Merge: Subtype improvements
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class Model
34 # All known classes
35 var mclasses = new Array[MClass]
36
37 # All known properties
38 var mproperties = new Array[MProperty]
39
40 # Hierarchy of class definition.
41 #
42 # Each classdef is associated with its super-classdefs in regard to
43 # its module of definition.
44 var mclassdef_hierarchy = new POSet[MClassDef]
45
46 # Class-type hierarchy restricted to the introduction.
47 #
48 # The idea is that what is true on introduction is always true whatever
49 # the module considered.
50 # Therefore, this hierarchy is used for a fast positive subtype check.
51 #
52 # This poset will evolve in a monotonous way:
53 # * Two non connected nodes will remain unconnected
54 # * New nodes can appear with new edges
55 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
56
57 # Global overlapped class-type hierarchy.
58 # The hierarchy when all modules are combined.
59 # Therefore, this hierarchy is used for a fast negative subtype check.
60 #
61 # This poset will evolve in an anarchic way. Loops can even be created.
62 #
63 # FIXME decide what to do on loops
64 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
65
66 # Collections of classes grouped by their short name
67 private var mclasses_by_name = new MultiHashMap[String, MClass]
68
69 # Return all class named `name`.
70 #
71 # If such a class does not exist, null is returned
72 # (instead of an empty array)
73 #
74 # Visibility or modules are not considered
75 fun get_mclasses_by_name(name: String): nullable Array[MClass]
76 do
77 if mclasses_by_name.has_key(name) then
78 return mclasses_by_name[name]
79 else
80 return null
81 end
82 end
83
84 # Collections of properties grouped by their short name
85 private var mproperties_by_name = new MultiHashMap[String, MProperty]
86
87 # Return all properties named `name`.
88 #
89 # If such a property does not exist, null is returned
90 # (instead of an empty array)
91 #
92 # Visibility or modules are not considered
93 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
94 do
95 if not mproperties_by_name.has_key(name) then
96 return null
97 else
98 return mproperties_by_name[name]
99 end
100 end
101
102 # The only null type
103 var null_type = new MNullType(self)
104
105 # Build an ordered tree with from `concerns`
106 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
107 var seen = new HashSet[MConcern]
108 var res = new ConcernsTree
109
110 var todo = new Array[MConcern]
111 todo.add_all mconcerns
112
113 while not todo.is_empty do
114 var c = todo.pop
115 if seen.has(c) then continue
116 var pc = c.parent_concern
117 if pc == null then
118 res.add(null, c)
119 else
120 res.add(pc, c)
121 todo.add(pc)
122 end
123 seen.add(c)
124 end
125
126 return res
127 end
128 end
129
130 # An OrderedTree that can be easily refined for display purposes
131 class ConcernsTree
132 super OrderedTree[MConcern]
133 end
134
135 redef class MModule
136 # All the classes introduced in the module
137 var intro_mclasses = new Array[MClass]
138
139 # All the class definitions of the module
140 # (introduction and refinement)
141 var mclassdefs = new Array[MClassDef]
142
143 # Does the current module has a given class `mclass`?
144 # Return true if the mmodule introduces, refines or imports a class.
145 # Visibility is not considered.
146 fun has_mclass(mclass: MClass): Bool
147 do
148 return self.in_importation <= mclass.intro_mmodule
149 end
150
151 # Full hierarchy of introduced ans imported classes.
152 #
153 # Create a new hierarchy got by flattening the classes for the module
154 # and its imported modules.
155 # Visibility is not considered.
156 #
157 # Note: this function is expensive and is usually used for the main
158 # module of a program only. Do not use it to do you own subtype
159 # functions.
