model: add MClass::in_hierarchy
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Object model of the Nit language
18 #
19 # This module define the entities of the Nit meta-model like modules,
20 # classes, types and properties
21 #
22 # It also provide an API to build and query models.
23 #
24 # All model classes starts with the M letter (MModule, MClass, etc.)
25 #
26 # TODO: better doc
27 #
28 # TODO: liearization, closures, extern stuff
29 # FIXME: better handling of the types
30 module model
31
32 import poset
33 import location
34 import model_base
35
36 redef class Model
37 # All known classes
38 var mclasses: Array[MClass] = new Array[MClass]
39
40 # All known properties
41 var mproperties: Array[MProperty] = new Array[MProperty]
42
43 # Hierarchy of class definition.
44 #
45 # Each classdef is associated with its super-classdefs in regard to
46 # its module of definition.
47 var mclassdef_hierarchy: POSet[MClassDef] = new POSet[MClassDef]
48
49 # Class-type hierarchy restricted to the introduction.
50 #
51 # The idea is that what is true on introduction is always true whatever
52 # the module considered.
53 # Therefore, this hierarchy is used for a fast positive subtype check.
54 #
55 # This poset will evolve in a monotonous way:
56 # * Two non connected nodes will remain unconnected
57 # * New nodes can appear with new edges
58 private var intro_mtype_specialization_hierarchy: POSet[MClassType] = new POSet[MClassType]
59
60 # Global overlapped class-type hierarchy.
61 # The hierarchy when all modules are combined.
62 # Therefore, this hierarchy is used for a fast negative subtype check.
63 #
64 # This poset will evolve in an anarchic way. Loops can even be created.
65 #
66 # FIXME decide what to do on loops
67 private var full_mtype_specialization_hierarchy: POSet[MClassType] = new POSet[MClassType]
68
69 # Collections of classes grouped by their short name
70 private var mclasses_by_name: MultiHashMap[String, MClass] = new MultiHashMap[String, MClass]
71
72 # Return all class named `name'.
73 #
74 # If such a class does not exist, null is returned
75 # (instead of an empty array)
76 #
77 # Visibility or modules are not considered
78 fun get_mclasses_by_name(name: String): nullable Array[MClass]
79 do
80 if mclasses_by_name.has_key(name) then
81 return mclasses_by_name[name]
82 else
83 return null
84 end
85 end
86
87 # Collections of properties grouped by their short name
88 private var mproperties_by_name: MultiHashMap[String, MProperty] = new MultiHashMap[String, MProperty]
89
90 # Return all properties named `name'.
91 #
92 # If such a property does not exist, null is returned
93 # (instead of an empty array)
94 #
95 # Visibility or modules are not considered
96 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
97 do
98 if not mproperties_by_name.has_key(name) then
99 return null
100 else
101 return mproperties_by_name[name]
102 end
103 end
104
105 # The only null type
106 var null_type: MNullType = new MNullType(self)
107 end
108
109 redef class MModule
110 # All the classes introduced in the module
111 var intro_mclasses: Array[MClass] = new Array[MClass]
112
113 # All the class definitions of the module
114 # (introduction and refinement)
115 var mclassdefs: Array[MClassDef] = new Array[MClassDef]
116
117 # Does the current module has a given class `mclass'?
118 # Return true if the mmodule introduces, refines or imports a class.
119 # Visibility is not considered.
120 fun has_mclass(mclass: MClass): Bool
121 do
122 return self.in_importation <= mclass.intro_mmodule
123 end
124
125 # Full hierarchy of introduced ans imported classes.
126 #
127 # Create a new hierarchy got by flattening the classes for the module
128 # and its imported modules.
129 # Visibility is not considered.
130 #
131 # Note: this function is expensive and is usually used for the main
132 # module of a program only. Do not use it to do you own subtype
133 # functions.
134 fun flatten_mclass_hierarchy: POSet[MClass]
135 do
136 var res = self.flatten_mclass_hierarchy_cache
137 if res != null then return res
138 res = new POSet[MClass]
139 for m in self.in_importation.greaters do
140 for cd in m.mclassdefs do
141 var c = cd.mclass
142 for s in cd.supertypes do
143 res.add_edge(c, s.mclass)
144 end
145 end
146 end
147 self.flatten_mclass_hierarchy_cache = res
148 return res
149 end
150
151 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
152
153 # The primitive type Object, the root of the class hierarchy
154 fun object_type: MClassType
155 do
156 var res = self.object_type_cache
157 if res != null then return res
158 res = self.get_primitive_class("Object").mclass_type
159 self.object_type_cache = res
160 return res
161 end
162
163 private var object_type_cache: nullable MClassType
164
165 # The primitive type Bool
166 fun bool_type: MClassType
167 do
168 var res = self.bool_type_cache
169 if res != null then return res
170 res = self.get_primitive_class("Bool").mclass_type
171 self.bool_type_cache = res
172 return res
173 end
174
175 private var bool_type_cache: nullable MClassType
176
177 # The primitive type Sys, the main type of the program, if any
178 fun sys_type: nullable MClassType
179 do
180 var clas = self.model.get_mclasses_by_name("Sys")
181 if clas == null then return null
182 return get_primitive_class("Sys").mclass_type
183 end
184
185 # Force to get the primitive class named `name' or abort
186 fun get_primitive_class(name: String): MClass
187 do
188 var cla = self.model.get_mclasses_by_name(name)
189 if cla == null then
190 if name == "Bool" then
191 var c = new MClass(self, name, 0, enum_kind, public_visibility)
192 var cladef = new MClassDef(self, c.mclass_type, new Location(null, 0,0,0,0), new Array[String])
193 return c
194 end
195 print("Fatal Error: no primitive class {name}")
196 exit(1)
197 end
198 assert cla.length == 1 else print cla.join(", ")
199 return cla.first
200 end
201
202 # Try to get the primitive method named `name' on the type `recv'
203 fun try_get_primitive_method(name: String, recv: MType): nullable MMethod
204 do
205 var props = self.model.get_mproperties_by_name(name)
206 if props == null then return null
207 var res: nullable MMethod = null
208 for mprop in props do
209 assert mprop isa MMethod
210 if not recv.has_mproperty(self, mprop) then continue
211 if res == null then
212 res = mprop
213 else
214 print("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
215 abort
216 end
217 end
218 return res
219 end
220 end
221
222 # A named class
223 #
224 # MClass are global to the model; it means that a MClass is not bound to a
225 # specific `MModule`.
