sepcomp: do not generate class tables for dead classes
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class Model
34 # All known classes
35 var mclasses = new Array[MClass]
36
37 # All known properties
38 var mproperties = new Array[MProperty]
39
40 # Hierarchy of class definition.
41 #
42 # Each classdef is associated with its super-classdefs in regard to
43 # its module of definition.
44 var mclassdef_hierarchy = new POSet[MClassDef]
45
46 # Class-type hierarchy restricted to the introduction.
47 #
48 # The idea is that what is true on introduction is always true whatever
49 # the module considered.
50 # Therefore, this hierarchy is used for a fast positive subtype check.
51 #
52 # This poset will evolve in a monotonous way:
53 # * Two non connected nodes will remain unconnected
54 # * New nodes can appear with new edges
55 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
56
57 # Global overlapped class-type hierarchy.
58 # The hierarchy when all modules are combined.
59 # Therefore, this hierarchy is used for a fast negative subtype check.
60 #
61 # This poset will evolve in an anarchic way. Loops can even be created.
62 #
63 # FIXME decide what to do on loops
64 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
65
66 # Collections of classes grouped by their short name
67 private var mclasses_by_name = new MultiHashMap[String, MClass]
68
69 # Return all class named `name`.
70 #
71 # If such a class does not exist, null is returned
72 # (instead of an empty array)
73 #
74 # Visibility or modules are not considered
75 fun get_mclasses_by_name(name: String): nullable Array[MClass]
76 do
77 return mclasses_by_name.get_or_null(name)
78 end
79
80 # Collections of properties grouped by their short name
81 private var mproperties_by_name = new MultiHashMap[String, MProperty]
82
83 # Return all properties named `name`.
84 #
85 # If such a property does not exist, null is returned
86 # (instead of an empty array)
87 #
88 # Visibility or modules are not considered
89 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
90 do
91 return mproperties_by_name.get_or_null(name)
92 end
93
94 # The only null type
95 var null_type = new MNullType(self)
96
97 # Build an ordered tree with from `concerns`
98 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
99 var seen = new HashSet[MConcern]
100 var res = new ConcernsTree
101
102 var todo = new Array[MConcern]
103 todo.add_all mconcerns
104
105 while not todo.is_empty do
106 var c = todo.pop
107 if seen.has(c) then continue
108 var pc = c.parent_concern
109 if pc == null then
110 res.add(null, c)
111 else
112 res.add(pc, c)
113 todo.add(pc)
114 end
115 seen.add(c)
116 end
117
118 return res
119 end
120 end
121
122 # An OrderedTree that can be easily refined for display purposes
123 class ConcernsTree
124 super OrderedTree[MConcern]
125 end
126
127 redef class MModule
128 # All the classes introduced in the module
129 var intro_mclasses = new Array[MClass]
130
131 # All the class definitions of the module
132 # (introduction and refinement)
133 var mclassdefs = new Array[MClassDef]
134
135 # Does the current module has a given class `mclass`?
136 # Return true if the mmodule introduces, refines or imports a class.
137 # Visibility is not considered.
138 fun has_mclass(mclass: MClass): Bool
139 do
140 return self.in_importation <= mclass.intro_mmodule
141 end
142
143 # Full hierarchy of introduced ans imported classes.
144 #
145 # Create a new hierarchy got by flattening the classes for the module
146 # and its imported modules.
147 # Visibility is not considered.
148 #
149 # Note: this function is expensive and is usually used for the main
150 # module of a program only. Do not use it to do you own subtype
151 # functions.
152 fun flatten_mclass_hierarchy: POSet[MClass]
153 do
154 var res = self.flatten_mclass_hierarchy_cache
155 if res != null then return res
156 res = new POSet[MClass]
157 for m in self.in_importation.greaters do
158 for cd in m.mclassdefs do
159 var c = cd.mclass
160 res.add_node(c)
161 for s in cd.supertypes do
162 res.add_edge(c, s.mclass)
163 end
164 end
165 end
166 self.flatten_mclass_hierarchy_cache = res
167 return res
168 end
169
170 # Sort a given array of classes using the linearization order of the module
171 # The most general is first, the most specific is last
172 fun linearize_mclasses(mclasses: Array[MClass])
173 do
174 self.flatten_mclass_hierarchy.sort(mclasses)
175 end
176
177 # Sort a given array of class definitions using the linearization order of the module
178 # the refinement link is stronger than the specialisation link
179 # The most general is first, the most specific is last
180 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
181 do
182 var sorter = new MClassDefSorter(self)
183 sorter.sort(mclassdefs)
184 end
185
186 # Sort a given array of property definitions using the linearization order of the module
187 # the refinement link is stronger than the specialisation link
188 # The most general is first, the most specific is last
189 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
190 do
191 var sorter = new MPropDefSorter(self)
192 sorter.sort(mpropdefs)
193 end
194
195 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
196
197 # The primitive type `Object`, the root of the class hierarchy
198 fun object_type: MClassType
199 do
200 var res = self.object_type_cache
201 if res != null then return res
202 res = self.get_primitive_class("Object").mclass_type
203 self.object_type_cache = res
204 return res
205 end
206
207 private var object_type_cache: nullable MClassType
208
209 # The type `Pointer`, super class to all extern classes
210 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
211
212 # The primitive type `Bool`
213 fun bool_type: MClassType
214 do
215 var res = self.bool_type_cache
216 if res != null then return res
217 res = self.get_primitive_class("Bool").mclass_type
218 self.bool_type_cache = res
219 return res
220 end
221
222 private var bool_type_cache: nullable MClassType
223
224 # The primitive type `Sys`, the main type of the program, if any
225 fun sys_type: nullable MClassType
226 do
227 var clas = self.model.get_mclasses_by_name("Sys")
228 if clas == null then return null
229 return get_primitive_class("Sys").mclass_type
230 end
231
232 # The primitive type `Finalizable`
233 # Used to tag classes that need to be finalized.
234 fun finalizable_type: nullable MClassType
235 do
236 var clas = self.model.get_mclasses_by_name("Finalizable")
237 if clas == null then return null
238 return get_primitive_class("Finalizable").mclass_type
239 end
240
241 # Force to get the primitive class named `name` or abort
242 fun get_primitive_class(name: String): MClass
243 do
244 var cla = self.model.get_mclasses_by_name(name)
245 if cla == null then
246 if name == "Bool" and self.model.get_mclasses_by_name("Object") != null then
247 # Bool is injected because it is needed by engine to code the result
248 # of the implicit casts.
249 var c = new MClass(self, name, null, enum_kind, public_visibility)
250 var cladef = new MClassDef(self, c.mclass_type, new Location(null, 0,0,0,0))
251 cladef.set_supertypes([object_type])
252 cladef.add_in_hierarchy
253 return c
254 end
255 print("Fatal Error: no primitive class {name}")
256 exit(1)
257 end
258 if cla.length != 1 then
259 var msg = "Fatal Error: more than one primitive class {name}:"
260 for c in cla do msg += " {c.full_name}"
261 print msg
262 #exit(1)
263 end
264 return cla.first
265 end
266
267 # Try to get the primitive method named `name` on the type `recv`
268 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
269 do
270 var props = self.model.get_mproperties_by_name(name)
271 if props == null then return null
272 var res: nullable MMethod = null
273 for mprop in props do
274 assert mprop isa MMethod
275 var intro = mprop.intro_mclassdef
276 for mclassdef in recv.mclassdefs do
277 if not self.in_importation.greaters.has(mclassdef.mmodule) then continue
278 if not mclassdef.in_hierarchy.greaters.has(intro) then continue
279 if res == null then
280 res = mprop
281 else if res != mprop then
282 print("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
283 abort
284 end
285 end
286 end
287 return res
288 end
289 end
290
291 private class MClassDefSorter
292 super Comparator
293 redef type COMPARED: MClassDef
294 var mmodule: MModule
295 redef fun compare(a, b)
296 do
297 var ca = a.mclass
298 var cb = b.mclass
299 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
300 return mmodule.model.mclassdef_hierarchy.compare(a, b)
301 end
302 end
303
304 private class MPropDefSorter
305 super Comparator
306 redef type COMPARED: MPropDef
307 var mmodule: MModule
308 redef fun compare(pa, pb)
309 do
310 var a = pa.mclassdef
311 var b = pb.mclassdef
312 var ca = a.mclass
313 var cb = b.mclass
314 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
315 return mmodule.model.mclassdef_hierarchy.compare(a, b)
316 end
317 end
318
319 # A named class
320 #
321 # `MClass` are global to the model; it means that a `MClass` is not bound to a
322 # specific `MModule`.
