Return all class named `name`.
72 #
73 # If such a class does not exist, null is returned
74 # (instead of an empty array)
75 #
76 # Visibility or modules are not considered
77 fun get_mclasses_by_name(name: String): nullable Array[MClass]
78 do
79 if mclasses_by_name.has_key(name) then
80 return mclasses_by_name[name]
81 else
82 return null
83 end
84 end
85
86 # Collections of properties grouped by their short name
87 private var mproperties_by_name: MultiHashMap[String, MProperty] = new MultiHashMap[String, MProperty]
88
89 # Return all properties named `name`.
90 #
91 # If such a property does not exist, null is returned
92 # (instead of an empty array)
93 #
94 # Visibility or modules are not considered
95 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
96 do
97 if not mproperties_by_name.has_key(name) then
98 return null
99 else
100 return mproperties_by_name[name]
101 end
102 end
103
104 # The only null type
105 var null_type: MNullType = new MNullType(self)
106
107 # Build an ordered tree with from `concerns`
108 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
109 var seen = new HashSet[MConcern]
110 var res = new ConcernsTree
111
112 var todo = new Array[MConcern]
113 todo.add_all mconcerns
114
115 while not todo.is_empty do
116 var c = todo.pop
117 if seen.has(c) then continue
118 var pc = c.parent_concern
119 if pc == null then
120 res.add(null, c)
121 else
122 res.add(pc, c)
123 todo.add(pc)
124 end
125 seen.add(c)
126 end
127
128 return res
129 end
130 end
131
132 # An OrderedTree that can be easily refined for display purposes
133 class ConcernsTree
134 super OrderedTree[MConcern]
135 end
136
137 redef class MModule
138 # All the classes introduced in the module
139 var intro_mclasses: Array[MClass] = new Array[MClass]
140
141 # All the class definitions of the module
142 # (introduction and refinement)
143 var mclassdefs: Array[MClassDef] = new Array[MClassDef]
144
145 # Does the current module has a given class `mclass`?
146 # Return true if the mmodule introduces, refines or imports a class.
147 # Visibility is not considered.
148 fun has_mclass(mclass: MClass): Bool
149 do
150 return self.in_importation <= mclass.intro_mmodule
151 end
152
153 # Full hierarchy of introduced ans imported classes.
154 #
155 # Create a new hierarchy got by flattening the classes for the module
156 # and its imported modules.
157 # Visibility is not considered.
158 #
159 # Note: this function is expensive and is usually used for the main
160 # module of a program only. Do not use it to do you own subtype
161 # functions.
162 fun flatten_mclass_hierarchy: POSet[MClass]
163 do
164 var res = self.flatten_mclass_hierarchy_cache
165 if res != null then return res
166 res = new POSet[MClass]
167 for m in self.in_importation.greaters do
168 for cd in m.mclassdefs do
169 var c = cd.mclass
170 res.add_node(c)
171 for s in cd.supertypes do
172 res.add_edge(c, s.mclass)
173 end
174 end
175 end
176 self.flatten_mclass_hierarchy_cache = res
177 return res
178 end
179
180 # Sort a given array of classes using the linerarization order of the module
181 # The most general is first, the most specific is last
182 fun linearize_mclasses(mclasses: Array[MClass])
183 do
184 self.flatten_mclass_hierarchy.sort(mclasses)
185 end
186
187 # Sort a given array of class definitions using the linerarization order of the module
188 # the refinement link is stronger than the specialisation link
189 # The most general is first, the most specific is last
190 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
191 do
192 var sorter = new MClassDefSorter(self)
193 sorter.sort(mclassdefs)
194 end
195
196 # Sort a given array of property definitions using the linerarization order of the module
197 # the refinement link is stronger than the specialisation link
198 # The most general is first, the most specific is last
199 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
200 do
201 var sorter = new MPropDefSorter(self)
202 sorter.sort(mpropdefs)
203 end
204
205 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
206
207 # The primitive type `Object`, the root of the class hierarchy
208 fun object_type: MClassType
209 do
210 var res = self.object_type_cache
211 if res != null then return res
212 res = self.get_primitive_class("Object").mclass_type
213 self.object_type_cache = res
214 return res
215 end
216
217 private var object_type_cache: nullable MClassType
218
219 # The primitive type `Bool`
220 fun bool_type: MClassType
221 do
222 var res = self.bool_type_cache
223 if res != null then return res
224 res = self.get_primitive_class("Bool").mclass_type
225 self.bool_type_cache = res
226 return res
227 end
228
229 private var bool_type_cache: nullable MClassType
230
231 # The primitive type `Sys`, the main type of the program, if any
232 fun sys_type: nullable MClassType
233 do
234 var clas = self.model.get_mclasses_by_name("Sys")
235 if clas == null then return null
236 return get_primitive_class("Sys").mclass_type
237 end
238
239 # Force to get the primitive class named `name` or abort
240 fun get_primitive_class(name: String): MClass
241 do
242 var cla = self.model.get_mclasses_by_name(name)
243 if cla == null then
244 if name == "Bool" then
245 var c = new MClass(self, name, 0, enum_kind, public_visibility)
246 var cladef = new MClassDef(self, c.mclass_type, new Location(null, 0,0,0,0), new Array[String])
247 return c
248 end
249 print("Fatal Error: no primitive class {name}")
250 exit(1)
251 end
252 if cla.length != 1 then
253 var msg = "Fatal Error: more than one primitive class {name}:"
254 for c in cla do msg += " {c.full_name}"
255 print msg
256 exit(1)
257 end
258 return cla.first
259 end
260
261 # Try to get the primitive method named `name` on the type `recv`
262 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
263 do
264 var props = self.model.get_mproperties_by_name(name)
265 if props == null then return null
266 var res: nullable MMethod = null
267 for mprop in props do
268 assert mprop isa MMethod
269 var intro = mprop.intro_mclassdef
270 for mclassdef in recv.mclassdefs do
271 if not self.in_importation.greaters.has(mclassdef.mmodule) then continue
272 if not mclassdef.in_hierarchy.greaters.has(intro) then continue
273 if res == null then
274 res = mprop
275 else if res != mprop then
276 print("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
277 abort
278 end
279 end
280 end
281 return res
282 end
283 end
284
285 private class MClassDefSorter
286 super AbstractSorter[MClassDef]
287 var mmodule: MModule
288 redef fun compare(a, b)
289 do
290 var ca = a.mclass
291 var cb = b.mclass
292 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
293 return mmodule.model.mclassdef_hierarchy.compare(a, b)
294 end
295 end
296
297 private class MPropDefSorter
298 super AbstractSorter[MPropDef]
299 var mmodule: MModule
300 redef fun compare(pa, pb)
301 do
302 var a = pa.mclassdef
303 var b = pb.mclassdef
304 var ca = a.mclass
305 var cb = b.mclass
306 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
307 return mmodule.model.mclassdef_hierarchy.compare(a, b)
308 end
309 end
310
311 # A named class
312 #
313 # `MClass` are global to the model; it means that a `MClass` is not bound to a
314 # specific `MModule`.
315 #
316 # This characteristic helps the reasoning about classes in a program since a
317 # single `MClass` object always denote the same class.
318 #
319 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
320 # These do not really have properties nor belong to a hierarchy since the property and the
321 # hierarchy of a class depends of the refinement in the modules.
322 #
323 # Most services on classes require the precision of a module, and no one can asks what are
324 # the super-classes of a class nor what are properties of a class without precising what is
325 # the module considered.