226 #
227 # This characteristic helps the reasoning about classes in a program since a
228 # single MClass object always denote the same class.
229 # However, because a MClass is global, it does not really have properties nor
230 # belong to a hierarchy since the property and the
231 # hierarchy of a class depends of a module.
232 class MClass
233 # The module that introduce the class
234 # While classes are not bound to a specific module,
235 # the introducing module is used for naming an visibility
236 var intro_mmodule: MModule
237
238 # The short name of the class
239 # In Nit, the name of a class cannot evolve in refinements
240 var name: String
241
242 # The canonical name of the class
243 # Example: "owner::module::MyClass"
244 fun full_name: String
245 do
246 return "{self.intro_mmodule.full_name}::{name}"
247 end
248
249 # The number of generic formal parameters
250 # 0 if the class is not generic
251 var arity: Int
252
253 # The kind of the class (interface, abstract class, etc.)
254 # In Nit, the kind of a class cannot evolve in refinements
255 var kind: MClassKind
256
257 # The visibility of the class
258 # In Nit, the visibility of a class cannot evolve in refinements
259 var visibility: MVisibility
260
261 init(intro_mmodule: MModule, name: String, arity: Int, kind: MClassKind, visibility: MVisibility)
262 do
263 self.intro_mmodule = intro_mmodule
264 self.name = name
265 self.arity = arity
266 self.kind = kind
267 self.visibility = visibility
268 intro_mmodule.intro_mclasses.add(self)
269 var model = intro_mmodule.model
270 model.mclasses_by_name.add_one(name, self)
271 model.mclasses.add(self)
272
273 # Create the formal parameter types
274 if arity > 0 then
275 var mparametertypes = new Array[MParameterType]
276 for i in [0..arity[ do
277 var mparametertype = new MParameterType(self, i)
278 mparametertypes.add(mparametertype)
279 end
280 var mclass_type = new MGenericType(self, mparametertypes)
281 self.mclass_type = mclass_type
282 self.get_mtype_cache.add(mclass_type)
283 else
284 self.mclass_type = new MClassType(self)
285 end
286 end
287
288 # All class definitions (introduction and refinements)
289 var mclassdefs: Array[MClassDef] = new Array[MClassDef]
290
291 # Alias for `name'
292 redef fun to_s do return self.name
293
294 # The definition that introduced the class
295 # Warning: the introduction is the first `MClassDef' object associated
296 # to self. If self is just created without having any associated
297 # definition, this method will abort
298 private fun intro: MClassDef
299 do
300 assert has_a_first_definition: not mclassdefs.is_empty
301 return mclassdefs.first
302 end
303
304 # Return the class `self' in the class hierarchy of the module `mmodule'.
305 #
306 # SEE: MModule::flatten_mclass_hierarchy
307 # REQUIRE: mmodule.has_mclass(self)
308 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
309 do
310 return mmodule.flatten_mclass_hierarchy[self]
311 end
312
313 # The principal static type of the class.
314 #
315 # For non-generic class, mclass_type is the only MClassType based
316 # on self.
317 #
318 # For a generic class, the arguments are the formal parameters.
319 # i.e.: for the class `Array[E:Object]', the mtype is Array[E].
320 # If you want `Array[Object]' the see `MClassDef::bound_mtype'
321 #
322 # For generic classes, the mclass_type is also the way to get a formal
323 # generic parameter type.
324 #
325 # To get other types based on a generic class, see `get_mtype'.
326 #
327 # ENSURE: mclass_type.mclass == self
328 var mclass_type: MClassType
329
330 # Return a generic type based on the class
331 # Is the class is not generic, then the result is `mclass_type'
332 #
333 # REQUIRE: type_arguments.length == self.arity
334 fun get_mtype(mtype_arguments: Array[MType]): MClassType
335 do
336 assert mtype_arguments.length == self.arity
337 if self.arity == 0 then return self.mclass_type
338 for t in self.get_mtype_cache do
339 if t.arguments == mtype_arguments then
340 return t
341 end
342 end
343 var res = new MGenericType(self, mtype_arguments)
344 self.get_mtype_cache.add res
345 return res
346 end
347
348 private var get_mtype_cache: Array[MGenericType] = new Array[MGenericType]
349 end
350
351
352 # A definition (an introduction or a refinement) of a class in a module
353 #
354 # A MClassDef is associated with an explicit (or almost) definition of a
355 # class. Unlike MClass, a MClassDef is a local definition that belong to
356 # a specific module
357 class MClassDef
358 # The module where the definition is
359 var mmodule: MModule
360
361 # The associated MClass
362 var mclass: MClass
363
364 # The bounded type associated to the mclassdef
365 #
366 # For a non-generic class, `bound_mtype' and `mclass.mclass_type'
367 # are the same type.