323 #
324 # This characteristic helps the reasoning about classes in a program since a
325 # single `MClass` object always denote the same class.
326 #
327 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
328 # These do not really have properties nor belong to a hierarchy since the property and the
329 # hierarchy of a class depends of the refinement in the modules.
330 #
331 # Most services on classes require the precision of a module, and no one can asks what are
332 # the super-classes of a class nor what are properties of a class without precising what is
333 # the module considered.
334 #
335 # For instance, during the typing of a source-file, the module considered is the module of the file.
336 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
337 # *is the method `foo` exists in the class `Bar` in the current module?*
338 #
339 # During some global analysis, the module considered may be the main module of the program.
340 class MClass
341 super MEntity
342
343 # The module that introduce the class
344 # While classes are not bound to a specific module,
345 # the introducing module is used for naming an visibility
346 var intro_mmodule: MModule
347
348 # The short name of the class
349 # In Nit, the name of a class cannot evolve in refinements
350 redef var name: String
351
352 # The canonical name of the class
353 #
354 # It is the name of the class prefixed by the full_name of the `intro_mmodule`
355 # Example: `"owner::module::MyClass"`
356 redef var full_name is lazy do
357 return "{self.intro_mmodule.namespace_for(visibility)}::{name}"
358 end
359
360 redef var c_name is lazy do
361 return "{intro_mmodule.c_namespace_for(visibility)}__{name.to_cmangle}"
362 end
363
364 # The number of generic formal parameters
365 # 0 if the class is not generic
366 var arity: Int is noinit
367
368 # Each generic formal parameters in order.
369 # is empty if the class is not generic
370 var mparameters = new Array[MParameterType]
371
372 # Initialize `mparameters` from their names.
373 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
374 autoinit
375 do
376 if parameter_names == null then
377 self.arity = 0
378 else
379 self.arity = parameter_names.length
380 end
381
382 # Create the formal parameter types
383 if arity > 0 then
384 assert parameter_names != null
385 var mparametertypes = new Array[MParameterType]
386 for i in [0..arity[ do
387 var mparametertype = new MParameterType(self, i, parameter_names[i])
388 mparametertypes.add(mparametertype)
389 end
390 self.mparameters = mparametertypes
391 var mclass_type = new MGenericType(self, mparametertypes)
392 self.mclass_type = mclass_type
393 self.get_mtype_cache[mparametertypes] = mclass_type
394 else
395 self.mclass_type = new MClassType(self)
396 end
397 end
398
399 # The kind of the class (interface, abstract class, etc.)
400 # In Nit, the kind of a class cannot evolve in refinements
401 var kind: MClassKind
402
403 # The visibility of the class
404 # In Nit, the visibility of a class cannot evolve in refinements
405 var visibility: MVisibility
406
407 init
408 do
409 intro_mmodule.intro_mclasses.add(self)
410 var model = intro_mmodule.model
411 model.mclasses_by_name.add_one(name, self)
412 model.mclasses.add(self)
413 end
414
415 redef fun model do return intro_mmodule.model
416
417 # All class definitions (introduction and refinements)
418 var mclassdefs = new Array[MClassDef]
419
420 # Alias for `name`
421 redef fun to_s do return self.name
422
423 # The definition that introduces the class.
424 #
425 # Warning: such a definition may not exist in the early life of the object.
426 # In this case, the method will abort.
427 var intro: MClassDef is noinit
428
429 # Return the class `self` in the class hierarchy of the module `mmodule`.
430 #
431 # SEE: `MModule::flatten_mclass_hierarchy`
432 # REQUIRE: `mmodule.has_mclass(self)`
433 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
434 do
435 return mmodule.flatten_mclass_hierarchy[self]
436 end
437
438 # The principal static type of the class.
439 #
440 # For non-generic class, mclass_type is the only `MClassType` based
441 # on self.
442 #
443 # For a generic class, the arguments are the formal parameters.
444 # i.e.: for the class Array[E:Object], the `mclass_type` is Array[E].
445 # If you want Array[Object] the see `MClassDef::bound_mtype`
446 #
447 # For generic classes, the mclass_type is also the way to get a formal
448 # generic parameter type.
449 #
450 # To get other types based on a generic class, see `get_mtype`.
451 #
452 # ENSURE: `mclass_type.mclass == self`
453 var mclass_type: MClassType is noinit
454
455 # Return a generic type based on the class
456 # Is the class is not generic, then the result is `mclass_type`
457 #
458 # REQUIRE: `mtype_arguments.length == self.arity`
459 fun get_mtype(mtype_arguments: Array[MType]): MClassType
460 do
461 assert mtype_arguments.length == self.arity
462 if self.arity == 0 then return self.mclass_type
463 var res = get_mtype_cache.get_or_null(mtype_arguments)
464 if res != null then return res
465 res = new MGenericType(self, mtype_arguments)
466 self.get_mtype_cache[mtype_arguments.to_a] = res
467 return res
468 end
469
470 private var get_mtype_cache = new HashMap[Array[MType], MGenericType]
471
472 # Is there a `new` factory to allow the pseudo instantiation?
473 var has_new_factory = false is writable
474 end
475
476
477 # A definition (an introduction or a refinement) of a class in a module
478 #
479 # A `MClassDef` is associated with an explicit (or almost) definition of a
480 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
481 # a specific class and a specific module, and contains declarations like super-classes
482 # or properties.
483 #
484 # It is the class definitions that are the backbone of most things in the model:
485 # ClassDefs are defined with regard with other classdefs.
486 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
487 #
488 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
489 class MClassDef
490 super MEntity
491
492 # The module where the definition is
493 var mmodule: MModule
494
495 # The associated `MClass`
496 var mclass: MClass is noinit
497
498 # The bounded type associated to the mclassdef
499 #
500 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
501 # are the same type.
502 #
503 # Example:
504 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
505 # If you want Array[E], then see `mclass.mclass_type`
506 #
507 # ENSURE: `bound_mtype.mclass == self.mclass`
508 var bound_mtype: MClassType
509
510 # The origin of the definition
511 var location: Location
512
513 # Internal name combining the module and the class
514 # Example: "mymodule#MyClass"
515 redef var to_s: String is noinit
516
517 init
518 do
519 self.mclass = bound_mtype.mclass
520 mmodule.mclassdefs.add(self)
521 mclass.mclassdefs.add(self)
522 if mclass.intro_mmodule == mmodule then
523 assert not isset mclass._intro
524 mclass.intro = self
525 end
526 self.to_s = "{mmodule}#{mclass}"
527 end
528
529 # Actually the name of the `mclass`
530 redef fun name do return mclass.name
531
532 # The module and class name separated by a '#'.
533 #
534 # The short-name of the class is used for introduction.
535 # Example: "my_module#MyClass"
536 #
537 # The full-name of the class is used for refinement.