326 #
327 # For instance, during the typing of a source-file, the module considered is the module of the file.
328 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
329 # *is the method `foo` exists in the class `Bar` in the current module?*
330 #
331 # During some global analysis, the module considered may be the main module of the program.
332 class MClass
333 super MEntity
334
335 # The module that introduce the class
336 # While classes are not bound to a specific module,
337 # the introducing module is used for naming an visibility
338 var intro_mmodule: MModule
339
340 # The short name of the class
341 # In Nit, the name of a class cannot evolve in refinements
342 redef var name: String
343
344 # The canonical name of the class
345 # Example: `"owner::module::MyClass"`
346 fun full_name: String
347 do
348 return "{self.intro_mmodule.full_name}::{name}"
349 end
350
351 # The number of generic formal parameters
352 # 0 if the class is not generic
353 var arity: Int
354
355 # The kind of the class (interface, abstract class, etc.)
356 # In Nit, the kind of a class cannot evolve in refinements
357 var kind: MClassKind
358
359 # The visibility of the class
360 # In Nit, the visibility of a class cannot evolve in refinements
361 var visibility: MVisibility
362
363 init(intro_mmodule: MModule, name: String, arity: Int, kind: MClassKind, visibility: MVisibility)
364 do
365 self.intro_mmodule = intro_mmodule
366 self.name = name
367 self.arity = arity
368 self.kind = kind
369 self.visibility = visibility
370 intro_mmodule.intro_mclasses.add(self)
371 var model = intro_mmodule.model
372 model.mclasses_by_name.add_one(name, self)
373 model.mclasses.add(self)
374
375 # Create the formal parameter types
376 if arity > 0 then
377 var mparametertypes = new Array[MParameterType]
378 for i in [0..arity[ do
379 var mparametertype = new MParameterType(self, i)
380 mparametertypes.add(mparametertype)
381 end
382 var mclass_type = new MGenericType(self, mparametertypes)
383 self.mclass_type = mclass_type
384 self.get_mtype_cache.add(mclass_type)
385 else
386 self.mclass_type = new MClassType(self)
387 end
388 end
389
390 redef fun model do return intro_mmodule.model
391
392 # All class definitions (introduction and refinements)
393 var mclassdefs: Array[MClassDef] = new Array[MClassDef]
394
395 # Alias for `name`
396 redef fun to_s do return self.name
397
398 # The definition that introduced the class
399 # Warning: the introduction is the first `MClassDef` object associated
400 # to self. If self is just created without having any associated
401 # definition, this method will abort
402 fun intro: MClassDef
403 do
404 assert has_a_first_definition: not mclassdefs.is_empty
405 return mclassdefs.first
406 end
407
408 # Return the class `self` in the class hierarchy of the module `mmodule`.
409 #
410 # SEE: `MModule::flatten_mclass_hierarchy`
411 # REQUIRE: `mmodule.has_mclass(self)`
412 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
413 do
414 return mmodule.flatten_mclass_hierarchy[self]
415 end
416
417 # The principal static type of the class.
418 #
419 # For non-generic class, mclass_type is the only `MClassType` based
420 # on self.
421 #
422 # For a generic class, the arguments are the formal parameters.
423 # i.e.: for the class Array[E:Object], the `mclass_type` is Array[E].
424 # If you want Array[Object] the see `MClassDef::bound_mtype`
425 #
426 # For generic classes, the mclass_type is also the way to get a formal
427 # generic parameter type.
428 #
429 # To get other types based on a generic class, see `get_mtype`.
430 #
431 # ENSURE: `mclass_type.mclass == self`
432 var mclass_type: MClassType
433
434 # Return a generic type based on the class
435 # Is the class is not generic, then the result is `mclass_type`
436 #
437 # REQUIRE: `mtype_arguments.length == self.arity`
438 fun get_mtype(mtype_arguments: Array[MType]): MClassType
439 do
440 assert mtype_arguments.length == self.arity
441 if self.arity == 0 then return self.mclass_type
442 for t in self.get_mtype_cache do
443 if t.arguments == mtype_arguments then
444 return t
445 end
446 end
447 var res = new MGenericType(self, mtype_arguments)
448 self.get_mtype_cache.add res
449 return res
450 end
451
452 private var get_mtype_cache: Array[MGenericType] = new Array[MGenericType]
453 end
454
455
456 # A definition (an introduction or a refinement) of a class in a module
457 #
458 # A `MClassDef` is associated with an explicit (or almost) definition of a
459 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
460 # a specific class and a specific module, and contains declarations like super-classes
461 # or properties.
462 #
463 # It is the class definitions that are the backbone of most things in the model:
464 # ClassDefs are defined with regard with other classdefs.
465 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
466 #
467 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
468 class MClassDef
469 super MEntity
470
471 # The module where the definition is
472 var mmodule: MModule
473
474 # The associated `MClass`
475 var mclass: MClass
476
477 # The bounded type associated to the mclassdef
478 #
479 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
480 # are the same type.
481 #
482 # Example:
483 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
484 # If you want Array[E], then see `mclass.mclass_type`
485 #
486 # ENSURE: `bound_mtype.mclass == self.mclass`
487 var bound_mtype: MClassType
488
489 # Name of each formal generic parameter (in order of declaration)
490 var parameter_names: Array[String]
491
492 # The origin of the definition
493 var location: Location
494
495 # Internal name combining the module and the class
496 # Example: "mymodule#MyClass"
497 redef var to_s: String
498
499 init(mmodule: MModule, bound_mtype: MClassType, location: Location, parameter_names: Array[String])
500 do
501 assert bound_mtype.mclass.arity == parameter_names.length
502 self.bound_mtype = bound_mtype
503 self.mmodule = mmodule
504 self.mclass = bound_mtype.mclass
505 self.location = location
506 mmodule.mclassdefs.add(self)
507 mclass.mclassdefs.add(self)
508 self.parameter_names = parameter_names
509 self.to_s = "{mmodule}#{mclass}"
510 end
511
512 # Actually the name of the `mclass`
513 redef fun name do return mclass.name
514
515 redef fun model do return mmodule.model
516
517 # All declared super-types
518 # FIXME: quite ugly but not better idea yet
519 var supertypes: Array[MClassType] = new Array[MClassType]
520
521 # Register some super-types for the class (ie "super SomeType")
522 #
523 # The hierarchy must not already be set
524 # REQUIRE: `self.in_hierarchy == null`
525 fun set_supertypes(supertypes: Array[MClassType])
526 do
527 assert unique_invocation: self.in_hierarchy == null
528 var mmodule = self.mmodule
529 var model = mmodule.model
530 var mtype = self.bound_mtype
531
532 for supertype in supertypes do
533 self.supertypes.add(supertype)
534
535 # Register in full_type_specialization_hierarchy
536 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
537 # Register in intro_type_specialization_hierarchy
538 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
539 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
540 end
541 end
542
543 end
544
545 # Collect the super-types (set by set_supertypes) to build the hierarchy
546 #
547 # This function can only invoked once by class
548 # REQUIRE: `self.in_hierarchy == null`
549 # ENSURE: `self.in_hierarchy != null`
550 fun add_in_hierarchy
551 do
552 assert unique_invocation: self.in_hierarchy == null
553 var model = mmodule.model
554 var res = model.mclassdef_hierarchy.add_node(self)
555 self.in_hierarchy = res
556 var mtype = self.bound_mtype
557
558 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
559 # The simpliest way is to attach it to collect_mclassdefs
560 for mclassdef in mtype.collect_mclassdefs(mmodule) do
561 res.poset.add_edge(self, mclassdef)
562 end
563 end
564
565 # The view of the class definition in `mclassdef_hierarchy`
566 var in_hierarchy: nullable POSetElement[MClassDef] = null
567
568 # Is the definition the one that introduced `mclass`?