160 fun flatten_mclass_hierarchy: POSet[MClass]
161 do
162 var res = self.flatten_mclass_hierarchy_cache
163 if res != null then return res
164 res = new POSet[MClass]
165 for m in self.in_importation.greaters do
166 for cd in m.mclassdefs do
167 var c = cd.mclass
168 res.add_node(c)
169 for s in cd.supertypes do
170 res.add_edge(c, s.mclass)
171 end
172 end
173 end
174 self.flatten_mclass_hierarchy_cache = res
175 return res
176 end
177
178 # Sort a given array of classes using the linearization order of the module
179 # The most general is first, the most specific is last
180 fun linearize_mclasses(mclasses: Array[MClass])
181 do
182 self.flatten_mclass_hierarchy.sort(mclasses)
183 end
184
185 # Sort a given array of class definitions using the linearization order of the module
186 # the refinement link is stronger than the specialisation link
187 # The most general is first, the most specific is last
188 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
189 do
190 var sorter = new MClassDefSorter(self)
191 sorter.sort(mclassdefs)
192 end
193
194 # Sort a given array of property definitions using the linearization order of the module
195 # the refinement link is stronger than the specialisation link
196 # The most general is first, the most specific is last
197 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
198 do
199 var sorter = new MPropDefSorter(self)
200 sorter.sort(mpropdefs)
201 end
202
203 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
204
205 # The primitive type `Object`, the root of the class hierarchy
206 fun object_type: MClassType
207 do
208 var res = self.object_type_cache
209 if res != null then return res
210 res = self.get_primitive_class("Object").mclass_type
211 self.object_type_cache = res
212 return res
213 end
214
215 private var object_type_cache: nullable MClassType
216
217 # The type `Pointer`, super class to all extern classes
218 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
219
220 # The primitive type `Bool`
221 fun bool_type: MClassType
222 do
223 var res = self.bool_type_cache
224 if res != null then return res
225 res = self.get_primitive_class("Bool").mclass_type
226 self.bool_type_cache = res
227 return res
228 end
229
230 private var bool_type_cache: nullable MClassType
231
232 # The primitive type `Sys`, the main type of the program, if any
233 fun sys_type: nullable MClassType
234 do
235 var clas = self.model.get_mclasses_by_name("Sys")
236 if clas == null then return null
237 return get_primitive_class("Sys").mclass_type
238 end
239
240 # The primitive type `Finalizable`
241 # Used to tag classes that need to be finalized.
242 fun finalizable_type: nullable MClassType
243 do
244 var clas = self.model.get_mclasses_by_name("Finalizable")
245 if clas == null then return null
246 return get_primitive_class("Finalizable").mclass_type
247 end
248
249 # Force to get the primitive class named `name` or abort
250 fun get_primitive_class(name: String): MClass
251 do
252 var cla = self.model.get_mclasses_by_name(name)
253 if cla == null then
254 if name == "Bool" then
255 var c = new MClass(self, name, null, enum_kind, public_visibility)
256 var cladef = new MClassDef(self, c.mclass_type, new Location(null, 0,0,0,0))
257 return c
258 end
259 print("Fatal Error: no primitive class {name}")
260 exit(1)
261 end
262 if cla.length != 1 then
263 var msg = "Fatal Error: more than one primitive class {name}:"
264 for c in cla do msg += " {c.full_name}"
265 print msg
266 #exit(1)
267 end
268 return cla.first
269 end
270
271 # Try to get the primitive method named `name` on the type `recv`
272 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
273 do
274 var props = self.model.get_mproperties_by_name(name)
275 if props == null then return null
276 var res: nullable MMethod = null
277 for mprop in props do
278 assert mprop isa MMethod
279 var intro = mprop.intro_mclassdef
280 for mclassdef in recv.mclassdefs do
281 if not self.in_importation.greaters.has(mclassdef.mmodule) then continue
282 if not mclassdef.in_hierarchy.greaters.has(intro) then continue
283 if res == null then
284 res = mprop
285 else if res != mprop then
286 print("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
287 abort
288 end
289 end
290 end
291 return res
292 end
293 end
294
295 private class MClassDefSorter
296 super Comparator
297 redef type COMPARED: MClassDef
298 var mmodule: MModule
299 redef fun compare(a, b)
300 do
301 var ca = a.mclass
302 var cb = b.mclass
303 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
304 return mmodule.model.mclassdef_hierarchy.compare(a, b)
305 end
306 end
307
308 private class MPropDefSorter
309 super Comparator
310 redef type COMPARED: MPropDef
311 var mmodule: MModule
312 redef fun compare(pa, pb)
313 do
314 var a = pa.mclassdef
315 var b = pb.mclassdef
316 var ca = a.mclass
317 var cb = b.mclass
318 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
319 return mmodule.model.mclassdef_hierarchy.compare(a, b)
320 end
321 end
322
323 # A named class
324 #
325 # `MClass` are global to the model; it means that a `MClass` is not bound to a
326 # specific `MModule`.