538 # Example: "my_module#intro_module::MyClass"
539 redef var full_name is lazy do
540 if is_intro then
541 # public gives 'p#A'
542 # private gives 'p::m#A'
543 return "{mmodule.namespace_for(mclass.visibility)}#{mclass.name}"
544 else if mclass.intro_mmodule.mproject != mmodule.mproject then
545 # public gives 'q::n#p::A'
546 # private gives 'q::n#p::m::A'
547 return "{mmodule.full_name}#{mclass.full_name}"
548 else if mclass.visibility > private_visibility then
549 # public gives 'p::n#A'
550 return "{mmodule.full_name}#{mclass.name}"
551 else
552 # private gives 'p::n#::m::A' (redundant p is omitted)
553 return "{mmodule.full_name}#::{mclass.intro_mmodule.name}::{mclass.name}"
554 end
555 end
556
557 redef var c_name is lazy do
558 if is_intro then
559 return "{mmodule.c_namespace_for(mclass.visibility)}___{mclass.c_name}"
560 else if mclass.intro_mmodule.mproject == mmodule.mproject and mclass.visibility > private_visibility then
561 return "{mmodule.c_name}___{mclass.name.to_cmangle}"
562 else
563 return "{mmodule.c_name}___{mclass.c_name}"
564 end
565 end
566
567 redef fun model do return mmodule.model
568
569 # All declared super-types
570 # FIXME: quite ugly but not better idea yet
571 var supertypes = new Array[MClassType]
572
573 # Register some super-types for the class (ie "super SomeType")
574 #
575 # The hierarchy must not already be set
576 # REQUIRE: `self.in_hierarchy == null`
577 fun set_supertypes(supertypes: Array[MClassType])
578 do
579 assert unique_invocation: self.in_hierarchy == null
580 var mmodule = self.mmodule
581 var model = mmodule.model
582 var mtype = self.bound_mtype
583
584 for supertype in supertypes do
585 self.supertypes.add(supertype)
586
587 # Register in full_type_specialization_hierarchy
588 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
589 # Register in intro_type_specialization_hierarchy
590 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
591 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
592 end
593 end
594
595 end
596
597 # Collect the super-types (set by set_supertypes) to build the hierarchy
598 #
599 # This function can only invoked once by class
600 # REQUIRE: `self.in_hierarchy == null`
601 # ENSURE: `self.in_hierarchy != null`
602 fun add_in_hierarchy
603 do
604 assert unique_invocation: self.in_hierarchy == null
605 var model = mmodule.model
606 var res = model.mclassdef_hierarchy.add_node(self)
607 self.in_hierarchy = res
608 var mtype = self.bound_mtype
609
610 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
611 # The simpliest way is to attach it to collect_mclassdefs
612 for mclassdef in mtype.collect_mclassdefs(mmodule) do
613 res.poset.add_edge(self, mclassdef)
614 end
615 end
616
617 # The view of the class definition in `mclassdef_hierarchy`
618 var in_hierarchy: nullable POSetElement[MClassDef] = null
619
620 # Is the definition the one that introduced `mclass`?
621 fun is_intro: Bool do return mclass.intro == self
622
623 # All properties introduced by the classdef
624 var intro_mproperties = new Array[MProperty]
625
626 # All property definitions in the class (introductions and redefinitions)
627 var mpropdefs = new Array[MPropDef]
628 end
629
630 # A global static type
631 #
632 # MType are global to the model; it means that a `MType` is not bound to a
633 # specific `MModule`.
634 # This characteristic helps the reasoning about static types in a program
635 # since a single `MType` object always denote the same type.
636 #
637 # However, because a `MType` is global, it does not really have properties
638 # nor have subtypes to a hierarchy since the property and the class hierarchy
639 # depends of a module.
640 # Moreover, virtual types an formal generic parameter types also depends on
641 # a receiver to have sense.
642 #
643 # Therefore, most method of the types require a module and an anchor.
644 # The module is used to know what are the classes and the specialization
645 # links.
646 # The anchor is used to know what is the bound of the virtual types and formal
647 # generic parameter types.
648 #
649 # MType are not directly usable to get properties. See the `anchor_to` method
650 # and the `MClassType` class.
651 #
652 # FIXME: the order of the parameters is not the best. We mus pick on from:
653 # * foo(mmodule, anchor, othertype)
654 # * foo(othertype, anchor, mmodule)
655 # * foo(anchor, mmodule, othertype)
656 # * foo(othertype, mmodule, anchor)
657 abstract class MType
658 super MEntity
659
660 redef fun name do return to_s
661
662 # Return true if `self` is an subtype of `sup`.
663 # The typing is done using the standard typing policy of Nit.
664 #
665 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
666 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
667 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
668 do
669 var sub = self
670 if sub == sup then return true
671
672 #print "1.is {sub} a {sup}? ===="
673
674 if anchor == null then
675 assert not sub.need_anchor
676 assert not sup.need_anchor
677 else
678 # First, resolve the formal types to the simplest equivalent forms in the receiver
679 assert sub.can_resolve_for(anchor, null, mmodule)
680 sub = sub.lookup_fixed(mmodule, anchor)
681 assert sup.can_resolve_for(anchor, null, mmodule)
682 sup = sup.lookup_fixed(mmodule, anchor)
683 end
684
685 # Does `sup` accept null or not?
686 # Discard the nullable marker if it exists
687 var sup_accept_null = false
688 if sup isa MNullableType then
689 sup_accept_null = true
690 sup = sup.mtype
691 else if sup isa MNullType then
692 sup_accept_null = true
693 end
694
695 # Can `sub` provide null or not?
696 # Thus we can match with `sup_accept_null`
697 # Also discard the nullable marker if it exists
698 if sub isa MNullableType then
699 if not sup_accept_null then return false
700 sub = sub.mtype
701 else if sub isa MNullType then
702 return sup_accept_null
703 end
704 # Now the case of direct null and nullable is over.
705
706 # If `sub` is a formal type, then it is accepted if its bound is accepted
707 while sub isa MParameterType or sub isa MVirtualType do
708 #print "3.is {sub} a {sup}?"
709
710 # A unfixed formal type can only accept itself
711 if sub == sup then return true
712
713 assert anchor != null
714 sub = sub.lookup_bound(mmodule, anchor)
715
716 #print "3.is {sub} a {sup}?"
717
718 # Manage the second layer of null/nullable
719 if sub isa MNullableType then
720 if not sup_accept_null then return false
721 sub = sub.mtype
722 else if sub isa MNullType then
723 return sup_accept_null
724 end
725 end
726 #print "4.is {sub} a {sup}? <- no more resolution"
727
728 assert sub isa MClassType # It is the only remaining type
729
730 # A unfixed formal type can only accept itself
731 if sup isa MParameterType or sup isa MVirtualType then
732 return false
733 end
734
735 if sup isa MNullType then
736 # `sup` accepts only null
737 return false
738 end
739
740 assert sup isa MClassType # It is the only remaining type
741
742 # Now both are MClassType, we need to dig
743
744 if sub == sup then return true
745
746 if anchor == null then anchor = sub # UGLY: any anchor will work
747 var resolved_sub = sub.anchor_to(mmodule, anchor)
748 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
749 if res == false then return false
750 if not sup isa MGenericType then return true
751 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
752 assert sub2.mclass == sup.mclass
753 for i in [0..sup.mclass.arity[ do
754 var sub_arg = sub2.arguments[i]
755 var sup_arg = sup.arguments[i]
756 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
757 if res == false then return false
758 end
759 return true
760 end
761
762 # The base class type on which self is based
763 #
764 # This base type is used to get property (an internally to perform
765 # unsafe type comparison).
766 #
767 # Beware: some types (like null) are not based on a class thus this
768 # method will crash
769 #
770 # Basically, this function transform the virtual types and parameter
771 # types to their bounds.
772 #
773 # Example
774 #
775 # class A end
776 # class B super A end
777 # class X end
778 # class Y super X end
779 # class G[T: A]
780 # type U: X
781 # end
782 # class H
783 # super G[B]
784 # redef type U: Y
785 # end
786 #
787 # Map[T,U] anchor_to H #-> Map[B,Y]
788 #
789 # Explanation of the example:
790 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
791 # because "redef type U: Y". Therefore, Map[T, U] is bound to
792 # Map[B, Y]
793 #
794 # ENSURE: `not self.need_anchor implies result == self`
795 # ENSURE: `not result.need_anchor`
796 fun anchor_to(mmodule: MModule, anchor: MClassType): MType
797 do
798 if not need_anchor then return self
799 assert not anchor.need_anchor
800 # Just resolve to the anchor and clear all the virtual types
801 var res = self.resolve_for(anchor, null, mmodule, true)
802 assert not res.need_anchor
803 return res
804 end
805
806 # Does `self` contain a virtual type or a formal generic parameter type?
807 # In order to remove those types, you usually want to use `anchor_to`.
808 fun need_anchor: Bool do return true
809
810 # Return the supertype when adapted to a class.
811 #
812 # In Nit, for each super-class of a type, there is a equivalent super-type.
813 #
814 # Example:
815 #
816 # ~~~nitish
817 # class G[T, U] end
818 # class H[V] super G[V, Bool] end
819 #
820 # H[Int] supertype_to G #-> G[Int, Bool]
821 # ~~~
822 #
823 # REQUIRE: `super_mclass` is a super-class of `self`
824 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
825 # ENSURE: `result.mclass = super_mclass`
826 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
827 do
828 if super_mclass.arity == 0 then return super_mclass.mclass_type
829 if self isa MClassType and self.mclass == super_mclass then return self
830 var resolved_self
831 if self.need_anchor then
832 assert anchor != null
833 resolved_self = self.anchor_to(mmodule, anchor)
834 else
835 resolved_self = self
836 end
837 var supertypes = resolved_self.collect_mtypes(mmodule)
838 for supertype in supertypes do
839 if supertype.mclass == super_mclass then
840 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
841 return supertype.resolve_for(self, anchor, mmodule, false)
842 end
843 end
844 abort
845 end
846
847 # Replace formals generic types in self with resolved values in `mtype`
848 # If `cleanup_virtual` is true, then virtual types are also replaced
849 # with their bounds.