569 fun is_intro: Bool do return mclass.intro == self
570
571 # All properties introduced by the classdef
572 var intro_mproperties: Array[MProperty] = new Array[MProperty]
573
574 # All property definitions in the class (introductions and redefinitions)
575 var mpropdefs: Array[MPropDef] = new Array[MPropDef]
576 end
577
578 # A global static type
579 #
580 # MType are global to the model; it means that a `MType` is not bound to a
581 # specific `MModule`.
582 # This characteristic helps the reasoning about static types in a program
583 # since a single `MType` object always denote the same type.
584 #
585 # However, because a `MType` is global, it does not really have properties
586 # nor have subtypes to a hierarchy since the property and the class hierarchy
587 # depends of a module.
588 # Moreover, virtual types an formal generic parameter types also depends on
589 # a receiver to have sense.
590 #
591 # Therefore, most method of the types require a module and an anchor.
592 # The module is used to know what are the classes and the specialization
593 # links.
594 # The anchor is used to know what is the bound of the virtual types and formal
595 # generic parameter types.
596 #
597 # MType are not directly usable to get properties. See the `anchor_to` method
598 # and the `MClassType` class.
599 #
600 # FIXME: the order of the parameters is not the best. We mus pick on from:
601 # * foo(mmodule, anchor, othertype)
602 # * foo(othertype, anchor, mmodule)
603 # * foo(anchor, mmodule, othertype)
604 # * foo(othertype, mmodule, anchor)
605 abstract class MType
606 super MEntity
607
608 redef fun name do return to_s
609
610 # Return true if `self` is an subtype of `sup`.
611 # The typing is done using the standard typing policy of Nit.
612 #
613 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
614 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
615 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
616 do
617 var sub = self
618 if sub == sup then return true
619 if anchor == null then
620 assert not sub.need_anchor
621 assert not sup.need_anchor
622 else
623 assert sub.can_resolve_for(anchor, null, mmodule)
624 assert sup.can_resolve_for(anchor, null, mmodule)
625 end
626
627 # First, resolve the formal types to a common version in the receiver
628 # The trick here is that fixed formal type will be associed to the bound
629 # And unfixed formal types will be associed to a canonical formal type.
630 if sub isa MParameterType or sub isa MVirtualType then
631 assert anchor != null
632 sub = sub.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, false)
633 end
634 if sup isa MParameterType or sup isa MVirtualType then
635 assert anchor != null
636 sup = sup.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, false)
637 end
638
639 # Does `sup` accept null or not?
640 # Discard the nullable marker if it exists
641 var sup_accept_null = false
642 if sup isa MNullableType then
643 sup_accept_null = true
644 sup = sup.mtype
645 else if sup isa MNullType then
646 sup_accept_null = true
647 end
648
649 # Can `sub` provide null or not?
650 # Thus we can match with `sup_accept_null`
651 # Also discard the nullable marker if it exists
652 if sub isa MNullableType then
653 if not sup_accept_null then return false
654 sub = sub.mtype
655 else if sub isa MNullType then
656 return sup_accept_null
657 end
658 # Now the case of direct null and nullable is over.
659
660 # A unfixed formal type can only accept itself
661 if sup isa MParameterType or sup isa MVirtualType then
662 return sub == sup
663 end
664
665 # If `sub` is a formal type, then it is accepted if its bound is accepted
666 if sub isa MParameterType or sub isa MVirtualType then
667 assert anchor != null
668 sub = sub.anchor_to(mmodule, anchor)
669
670 # Manage the second layer of null/nullable
671 if sub isa MNullableType then
672 if not sup_accept_null then return false
673 sub = sub.mtype
674 else if sub isa MNullType then
675 return sup_accept_null
676 end
677 end
678
679 assert sub isa MClassType # It is the only remaining type
680
681 if sup isa MNullType then
682 # `sup` accepts only null
683 return false
684 end
685
686 assert sup isa MClassType # It is the only remaining type
687
688 # Now both are MClassType, we need to dig
689
690 if sub == sup then return true
691
692 if anchor == null then anchor = sub # UGLY: any anchor will work
693 var resolved_sub = sub.anchor_to(mmodule, anchor)
694 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
695 if res == false then return false
696 if not sup isa MGenericType then return true
697 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
698 assert sub2.mclass == sup.mclass
699 for i in [0..sup.mclass.arity[ do
700 var sub_arg = sub2.arguments[i]
701 var sup_arg = sup.arguments[i]
702 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
703 if res == false then return false
704 end
705 return true
706 end
707
708 # The base class type on which self is based
709 #
710 # This base type is used to get property (an internally to perform
711 # unsafe type comparison).
712 #
713 # Beware: some types (like null) are not based on a class thus this
714 # method will crash
715 #
716 # Basically, this function transform the virtual types and parameter
717 # types to their bounds.
718 #
719 # Example
720 # class A end
721 # class B super A end
722 # class X end
723 # class Y super X end
724 # class G[T: A]
725 # type U: X
726 # end
727 # class H
728 # super G[B]
729 # redef type U: Y
730 # end
731 # Map[T,U] anchor_to H #-> Map[B,Y]
732 #
733 # Explanation of the example:
734 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
735 # because "redef type U: Y". Therefore, Map[T, U] is bound to
736 # Map[B, Y]
737 #
738 # ENSURE: `not self.need_anchor implies result == self`
739 # ENSURE: `not result.need_anchor`
740 fun anchor_to(mmodule: MModule, anchor: MClassType): MType
741 do
742 if not need_anchor then return self
743 assert not anchor.need_anchor
744 # Just resolve to the anchor and clear all the virtual types
745 var res = self.resolve_for(anchor, null, mmodule, true)
746 assert not res.need_anchor
747 return res
748 end
749
750 # Does `self` contain a virtual type or a formal generic parameter type?
751 # In order to remove those types, you usually want to use `anchor_to`.
752 fun need_anchor: Bool do return true
753
754 # Return the supertype when adapted to a class.
755 #
756 # In Nit, for each super-class of a type, there is a equivalent super-type.
757 #
758 # Example:
759 # class G[T, U] end
760 # class H[V] super G[V, Bool] end
761 # H[Int] supertype_to G #-> G[Int, Bool]
762 #
763 # REQUIRE: `super_mclass` is a super-class of `self`
764 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
765 # ENSURE: `result.mclass = super_mclass`
766 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
767 do
768 if super_mclass.arity == 0 then return super_mclass.mclass_type
769 if self isa MClassType and self.mclass == super_mclass then return self
770 var resolved_self
771 if self.need_anchor then
772 assert anchor != null
773 resolved_self = self.anchor_to(mmodule, anchor)
774 else
775 resolved_self = self
776 end
777 var supertypes = resolved_self.collect_mtypes(mmodule)
778 for supertype in supertypes do
779 if supertype.mclass == super_mclass then
780 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
781 return supertype.resolve_for(self, anchor, mmodule, false)
782 end
783 end
784 abort
785 end
786
787 # Replace formals generic types in self with resolved values in `mtype`
788 # If `cleanup_virtual` is true, then virtual types are also replaced
789 # with their bounds.