327 #
328 # This characteristic helps the reasoning about classes in a program since a
329 # single `MClass` object always denote the same class.
330 #
331 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
332 # These do not really have properties nor belong to a hierarchy since the property and the
333 # hierarchy of a class depends of the refinement in the modules.
334 #
335 # Most services on classes require the precision of a module, and no one can asks what are
336 # the super-classes of a class nor what are properties of a class without precising what is
337 # the module considered.
338 #
339 # For instance, during the typing of a source-file, the module considered is the module of the file.
340 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
341 # *is the method `foo` exists in the class `Bar` in the current module?*
342 #
343 # During some global analysis, the module considered may be the main module of the program.
344 class MClass
345 super MEntity
346
347 # The module that introduce the class
348 # While classes are not bound to a specific module,
349 # the introducing module is used for naming an visibility
350 var intro_mmodule: MModule
351
352 # The short name of the class
353 # In Nit, the name of a class cannot evolve in refinements
354 redef var name: String
355
356 # The canonical name of the class
357 # Example: `"owner::module::MyClass"`
358 fun full_name: String
359 do
360 return "{self.intro_mmodule.full_name}::{name}"
361 end
362
363 # The number of generic formal parameters
364 # 0 if the class is not generic
365 var arity: Int is noinit
366
367 # Each generic formal parameters in order.
368 # is empty if the class is not generic
369 var mparameters = new Array[MParameterType]
370
371 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
372 autoinit
373 do
374 if parameter_names == null then
375 self.arity = 0
376 else
377 self.arity = parameter_names.length
378 end
379
380 # Create the formal parameter types
381 if arity > 0 then
382 assert parameter_names != null
383 var mparametertypes = new Array[MParameterType]
384 for i in [0..arity[ do
385 var mparametertype = new MParameterType(self, i, parameter_names[i])
386 mparametertypes.add(mparametertype)
387 end
388 self.mparameters = mparametertypes
389 var mclass_type = new MGenericType(self, mparametertypes)
390 self.mclass_type = mclass_type
391 self.get_mtype_cache[mparametertypes] = mclass_type
392 else
393 self.mclass_type = new MClassType(self)
394 end
395 end
396
397 # The kind of the class (interface, abstract class, etc.)
398 # In Nit, the kind of a class cannot evolve in refinements
399 var kind: MClassKind
400
401 # The visibility of the class
402 # In Nit, the visibility of a class cannot evolve in refinements
403 var visibility: MVisibility
404
405 init
406 do
407 intro_mmodule.intro_mclasses.add(self)
408 var model = intro_mmodule.model
409 model.mclasses_by_name.add_one(name, self)
410 model.mclasses.add(self)
411 end
412
413 redef fun model do return intro_mmodule.model
414
415 # All class definitions (introduction and refinements)
416 var mclassdefs = new Array[MClassDef]
417
418 # Alias for `name`
419 redef fun to_s do return self.name
420
421 # The definition that introduces the class.
422 #
423 # Warning: such a definition may not exist in the early life of the object.
424 # In this case, the method will abort.
425 var intro: MClassDef is noinit
426
427 # Return the class `self` in the class hierarchy of the module `mmodule`.
428 #
429 # SEE: `MModule::flatten_mclass_hierarchy`
430 # REQUIRE: `mmodule.has_mclass(self)`
431 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
432 do
433 return mmodule.flatten_mclass_hierarchy[self]
434 end
435
436 # The principal static type of the class.
437 #
438 # For non-generic class, mclass_type is the only `MClassType` based
439 # on self.
440 #
441 # For a generic class, the arguments are the formal parameters.
442 # i.e.: for the class Array[E:Object], the `mclass_type` is Array[E].
443 # If you want Array[Object] the see `MClassDef::bound_mtype`
444 #
445 # For generic classes, the mclass_type is also the way to get a formal
446 # generic parameter type.
447 #
448 # To get other types based on a generic class, see `get_mtype`.