850 #
851 # This function returns self if `need_anchor` is false.
852 #
853 # ## Example 1
854 #
855 # ~~~
856 # class G[E] end
857 # class H[F] super G[F] end
858 # class X[Z] end
859 # ~~~
860 #
861 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
862 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
863 #
864 # Explanation of the example:
865 # * Array[E].need_anchor is true because there is a formal generic parameter type E
866 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
867 # * Since "H[F] super G[F]", E is in fact F for H
868 # * More specifically, in H[Int], E is Int
869 # * So, in H[Int], Array[E] is Array[Int]
870 #
871 # This function is mainly used to inherit a signature.
872 # Because, unlike `anchor_to`, we do not want a full resolution of
873 # a type but only an adapted version of it.
874 #
875 # ## Example 2
876 #
877 # ~~~
878 # class A[E]
879 # fun foo(e:E):E is abstract
880 # end
881 # class B super A[Int] end
882 # ~~~
883 #
884 # The signature on foo is (e: E): E
885 # If we resolve the signature for B, we get (e:Int):Int
886 #
887 # ## Example 3
888 #
889 # ~~~nitish
890 # class A[E]
891 # fun foo(e:E):E is abstract
892 # end
893 # class C[F]
894 # var a: A[Array[F]]
895 # fun bar do a.foo(x) # <- x is here
896 # end
897 # ~~~
898 #
899 # The first question is: is foo available on `a`?
900 #
901 # The static type of a is `A[Array[F]]`, that is an open type.
902 # in order to find a method `foo`, whe must look at a resolved type.
903 #
904 # A[Array[F]].anchor_to(C[nullable Object]) #-> A[Array[nullable Object]]
905 #
906 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
907 #
908 # The next question is: what is the accepted types for `x`?
909 #
910 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
911 #
912 # E.resolve_for(A[Array[F]],C[nullable Object]) #-> Array[F]
913 #
914 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
915 #
916 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
917 # two function instead of one seems also to be a bad idea.
918 #
919 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
920 # ENSURE: `not self.need_anchor implies result == self`
921 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
922
923 # Resolve formal type to its verbatim bound.
924 # If the type is not formal, just return self
925 #
926 # The result is returned exactly as declared in the "type" property (verbatim).
927 # So it could be another formal type.
928 #
929 # In case of conflict, the method aborts.
930 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self
931
932 # Resolve the formal type to its simplest equivalent form.
933 #
934 # Formal types are either free or fixed.
935 # When it is fixed, it means that it is equivalent with a simpler type.
936 # When a formal type is free, it means that it is only equivalent with itself.
937 # This method return the most simple equivalent type of `self`.
938 #
939 # This method is mainly used for subtype test in order to sanely compare fixed.
940 #
941 # By default, return self.
942 # See the redefinitions for specific behavior in each kind of type.
943 fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self
944
945 # Can the type be resolved?
946 #
947 # In order to resolve open types, the formal types must make sence.
948 #
949 # ## Example
950 #
951 # class A[E]
952 # end
953 # class B[F]
954 # end
955 #
956 # ~~~nitish
957 # E.can_resolve_for(A[Int]) #-> true, E make sense in A
958 #
959 # E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
960 #
961 # B[E].can_resolve_for(A[F], B[Object]) #-> true,
962 # # B[E] is a red hearing only the E is important,
963 # # E make sense in A
964 # ~~~
965 #
966 # REQUIRE: `anchor != null implies not anchor.need_anchor`
967 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
968 # ENSURE: `not self.need_anchor implies result == true`
969 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
970
971 # Return the nullable version of the type
972 # If the type is already nullable then self is returned
973 fun as_nullable: MType
974 do
975 var res = self.as_nullable_cache
976 if res != null then return res
977 res = new MNullableType(self)
978 self.as_nullable_cache = res
979 return res
980 end
981
982 # Return the not nullable version of the type
983 # Is the type is already not nullable, then self is returned.
984 #
985 # Note: this just remove the `nullable` notation, but the result can still contains null.
986 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
987 fun as_notnullable: MType
988 do
989 return self
990 end
991
992 private var as_nullable_cache: nullable MType = null
993
994
995 # The depth of the type seen as a tree.
996 #
997 # * A -> 1
998 # * G[A] -> 2
999 # * H[A, B] -> 2
1000 # * H[G[A], B] -> 3
1001 #
1002 # Formal types have a depth of 1.
1003 fun depth: Int
1004 do
1005 return 1
1006 end
1007
1008 # The length of the type seen as a tree.
1009 #
1010 # * A -> 1
1011 # * G[A] -> 2
1012 # * H[A, B] -> 3
1013 # * H[G[A], B] -> 4
1014 #
1015 # Formal types have a length of 1.
1016 fun length: Int
1017 do
1018 return 1
1019 end
1020
1021 # Compute all the classdefs inherited/imported.
1022 # The returned set contains:
1023 # * the class definitions from `mmodule` and its imported modules
1024 # * the class definitions of this type and its super-types
1025 #
1026 # This function is used mainly internally.
1027 #
1028 # REQUIRE: `not self.need_anchor`
1029 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
1030
1031 # Compute all the super-classes.
1032 # This function is used mainly internally.
1033 #
1034 # REQUIRE: `not self.need_anchor`
1035 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
1036
1037 # Compute all the declared super-types.
1038 # Super-types are returned as declared in the classdefs (verbatim).
1039 # This function is used mainly internally.
1040 #
1041 # REQUIRE: `not self.need_anchor`
1042 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
1043
1044 # Is the property in self for a given module
1045 # This method does not filter visibility or whatever
1046 #
1047 # REQUIRE: `not self.need_anchor`
1048 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
1049 do
1050 assert not self.need_anchor
1051 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
1052 end
1053 end
1054
1055 # A type based on a class.
1056 #
1057 # `MClassType` have properties (see `has_mproperty`).
1058 class MClassType
1059 super MType
1060
1061 # The associated class
1062 var mclass: MClass
1063
1064 redef fun model do return self.mclass.intro_mmodule.model
1065
1066 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1067
1068 # The formal arguments of the type
1069 # ENSURE: `result.length == self.mclass.arity`
1070 var arguments = new Array[MType]
1071
1072 redef fun to_s do return mclass.to_s
1073
1074 redef fun full_name do return mclass.full_name
1075
1076 redef fun c_name do return mclass.c_name
1077
1078 redef fun need_anchor do return false
1079
1080 redef fun anchor_to(mmodule: MModule, anchor: MClassType): MClassType
1081 do
1082 return super.as(MClassType)
1083 end
1084
1085 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1086
1087 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1088
1089 redef fun collect_mclassdefs(mmodule)
1090 do
1091 assert not self.need_anchor
1092 var cache = self.collect_mclassdefs_cache
1093 if not cache.has_key(mmodule) then
1094 self.collect_things(mmodule)
1095 end
1096 return cache[mmodule]
1097 end
1098
1099 redef fun collect_mclasses(mmodule)
1100 do
1101 if collect_mclasses_last_module == mmodule then return collect_mclasses_last_module_cache
1102 assert not self.need_anchor
1103 var cache = self.collect_mclasses_cache
1104 if not cache.has_key(mmodule) then
1105 self.collect_things(mmodule)
1106 end
1107 var res = cache[mmodule]
1108 collect_mclasses_last_module = mmodule
1109 collect_mclasses_last_module_cache = res
1110 return res
1111 end
1112
1113 private var collect_mclasses_last_module: nullable MModule = null
1114 private var collect_mclasses_last_module_cache: Set[MClass] is noinit
1115
1116 redef fun collect_mtypes(mmodule)
1117 do
1118 assert not self.need_anchor
1119 var cache = self.collect_mtypes_cache
1120 if not cache.has_key(mmodule) then
1121 self.collect_things(mmodule)
1122 end
1123 return cache[mmodule]
1124 end
1125
1126 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1127 private fun collect_things(mmodule: MModule)
1128 do
1129 var res = new HashSet[MClassDef]
1130 var seen = new HashSet[MClass]
1131 var types = new HashSet[MClassType]
1132 seen.add(self.mclass)
1133 var todo = [self.mclass]
1134 while not todo.is_empty do
1135 var mclass = todo.pop
1136 #print "process {mclass}"
1137 for mclassdef in mclass.mclassdefs do
1138 if not mmodule.in_importation <= mclassdef.mmodule then continue
1139 #print " process {mclassdef}"
1140 res.add(mclassdef)
1141 for supertype in mclassdef.supertypes do
1142 types.add(supertype)
1143 var superclass = supertype.mclass
1144 if seen.has(superclass) then continue
1145 #print " add {superclass}"
1146 seen.add(superclass)
1147 todo.add(superclass)
1148 end
1149 end
1150 end
1151 collect_mclassdefs_cache[mmodule] = res
1152 collect_mclasses_cache[mmodule] = seen
1153 collect_mtypes_cache[mmodule] = types
1154 end
1155
1156 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1157 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1158 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1159
1160 end
1161
1162 # A type based on a generic class.