790 #
791 # This function returns self if `need_anchor` is false.
792 #
793 # ## Example 1
794 #
795 # class G[E] end
796 # class H[F] super G[F] end
797 # class X[Z] end
798 #
799 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
800 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
801 #
802 # Explanation of the example:
803 # * Array[E].need_anchor is true because there is a formal generic parameter type E
804 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
805 # * Since "H[F] super G[F]", E is in fact F for H
806 # * More specifically, in H[Int], E is Int
807 # * So, in H[Int], Array[E] is Array[Int]
808 #
809 # This function is mainly used to inherit a signature.
810 # Because, unlike `anchor_to`, we do not want a full resolution of
811 # a type but only an adapted version of it.
812 #
813 # ## Example 2
814 #
815 # class A[E]
816 # fun foo(e:E):E is abstract
817 # end
818 # class B super A[Int] end
819 #
820 # The signature on foo is (e: E): E
821 # If we resolve the signature for B, we get (e:Int):Int
822 #
823 # ## Example 3
824 #
825 # class A[E]
826 # fun foo(e:E) is abstract
827 # end
828 # class B[F]
829 # var a: A[Array[F]]
830 # fun bar do a.foo(x) # <- x is here
831 # end
832 #
833 # The first question is: is foo available on `a`?
834 #
835 # The static type of a is `A[Array[F]]`, that is an open type.
836 # in order to find a method `foo`, whe must look at a resolved type.
837 #
838 # A[Array[F]].anchor_to(B[nullable Object]) #-> A[Array[nullable Object]]
839 #
840 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
841 #
842 # The next question is: what is the accepted types for `x`?
843 #
844 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
845 #
846 # E.resolve_for(A[Array[F]],B[nullable Object]) #-> Array[F]
847 #
848 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
849 #
850 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
851 # two function instead of one seems also to be a bad idea.
852 #
853 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
854 # ENSURE: `not self.need_anchor implies result == self`
855 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
856
857 # Can the type be resolved?
858 #
859 # In order to resolve open types, the formal types must make sence.
860 #
861 # ## Example
862 #
863 # class A[E]
864 # end
865 # class B[F]
866 # end
867 #
868 # * E.can_resolve_for(A[Int]) #-> true, E make sense in A
869 # * E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
870 # * B[E].can_resolve_for(A[F], B[Object]) #-> true,
871 # B[E] is a red hearing only the E is important,
872 # E make sense in A
873 #
874 # REQUIRE: `anchor != null implies not anchor.need_anchor`
875 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
876 # ENSURE: `not self.need_anchor implies result == true`
877 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
878
879 # Return the nullable version of the type
880 # If the type is already nullable then self is returned
881 fun as_nullable: MType
882 do
883 var res = self.as_nullable_cache
884 if res != null then return res
885 res = new MNullableType(self)
886 self.as_nullable_cache = res
887 return res
888 end
889
890 private var as_nullable_cache: nullable MType = null
891
892
893 # The deph of the type seen as a tree.
894 #
895 # * A -> 1
896 # * G[A] -> 2
897 # * H[A, B] -> 2
898 # * H[G[A], B] -> 3
899 #
900 # Formal types have a depth of 1.
901 fun depth: Int
902 do
903 return 1
904 end
905
906 # The length of the type seen as a tree.
907 #
908 # * A -> 1
909 # * G[A] -> 2
910 # * H[A, B] -> 3
911 # * H[G[A], B] -> 4
912 #
913 # Formal types have a length of 1.
914 fun length: Int
915 do
916 return 1
917 end
918
919 # Compute all the classdefs inherited/imported.
920 # The returned set contains:
921 # * the class definitions from `mmodule` and its imported modules
922 # * the class definitions of this type and its super-types
923 #
924 # This function is used mainly internally.
925 #
926 # REQUIRE: `not self.need_anchor`
927 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
928
929 # Compute all the super-classes.
930 # This function is used mainly internally.
931 #
932 # REQUIRE: `not self.need_anchor`
933 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
934
935 # Compute all the declared super-types.
936 # Super-types are returned as declared in the classdefs (verbatim).
937 # This function is used mainly internally.
938 #
939 # REQUIRE: `not self.need_anchor`
940 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
941
942 # Is the property in self for a given module
943 # This method does not filter visibility or whatever
944 #
945 # REQUIRE: `not self.need_anchor`
946 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
947 do
948 assert not self.need_anchor
949 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
950 end
951 end
952
953 # A type based on a class.
954 #
955 # `MClassType` have properties (see `has_mproperty`).
956 class MClassType
957 super MType
958
959 # The associated class
960 var mclass: MClass
961
962 redef fun model do return self.mclass.intro_mmodule.model
963
964 private init(mclass: MClass)
965 do
966 self.mclass = mclass
967 end
968
969 # The formal arguments of the type
970 # ENSURE: `result.length == self.mclass.arity`
971 var arguments: Array[MType] = new Array[MType]
972
973 redef fun to_s do return mclass.to_s
974
975 redef fun need_anchor do return false
976
977 redef fun anchor_to(mmodule: MModule, anchor: MClassType): MClassType
978 do
979 return super.as(MClassType)
980 end
981
982 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
983
984 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
985
986 redef fun collect_mclassdefs(mmodule)
987 do
988 assert not self.need_anchor
989 var cache = self.collect_mclassdefs_cache
990 if not cache.has_key(mmodule) then
991 self.collect_things(mmodule)
992 end
993 return cache[mmodule]
994 end
995
996 redef fun collect_mclasses(mmodule)
997 do
998 assert not self.need_anchor
999 var cache = self.collect_mclasses_cache
1000 if not cache.has_key(mmodule) then
1001 self.collect_things(mmodule)
1002 end
1003 return cache[mmodule]
1004 end
1005
1006 redef fun collect_mtypes(mmodule)
1007 do
1008 assert not self.need_anchor
1009 var cache = self.collect_mtypes_cache
1010 if not cache.has_key(mmodule) then
1011 self.collect_things(mmodule)
1012 end
1013 return cache[mmodule]
1014 end
1015
1016 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1017 private fun collect_things(mmodule: MModule)
1018 do
1019 var res = new HashSet[MClassDef]
1020 var seen = new HashSet[MClass]
1021 var types = new HashSet[MClassType]
1022 seen.add(self.mclass)
1023 var todo = [self.mclass]
1024 while not todo.is_empty do
1025 var mclass = todo.pop
1026 #print "process {mclass}"
1027 for mclassdef in mclass.mclassdefs do
1028 if not mmodule.in_importation <= mclassdef.mmodule then continue
1029 #print " process {mclassdef}"
1030 res.add(mclassdef)
1031 for supertype in mclassdef.supertypes do
1032 types.add(supertype)
1033 var superclass = supertype.mclass
1034 if seen.has(superclass) then continue
1035 #print " add {superclass}"
1036 seen.add(superclass)
1037 todo.add(superclass)
1038 end
1039 end
1040 end
1041 collect_mclassdefs_cache[mmodule] = res
1042 collect_mclasses_cache[mmodule] = seen
1043 collect_mtypes_cache[mmodule] = types
1044 end
1045
1046 private var collect_mclassdefs_cache: HashMap[MModule, Set[MClassDef]] = new HashMap[MModule, Set[MClassDef]]
1047 private var collect_mclasses_cache: HashMap[MModule, Set[MClass]] = new HashMap[MModule, Set[MClass]]
1048 private var collect_mtypes_cache: HashMap[MModule, Set[MClassType]] = new HashMap[MModule, Set[MClassType]]
1049
1050 end
1051
1052 # A type based on a generic class.