368 #
369 # Example:
370 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
371 # If you want Array[E], then see `mclass.mclass_type'
372 #
373 # ENSURE: bound_mtype.mclass = self.mclass
374 var bound_mtype: MClassType
375
376 # Name of each formal generic parameter (in order of declaration)
377 var parameter_names: Array[String]
378
379 # The origin of the definition
380 var location: Location
381
382 # Internal name combining the module and the class
383 # Example: "mymodule#MyClass"
384 redef fun to_s do return "{mmodule}#{mclass}"
385
386 init(mmodule: MModule, bound_mtype: MClassType, location: Location, parameter_names: Array[String])
387 do
388 assert bound_mtype.mclass.arity == parameter_names.length
389 self.bound_mtype = bound_mtype
390 self.mmodule = mmodule
391 self.mclass = bound_mtype.mclass
392 self.location = location
393 mmodule.mclassdefs.add(self)
394 mclass.mclassdefs.add(self)
395 self.parameter_names = parameter_names
396 end
397
398 # All declared super-types
399 # FIXME: quite ugly but not better idea yet
400 var supertypes: Array[MClassType] = new Array[MClassType]
401
402 # Register some super-types for the class (ie "super SomeType")
403 #
404 # The hierarchy must not already be set
405 # REQUIRE: self.in_hierarchy == null
406 fun set_supertypes(supertypes: Array[MClassType])
407 do
408 assert unique_invocation: self.in_hierarchy == null
409 var mmodule = self.mmodule
410 var model = mmodule.model
411 var mtype = self.bound_mtype
412
413 for supertype in supertypes do
414 self.supertypes.add(supertype)
415
416 # Register in full_type_specialization_hierarchy
417 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
418 # Register in intro_type_specialization_hierarchy
419 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
420 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
421 end
422 end
423
424 end
425
426 # Collect the super-types (set by set_supertypes) to build the hierarchy
427 #
428 # This function can only invoked once by class
429 # REQUIRE: self.in_hierarchy == null
430 # ENSURE: self.in_hierarchy != null
431 fun add_in_hierarchy
432 do
433 assert unique_invocation: self.in_hierarchy == null
434 var model = mmodule.model
435 var res = model.mclassdef_hierarchy.add_node(self)
436 self.in_hierarchy = res
437 var mtype = self.bound_mtype
438
439 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
440 # The simpliest way is to attach it to collect_mclassdefs
441 for mclassdef in mtype.collect_mclassdefs(mmodule) do
442 res.poset.add_edge(self, mclassdef)
443 end
444 end
445
446 # The view of the class definition in `mclassdef_hierarchy'
447 var in_hierarchy: nullable POSetElement[MClassDef] = null
448
449 # Is the definition the one that introduced `mclass`?
450 fun is_intro: Bool do return mclass.intro == self
451
452 # All properties introduced by the classdef
453 var intro_mproperties: Array[MProperty] = new Array[MProperty]
454
455 # All property definitions in the class (introductions and redefinitions)
456 var mpropdefs: Array[MPropDef] = new Array[MPropDef]
457 end
458
459 # A global static type
460 #
461 # MType are global to the model; it means that a MType is not bound to a
462 # specific `MModule`.
463 # This characteristic helps the reasoning about static types in a program
464 # since a single MType object always denote the same type.
465 #
466 # However, because a MType is global, it does not really have properties
467 # nor have subtypes to a hierarchy since the property and the class hierarchy
468 # depends of a module.
469 # Moreover, virtual types an formal generic parameter types also depends on
470 # a receiver to have sense.
471 #
472 # Therefore, most method of the types require a module and an anchor.
473 # The module is used to know what are the classes and the specialization
474 # links.
475 # The anchor is used to know what is the bound of the virtual types and formal
476 # generic parameter types.
477 #
478 # MType are not directly usable to get properties. See the `anchor_to' method
479 # and the `MClassType' class.
480 #
481 # FIXME: the order of the parameters is not the best. We mus pick on from:
482 # * foo(mmodule, anchor, othertype)
483 # * foo(othertype, anchor, mmodule)
484 # * foo(anchor, mmodule, othertype)
485 # * foo(othertype, mmodule, anchor)
486 #
487 # FIXME: Add a 'is_valid_anchor' to improve imputability.
488 # Currently, anchors are used "as it" without check thus if the caller gives a
489 # bad anchor, then the method will likely crash (abort) in a bad case
490 #
491 # FIXME: maybe allways add an anchor with a nullable type (as in is_subtype)
492 abstract class MType
493
494 # The model of the type
495 fun model: Model is abstract
496
497 # Return true if `self' is an subtype of `sup'.
498 # The typing is done using the standard typing policy of Nit.
499 #
500 # REQUIRE: anchor == null implies not self.need_anchor and not sup.need_anchor
501 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
502 do
503 var sub = self
504 if sub == sup then return true
505 if anchor == null then
506 assert not sub.need_anchor
507 assert not sup.need_anchor
508 end
509 # First, resolve the types
510 if sub isa MParameterType or sub isa MVirtualType then
511 assert anchor != null
512 sub = sub.resolve_for(anchor, anchor, mmodule, false)
513 end
514 if sup isa MParameterType or sup isa MVirtualType then
515 assert anchor != null
516 sup = sup.resolve_for(anchor, anchor, mmodule, false)
517 end
518
519 if sup isa MParameterType or sup isa MVirtualType or sup isa MNullType then
520 return sub == sup
521 end
522 if sub isa MParameterType or sub isa MVirtualType then
523 assert anchor != null
524 sub = sub.anchor_to(mmodule, anchor)
525 end
526 if sup isa MNullableType then
527 if sub isa MNullType then
528 return true
529 else if sub isa MNullableType then
530 return sub.mtype.is_subtype(mmodule, anchor, sup.mtype)
531 else if sub isa MClassType then
532 return sub.is_subtype(mmodule, anchor, sup.mtype)
533 else
534 abort
535 end
536 end
537
538 assert sup isa MClassType # It is the only remaining type
539 if sub isa MNullableType or sub isa MNullType then
540 return false
541 end
542
543 if sub == sup then return true
544
545 assert sub isa MClassType # It is the only remaining type
546 if anchor == null then anchor = sub # UGLY: any anchor will work
547 var resolved_sub = sub.anchor_to(mmodule, anchor)
548 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
549 if res == false then return false
550 if not sup isa MGenericType then return true
551 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
552 assert sub2.mclass == sup.mclass
553 assert sub2 isa MGenericType
554 for i in [0..sup.mclass.arity[ do
555 var sub_arg = sub2.arguments[i]
556 var sup_arg = sup.arguments[i]
557 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
558 if res == false then return false
559 end
560 return true
561 end
562
563 # The base class type on which self is based
564 #
565 # This base type is used to get property (an internally to perform
566 # unsafe type comparison).
567 #
568 # Beware: some types (like null) are not based on a class thus this
569 # method will crash
570 #
571 # Basically, this function transform the virtual types and parameter
572 # types to their bounds.
573 #
574 # Example
575 # class G[T: A]
576 # type U: X
577 # end
578 # class H
579 # super G[C]
580 # redef type U: Y
581 # end
582 # Map[T,U] anchor_to H #-> Map[C,Y]
583 #
584 # Explanation of the example:
585 # In H, T is set to C, because "H super G[C]", and U is bound to Y,
586 # because "redef type U: Y". Therefore, Map[T, U] is bound to
587 # Map[C, Y]
588 #
589 # ENSURE: not self.need_anchor implies return == self
590 # ENSURE: not return.need_anchor
591 fun anchor_to(mmodule: MModule, anchor: MClassType): MType
592 do
593 if not need_anchor then return self
594 assert not anchor.need_anchor
595 # Just resolve to the anchor and clear all the virtual types
596 var res = self.resolve_for(anchor, anchor, mmodule, true)
597 assert not res.need_anchor
598 return res
599 end
600
601 # Does `self' contain a virtual type or a formal generic parameter type?