1163 # A generic type a just a class with additional formal generic arguments.
1164 class MGenericType
1165 super MClassType
1166
1167 redef var arguments
1168
1169 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1170
1171 init
1172 do
1173 assert self.mclass.arity == arguments.length
1174
1175 self.need_anchor = false
1176 for t in arguments do
1177 if t.need_anchor then
1178 self.need_anchor = true
1179 break
1180 end
1181 end
1182
1183 self.to_s = "{mclass}[{arguments.join(", ")}]"
1184 end
1185
1186 # The short-name of the class, then the full-name of each type arguments within brackets.
1187 # Example: `"Map[String, List[Int]]"`
1188 redef var to_s: String is noinit
1189
1190 # The full-name of the class, then the full-name of each type arguments within brackets.
1191 # Example: `"standard::Map[standard::String, standard::List[standard::Int]]"`
1192 redef var full_name is lazy do
1193 var args = new Array[String]
1194 for t in arguments do
1195 args.add t.full_name
1196 end
1197 return "{mclass.full_name}[{args.join(", ")}]"
1198 end
1199
1200 redef var c_name is lazy do
1201 var res = mclass.c_name
1202 # Note: because the arity is known, a prefix notation is enough
1203 for t in arguments do
1204 res += "__"
1205 res += t.c_name
1206 end
1207 return res.to_s
1208 end
1209
1210 redef var need_anchor: Bool is noinit
1211
1212 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1213 do
1214 if not need_anchor then return self
1215 assert can_resolve_for(mtype, anchor, mmodule)
1216 var types = new Array[MType]
1217 for t in arguments do
1218 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1219 end
1220 return mclass.get_mtype(types)
1221 end
1222
1223 redef fun can_resolve_for(mtype, anchor, mmodule)
1224 do
1225 if not need_anchor then return true
1226 for t in arguments do
1227 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1228 end
1229 return true
1230 end
1231
1232
1233 redef fun depth
1234 do
1235 var dmax = 0
1236 for a in self.arguments do
1237 var d = a.depth
1238 if d > dmax then dmax = d
1239 end
1240 return dmax + 1
1241 end
1242
1243 redef fun length
1244 do
1245 var res = 1
1246 for a in self.arguments do
1247 res += a.length
1248 end
1249 return res
1250 end
1251 end
1252
1253 # A virtual formal type.
1254 class MVirtualType
1255 super MType
1256
1257 # The property associated with the type.
1258 # Its the definitions of this property that determine the bound or the virtual type.
1259 var mproperty: MVirtualTypeProp
1260
1261 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1262
1263 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1264 do
1265 return lookup_single_definition(mmodule, resolved_receiver).bound.as(not null)
1266 end
1267
1268 private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef
1269 do
1270 assert not resolved_receiver.need_anchor
1271 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1272 if props.is_empty then
1273 abort
1274 else if props.length == 1 then
1275 return props.first
1276 end
1277 var types = new ArraySet[MType]
1278 var res = props.first
1279 for p in props do
1280 types.add(p.bound.as(not null))
1281 if not res.is_fixed then res = p
1282 end
1283 if types.length == 1 then
1284 return res
1285 end
1286 abort
1287 end
1288
1289 # A VT is fixed when:
1290 # * the VT is (re-)defined with the annotation `is fixed`
1291 # * the VT is (indirectly) bound to an enum class (see `enum_kind`) since there is no subtype possible
1292 # * the receiver is an enum class since there is no subtype possible
1293 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1294 do
1295 assert not resolved_receiver.need_anchor
1296 resolved_receiver = resolved_receiver.as_notnullable
1297 assert resolved_receiver isa MClassType # It is the only remaining type
1298
1299 var prop = lookup_single_definition(mmodule, resolved_receiver)
1300 var res = prop.bound.as(not null)
1301
1302 # Recursively lookup the fixed result
1303 res = res.lookup_fixed(mmodule, resolved_receiver)
1304
1305 # 1. For a fixed VT, return the resolved bound
1306 if prop.is_fixed then return res
1307
1308 # 2. For a enum boud, return the bound
1309 if res isa MClassType and res.mclass.kind == enum_kind then return res
1310
1311 # 3. for a enum receiver return the bound
1312 if resolved_receiver.mclass.kind == enum_kind then return res
1313
1314 return self
1315 end
1316
1317 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1318 do
1319 if not cleanup_virtual then return self
1320 assert can_resolve_for(mtype, anchor, mmodule)
1321 # self is a virtual type declared (or inherited) in mtype
1322 # The point of the function it to get the bound of the virtual type that make sense for mtype
1323 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1324 #print "{class_name}: {self}/{mtype}/{anchor}?"
1325 var resolved_receiver
1326 if mtype.need_anchor then
1327 assert anchor != null
1328 resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true)
1329 else
1330 resolved_receiver = mtype
1331 end
1332 # Now, we can get the bound
1333 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1334 # The bound is exactly as declared in the "type" property, so we must resolve it again
1335 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1336
1337 return res
1338 end
1339
1340 redef fun can_resolve_for(mtype, anchor, mmodule)
1341 do
1342 if mtype.need_anchor then
1343 assert anchor != null
1344 mtype = mtype.anchor_to(mmodule, anchor)
1345 end
1346 return mtype.has_mproperty(mmodule, mproperty)
1347 end
1348
1349 redef fun to_s do return self.mproperty.to_s
1350
1351 redef fun full_name do return self.mproperty.full_name
1352
1353 redef fun c_name do return self.mproperty.c_name
1354 end
1355
1356 # The type associated to a formal parameter generic type of a class
1357 #
1358 # Each parameter type is associated to a specific class.
1359 # It means that all refinements of a same class "share" the parameter type,
1360 # but that a generic subclass has its own parameter types.
1361 #
1362 # However, in the sense of the meta-model, a parameter type of a class is
1363 # a valid type in a subclass. The "in the sense of the meta-model" is
1364 # important because, in the Nit language, the programmer cannot refers
1365 # directly to the parameter types of the super-classes.
1366 #
1367 # Example:
1368 #
1369 # class A[E]
1370 # fun e: E is abstract
1371 # end
1372 # class B[F]
1373 # super A[Array[F]]
1374 # end
1375 #
1376 # In the class definition B[F], `F` is a valid type but `E` is not.
1377 # However, `self.e` is a valid method call, and the signature of `e` is
1378 # declared `e: E`.
1379 #
1380 # Note that parameter types are shared among class refinements.
1381 # Therefore parameter only have an internal name (see `to_s` for details).
1382 class MParameterType
1383 super MType
1384
1385 # The generic class where the parameter belong
1386 var mclass: MClass
1387
1388 redef fun model do return self.mclass.intro_mmodule.model
1389
1390 # The position of the parameter (0 for the first parameter)
1391 # FIXME: is `position` a better name?
1392 var rank: Int
1393
1394 redef var name
1395
1396 redef fun to_s do return name
1397
1398 redef var full_name is lazy do return "{mclass.full_name}::{name}"
1399
1400 redef var c_name is lazy do return mclass.c_name + "__" + "#{name}".to_cmangle
1401
1402 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1403 do
1404 assert not resolved_receiver.need_anchor
1405 resolved_receiver = resolved_receiver.as_notnullable
1406 assert resolved_receiver isa MClassType # It is the only remaining type
1407 var goalclass = self.mclass
1408 if resolved_receiver.mclass == goalclass then
1409 return resolved_receiver.arguments[self.rank]
1410 end
1411 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1412 for t in supertypes do
1413 if t.mclass == goalclass then
1414 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1415 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1416 var res = t.arguments[self.rank]
1417 return res
1418 end
1419 end
1420 abort
1421 end
1422
1423 # A PT is fixed when:
1424 # * Its bound is a enum class (see `enum_kind`).