1053 # A generic type a just a class with additional formal generic arguments.
1054 class MGenericType
1055 super MClassType
1056
1057 private init(mclass: MClass, arguments: Array[MType])
1058 do
1059 super(mclass)
1060 assert self.mclass.arity == arguments.length
1061 self.arguments = arguments
1062
1063 self.need_anchor = false
1064 for t in arguments do
1065 if t.need_anchor then
1066 self.need_anchor = true
1067 break
1068 end
1069 end
1070
1071 self.to_s = "{mclass}[{arguments.join(", ")}]"
1072 end
1073
1074 # Recursively print the type of the arguments within brackets.
1075 # Example: `"Map[String, List[Int]]"`
1076 redef var to_s: String
1077
1078 redef var need_anchor: Bool
1079
1080 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1081 do
1082 if not need_anchor then return self
1083 assert can_resolve_for(mtype, anchor, mmodule)
1084 var types = new Array[MType]
1085 for t in arguments do
1086 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1087 end
1088 return mclass.get_mtype(types)
1089 end
1090
1091 redef fun can_resolve_for(mtype, anchor, mmodule)
1092 do
1093 if not need_anchor then return true
1094 for t in arguments do
1095 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1096 end
1097 return true
1098 end
1099
1100
1101 redef fun depth
1102 do
1103 var dmax = 0
1104 for a in self.arguments do
1105 var d = a.depth
1106 if d > dmax then dmax = d
1107 end
1108 return dmax + 1
1109 end
1110
1111 redef fun length
1112 do
1113 var res = 1
1114 for a in self.arguments do
1115 res += a.length
1116 end
1117 return res
1118 end
1119 end
1120
1121 # A virtual formal type.
1122 class MVirtualType
1123 super MType
1124
1125 # The property associated with the type.
1126 # Its the definitions of this property that determine the bound or the virtual type.
1127 var mproperty: MProperty
1128
1129 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1130
1131 # Lookup the bound for a given resolved_receiver
1132 # The result may be a other virtual type (or a parameter type)
1133 #
1134 # The result is returned exactly as declared in the "type" property (verbatim).
1135 #
1136 # In case of conflict, the method aborts.
1137 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1138 do
1139 assert not resolved_receiver.need_anchor
1140 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1141 if props.is_empty then
1142 abort
1143 else if props.length == 1 then
1144 return props.first.as(MVirtualTypeDef).bound.as(not null)
1145 end
1146 var types = new ArraySet[MType]
1147 for p in props do
1148 types.add(p.as(MVirtualTypeDef).bound.as(not null))
1149 end
1150 if types.length == 1 then
1151 return types.first
1152 end
1153 abort
1154 end
1155
1156 # Is the virtual type fixed for a given resolved_receiver?
1157 fun is_fixed(mmodule: MModule, resolved_receiver: MType): Bool
1158 do
1159 assert not resolved_receiver.need_anchor
1160 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1161 if props.is_empty then
1162 abort
1163 end
1164 for p in props do
1165 if p.as(MVirtualTypeDef).is_fixed then return true
1166 end
1167 return false
1168 end
1169
1170 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1171 do
1172 assert can_resolve_for(mtype, anchor, mmodule)
1173 # self is a virtual type declared (or inherited) in mtype
1174 # The point of the function it to get the bound of the virtual type that make sense for mtype
1175 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1176 #print "{class_name}: {self}/{mtype}/{anchor}?"
1177 var resolved_reciever
1178 if mtype.need_anchor then
1179 assert anchor != null
1180 resolved_reciever = mtype.resolve_for(anchor, null, mmodule, true)
1181 else
1182 resolved_reciever = mtype
1183 end
1184 # Now, we can get the bound
1185 var verbatim_bound = lookup_bound(mmodule, resolved_reciever)
1186 # The bound is exactly as declared in the "type" property, so we must resolve it again
1187 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1188 #print "{class_name}: {self}/{mtype}/{anchor} -> {self}/{resolved_reciever}/{anchor} -> {verbatim_bound}/{mtype}/{anchor} -> {res}"
1189
1190 # What to return here? There is a bunch a special cases:
1191 # If 'cleanup_virtual' we must return the resolved type, since we cannot return self
1192 if cleanup_virtual then return res
1193 # If the reciever is a intern class, then the virtual type cannot be redefined since there is no possible subclass. self is just fixed. so simply return the resolution
1194 if resolved_reciever isa MNullableType then resolved_reciever = resolved_reciever.mtype
1195 if resolved_reciever.as(MClassType).mclass.kind == enum_kind then return res
1196 # If the resolved type isa MVirtualType, it means that self was bound to it, and cannot be unbound. self is just fixed. so return the resolution.
1197 if res isa MVirtualType then return res
1198 # If we are final, just return the resolution
1199 if is_fixed(mmodule, resolved_reciever) then return res
1200 # It the resolved type isa intern class, then there is no possible valid redefinition is any potentiel subclass. self is just fixed. so simply return the resolution
1201 if res isa MClassType and res.mclass.kind == enum_kind then return res
1202 # TODO: Add 'fixed' virtual type in the specification.
1203 # TODO: What if bound to a MParameterType?
1204 # Note that Nullable types can always be redefined by the non nullable version, so there is no specific case on it.
1205
1206 # If anything apply, then `self' cannot be resolved, so return self
1207 return self
1208 end
1209
1210 redef fun can_resolve_for(mtype, anchor, mmodule)
1211 do
1212 if mtype.need_anchor then
1213 assert anchor != null
1214 mtype = mtype.anchor_to(mmodule, anchor)
1215 end
1216 return mtype.has_mproperty(mmodule, mproperty)
1217 end
1218
1219 redef fun to_s do return self.mproperty.to_s
1220
1221 init(mproperty: MProperty)
1222 do
1223 self.mproperty = mproperty
1224 end
1225 end
1226
1227 # The type associated the a formal parameter generic type of a class
1228 #
1229 # Each parameter type is associated to a specific class.
1230 # It's mean that all refinements of a same class "share" the parameter type,
1231 # but that a generic subclass has its on parameter types.
1232 #
1233 # However, in the sense of the meta-model, a parameter type of a class is
1234 # a valid type in a subclass. The "in the sense of the meta-model" is
1235 # important because, in the Nit language, the programmer cannot refers
1236 # directly to the parameter types of the super-classes.
1237 #
1238 # Example:
1239 # class A[E]
1240 # fun e: E is abstract
1241 # end
1242 # class B[F]
1243 # super A[Array[F]]
1244 # end
1245 # In the class definition B[F], `F` is a valid type but `E` is not.
1246 # However, `self.e` is a valid method call, and the signature of `e` is
1247 # declared `e: E`.
1248 #
1249 # Note that parameter types are shared among class refinements.
1250 # Therefore parameter only have an internal name (see `to_s` for details).
1251 # TODO: Add a `name_for` to get better messages.
1252 class MParameterType
1253 super MType
1254
1255 # The generic class where the parameter belong
1256 var mclass: MClass
1257
1258 redef fun model do return self.mclass.intro_mmodule.model
1259
1260 # The position of the parameter (0 for the first parameter)
1261 # FIXME: is `position` a better name?
1262 var rank: Int
1263
1264 # Internal name of the parameter type
1265 # Names of parameter types changes in each class definition
1266 # Therefore, this method return an internal name.