602 # In order to remove those types, you usually want to use `anchor_to'.
603 fun need_anchor: Bool do return true
604
605 # Return the supertype when adapted to a class.
606 #
607 # In Nit, for each super-class of a type, there is a equivalent super-type.
608 #
609 # Example:
610 # class G[T, U]
611 # class H[V] super G[V, Bool]
612 # H[Int] supertype_to G #-> G[Int, Bool]
613 #
614 # REQUIRE: `super_mclass' is a super-class of `self'
615 # ENSURE: return.mclass = mclass
616 fun supertype_to(mmodule: MModule, anchor: MClassType, super_mclass: MClass): MClassType
617 do
618 if super_mclass.arity == 0 then return super_mclass.mclass_type
619 if self isa MClassType and self.mclass == super_mclass then return self
620 var resolved_self = self.anchor_to(mmodule, anchor)
621 var supertypes = resolved_self.collect_mtypes(mmodule)
622 for supertype in supertypes do
623 if supertype.mclass == super_mclass then
624 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
625 return supertype.resolve_for(self, anchor, mmodule, false)
626 end
627 end
628 abort
629 end
630
631 # Replace formals generic types in self with resolved values in `mtype'
632 # If `cleanup_virtual' is true, then virtual types are also replaced
633 # with their bounds
634 #
635 # This function returns self if `need_anchor' is false.
636 #
637 # Example:
638 # class G[E]
639 # class H[F] super G[F]
640 # Array[E] resolve_for H[Int] #-> Array[Int]
641 #
642 # Explanation of the example:
643 # * Array[E].need_anchor is true because there is a formal generic
644 # parameter type E
645 # * E makes sense for H[Int] because E is a formal parameter of G
646 # and H specialize G
647 # * Since "H[F] super G[F]", E is in fact F for H
648 # * More specifically, in H[Int], E is Int
649 # * So, in H[Int], Array[E] is Array[Int]
650 #
651 # This function is mainly used to inherit a signature.
652 # Because, unlike `anchor_type', we do not want a full resolution of
653 # a type but only an adapted version of it.
654 #
655 # Example:
656 # class A[E]
657 # foo(e:E):E
658 # end
659 # class B super A[Int] end
660 #
661 # The signature on foo is (e: E): E
662 # If we resolve the signature for B, we get (e:Int):Int
663 #
664 # TODO: Explain the cleanup_virtual
665 #
666 # FIXME: the parameter `cleanup_virtual' is just a bad idea, but having
667 # two function instead of one seems also to be a bad idea.
668 #
669 # ENSURE: not self.need_anchor implies return == self
670 fun resolve_for(mtype: MType, anchor: MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
671
672 # Return the nullable version of the type
673 # If the type is already nullable then self is returned
674 #
675 # FIXME: DO NOT WORK YET
676 fun as_nullable: MType
677 do
678 var res = self.as_nullable_cache
679 if res != null then return res
680 res = new MNullableType(self)
681 self.as_nullable_cache = res
682 return res
683 end
684
685 private var as_nullable_cache: nullable MType = null
686
687 # Compute all the classdefs inherited/imported.
688 # The returned set contains:
689 # * the class definitions from `mmodule` and its imported modules
690 # * the class definitions of this type and its super-types
691 #
692 # This function is used mainly internally.
693 #
694 # REQUIRE: not self.need_anchor
695 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
696
697 # Compute all the super-classes.
698 # This function is used mainly internally.
699 #
700 # REQUIRE: not self.need_anchor
701 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
702
703 # Compute all the declared super-types.
704 # Super-types are returned as declared in the classdefs (verbatim).
705 # This function is used mainly internally.
706 #
707 # REQUIRE: not self.need_anchor
708 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
709
710 # Is the property in self for a given module
711 # This method does not filter visibility or whatever
712 #
713 # REQUIRE: not self.need_anchor
714 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
715 do
716 assert not self.need_anchor
717 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
718 end
719 end
720
721 # A type based on a class.
722 #
723 # MClassType have properties (see `has_property').
724 class MClassType
725 super MType
726
727 # The associated class
728 var mclass: MClass
729
730 redef fun model do return self.mclass.intro_mmodule.model
731
732 private init(mclass: MClass)
733 do
734 self.mclass = mclass
735 end
736
737 redef fun to_s do return mclass.to_s
738
739 redef fun need_anchor do return false
740
741 redef fun anchor_to(mmodule: MModule, anchor: MClassType): MClassType
742 do
743 return super.as(MClassType)
744 end
745
746 redef fun resolve_for(mtype: MType, anchor: MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
747
748 redef fun collect_mclassdefs(mmodule)
749 do
750 assert not self.need_anchor
751 var cache = self.collect_mclassdefs_cache
752 if not cache.has_key(mmodule) then
753 self.collect_things(mmodule)
754 end
755 return cache[mmodule]
756 end
757
758 redef fun collect_mclasses(mmodule)
759 do
760 assert not self.need_anchor
761 var cache = self.collect_mclasses_cache
762 if not cache.has_key(mmodule) then
763 self.collect_things(mmodule)
764 end
765 return cache[mmodule]
766 end
767
768 redef fun collect_mtypes(mmodule)
769 do
770 assert not self.need_anchor
771 var cache = self.collect_mtypes_cache
772 if not cache.has_key(mmodule) then
773 self.collect_things(mmodule)
774 end
775 return cache[mmodule]
776 end
777
778 # common implementation for `collect_mclassdefs', `collect_mclasses', and `collect_mtypes'.