1425 # The PT is just useless, but it is still a case.
1426 # * More usually, the `resolved_receiver` is a subclass of `self.mclass`,
1427 # so it is necessarily fixed in a `super` clause, either with a normal type
1428 # or with another PT.
1429 # See `resolve_for` for examples about related issues.
1430 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1431 do
1432 assert not resolved_receiver.need_anchor
1433 resolved_receiver = resolved_receiver.as_notnullable
1434 assert resolved_receiver isa MClassType # It is the only remaining type
1435 var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false)
1436 return res
1437 end
1438
1439 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1440 do
1441 assert can_resolve_for(mtype, anchor, mmodule)
1442 #print "{class_name}: {self}/{mtype}/{anchor}?"
1443
1444 if mtype isa MGenericType and mtype.mclass == self.mclass then
1445 var res = mtype.arguments[self.rank]
1446 if anchor != null and res.need_anchor then
1447 # Maybe the result can be resolved more if are bound to a final class
1448 var r2 = res.anchor_to(mmodule, anchor)
1449 if r2 isa MClassType and r2.mclass.kind == enum_kind then return r2
1450 end
1451 return res
1452 end
1453
1454 # self is a parameter type of mtype (or of a super-class of mtype)
1455 # The point of the function it to get the bound of the virtual type that make sense for mtype
1456 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1457 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1458 var resolved_receiver
1459 if mtype.need_anchor then
1460 assert anchor != null
1461 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1462 else
1463 resolved_receiver = mtype
1464 end
1465 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1466 if resolved_receiver isa MParameterType then
1467 assert resolved_receiver.mclass == anchor.mclass
1468 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1469 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1470 end
1471 assert resolved_receiver isa MClassType # It is the only remaining type
1472
1473 # Eh! The parameter is in the current class.
1474 # So we return the corresponding argument, no mater what!
1475 if resolved_receiver.mclass == self.mclass then
1476 var res = resolved_receiver.arguments[self.rank]
1477 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1478 return res
1479 end
1480
1481 if resolved_receiver.need_anchor then
1482 assert anchor != null
1483 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1484 end
1485 # Now, we can get the bound
1486 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1487 # The bound is exactly as declared in the "type" property, so we must resolve it again
1488 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1489
1490 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1491
1492 return res
1493 end
1494
1495 redef fun can_resolve_for(mtype, anchor, mmodule)
1496 do
1497 if mtype.need_anchor then
1498 assert anchor != null
1499 mtype = mtype.anchor_to(mmodule, anchor)
1500 end
1501 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1502 end
1503 end
1504
1505 # A type prefixed with "nullable"
1506 class MNullableType
1507 super MType
1508
1509 # The base type of the nullable type
1510 var mtype: MType
1511
1512 redef fun model do return self.mtype.model
1513
1514 init
1515 do
1516 self.to_s = "nullable {mtype}"
1517 end
1518
1519 redef var to_s: String is noinit
1520
1521 redef var full_name is lazy do return "nullable {mtype.full_name}"
1522
1523 redef var c_name is lazy do return "nullable__{mtype.c_name}"
1524
1525 redef fun need_anchor do return mtype.need_anchor
1526 redef fun as_nullable do return self
1527 redef fun as_notnullable do return mtype
1528 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1529 do
1530 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1531 return res.as_nullable
1532 end
1533
1534 redef fun can_resolve_for(mtype, anchor, mmodule)
1535 do
1536 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1537 end
1538
1539 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable`
1540 redef fun lookup_fixed(mmodule, resolved_receiver)
1541 do
1542 var t = mtype.lookup_fixed(mmodule, resolved_receiver)
1543 if t == mtype then return self
1544 return t.as_nullable
1545 end
1546
1547 redef fun depth do return self.mtype.depth
1548
1549 redef fun length do return self.mtype.length
1550
1551 redef fun collect_mclassdefs(mmodule)
1552 do
1553 assert not self.need_anchor
1554 return self.mtype.collect_mclassdefs(mmodule)
1555 end
1556
1557 redef fun collect_mclasses(mmodule)
1558 do
1559 assert not self.need_anchor
1560 return self.mtype.collect_mclasses(mmodule)
1561 end
1562
1563 redef fun collect_mtypes(mmodule)
1564 do
1565 assert not self.need_anchor
1566 return self.mtype.collect_mtypes(mmodule)
1567 end
1568 end
1569
1570 # The type of the only value null
1571 #
1572 # The is only one null type per model, see `MModel::null_type`.
1573 class MNullType
1574 super MType
1575 redef var model: Model
1576 redef fun to_s do return "null"
1577 redef fun full_name do return "null"
1578 redef fun c_name do return "null"
1579 redef fun as_nullable do return self
1580 redef fun need_anchor do return false
1581 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1582 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1583
1584 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1585
1586 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1587
1588 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1589 end
1590
1591 # A signature of a method
1592 class MSignature
1593 super MType
1594
1595 # The each parameter (in order)
1596 var mparameters: Array[MParameter]
1597
1598 # The return type (null for a procedure)
1599 var return_mtype: nullable MType
1600
1601 redef fun depth
1602 do
1603 var dmax = 0
1604 var t = self.return_mtype
1605 if t != null then dmax = t.depth
1606 for p in mparameters do
1607 var d = p.mtype.depth
1608 if d > dmax then dmax = d
1609 end
1610 return dmax + 1
1611 end
1612
1613 redef fun length
1614 do
1615 var res = 1
1616 var t = self.return_mtype
1617 if t != null then res += t.length
1618 for p in mparameters do
1619 res += p.mtype.length
1620 end
1621 return res
1622 end
1623
1624 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1625 init
1626 do
1627 var vararg_rank = -1
1628 for i in [0..mparameters.length[ do
1629 var parameter = mparameters[i]
1630 if parameter.is_vararg then
1631 assert vararg_rank == -1
1632 vararg_rank = i
1633 end
1634 end
1635 self.vararg_rank = vararg_rank
1636 end
1637
1638 # The rank of the ellipsis (`...`) for vararg (starting from 0).
1639 # value is -1 if there is no vararg.
1640 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1641 var vararg_rank: Int is noinit
1642
1643 # The number or parameters
1644 fun arity: Int do return mparameters.length
1645
1646 redef fun to_s
1647 do
1648 var b = new FlatBuffer
1649 if not mparameters.is_empty then
1650 b.append("(")
1651 for i in [0..mparameters.length[ do
1652 var mparameter = mparameters[i]
1653 if i > 0 then b.append(", ")
1654 b.append(mparameter.name)
1655 b.append(": ")
1656 b.append(mparameter.mtype.to_s)
1657 if mparameter.is_vararg then
1658 b.append("...")
1659 end
1660 end
1661 b.append(")")
1662 end
1663 var ret = self.return_mtype
1664 if ret != null then
1665 b.append(": ")
1666 b.append(ret.to_s)
1667 end
1668 return b.to_s
1669 end
1670
1671 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
1672 do
1673 var params = new Array[MParameter]
1674 for p in self.mparameters do
1675 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1676 end
1677 var ret = self.return_mtype
1678 if ret != null then
1679 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1680 end
1681 var res = new MSignature(params, ret)
1682 return res
1683 end
1684 end
1685
1686 # A parameter in a signature
1687 class MParameter
1688 super MEntity
1689
1690 # The name of the parameter
1691 redef var name: String
1692
1693 # The static type of the parameter
1694 var mtype: MType
1695
1696 # Is the parameter a vararg?
1697 var is_vararg: Bool
1698
1699 redef fun to_s
1700 do
1701 if is_vararg then
1702 return "{name}: {mtype}..."
1703 else
1704 return "{name}: {mtype}"
1705 end
1706 end
1707
1708 # Returns a new parameter with the `mtype` resolved.
1709 # See `MType::resolve_for` for details.
1710 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
1711 do
1712 if not self.mtype.need_anchor then return self
1713 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1714 var res = new MParameter(self.name, newtype, self.is_vararg)
1715 return res
1716 end
1717
1718 redef fun model do return mtype.model
1719 end
1720
1721 # A service (global property) that generalize method, attribute, etc.