449 #
450 # ENSURE: `mclass_type.mclass == self`
451 var mclass_type: MClassType is noinit
452
453 # Return a generic type based on the class
454 # Is the class is not generic, then the result is `mclass_type`
455 #
456 # REQUIRE: `mtype_arguments.length == self.arity`
457 fun get_mtype(mtype_arguments: Array[MType]): MClassType
458 do
459 assert mtype_arguments.length == self.arity
460 if self.arity == 0 then return self.mclass_type
461 var res = get_mtype_cache.get_or_null(mtype_arguments)
462 if res != null then return res
463 res = new MGenericType(self, mtype_arguments)
464 self.get_mtype_cache[mtype_arguments.to_a] = res
465 return res
466 end
467
468 private var get_mtype_cache = new HashMap[Array[MType], MGenericType]
469 end
470
471
472 # A definition (an introduction or a refinement) of a class in a module
473 #
474 # A `MClassDef` is associated with an explicit (or almost) definition of a
475 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
476 # a specific class and a specific module, and contains declarations like super-classes
477 # or properties.
478 #
479 # It is the class definitions that are the backbone of most things in the model:
480 # ClassDefs are defined with regard with other classdefs.
481 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
482 #
483 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
484 class MClassDef
485 super MEntity
486
487 # The module where the definition is
488 var mmodule: MModule
489
490 # The associated `MClass`
491 var mclass: MClass is noinit
492
493 # The bounded type associated to the mclassdef
494 #
495 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
496 # are the same type.
497 #
498 # Example:
499 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
500 # If you want Array[E], then see `mclass.mclass_type`
501 #
502 # ENSURE: `bound_mtype.mclass == self.mclass`
503 var bound_mtype: MClassType
504
505 # The origin of the definition
506 var location: Location
507
508 # Internal name combining the module and the class
509 # Example: "mymodule#MyClass"
510 redef var to_s: String is noinit
511
512 init
513 do
514 self.mclass = bound_mtype.mclass
515 mmodule.mclassdefs.add(self)
516 mclass.mclassdefs.add(self)
517 if mclass.intro_mmodule == mmodule then
518 assert not isset mclass._intro
519 mclass.intro = self
520 end
521 self.to_s = "{mmodule}#{mclass}"
522 end
523
524 # Actually the name of the `mclass`
525 redef fun name do return mclass.name
526
527 redef fun model do return mmodule.model
528
529 # All declared super-types
530 # FIXME: quite ugly but not better idea yet
531 var supertypes = new Array[MClassType]
532
533 # Register some super-types for the class (ie "super SomeType")
534 #
535 # The hierarchy must not already be set
536 # REQUIRE: `self.in_hierarchy == null`
537 fun set_supertypes(supertypes: Array[MClassType])
538 do
539 assert unique_invocation: self.in_hierarchy == null
540 var mmodule = self.mmodule
541 var model = mmodule.model
542 var mtype = self.bound_mtype
543
544 for supertype in supertypes do
545 self.supertypes.add(supertype)
546
547 # Register in full_type_specialization_hierarchy
548 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
549 # Register in intro_type_specialization_hierarchy
550 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
551 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
552 end
553 end
554
555 end
556
557 # Collect the super-types (set by set_supertypes) to build the hierarchy
558 #
559 # This function can only invoked once by class
560 # REQUIRE: `self.in_hierarchy == null`
561 # ENSURE: `self.in_hierarchy != null`
562 fun add_in_hierarchy
563 do
564 assert unique_invocation: self.in_hierarchy == null
565 var model = mmodule.model
566 var res = model.mclassdef_hierarchy.add_node(self)
567 self.in_hierarchy = res
568 var mtype = self.bound_mtype
569
570 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
571 # The simpliest way is to attach it to collect_mclassdefs
572 for mclassdef in mtype.collect_mclassdefs(mmodule) do
573 res.poset.add_edge(self, mclassdef)
574 end
575 end
576
577 # The view of the class definition in `mclassdef_hierarchy`
578 var in_hierarchy: nullable POSetElement[MClassDef] = null
579
580 # Is the definition the one that introduced `mclass`?
581 fun is_intro: Bool do return mclass.intro == self
582
583 # All properties introduced by the classdef
584 var intro_mproperties = new Array[MProperty]
585
586 # All property definitions in the class (introductions and redefinitions)
587 var mpropdefs = new Array[MPropDef]
588 end
589
590 # A global static type
591 #
592 # MType are global to the model; it means that a `MType` is not bound to a
593 # specific `MModule`.
594 # This characteristic helps the reasoning about static types in a program
595 # since a single `MType` object always denote the same type.