1267 # Example: return "G#1" for the second parameter of the class G
1268 # FIXME: add a way to get the real name in a classdef
1269 redef fun to_s do return "{mclass}#{rank}"
1270
1271 # Resolve the bound for a given resolved_receiver
1272 # The result may be a other virtual type (or a parameter type)
1273 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1274 do
1275 assert not resolved_receiver.need_anchor
1276 var goalclass = self.mclass
1277 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1278 for t in supertypes do
1279 if t.mclass == goalclass then
1280 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1281 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1282 var res = t.arguments[self.rank]
1283 return res
1284 end
1285 end
1286 abort
1287 end
1288
1289 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1290 do
1291 assert can_resolve_for(mtype, anchor, mmodule)
1292 #print "{class_name}: {self}/{mtype}/{anchor}?"
1293
1294 if mtype isa MGenericType and mtype.mclass == self.mclass then
1295 var res = mtype.arguments[self.rank]
1296 if anchor != null and res.need_anchor then
1297 # Maybe the result can be resolved more if are bound to a final class
1298 var r2 = res.anchor_to(mmodule, anchor)
1299 if r2 isa MClassType and r2.mclass.kind == enum_kind then return r2
1300 end
1301 return res
1302 end
1303
1304 # self is a parameter type of mtype (or of a super-class of mtype)
1305 # The point of the function it to get the bound of the virtual type that make sense for mtype
1306 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1307 # FIXME: What happend here is far from clear. Thus this part must be validated and clarified
1308 var resolved_receiver
1309 if mtype.need_anchor then
1310 assert anchor != null
1311 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1312 else
1313 resolved_receiver = mtype
1314 end
1315 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1316 if resolved_receiver isa MParameterType then
1317 assert resolved_receiver.mclass == anchor.mclass
1318 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1319 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1320 end
1321 assert resolved_receiver isa MClassType
1322
1323 # Eh! The parameter is in the current class.
1324 # So we return the corresponding argument, no mater what!
1325 if resolved_receiver.mclass == self.mclass then
1326 var res = resolved_receiver.arguments[self.rank]
1327 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1328 return res
1329 end
1330
1331 if resolved_receiver.need_anchor then
1332 assert anchor != null
1333 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1334 end
1335 # Now, we can get the bound
1336 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1337 # The bound is exactly as declared in the "type" property, so we must resolve it again
1338 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1339
1340 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1341
1342 return res
1343 end
1344
1345 redef fun can_resolve_for(mtype, anchor, mmodule)
1346 do
1347 if mtype.need_anchor then
1348 assert anchor != null
1349 mtype = mtype.anchor_to(mmodule, anchor)
1350 end
1351 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1352 end
1353
1354 init(mclass: MClass, rank: Int)
1355 do
1356 self.mclass = mclass
1357 self.rank = rank
1358 end
1359 end
1360
1361 # A type prefixed with "nullable"
1362 class MNullableType
1363 super MType
1364
1365 # The base type of the nullable type
1366 var mtype: MType
1367
1368 redef fun model do return self.mtype.model
1369
1370 init(mtype: MType)
1371 do
1372 self.mtype = mtype
1373 self.to_s = "nullable {mtype}"
1374 end
1375
1376 redef var to_s: String
1377
1378 redef fun need_anchor do return mtype.need_anchor
1379 redef fun as_nullable do return self
1380 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1381 do
1382 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1383 return res.as_nullable
1384 end
1385
1386 redef fun can_resolve_for(mtype, anchor, mmodule)
1387 do
1388 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1389 end
1390
1391 redef fun depth do return self.mtype.depth
1392
1393 redef fun length do return self.mtype.length
1394
1395 redef fun collect_mclassdefs(mmodule)
1396 do
1397 assert not self.need_anchor
1398 return self.mtype.collect_mclassdefs(mmodule)
1399 end
1400
1401 redef fun collect_mclasses(mmodule)
1402 do
1403 assert not self.need_anchor
1404 return self.mtype.collect_mclasses(mmodule)
1405 end
1406
1407 redef fun collect_mtypes(mmodule)
1408 do
1409 assert not self.need_anchor
1410 return self.mtype.collect_mtypes(mmodule)
1411 end
1412 end
1413
1414 # The type of the only value null
1415 #
1416 # The is only one null type per model, see `MModel::null_type`.
1417 class MNullType
1418 super MType
1419 redef var model: Model
1420 protected init(model: Model)
1421 do
1422 self.model = model
1423 end
1424 redef fun to_s do return "null"
1425 redef fun as_nullable do return self
1426 redef fun need_anchor do return false
1427 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1428 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1429
1430 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1431
1432 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1433
1434 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1435 end
1436
1437 # A signature of a method
1438 class MSignature
1439 super MType
1440
1441 # The each parameter (in order)
1442 var mparameters: Array[MParameter]
1443
1444 # The return type (null for a procedure)
1445 var return_mtype: nullable MType
1446
1447 redef fun depth
1448 do
1449 var dmax = 0
1450 var t = self.return_mtype
1451 if t != null then dmax = t.depth
1452 for p in mparameters do
1453 var d = p.mtype.depth
1454 if d > dmax then dmax = d
1455 end
1456 return dmax + 1
1457 end
1458
1459 redef fun length
1460 do
1461 var res = 1
1462 var t = self.return_mtype
1463 if t != null then res += t.length
1464 for p in mparameters do
1465 res += p.mtype.length
1466 end
1467 return res
1468 end
1469
1470 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1471 init(mparameters: Array[MParameter], return_mtype: nullable MType)
1472 do
1473 var vararg_rank = -1
1474 for i in [0..mparameters.length[ do
1475 var parameter = mparameters[i]
1476 if parameter.is_vararg then
1477 assert vararg_rank == -1
1478 vararg_rank = i
1479 end
1480 end
1481 self.mparameters = mparameters
1482 self.return_mtype = return_mtype
1483 self.vararg_rank = vararg_rank
1484 end
1485
1486 # The rank of the ellipsis (`...`) for vararg (starting from 0).
1487 # value is -1 if there is no vararg.
1488 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1489 var vararg_rank: Int
1490
1491 # The number or parameters
1492 fun arity: Int do return mparameters.length
1493
1494 redef fun to_s
1495 do
1496 var b = new FlatBuffer
1497 if not mparameters.is_empty then
1498 b.append("(")
1499 for i in [0..mparameters.length[ do
1500 var mparameter = mparameters[i]
1501 if i > 0 then b.append(", ")
1502 b.append(mparameter.name)
1503 b.append(": ")
1504 b.append(mparameter.mtype.to_s)
1505 if mparameter.is_vararg then
1506 b.append("...")
1507 end
1508 end
1509 b.append(")")
1510 end
1511 var ret = self.return_mtype
1512 if ret != null then
1513 b.append(": ")
1514 b.append(ret.to_s)
1515 end
1516 return b.to_s
1517 end
1518
1519 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
1520 do
1521 var params = new Array[MParameter]
1522 for p in self.mparameters do
1523 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1524 end
1525 var ret = self.return_mtype
1526 if ret != null then
1527 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1528 end
1529 var res = new MSignature(params, ret)
1530 return res
1531 end
1532 end
1533
1534 # A parameter in a signature
1535 class MParameter
1536 super MEntity
1537
1538 # The name of the parameter
1539 redef var name: String
1540
1541 # The static type of the parameter
1542 var mtype: MType
1543
1544 # Is the parameter a vararg?