1722 #
1723 # `MProperty` are global to the model; it means that a `MProperty` is not bound
1724 # to a specific `MModule` nor a specific `MClass`.
1725 #
1726 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
1727 # and the other in subclasses and in refinements.
1728 #
1729 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
1730 # of any dynamic type).
1731 # For instance, a call site "x.foo" is associated to a `MProperty`.
1732 abstract class MProperty
1733 super MEntity
1734
1735 # The associated MPropDef subclass.
1736 # The two specialization hierarchy are symmetric.
1737 type MPROPDEF: MPropDef
1738
1739 # The classdef that introduce the property
1740 # While a property is not bound to a specific module, or class,
1741 # the introducing mclassdef is used for naming and visibility
1742 var intro_mclassdef: MClassDef
1743
1744 # The (short) name of the property
1745 redef var name: String
1746
1747 # The canonical name of the property.
1748 #
1749 # It is the short-`name` prefixed by the short-name of the class and the full-name of the module.
1750 # Example: "my_project::my_module::MyClass::my_method"
1751 redef var full_name is lazy do
1752 return "{intro_mclassdef.mmodule.namespace_for(visibility)}::{intro_mclassdef.mclass.name}::{name}"
1753 end
1754
1755 redef var c_name is lazy do
1756 # FIXME use `namespace_for`
1757 return "{intro_mclassdef.mmodule.c_name}__{intro_mclassdef.mclass.name.to_cmangle}__{name.to_cmangle}"
1758 end
1759
1760 # The visibility of the property
1761 var visibility: MVisibility
1762
1763 # Is the property usable as an initializer?
1764 var is_autoinit = false is writable
1765
1766 init
1767 do
1768 intro_mclassdef.intro_mproperties.add(self)
1769 var model = intro_mclassdef.mmodule.model
1770 model.mproperties_by_name.add_one(name, self)
1771 model.mproperties.add(self)
1772 end
1773
1774 # All definitions of the property.
1775 # The first is the introduction,
1776 # The other are redefinitions (in refinements and in subclasses)
1777 var mpropdefs = new Array[MPROPDEF]
1778
1779 # The definition that introduces the property.
1780 #
1781 # Warning: such a definition may not exist in the early life of the object.
1782 # In this case, the method will abort.
1783 var intro: MPROPDEF is noinit
1784
1785 redef fun model do return intro.model
1786
1787 # Alias for `name`
1788 redef fun to_s do return name
1789
1790 # Return the most specific property definitions defined or inherited by a type.
1791 # The selection knows that refinement is stronger than specialization;
1792 # however, in case of conflict more than one property are returned.
1793 # If mtype does not know mproperty then an empty array is returned.
1794 #
1795 # If you want the really most specific property, then look at `lookup_first_definition`
1796 #
1797 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
1798 # ENSURE: `not mtype.has_mproperty(mmodule, self) == result.is_empty`
1799 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1800 do
1801 assert not mtype.need_anchor
1802 mtype = mtype.as_notnullable
1803
1804 var cache = self.lookup_definitions_cache[mmodule, mtype]
1805 if cache != null then return cache
1806
1807 #print "select prop {mproperty} for {mtype} in {self}"
1808 # First, select all candidates
1809 var candidates = new Array[MPROPDEF]
1810 for mpropdef in self.mpropdefs do
1811 # If the definition is not imported by the module, then skip
1812 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1813 # If the definition is not inherited by the type, then skip
1814 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1815 # Else, we keep it
1816 candidates.add(mpropdef)
1817 end
1818 # Fast track for only one candidate
1819 if candidates.length <= 1 then
1820 self.lookup_definitions_cache[mmodule, mtype] = candidates
1821 return candidates
1822 end
1823
1824 # Second, filter the most specific ones
1825 return select_most_specific(mmodule, candidates)
1826 end
1827
1828 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
1829
1830 # Return the most specific property definitions inherited by a type.
1831 # The selection knows that refinement is stronger than specialization;
1832 # however, in case of conflict more than one property are returned.
1833 # If mtype does not know mproperty then an empty array is returned.
1834 #
1835 # If you want the really most specific property, then look at `lookup_next_definition`
1836 #
1837 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
1838 # ENSURE: `not mtype.has_mproperty(mmodule, self) implies result.is_empty`
1839 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1840 do
1841 assert not mtype.need_anchor
1842 mtype = mtype.as_notnullable
1843
1844 # First, select all candidates
1845 var candidates = new Array[MPROPDEF]
1846 for mpropdef in self.mpropdefs do
1847 # If the definition is not imported by the module, then skip
1848 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1849 # If the definition is not inherited by the type, then skip
1850 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1851 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
1852 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
1853 # Else, we keep it
1854 candidates.add(mpropdef)
1855 end
1856 # Fast track for only one candidate
1857 if candidates.length <= 1 then return candidates
1858
1859 # Second, filter the most specific ones
1860 return select_most_specific(mmodule, candidates)
1861 end
1862
1863 # Return an array containing olny the most specific property definitions
1864 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
1865 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
1866 do
1867 var res = new Array[MPROPDEF]
1868 for pd1 in candidates do
1869 var cd1 = pd1.mclassdef
1870 var c1 = cd1.mclass
1871 var keep = true
1872 for pd2 in candidates do
1873 if pd2 == pd1 then continue # do not compare with self!
1874 var cd2 = pd2.mclassdef
1875 var c2 = cd2.mclass
1876 if c2.mclass_type == c1.mclass_type then
1877 if cd2.mmodule.in_importation < cd1.mmodule then
1878 # cd2 refines cd1; therefore we skip pd1
1879 keep = false
1880 break
1881 end
1882 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
1883 # cd2 < cd1; therefore we skip pd1
1884 keep = false
1885 break
1886 end
1887 end
1888 if keep then
1889 res.add(pd1)
1890 end
1891 end
1892 if res.is_empty then
1893 print "All lost! {candidates.join(", ")}"
1894 # FIXME: should be abort!
1895 end
1896 return res
1897 end
1898
1899 # Return the most specific definition in the linearization of `mtype`.
1900 #
1901 # If you want to know the next properties in the linearization,
1902 # look at `MPropDef::lookup_next_definition`.
1903 #
1904 # FIXME: the linearization is still unspecified
1905 #
1906 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
1907 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
1908 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
1909 do
1910 return lookup_all_definitions(mmodule, mtype).first
1911 end
1912
1913 # Return all definitions in a linearization order
1914 # Most specific first, most general last
1915 #
1916 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
1917 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
1918 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1919 do
1920 mtype = mtype.as_notnullable
1921
1922 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
1923 if cache != null then return cache
1924
1925 assert not mtype.need_anchor
1926 assert mtype.has_mproperty(mmodule, self)
1927
1928 #print "select prop {mproperty} for {mtype} in {self}"
1929 # First, select all candidates
1930 var candidates = new Array[MPROPDEF]
1931 for mpropdef in self.mpropdefs do
1932 # If the definition is not imported by the module, then skip
1933 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1934 # If the definition is not inherited by the type, then skip
1935 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1936 # Else, we keep it
1937 candidates.add(mpropdef)
1938 end
1939 # Fast track for only one candidate
1940 if candidates.length <= 1 then
1941 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
1942 return candidates
1943 end
1944
1945 mmodule.linearize_mpropdefs(candidates)
1946 candidates = candidates.reversed
1947 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
1948 return candidates
1949 end
1950
1951 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
1952 end
1953
1954 # A global method
1955 class MMethod
1956 super MProperty
1957
1958 redef type MPROPDEF: MMethodDef
1959
1960 # Is the property defined at the top_level of the module?
1961 # Currently such a property are stored in `Object`
1962 var is_toplevel: Bool = false is writable
1963
1964 # Is the property a constructor?
1965 # Warning, this property can be inherited by subclasses with or without being a constructor
1966 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
1967 var is_init: Bool = false is writable
1968
1969 # The constructor is a (the) root init with empty signature but a set of initializers
1970 var is_root_init: Bool = false is writable
1971
1972 # Is the property a 'new' constructor?
1973 var is_new: Bool = false is writable
1974
1975 # Is the property a legal constructor for a given class?
1976 # As usual, visibility is not considered.