596 #
597 # However, because a `MType` is global, it does not really have properties
598 # nor have subtypes to a hierarchy since the property and the class hierarchy
599 # depends of a module.
600 # Moreover, virtual types an formal generic parameter types also depends on
601 # a receiver to have sense.
602 #
603 # Therefore, most method of the types require a module and an anchor.
604 # The module is used to know what are the classes and the specialization
605 # links.
606 # The anchor is used to know what is the bound of the virtual types and formal
607 # generic parameter types.
608 #
609 # MType are not directly usable to get properties. See the `anchor_to` method
610 # and the `MClassType` class.
611 #
612 # FIXME: the order of the parameters is not the best. We mus pick on from:
613 # * foo(mmodule, anchor, othertype)
614 # * foo(othertype, anchor, mmodule)
615 # * foo(anchor, mmodule, othertype)
616 # * foo(othertype, mmodule, anchor)
617 abstract class MType
618 super MEntity
619
620 redef fun name do return to_s
621
622 # Return true if `self` is an subtype of `sup`.
623 # The typing is done using the standard typing policy of Nit.
624 #
625 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
626 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
627 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
628 do
629 var sub = self
630 if sub == sup then return true
631
632 #print "1.is {sub} a {sup}? ===="
633
634 if anchor == null then
635 assert not sub.need_anchor
636 assert not sup.need_anchor
637 else
638 # First, resolve the formal types to the simplest equivalent forms in the receiver
639 assert sub.can_resolve_for(anchor, null, mmodule)
640 sub = sub.lookup_fixed(mmodule, anchor)
641 assert sup.can_resolve_for(anchor, null, mmodule)
642 sup = sup.lookup_fixed(mmodule, anchor)
643 end
644
645 # Does `sup` accept null or not?
646 # Discard the nullable marker if it exists
647 var sup_accept_null = false
648 if sup isa MNullableType then
649 sup_accept_null = true
650 sup = sup.mtype
651 else if sup isa MNullType then
652 sup_accept_null = true
653 end
654
655 # Can `sub` provide null or not?
656 # Thus we can match with `sup_accept_null`
657 # Also discard the nullable marker if it exists
658 if sub isa MNullableType then
659 if not sup_accept_null then return false
660 sub = sub.mtype
661 else if sub isa MNullType then
662 return sup_accept_null
663 end
664 # Now the case of direct null and nullable is over.
665
666 # If `sub` is a formal type, then it is accepted if its bound is accepted
667 while sub isa MParameterType or sub isa MVirtualType do
668 #print "3.is {sub} a {sup}?"
669
670 # A unfixed formal type can only accept itself
671 if sub == sup then return true
672
673 assert anchor != null
674 sub = sub.lookup_bound(mmodule, anchor)
675
676 #print "3.is {sub} a {sup}?"
677
678 # Manage the second layer of null/nullable
679 if sub isa MNullableType then
680 if not sup_accept_null then return false
681 sub = sub.mtype
682 else if sub isa MNullType then
683 return sup_accept_null
684 end
685 end
686 #print "4.is {sub} a {sup}? <- no more resolution"
687
688 assert sub isa MClassType # It is the only remaining type
689
690 # A unfixed formal type can only accept itself
691 if sup isa MParameterType or sup isa MVirtualType then
692 return false
693 end
694
695 if sup isa MNullType then
696 # `sup` accepts only null
697 return false
698 end
699
700 assert sup isa MClassType # It is the only remaining type
701
702 # Now both are MClassType, we need to dig
703
704 if sub == sup then return true
705
706 if anchor == null then anchor = sub # UGLY: any anchor will work
707 var resolved_sub = sub.anchor_to(mmodule, anchor)
708 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
709 if res == false then return false
710 if not sup isa MGenericType then return true
711 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
712 assert sub2.mclass == sup.mclass
713 for i in [0..sup.mclass.arity[ do
714 var sub_arg = sub2.arguments[i]
715 var sup_arg = sup.arguments[i]
716 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
717 if res == false then return false
718 end
719 return true
720 end
721
722 # The base class type on which self is based
723 #
724 # This base type is used to get property (an internally to perform
725 # unsafe type comparison).
726 #
727 # Beware: some types (like null) are not based on a class thus this
728 # method will crash
729 #
730 # Basically, this function transform the virtual types and parameter
731 # types to their bounds.