779 private fun collect_things(mmodule: MModule)
780 do
781 var res = new HashSet[MClassDef]
782 var seen = new HashSet[MClass]
783 var types = new HashSet[MClassType]
784 seen.add(self.mclass)
785 var todo = [self.mclass]
786 while not todo.is_empty do
787 var mclass = todo.pop
788 #print "process {mclass}"
789 for mclassdef in mclass.mclassdefs do
790 if not mmodule.in_importation <= mclassdef.mmodule then continue
791 #print " process {mclassdef}"
792 res.add(mclassdef)
793 for supertype in mclassdef.supertypes do
794 types.add(supertype)
795 var superclass = supertype.mclass
796 if seen.has(superclass) then continue
797 #print " add {superclass}"
798 seen.add(superclass)
799 todo.add(superclass)
800 end
801 end
802 end
803 collect_mclassdefs_cache[mmodule] = res
804 collect_mclasses_cache[mmodule] = seen
805 collect_mtypes_cache[mmodule] = types
806 end
807
808 private var collect_mclassdefs_cache: HashMap[MModule, Set[MClassDef]] = new HashMap[MModule, Set[MClassDef]]
809 private var collect_mclasses_cache: HashMap[MModule, Set[MClass]] = new HashMap[MModule, Set[MClass]]
810 private var collect_mtypes_cache: HashMap[MModule, Set[MClassType]] = new HashMap[MModule, Set[MClassType]]
811
812 end
813
814 # A type based on a generic class.
815 # A generic type a just a class with additional formal generic arguments.
816 class MGenericType
817 super MClassType
818
819 private init(mclass: MClass, arguments: Array[MType])
820 do
821 super(mclass)
822 assert self.mclass.arity == arguments.length
823 self.arguments = arguments
824
825 self.need_anchor = false
826 for t in arguments do
827 if t.need_anchor then
828 self.need_anchor = true
829 break
830 end
831 end
832 end
833
834 # The formal arguments of the type
835 # ENSURE: return.length == self.mclass.arity
836 var arguments: Array[MType]
837
838 # Recursively print the type of the arguments within brackets.
839 # Example: "Map[String,List[Int]]"
840 redef fun to_s
841 do
842 return "{mclass}[{arguments.join(",")}]"
843 end
844
845 redef var need_anchor: Bool
846
847 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
848 do
849 if not need_anchor then return self
850 var types = new Array[MType]
851 for t in arguments do
852 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
853 end
854 return mclass.get_mtype(types)
855 end
856 end
857
858 # A virtual formal type.
859 class MVirtualType
860 super MType
861
862 # The property associated with the type.
863 # Its the definitions of this property that determine the bound or the virtual type.
864 var mproperty: MProperty
865
866 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
867
868 # Lookup the bound for a given resolved_receiver
869 # The result may be a other virtual type (or a parameter type)
870 #
871 # The result is returned exactly as declared in the "type" property (verbatim).
872 #
873 # In case of conflict, the method aborts.
874 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
875 do
876 assert not resolved_receiver.need_anchor
877 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
878 if props.is_empty then
879 abort
880 else if props.length == 1 then
881 return props.first.as(MVirtualTypeDef).bound.as(not null)
882 end
883 var types = new ArraySet[MType]
884 for p in props do
885 types.add(p.as(MVirtualTypeDef).bound.as(not null))
886 end
887 if types.length == 1 then
888 return types.first
889 end
890 abort
891 end
892
893 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
894 do
895 if not cleanup_virtual then return self
896 # self is a virtual type declared (or inherited) in mtype
897 # The point of the function it to get the bound of the virtual type that make sense for mtype
898 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
899 #print "{class_name}: {self}/{mtype}/{anchor}?"
900 var resolved_reciever = mtype.resolve_for(anchor, anchor, mmodule, true)
901 # Now, we can get the bound
902 var verbatim_bound = lookup_bound(mmodule, resolved_reciever)
903 # The bound is exactly as declared in the "type" property, so we must resolve it again
904 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, true)
905 #print "{class_name}: {self}/{mtype}/{anchor} -> {self}/{resolved_reciever}/{anchor} -> {verbatim_bound}/{mtype}/{anchor} -> {res}"
906 return res
907 end
908
909 redef fun to_s do return self.mproperty.to_s
910
911 init(mproperty: MProperty)
912 do
913 self.mproperty = mproperty
914 end
915 end
916
917 # The type associated the a formal parameter generic type of a class
918 #
919 # Each parameter type is associated to a specific class.
920 # It's mean that all refinements of a same class "share" the parameter type,
921 # but that a generic subclass has its on parameter types.
922 #
923 # However, in the sense of the meta-model, the a parameter type of a class is
924 # a valid types in a subclass. The "in the sense of the meta-model" is
925 # important because, in the Nit language, the programmer cannot refers
926 # directly to the parameter types of the super-classes.
927 #
928 # Example:
929 # class A[E]
930 # fun e: E is abstract
931 # end
932 # class B[F]
933 # super A[Array[F]]
934 # end
935 # In the class definition B[F], `F' is a valid type but `E' is not.
936 # However, `self.e' is a valid method call, and the signature of `e' is
937 # declared `e: E'.
938 #
939 # Note that parameter types are shared among class refinements.
940 # Therefore parameter only have an internal name (see `to_s' for details).
941 # TODO: Add a 'name_for' to get better messages.
942 class MParameterType
943 super MType
944
945 # The generic class where the parameter belong
946 var mclass: MClass
947
948 redef fun model do return self.mclass.intro_mmodule.model
949
950 # The position of the parameter (0 for the first parameter)
951 # FIXME: is `position' a better name?
952 var rank: Int
953
954 # Internal name of the parameter type
955 # Names of parameter types changes in each class definition
956 # Therefore, this method return an internal name.
957 # Example: return "G#1" for the second parameter of the class G
958 # FIXME: add a way to get the real name in a classdef
959 redef fun to_s do return "{mclass}#{rank}"
960
961 # Resolve the bound for a given resolved_receiver
962 # The result may be a other virtual type (or a parameter type)
963 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
964 do
965 assert not resolved_receiver.need_anchor
966 var goalclass = self.mclass
967 var supertypes = resolved_receiver.collect_mtypes(mmodule)
968 for t in supertypes do
969 if t.mclass == goalclass then
970 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
971 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
972 assert t isa MGenericType
973 var res = t.arguments[self.rank]
974 return res
975 end
976 end
977 abort
978 end
979
980 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
981 do
982 #print "{class_name}: {self}/{mtype}/{anchor}?"