1977 # FIXME not implemented
1978 fun is_init_for(mclass: MClass): Bool
1979 do
1980 return self.is_init
1981 end
1982 end
1983
1984 # A global attribute
1985 class MAttribute
1986 super MProperty
1987
1988 redef type MPROPDEF: MAttributeDef
1989
1990 end
1991
1992 # A global virtual type
1993 class MVirtualTypeProp
1994 super MProperty
1995
1996 redef type MPROPDEF: MVirtualTypeDef
1997
1998 # The formal type associated to the virtual type property
1999 var mvirtualtype = new MVirtualType(self)
2000 end
2001
2002 # A definition of a property (local property)
2003 #
2004 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
2005 # specific class definition (which belong to a specific module)
2006 abstract class MPropDef
2007 super MEntity
2008
2009 # The associated `MProperty` subclass.
2010 # the two specialization hierarchy are symmetric
2011 type MPROPERTY: MProperty
2012
2013 # Self class
2014 type MPROPDEF: MPropDef
2015
2016 # The class definition where the property definition is
2017 var mclassdef: MClassDef
2018
2019 # The associated global property
2020 var mproperty: MPROPERTY
2021
2022 # The origin of the definition
2023 var location: Location
2024
2025 init
2026 do
2027 mclassdef.mpropdefs.add(self)
2028 mproperty.mpropdefs.add(self)
2029 if mproperty.intro_mclassdef == mclassdef then
2030 assert not isset mproperty._intro
2031 mproperty.intro = self
2032 end
2033 self.to_s = "{mclassdef}#{mproperty}"
2034 end
2035
2036 # Actually the name of the `mproperty`
2037 redef fun name do return mproperty.name
2038
2039 # The full-name of mpropdefs combine the information about the `classdef` and the `mproperty`.
2040 #
2041 # Therefore the combination of identifiers is awful,
2042 # the worst case being
2043 #
2044 # * a property "p::m::A::x"
2045 # * redefined in a refinement of a class "q::n::B"
2046 # * in a module "r::o"
2047 # * so "r::o#q::n::B#p::m::A::x"
2048 #
2049 # Fortunately, the full-name is simplified when entities are repeated.
2050 # For the previous case, the simplest form is "p#A#x".
2051 redef var full_name is lazy do
2052 var res = new FlatBuffer
2053
2054 # The first part is the mclassdef. Worst case is "r::o#q::n::B"
2055 res.append mclassdef.full_name
2056
2057 res.append "#"
2058
2059 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2060 # intro are unambiguous in a class
2061 res.append name
2062 else
2063 # Just try to simplify each part
2064 if mclassdef.mmodule.mproject != mproperty.intro_mclassdef.mmodule.mproject then
2065 # precise "p::m" only if "p" != "r"
2066 res.append mproperty.intro_mclassdef.mmodule.full_name
2067 res.append "::"
2068 else if mproperty.visibility <= private_visibility then
2069 # Same project ("p"=="q"), but private visibility,
2070 # does the module part ("::m") need to be displayed
2071 if mclassdef.mmodule.namespace_for(mclassdef.mclass.visibility) != mproperty.intro_mclassdef.mmodule.mproject then
2072 res.append "::"
2073 res.append mproperty.intro_mclassdef.mmodule.name
2074 res.append "::"
2075 end
2076 end
2077 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2078 # precise "B" only if not the same class than "A"
2079 res.append mproperty.intro_mclassdef.name
2080 res.append "::"
2081 end
2082 # Always use the property name "x"
2083 res.append mproperty.name
2084 end
2085 return res.to_s
2086 end
2087
2088 redef var c_name is lazy do
2089 var res = new FlatBuffer
2090 res.append mclassdef.c_name
2091 res.append "___"
2092 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2093 res.append name.to_cmangle
2094 else
2095 if mclassdef.mmodule != mproperty.intro_mclassdef.mmodule then
2096 res.append mproperty.intro_mclassdef.mmodule.c_name
2097 res.append "__"
2098 end
2099 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2100 res.append mproperty.intro_mclassdef.name.to_cmangle
2101 res.append "__"
2102 end
2103 res.append mproperty.name.to_cmangle
2104 end
2105 return res.to_s
2106 end
2107
2108 redef fun model do return mclassdef.model
2109
2110 # Internal name combining the module, the class and the property
2111 # Example: "mymodule#MyClass#mymethod"
2112 redef var to_s: String is noinit
2113
2114 # Is self the definition that introduce the property?
2115 fun is_intro: Bool do return mproperty.intro == self
2116
2117 # Return the next definition in linearization of `mtype`.
2118 #
2119 # This method is used to determine what method is called by a super.
2120 #
2121 # REQUIRE: `not mtype.need_anchor`
2122 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
2123 do
2124 assert not mtype.need_anchor
2125
2126 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
2127 var i = mpropdefs.iterator
2128 while i.is_ok and i.item != self do i.next
2129 assert has_property: i.is_ok
2130 i.next
2131 assert has_next_property: i.is_ok
2132 return i.item
2133 end
2134 end
2135
2136 # A local definition of a method
2137 class MMethodDef
2138 super MPropDef
2139
2140 redef type MPROPERTY: MMethod
2141 redef type MPROPDEF: MMethodDef
2142
2143 # The signature attached to the property definition
2144 var msignature: nullable MSignature = null is writable
2145
2146 # The signature attached to the `new` call on a root-init
2147 # This is a concatenation of the signatures of the initializers
2148 #
2149 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2150 var new_msignature: nullable MSignature = null is writable
2151
2152 # List of initialisers to call in root-inits
2153 #
2154 # They could be setters or attributes
2155 #
2156 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2157 var initializers = new Array[MProperty]
2158
2159 # Is the method definition abstract?
2160 var is_abstract: Bool = false is writable
2161
2162 # Is the method definition intern?
2163 var is_intern = false is writable
2164
2165 # Is the method definition extern?
2166 var is_extern = false is writable
2167
2168 # An optional constant value returned in functions.
2169 #
2170 # Only some specific primitife value are accepted by engines.
2171 # Is used when there is no better implementation available.
2172 #
2173 # Currently used only for the implementation of the `--define`
2174 # command-line option.
2175 # SEE: module `mixin`.
2176 var constant_value: nullable Object = null is writable
2177 end
2178
2179 # A local definition of an attribute
2180 class MAttributeDef
2181 super MPropDef
2182
2183 redef type MPROPERTY: MAttribute
2184 redef type MPROPDEF: MAttributeDef
2185
2186 # The static type of the attribute
2187 var static_mtype: nullable MType = null is writable
2188 end
2189
2190 # A local definition of a virtual type
2191 class MVirtualTypeDef
2192 super MPropDef
2193
2194 redef type MPROPERTY: MVirtualTypeProp
2195 redef type MPROPDEF: MVirtualTypeDef
2196
2197 # The bound of the virtual type
2198 var bound: nullable MType = null is writable
2199
2200 # Is the bound fixed?
2201 var is_fixed = false is writable
2202 end
2203
2204 # A kind of class.
2205 #
2206 # * `abstract_kind`
2207 # * `concrete_kind`
2208 # * `interface_kind`
2209 # * `enum_kind`
2210 # * `extern_kind`
2211 #
2212 # Note this class is basically an enum.
2213 # FIXME: use a real enum once user-defined enums are available
2214 class MClassKind
2215 redef var to_s: String
2216
2217 # Is a constructor required?
2218 var need_init: Bool
2219
2220 # TODO: private init because enumeration.
2221
2222 # Can a class of kind `self` specializes a class of kine `other`?
2223 fun can_specialize(other: MClassKind): Bool
2224 do
2225 if other == interface_kind then return true # everybody can specialize interfaces
2226 if self == interface_kind or self == enum_kind then
2227 # no other case for interfaces
2228 return false
2229 else if self == extern_kind then
2230 # only compatible with themselves
2231 return self == other
2232 else if other == enum_kind or other == extern_kind then
2233 # abstract_kind and concrete_kind are incompatible
2234 return false
2235 end
2236 # remain only abstract_kind and concrete_kind
2237 return true
2238 end
2239 end
2240
2241 # The class kind `abstract`
2242 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", true)
2243 # The class kind `concrete`
2244 fun concrete_kind: MClassKind do return once new MClassKind("class", true)
2245 # The class kind `interface`
2246 fun interface_kind: MClassKind do return once new MClassKind("interface", false)
2247 # The class kind `enum`
2248 fun enum_kind: MClassKind do return once new MClassKind("enum", false)
2249 # The class kind `extern`
2250 fun extern_kind: MClassKind do return once new MClassKind("extern class", false)