732 #
733 # Example
734 #
735 # class A end
736 # class B super A end
737 # class X end
738 # class Y super X end
739 # class G[T: A]
740 # type U: X
741 # end
742 # class H
743 # super G[B]
744 # redef type U: Y
745 # end
746 #
747 # Map[T,U] anchor_to H #-> Map[B,Y]
748 #
749 # Explanation of the example:
750 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
751 # because "redef type U: Y". Therefore, Map[T, U] is bound to
752 # Map[B, Y]
753 #
754 # ENSURE: `not self.need_anchor implies result == self`
755 # ENSURE: `not result.need_anchor`
756 fun anchor_to(mmodule: MModule, anchor: MClassType): MType
757 do
758 if not need_anchor then return self
759 assert not anchor.need_anchor
760 # Just resolve to the anchor and clear all the virtual types
761 var res = self.resolve_for(anchor, null, mmodule, true)
762 assert not res.need_anchor
763 return res
764 end
765
766 # Does `self` contain a virtual type or a formal generic parameter type?
767 # In order to remove those types, you usually want to use `anchor_to`.
768 fun need_anchor: Bool do return true
769
770 # Return the supertype when adapted to a class.
771 #
772 # In Nit, for each super-class of a type, there is a equivalent super-type.
773 #
774 # Example:
775 #
776 # ~~~nitish
777 # class G[T, U] end
778 # class H[V] super G[V, Bool] end
779 #
780 # H[Int] supertype_to G #-> G[Int, Bool]
781 # ~~~
782 #
783 # REQUIRE: `super_mclass` is a super-class of `self`
784 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
785 # ENSURE: `result.mclass = super_mclass`
786 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
787 do
788 if super_mclass.arity == 0 then return super_mclass.mclass_type
789 if self isa MClassType and self.mclass == super_mclass then return self
790 var resolved_self
791 if self.need_anchor then
792 assert anchor != null
793 resolved_self = self.anchor_to(mmodule, anchor)
794 else
795 resolved_self = self
796 end
797 var supertypes = resolved_self.collect_mtypes(mmodule)
798 for supertype in supertypes do
799 if supertype.mclass == super_mclass then
800 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
801 return supertype.resolve_for(self, anchor, mmodule, false)
802 end
803 end
804 abort
805 end
806
807 # Replace formals generic types in self with resolved values in `mtype`
808 # If `cleanup_virtual` is true, then virtual types are also replaced
809 # with their bounds.
810 #
811 # This function returns self if `need_anchor` is false.
812 #
813 # ## Example 1
814 #
815 # ~~~
816 # class G[E] end
817 # class H[F] super G[F] end
818 # class X[Z] end
819 # ~~~
820 #
821 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
822 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
823 #
824 # Explanation of the example:
825 # * Array[E].need_anchor is true because there is a formal generic parameter type E
826 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
827 # * Since "H[F] super G[F]", E is in fact F for H
828 # * More specifically, in H[Int], E is Int
829 # * So, in H[Int], Array[E] is Array[Int]
830 #
831 # This function is mainly used to inherit a signature.
832 # Because, unlike `anchor_to`, we do not want a full resolution of
833 # a type but only an adapted version of it.
834 #
835 # ## Example 2
836 #
837 # ~~~
838 # class A[E]
839 # fun foo(e:E):E is abstract
840 # end
841 # class B super A[Int] end
842 # ~~~
843 #
844 # The signature on foo is (e: E): E
845 # If we resolve the signature for B, we get (e:Int):Int
846 #
847 # ## Example 3
848 #
849 # ~~~nitish
850 # class A[E]
851 # fun foo(e:E):E is abstract
852 # end
853 # class C[F]
854 # var a: A[Array[F]]
855 # fun bar do a.foo(x) # <- x is here
856 # end
857 # ~~~
858 #
859 # The first question is: is foo available on `a`?
860 #
861 # The static type of a is `A[Array[F]]`, that is an open type.
862 # in order to find a method `foo`, whe must look at a resolved type.
863 #
864 # A[Array[F]].anchor_to(C[nullable Object]) #-> A[Array[nullable Object]]
865 #
866 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
867 #
868 # The next question is: what is the accepted types for `x`?
869 #
870 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
871 #
872 # E.resolve_for(A[Array[F]],C[nullable Object]) #-> Array[F]
873 #
874 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
875 #
876 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
877 # two function instead of one seems also to be a bad idea.