983
984 if mtype isa MGenericType and mtype.mclass == self.mclass then
985 return mtype.arguments[self.rank]
986 end
987
988 # self is a parameter type of mtype (or of a super-class of mtype)
989 # The point of the function it to get the bound of the virtual type that make sense for mtype
990 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
991 # FIXME: What happend here is far from clear. Thus this part must be validated and clarified
992 var resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
993 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
994 if resolved_receiver isa MParameterType then
995 assert resolved_receiver.mclass == anchor.mclass
996 resolved_receiver = anchor.as(MGenericType).arguments[resolved_receiver.rank]
997 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
998 end
999 assert resolved_receiver isa MClassType else print "{class_name}: {self}/{mtype}/{anchor}? {resolved_receiver}"
1000
1001 # Eh! The parameter is in the current class.
1002 # So we return the corresponding argument, no mater what!
1003 if resolved_receiver.mclass == self.mclass then
1004 assert resolved_receiver isa MGenericType
1005 var res = resolved_receiver.arguments[self.rank]
1006 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1007 return res
1008 end
1009
1010 resolved_receiver = resolved_receiver.resolve_for(anchor, anchor, mmodule, false)
1011 # Now, we can get the bound
1012 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1013 # The bound is exactly as declared in the "type" property, so we must resolve it again
1014 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1015
1016 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1017
1018 return res
1019 end
1020
1021 init(mclass: MClass, rank: Int)
1022 do
1023 self.mclass = mclass
1024 self.rank = rank
1025 end
1026 end
1027
1028 # A type prefixed with "nullable"
1029 # FIXME Stub implementation
1030 class MNullableType
1031 super MType
1032
1033 # The base type of the nullable type
1034 var mtype: MType
1035
1036 redef fun model do return self.mtype.model
1037
1038 init(mtype: MType)
1039 do
1040 self.mtype = mtype
1041 end
1042
1043 redef fun to_s do return "nullable {mtype}"
1044
1045 redef fun need_anchor do return mtype.need_anchor
1046 redef fun as_nullable do return self
1047 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1048 do
1049 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1050 return res.as_nullable
1051 end
1052
1053 redef fun collect_mclassdefs(mmodule)
1054 do
1055 assert not self.need_anchor
1056 return self.mtype.collect_mclassdefs(mmodule)
1057 end
1058
1059 redef fun collect_mclasses(mmodule)
1060 do
1061 assert not self.need_anchor
1062 return self.mtype.collect_mclasses(mmodule)
1063 end
1064
1065 redef fun collect_mtypes(mmodule)
1066 do
1067 assert not self.need_anchor
1068 return self.mtype.collect_mtypes(mmodule)
1069 end
1070 end
1071
1072 # The type of the only value null
1073 #
1074 # The is only one null type per model, see `MModel::null_type'.
1075 class MNullType
1076 super MType
1077 redef var model: Model
1078 protected init(model: Model)
1079 do
1080 self.model = model
1081 end
1082 redef fun to_s do return "null"
1083 redef fun as_nullable do return self
1084 redef fun need_anchor do return false
1085 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1086
1087 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1088
1089 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1090
1091 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1092 end
1093
1094 # A signature of a method (or a closure)
1095 class MSignature
1096 super MType
1097
1098 # The each parameter (in order)
1099 var mparameters: Array[MParameter]
1100
1101 var mclosures = new Array[MParameter]
1102
1103 # The return type (null for a procedure)
1104 var return_mtype: nullable MType
1105
1106 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1107 init(mparameters: Array[MParameter], return_mtype: nullable MType)
1108 do
1109 var vararg_rank = -1
1110 for i in [0..mparameters.length[ do
1111 var parameter = mparameters[i]
1112 if parameter.is_vararg then
1113 assert vararg_rank == -1
1114 vararg_rank = i
1115 end
1116 end
1117 self.mparameters = mparameters
1118 self.return_mtype = return_mtype
1119 self.vararg_rank = vararg_rank
1120 end
1121
1122 # The rank of the ellipsis (...) for vararg (starting from 0).
1123 # value is -1 if there is no vararg.
1124 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1125 var vararg_rank: Int
1126
1127 # The number or parameters
1128 fun arity: Int do return mparameters.length
1129
1130 redef fun to_s
1131 do
1132 var b = new Buffer
1133 if not mparameters.is_empty then
1134 b.append("(")
1135 for i in [0..mparameters.length[ do
1136 var mparameter = mparameters[i]
1137 if i > 0 then b.append(", ")
1138 b.append(mparameter.name)
1139 b.append(": ")
1140 b.append(mparameter.mtype.to_s)
1141 if mparameter.is_vararg then
1142 b.append("...")
1143 end
1144 end
1145 b.append(")")
1146 end
1147 var ret = self.return_mtype
1148 if ret != null then
1149 b.append(": ")
1150 b.append(ret.to_s)
1151 end
1152 return b.to_s
1153 end
1154
1155 redef fun resolve_for(mtype: MType, anchor: MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
1156 do
1157 var params = new Array[MParameter]
1158 for p in self.mparameters do
1159 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1160 end
1161 var ret = self.return_mtype
1162 if ret != null then
1163 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1164 end
1165 var res = new MSignature(params, ret)
1166 for p in self.mclosures do
1167 res.mclosures.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1168 end
1169 return res
1170 end
1171 end
1172
1173 # A parameter in a signature
1174 class MParameter
1175 # The name of the parameter
1176 var name: String
1177
1178 # The static type of the parameter
1179 var mtype: MType
1180
1181 # Is the parameter a vararg?
1182 var is_vararg: Bool
1183
1184 fun resolve_for(mtype: MType, anchor: MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
1185 do
1186 if not self.mtype.need_anchor then return self
1187 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1188 var res = new MParameter(self.name, newtype, self.is_vararg)
1189 return res
1190 end
1191 end
1192
1193 # A service (global property) that generalize method, attribute, etc.
1194 #
1195 # MProperty are global to the model; it means that a MProperty is not bound
1196 # to a specific `MModule` nor a specific `MClass`.
1197 #
1198 # A MProperty gather definitions (see `mpropdefs') ; one for the introduction
1199 # and the other in subclasses and in refinements.
1200 #
1201 # A MProperty is used to denotes services in polymorphic way (ie. independent
1202 # of any dynamic type).