1545 var is_vararg: Bool
1546
1547 init(name: String, mtype: MType, is_vararg: Bool) do
1548 self.name = name
1549 self.mtype = mtype
1550 self.is_vararg = is_vararg
1551 end
1552
1553 redef fun to_s
1554 do
1555 if is_vararg then
1556 return "{name}: {mtype}..."
1557 else
1558 return "{name}: {mtype}"
1559 end
1560 end
1561
1562 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
1563 do
1564 if not self.mtype.need_anchor then return self
1565 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1566 var res = new MParameter(self.name, newtype, self.is_vararg)
1567 return res
1568 end
1569
1570 redef fun model do return mtype.model
1571 end
1572
1573 # A service (global property) that generalize method, attribute, etc.
1574 #
1575 # `MProperty` are global to the model; it means that a `MProperty` is not bound
1576 # to a specific `MModule` nor a specific `MClass`.
1577 #
1578 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
1579 # and the other in subclasses and in refinements.
1580 #
1581 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
1582 # of any dynamic type).
1583 # For instance, a call site "x.foo" is associated to a `MProperty`.
1584 abstract class MProperty
1585 super MEntity
1586
1587 # The associated MPropDef subclass.
1588 # The two specialization hierarchy are symmetric.
1589 type MPROPDEF: MPropDef
1590
1591 # The classdef that introduce the property
1592 # While a property is not bound to a specific module, or class,
1593 # the introducing mclassdef is used for naming and visibility
1594 var intro_mclassdef: MClassDef
1595
1596 # The (short) name of the property
1597 redef var name: String
1598
1599 # The canonical name of the property
1600 # Example: "owner::my_module::MyClass::my_method"
1601 fun full_name: String
1602 do
1603 return "{self.intro_mclassdef.mmodule.full_name}::{self.intro_mclassdef.mclass.name}::{name}"
1604 end
1605
1606 # The visibility of the property
1607 var visibility: MVisibility
1608
1609 init(intro_mclassdef: MClassDef, name: String, visibility: MVisibility)
1610 do
1611 self.intro_mclassdef = intro_mclassdef
1612 self.name = name
1613 self.visibility = visibility
1614 intro_mclassdef.intro_mproperties.add(self)
1615 var model = intro_mclassdef.mmodule.model
1616 model.mproperties_by_name.add_one(name, self)
1617 model.mproperties.add(self)
1618 end
1619
1620 # All definitions of the property.
1621 # The first is the introduction,
1622 # The other are redefinitions (in refinements and in subclasses)
1623 var mpropdefs: Array[MPROPDEF] = new Array[MPROPDEF]
1624
1625 # The definition that introduced the property
1626 # Warning: the introduction is the first `MPropDef` object
1627 # associated to self. If self is just created without having any
1628 # associated definition, this method will abort
1629 fun intro: MPROPDEF do return mpropdefs.first
1630
1631 redef fun model do return intro.model
1632
1633 # Alias for `name`
1634 redef fun to_s do return name
1635
1636 # Return the most specific property definitions defined or inherited by a type.
1637 # The selection knows that refinement is stronger than specialization;
1638 # however, in case of conflict more than one property are returned.
1639 # If mtype does not know mproperty then an empty array is returned.
1640 #
1641 # If you want the really most specific property, then look at `lookup_first_definition`
1642 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1643 do
1644 assert not mtype.need_anchor
1645 if mtype isa MNullableType then mtype = mtype.mtype
1646
1647 var cache = self.lookup_definitions_cache[mmodule, mtype]
1648 if cache != null then return cache
1649
1650 #print "select prop {mproperty} for {mtype} in {self}"
1651 # First, select all candidates
1652 var candidates = new Array[MPROPDEF]
1653 for mpropdef in self.mpropdefs do
1654 # If the definition is not imported by the module, then skip
1655 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1656 # If the definition is not inherited by the type, then skip
1657 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1658 # Else, we keep it
1659 candidates.add(mpropdef)
1660 end
1661 # Fast track for only one candidate
1662 if candidates.length <= 1 then
1663 self.lookup_definitions_cache[mmodule, mtype] = candidates
1664 return candidates
1665 end
1666
1667 # Second, filter the most specific ones
1668 return select_most_specific(mmodule, candidates)
1669 end
1670
1671 private var lookup_definitions_cache: HashMap2[MModule, MType, Array[MPROPDEF]] = new HashMap2[MModule, MType, Array[MPROPDEF]]
1672
1673 # Return the most specific property definitions inherited by a type.
1674 # The selection knows that refinement is stronger than specialization;
1675 # however, in case of conflict more than one property are returned.
1676 # If mtype does not know mproperty then an empty array is returned.
1677 #
1678 # If you want the really most specific property, then look at `lookup_next_definition`
1679 #
1680 # FIXME: Move to `MPropDef`?
1681 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1682 do
1683 assert not mtype.need_anchor
1684 if mtype isa MNullableType then mtype = mtype.mtype
1685
1686 # First, select all candidates
1687 var candidates = new Array[MPROPDEF]
1688 for mpropdef in self.mpropdefs do
1689 # If the definition is not imported by the module, then skip
1690 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1691 # If the definition is not inherited by the type, then skip
1692 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1693 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
1694 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
1695 # Else, we keep it
1696 candidates.add(mpropdef)
1697 end
1698 # Fast track for only one candidate
1699 if candidates.length <= 1 then return candidates
1700
1701 # Second, filter the most specific ones
1702 return select_most_specific(mmodule, candidates)
1703 end
1704
1705 # Return an array containing olny the most specific property definitions
1706 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
1707 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
1708 do
1709 var res = new Array[MPROPDEF]
1710 for pd1 in candidates do
1711 var cd1 = pd1.mclassdef
1712 var c1 = cd1.mclass
1713 var keep = true
1714 for pd2 in candidates do
1715 if pd2 == pd1 then continue # do not compare with self!
1716 var cd2 = pd2.mclassdef
1717 var c2 = cd2.mclass
1718 if c2.mclass_type == c1.mclass_type then
1719 if cd2.mmodule.in_importation < cd1.mmodule then
1720 # cd2 refines cd1; therefore we skip pd1
1721 keep = false
1722 break
1723 end
1724 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
1725 # cd2 < cd1; therefore we skip pd1
1726 keep = false
1727 break
1728 end
1729 end
1730 if keep then
1731 res.add(pd1)
1732 end
1733 end
1734 if res.is_empty then
1735 print "All lost! {candidates.join(", ")}"
1736 # FIXME: should be abort!
1737 end
1738 return res
1739 end
1740
1741 # Return the most specific definition in the linearization of `mtype`.
1742 #
1743 # If you want to know the next properties in the linearization,
1744 # look at `MPropDef::lookup_next_definition`.