878 #
879 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
880 # ENSURE: `not self.need_anchor implies result == self`
881 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
882
883 # Resolve formal type to its verbatim bound.
884 # If the type is not formal, just return self
885 #
886 # The result is returned exactly as declared in the "type" property (verbatim).
887 # So it could be another formal type.
888 #
889 # In case of conflict, the method aborts.
890 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self
891
892 # Resolve the formal type to its simplest equivalent form.
893 #
894 # Formal types are either free or fixed.
895 # When it is fixed, it means that it is equivalent with a simpler type.
896 # When a formal type is free, it means that it is only equivalent with itself.
897 # This method return the most simple equivalent type of `self`.
898 #
899 # This method is mainly used for subtype test in order to sanely compare fixed.
900 #
901 # By default, return self.
902 # See the redefinitions for specific behavior in each kind of type.
903 fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self
904
905 # Can the type be resolved?
906 #
907 # In order to resolve open types, the formal types must make sence.
908 #
909 # ## Example
910 #
911 # class A[E]
912 # end
913 # class B[F]
914 # end
915 #
916 # ~~~nitish
917 # E.can_resolve_for(A[Int]) #-> true, E make sense in A
918 #
919 # E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
920 #
921 # B[E].can_resolve_for(A[F], B[Object]) #-> true,
922 # # B[E] is a red hearing only the E is important,
923 # # E make sense in A
924 # ~~~
925 #
926 # REQUIRE: `anchor != null implies not anchor.need_anchor`
927 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
928 # ENSURE: `not self.need_anchor implies result == true`
929 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
930
931 # Return the nullable version of the type
932 # If the type is already nullable then self is returned
933 fun as_nullable: MType
934 do
935 var res = self.as_nullable_cache
936 if res != null then return res
937 res = new MNullableType(self)
938 self.as_nullable_cache = res
939 return res
940 end
941
942 # Return the not nullable version of the type
943 # Is the type is already not nullable, then self is returned.
944 #
945 # Note: this just remove the `nullable` notation, but the result can still contains null.
946 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
947 fun as_notnullable: MType
948 do
949 return self
950 end
951
952 private var as_nullable_cache: nullable MType = null
953
954
955 # The depth of the type seen as a tree.
956 #
957 # * A -> 1
958 # * G[A] -> 2
959 # * H[A, B] -> 2
960 # * H[G[A], B] -> 3
961 #
962 # Formal types have a depth of 1.
963 fun depth: Int
964 do
965 return 1
966 end
967
968 # The length of the type seen as a tree.
969 #
970 # * A -> 1
971 # * G[A] -> 2
972 # * H[A, B] -> 3
973 # * H[G[A], B] -> 4
974 #
975 # Formal types have a length of 1.
976 fun length: Int
977 do
978 return 1
979 end
980
981 # Compute all the classdefs inherited/imported.
982 # The returned set contains:
983 # * the class definitions from `mmodule` and its imported modules
984 # * the class definitions of this type and its super-types
985 #
986 # This function is used mainly internally.
987 #
988 # REQUIRE: `not self.need_anchor`
989 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
990
991 # Compute all the super-classes.
992 # This function is used mainly internally.
993 #
994 # REQUIRE: `not self.need_anchor`
995 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
996
997 # Compute all the declared super-types.
998 # Super-types are returned as declared in the classdefs (verbatim).
999 # This function is used mainly internally.
1000 #
1001 # REQUIRE: `not self.need_anchor`
1002 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
1003
1004 # Is the property in self for a given module
1005 # This method does not filter visibility or whatever
1006 #
1007 # REQUIRE: `not self.need_anchor`
1008 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
1009 do
1010 assert not self.need_anchor
1011 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
1012 end
1013 end
1014
1015 # A type based on a class.
1016 #
1017 # `MClassType` have properties (see `has_mproperty`).