1203 # For instance, a call site "x.foo" is associated to a MProperty.
1204 abstract class MProperty
1205 # The associated MPropDef subclass.
1206 # The two specialization hierarchy are symmetric.
1207 type MPROPDEF: MPropDef
1208
1209 # The classdef that introduce the property
1210 # While a property is not bound to a specific module, or class,
1211 # the introducing mclassdef is used for naming and visibility
1212 var intro_mclassdef: MClassDef
1213
1214 # The (short) name of the property
1215 var name: String
1216
1217 # The canonical name of the property
1218 # Example: "owner::my_module::MyClass::my_method"
1219 fun full_name: String
1220 do
1221 return "{self.intro_mclassdef.mmodule.full_name}::{self.intro_mclassdef.mclass.name}::{name}"
1222 end
1223
1224 # The visibility of the property
1225 var visibility: MVisibility
1226
1227 init(intro_mclassdef: MClassDef, name: String, visibility: MVisibility)
1228 do
1229 self.intro_mclassdef = intro_mclassdef
1230 self.name = name
1231 self.visibility = visibility
1232 intro_mclassdef.intro_mproperties.add(self)
1233 var model = intro_mclassdef.mmodule.model
1234 model.mproperties_by_name.add_one(name, self)
1235 model.mproperties.add(self)
1236 end
1237
1238 # All definitions of the property.
1239 # The first is the introduction,
1240 # The other are redefinitions (in refinements and in subclasses)
1241 var mpropdefs: Array[MPROPDEF] = new Array[MPROPDEF]
1242
1243 # The definition that introduced the property
1244 # Warning: the introduction is the first `MPropDef' object
1245 # associated to self. If self is just created without having any
1246 # associated definition, this method will abort
1247 fun intro: MPROPDEF do return mpropdefs.first
1248
1249 # Alias for `name'
1250 redef fun to_s do return name
1251
1252 # Return the most specific property definitions defined or inherited by a type.
1253 # The selection knows that refinement is stronger than specialization;
1254 # however, in case of conflict more than one property are returned.
1255 # If mtype does not know mproperty then an empty array is returned.
1256 #
1257 # If you want the really most specific property, then look at `lookup_first_definition`
1258 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1259 do
1260 assert not mtype.need_anchor
1261 if mtype isa MNullableType then mtype = mtype.mtype
1262
1263 var cache = self.lookup_definitions_cache[mmodule, mtype]
1264 if cache != null then return cache
1265
1266 #print "select prop {mproperty} for {mtype} in {self}"
1267 # First, select all candidates
1268 var candidates = new Array[MPROPDEF]
1269 for mpropdef in self.mpropdefs do
1270 # If the definition is not imported by the module, then skip
1271 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1272 # If the definition is not inherited by the type, then skip
1273 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1274 # Else, we keep it
1275 candidates.add(mpropdef)
1276 end
1277 # Fast track for only one candidate
1278 if candidates.length <= 1 then
1279 self.lookup_definitions_cache[mmodule, mtype] = candidates
1280 return candidates
1281 end
1282
1283 # Second, filter the most specific ones
1284 var res = new Array[MPROPDEF]
1285 for pd1 in candidates do
1286 var cd1 = pd1.mclassdef
1287 var c1 = cd1.mclass
1288 var keep = true
1289 for pd2 in candidates do
1290 if pd2 == pd1 then continue # do not compare with self!
1291 var cd2 = pd2.mclassdef
1292 var c2 = cd2.mclass
1293 if c2.mclass_type == c1.mclass_type then
1294 if cd2.mmodule.in_importation <= cd1.mmodule then
1295 # cd2 refines cd1; therefore we skip pd1
1296 keep = false
1297 break
1298 end
1299 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) then
1300 # cd2 < cd1; therefore we skip pd1
1301 keep = false
1302 break
1303 end
1304 end
1305 if keep then
1306 res.add(pd1)
1307 end
1308 end
1309 if res.is_empty then
1310 print "All lost! {candidates.join(", ")}"
1311 # FIXME: should be abort!
1312 end
1313 self.lookup_definitions_cache[mmodule, mtype] = res
1314 return res
1315 end
1316
1317 private var lookup_definitions_cache: HashMap2[MModule, MType, Array[MPROPDEF]] = new HashMap2[MModule, MType, Array[MPROPDEF]]
1318
1319 # Return the most specific property definitions inherited by a type.
1320 # The selection knows that refinement is stronger than specialization;
1321 # however, in case of conflict more than one property are returned.
1322 # If mtype does not know mproperty then an empty array is returned.
1323 #
1324 # If you want the really most specific property, then look at `lookup_next_definition`
1325 #
1326 # FIXME: Move to MPropDef?
1327 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPropDef]
1328 do
1329 assert not mtype.need_anchor
1330 if mtype isa MNullableType then mtype = mtype.mtype
1331
1332 # First, select all candidates
1333 var candidates = new Array[MPropDef]
1334 for mpropdef in self.mpropdefs do
1335 # If the definition is not imported by the module, then skip
1336 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1337 # If the definition is not inherited by the type, then skip
1338 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1339 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
1340 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
1341 # Else, we keep it
1342 candidates.add(mpropdef)
1343 end
1344 # Fast track for only one candidate
1345 if candidates.length <= 1 then return candidates
1346
1347 # Second, filter the most specific ones
1348 var res = new Array[MPropDef]
1349 for pd1 in candidates do
1350 var cd1 = pd1.mclassdef
1351 var c1 = cd1.mclass
1352 var keep = true
1353 for pd2 in candidates do
1354 if pd2 == pd1 then continue # do not compare with self!
1355 var cd2 = pd2.mclassdef
1356 var c2 = cd2.mclass
1357 if c2.mclass_type == c1.mclass_type then
1358 if cd2.mmodule.in_importation <= cd1.mmodule then
1359 # cd2 refines cd1; therefore we skip pd1
1360 keep = false
1361 break
1362 end
1363 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) then
1364 # cd2 < cd1; therefore we skip pd1
1365 keep = false
1366 break
1367 end
1368 end
1369 if keep then
1370 res.add(pd1)
1371 end
1372 end
1373 if res.is_empty then
1374 print "All lost! {candidates.join(", ")}"
1375 # FIXME: should be abort!