1745 #
1746 # FIXME: the linearisation is still unspecified
1747 #
1748 # REQUIRE: `not mtype.need_anchor`
1749 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
1750 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
1751 do
1752 assert mtype.has_mproperty(mmodule, self)
1753 return lookup_all_definitions(mmodule, mtype).first
1754 end
1755
1756 # Return all definitions in a linearisation order
1757 # Most speficic first, most general last
1758 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1759 do
1760 assert not mtype.need_anchor
1761 if mtype isa MNullableType then mtype = mtype.mtype
1762
1763 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
1764 if cache != null then return cache
1765
1766 #print "select prop {mproperty} for {mtype} in {self}"
1767 # First, select all candidates
1768 var candidates = new Array[MPROPDEF]
1769 for mpropdef in self.mpropdefs do
1770 # If the definition is not imported by the module, then skip
1771 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1772 # If the definition is not inherited by the type, then skip
1773 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1774 # Else, we keep it
1775 candidates.add(mpropdef)
1776 end
1777 # Fast track for only one candidate
1778 if candidates.length <= 1 then
1779 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
1780 return candidates
1781 end
1782
1783 mmodule.linearize_mpropdefs(candidates)
1784 candidates = candidates.reversed
1785 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
1786 return candidates
1787 end
1788
1789 private var lookup_all_definitions_cache: HashMap2[MModule, MType, Array[MPROPDEF]] = new HashMap2[MModule, MType, Array[MPROPDEF]]
1790 end
1791
1792 # A global method
1793 class MMethod
1794 super MProperty
1795
1796 redef type MPROPDEF: MMethodDef
1797
1798 init(intro_mclassdef: MClassDef, name: String, visibility: MVisibility)
1799 do
1800 super
1801 end
1802
1803 # Is the property defined at the top_level of the module?
1804 # Currently such a property are stored in `Object`
1805 var is_toplevel: Bool writable = false
1806
1807 # Is the property a constructor?
1808 # Warning, this property can be inherited by subclasses with or without being a constructor
1809 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
1810 var is_init: Bool writable = false
1811
1812 # The the property a 'new' contructor?
1813 var is_new: Bool writable = false
1814
1815 # Is the property a legal constructor for a given class?
1816 # As usual, visibility is not considered.
1817 # FIXME not implemented
1818 fun is_init_for(mclass: MClass): Bool
1819 do
1820 return self.is_init
1821 end
1822 end
1823
1824 # A global attribute
1825 class MAttribute
1826 super MProperty
1827
1828 redef type MPROPDEF: MAttributeDef
1829
1830 init(intro_mclassdef: MClassDef, name: String, visibility: MVisibility)
1831 do
1832 super
1833 end
1834 end
1835
1836 # A global virtual type
1837 class MVirtualTypeProp
1838 super MProperty
1839
1840 redef type MPROPDEF: MVirtualTypeDef
1841
1842 init(intro_mclassdef: MClassDef, name: String, visibility: MVisibility)
1843 do
1844 super
1845 end
1846
1847 # The formal type associated to the virtual type property
1848 var mvirtualtype: MVirtualType = new MVirtualType(self)
1849 end
1850
1851 # A definition of a property (local property)
1852 #
1853 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
1854 # specific class definition (which belong to a specific module)
1855 abstract class MPropDef
1856 super MEntity
1857
1858 # The associated `MProperty` subclass.
1859 # the two specialization hierarchy are symmetric
1860 type MPROPERTY: MProperty
1861
1862 # Self class
1863 type MPROPDEF: MPropDef
1864
1865 # The origin of the definition
1866 var location: Location
1867
1868 # The class definition where the property definition is
1869 var mclassdef: MClassDef
1870
1871 # The associated global property
1872 var mproperty: MPROPERTY
1873
1874 init(mclassdef: MClassDef, mproperty: MPROPERTY, location: Location)
1875 do
1876 self.mclassdef = mclassdef
1877 self.mproperty = mproperty
1878 self.location = location
1879 mclassdef.mpropdefs.add(self)
1880 mproperty.mpropdefs.add(self)
1881 self.to_s = "{mclassdef}#{mproperty}"
1882 end
1883
1884 # Actually the name of the `mproperty`
1885 redef fun name do return mproperty.name
1886
1887 redef fun model do return mclassdef.model
1888
1889 # Internal name combining the module, the class and the property
1890 # Example: "mymodule#MyClass#mymethod"
1891 redef var to_s: String
1892
1893 # Is self the definition that introduce the property?
1894 fun is_intro: Bool do return mproperty.intro == self
1895
1896 # Return the next definition in linearization of `mtype`.
1897 #
1898 # This method is used to determine what method is called by a super.
1899 #
1900 # REQUIRE: `not mtype.need_anchor`
1901 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
1902 do
1903 assert not mtype.need_anchor
1904
1905 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
1906 var i = mpropdefs.iterator
1907 while i.is_ok and i.item != self do i.next
1908 assert has_property: i.is_ok
1909 i.next
1910 assert has_next_property: i.is_ok
1911 return i.item
1912 end
1913 end
1914
1915 # A local definition of a method
1916 class MMethodDef
1917 super MPropDef
1918
1919 redef type MPROPERTY: MMethod
1920 redef type MPROPDEF: MMethodDef
1921
1922 init(mclassdef: MClassDef, mproperty: MPROPERTY, location: Location)
1923 do
1924 super
1925 end
1926
1927 # The signature attached to the property definition
1928 var msignature: nullable MSignature writable = null
1929
1930 # Is the method definition abstract?
1931 var is_abstract: Bool writable = false
1932
1933 # Is the method definition intern?
1934 var is_intern writable = false
1935
1936 # Is the method definition extern?
1937 var is_extern writable = false
1938 end
1939
1940 # A local definition of an attribute
1941 class MAttributeDef
1942 super MPropDef
1943
1944 redef type MPROPERTY: MAttribute
1945 redef type MPROPDEF: MAttributeDef
1946
1947 init(mclassdef: MClassDef, mproperty: MPROPERTY, location: Location)
1948 do
1949 super
1950 end
1951
1952 # The static type of the attribute
1953 var static_mtype: nullable MType writable = null
1954 end
1955
1956 # A local definition of a virtual type
1957 class MVirtualTypeDef
1958 super MPropDef
1959
1960 redef type MPROPERTY: MVirtualTypeProp
1961 redef type MPROPDEF: MVirtualTypeDef
1962
1963 init(mclassdef: MClassDef, mproperty: MPROPERTY, location: Location)
1964 do
1965 super
1966 end
1967
1968 # The bound of the virtual type
1969 var bound: nullable MType writable = null
1970
1971 # Is the bound fixed?
1972 var is_fixed writable = false
1973 end
1974
1975 # A kind of class.
1976 #
1977 # * `abstract_kind`
1978 # * `concrete_kind`
1979 # * `interface_kind`
1980 # * `enum_kind`
1981 # * `extern_kind`
1982 #
1983 # Note this class is basically an enum.
1984 # FIXME: use a real enum once user-defined enums are available
1985 class MClassKind
1986 redef var to_s: String
1987
1988 # Is a constructor required?
1989 var need_init: Bool
1990 private init(s: String, need_init: Bool)
1991 do
1992 self.to_s = s
1993 self.need_init = need_init
1994 end
1995
1996 # Can a class of kind `self` specializes a class of kine `other`?
1997 fun can_specialize(other: MClassKind): Bool
1998 do
1999 if other == interface_kind then return true # everybody can specialize interfaces
2000 if self == interface_kind or self == enum_kind then
2001 # no other case for interfaces
2002 return false
2003 else if self == extern_kind then
2004 # only compatible with themselve
2005 return self == other
2006 else if other == enum_kind or other == extern_kind then
2007 # abstract_kind and concrete_kind are incompatible
2008 return false
2009 end
2010 # remain only abstract_kind and concrete_kind
2011 return true
2012 end
2013 end
2014
2015 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", true)
2016 fun concrete_kind: MClassKind do return once new MClassKind("class", true)
2017 fun interface_kind: MClassKind do return once new MClassKind("interface", false)
2018 fun enum_kind: MClassKind do return once new MClassKind("enum", false)
2019 fun extern_kind: MClassKind do return once new MClassKind("extern class", false)