1376 end
1377 return res
1378 end
1379
1380 # Return the most specific definition in the linearization of `mtype`.
1381 # If mtype does not know mproperty then null is returned.
1382 #
1383 # If you want to know the next properties in the linearization,
1384 # look at `MPropDef::lookup_next_definition`.
1385 #
1386 # FIXME: NOT YET IMPLEMENTED
1387 #
1388 # REQUIRE: not mtype.need_anchor
1389 fun lookup_first_definition(mmodule: MModule, mtype: MType): nullable MPROPDEF
1390 do
1391 assert not mtype.need_anchor
1392 return null
1393 end
1394 end
1395
1396 # A global method
1397 class MMethod
1398 super MProperty
1399
1400 redef type MPROPDEF: MMethodDef
1401
1402 init(intro_mclassdef: MClassDef, name: String, visibility: MVisibility)
1403 do
1404 super
1405 end
1406
1407 # Is the property a constructor?
1408 # Warning, this property can be inherited by subclasses with or without being a constructor
1409 # therefore, you should use `is_init_for' the verify if the property is a legal constructor for a given class
1410 var is_init: Bool writable = false
1411
1412 # The the property a 'new' contructor?
1413 var is_new: Bool writable = false
1414
1415 # Is the property a legal constructor for a given class?
1416 # As usual, visibility is not considered.
1417 # FIXME not implemented
1418 fun is_init_for(mclass: MClass): Bool
1419 do
1420 return self.is_init
1421 end
1422 end
1423
1424 # A global attribute
1425 class MAttribute
1426 super MProperty
1427
1428 redef type MPROPDEF: MAttributeDef
1429
1430 init(intro_mclassdef: MClassDef, name: String, visibility: MVisibility)
1431 do
1432 super
1433 end
1434 end
1435
1436 # A global virtual type
1437 class MVirtualTypeProp
1438 super MProperty
1439
1440 redef type MPROPDEF: MVirtualTypeDef
1441
1442 init(intro_mclassdef: MClassDef, name: String, visibility: MVisibility)
1443 do
1444 super
1445 end
1446
1447 # The formal type associated to the virtual type property
1448 var mvirtualtype: MVirtualType = new MVirtualType(self)
1449 end
1450
1451 # A definition of a property (local property)
1452 #
1453 # Unlike MProperty, a MPropDef is a local definition that belong to a
1454 # specific class definition (which belong to a specific module)
1455 abstract class MPropDef
1456
1457 # The associated MProperty subclass.
1458 # the two specialization hierarchy are symmetric
1459 type MPROPERTY: MProperty
1460
1461 # Self class
1462 type MPROPDEF: MPropDef
1463
1464 # The origin of the definition
1465 var location: Location
1466
1467 # The class definition where the property definition is
1468 var mclassdef: MClassDef
1469
1470 # The associated global property
1471 var mproperty: MPROPERTY
1472
1473 init(mclassdef: MClassDef, mproperty: MPROPERTY, location: Location)
1474 do
1475 self.mclassdef = mclassdef
1476 self.mproperty = mproperty
1477 self.location = location
1478 mclassdef.mpropdefs.add(self)
1479 mproperty.mpropdefs.add(self)
1480 end
1481
1482 # Internal name combining the module, the class and the property
1483 # Example: "mymodule#MyClass#mymethod"
1484 redef fun to_s
1485 do
1486 return "{mclassdef}#{mproperty}"
1487 end
1488
1489 # Is self the definition that introduce the property?
1490 fun is_intro: Bool do return mproperty.intro == self
1491
1492 # Return the next definition in linearization of `mtype`.
1493 # If there is no next method then null is returned.
1494 #
1495 # This method is used to determine what method is called by a super.
1496 #
1497 # FIXME: NOT YET IMPLEMENTED
1498 #
1499 # REQUIRE: not mtype.need_anchor
1500 fun lookup_next_definition(mmodule: MModule, mtype: MType): nullable MPROPDEF
1501 do
1502 assert not mtype.need_anchor
1503 return null
1504 end
1505 end
1506
1507 # A local definition of a method
1508 class MMethodDef
1509 super MPropDef
1510
1511 redef type MPROPERTY: MMethod
1512 redef type MPROPDEF: MMethodDef
1513
1514 init(mclassdef: MClassDef, mproperty: MPROPERTY, location: Location)
1515 do
1516 super
1517 end
1518
1519 # The signature attached to the property definition
1520 var msignature: nullable MSignature writable = null
1521 end
1522
1523 # A local definition of an attribute
1524 class MAttributeDef
1525 super MPropDef
1526
1527 redef type MPROPERTY: MAttribute
1528 redef type MPROPDEF: MAttributeDef
1529
1530 init(mclassdef: MClassDef, mproperty: MPROPERTY, location: Location)
1531 do
1532 super
1533 end
1534
1535 # The static type of the attribute
1536 var static_mtype: nullable MType writable = null
1537 end
1538
1539 # A local definition of a virtual type
1540 class MVirtualTypeDef
1541 super MPropDef
1542
1543 redef type MPROPERTY: MVirtualTypeProp
1544 redef type MPROPDEF: MVirtualTypeDef
1545
1546 init(mclassdef: MClassDef, mproperty: MPROPERTY, location: Location)
1547 do
1548 super
1549 end
1550
1551 # The bound of the virtual type
1552 var bound: nullable MType writable = null
1553 end
1554
1555 # A kind of class.
1556 #
1557 # * abstract_kind
1558 # * concrete_kind
1559 # * interface_kind
1560 # * enum_kind
1561 # * extern_kind
1562 #
1563 # Note this class is basically an enum.
1564 # FIXME: use a real enum once user-defined enums are available
1565 class MClassKind
1566 redef var to_s: String
1567
1568 # Is a constructor required?
1569 var need_init: Bool
1570 private init(s: String, need_init: Bool)
1571 do
1572 self.to_s = s
1573 self.need_init = need_init
1574 end
1575 end
1576
1577 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", true)
1578 fun concrete_kind: MClassKind do return once new MClassKind("class", true)
1579 fun interface_kind: MClassKind do return once new MClassKind("interface", false)
1580 fun enum_kind: MClassKind do return once new MClassKind("enum", false)
1581 fun extern_kind: MClassKind do return once new MClassKind("extern", false)