1018 class MClassType
1019 super MType
1020
1021 # The associated class
1022 var mclass: MClass
1023
1024 redef fun model do return self.mclass.intro_mmodule.model
1025
1026 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1027
1028 # The formal arguments of the type
1029 # ENSURE: `result.length == self.mclass.arity`
1030 var arguments = new Array[MType]
1031
1032 redef fun to_s do return mclass.to_s
1033
1034 redef fun need_anchor do return false
1035
1036 redef fun anchor_to(mmodule: MModule, anchor: MClassType): MClassType
1037 do
1038 return super.as(MClassType)
1039 end
1040
1041 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1042
1043 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1044
1045 redef fun collect_mclassdefs(mmodule)
1046 do
1047 assert not self.need_anchor
1048 var cache = self.collect_mclassdefs_cache
1049 if not cache.has_key(mmodule) then
1050 self.collect_things(mmodule)
1051 end
1052 return cache[mmodule]
1053 end
1054
1055 redef fun collect_mclasses(mmodule)
1056 do
1057 if collect_mclasses_last_module == mmodule then return collect_mclasses_last_module_cache
1058 assert not self.need_anchor
1059 var cache = self.collect_mclasses_cache
1060 if not cache.has_key(mmodule) then
1061 self.collect_things(mmodule)
1062 end
1063 var res = cache[mmodule]
1064 collect_mclasses_last_module = mmodule
1065 collect_mclasses_last_module_cache = res
1066 return res
1067 end
1068
1069 private var collect_mclasses_last_module: nullable MModule = null
1070 private var collect_mclasses_last_module_cache: Set[MClass] is noinit
1071
1072 redef fun collect_mtypes(mmodule)
1073 do
1074 assert not self.need_anchor
1075 var cache = self.collect_mtypes_cache
1076 if not cache.has_key(mmodule) then
1077 self.collect_things(mmodule)
1078 end
1079 return cache[mmodule]
1080 end
1081
1082 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1083 private fun collect_things(mmodule: MModule)
1084 do
1085 var res = new HashSet[MClassDef]
1086 var seen = new HashSet[MClass]
1087 var types = new HashSet[MClassType]
1088 seen.add(self.mclass)
1089 var todo = [self.mclass]
1090 while not todo.is_empty do
1091 var mclass = todo.pop
1092 #print "process {mclass}"
1093 for mclassdef in mclass.mclassdefs do
1094 if not mmodule.in_importation <= mclassdef.mmodule then continue
1095 #print " process {mclassdef}"
1096 res.add(mclassdef)
1097 for supertype in mclassdef.supertypes do
1098 types.add(supertype)
1099 var superclass = supertype.mclass
1100 if seen.has(superclass) then continue
1101 #print " add {superclass}"
1102 seen.add(superclass)
1103 todo.add(superclass)
1104 end
1105 end
1106 end
1107 collect_mclassdefs_cache[mmodule] = res
1108 collect_mclasses_cache[mmodule] = seen
1109 collect_mtypes_cache[mmodule] = types
1110 end
1111
1112 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1113 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1114 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1115
1116 end
1117
1118 # A type based on a generic class.
1119 # A generic type a just a class with additional formal generic arguments.
1120 class MGenericType
1121 super MClassType
1122
1123 redef var arguments
1124
1125 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1126
1127 init
1128 do
1129 assert self.mclass.arity == arguments.length
1130
1131 self.need_anchor = false
1132 for t in arguments do
1133 if t.need_anchor then
1134 self.need_anchor = true
1135 break
1136 end
1137 end
1138
1139 self.to_s = "{mclass}[{arguments.join(", ")}]"
1140 end
1141
1142 # Recursively print the type of the arguments within brackets.
1143 # Example: `"Map[String, List[Int]]"`
1144 redef var to_s: String is noinit
1145
1146 redef var need_anchor: Bool is noinit
1147
1148 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1149 do
1150 if not need_anchor then return self
1151 assert can_resolve_for(mtype, anchor, mmodule)
1152 var types = new Array[MType]
1153 for t in arguments do
1154 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1155 end
1156 return mclass.get_mtype(types)
1157 end
1158
1159 redef fun can_resolve_for(mtype, anchor, mmodule)
1160 do
1161 if not need_anchor then return true
1162 for t in arguments do
1163 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1164 end
1165 return true
1166 end
1167
1168
1169 redef fun depth
1170 do
1171 var dmax = 0
1172 for a in self.arguments do
1173 var d = a.depth
1174 if d > dmax then dmax = d
1175 end
1176 return dmax + 1
1177 end
1178
1179 redef fun length
1180 do
1181 var res = 1
1182 for a in self.arguments do
1183 res += a.length
1184 end
1185 return res
1186 end
1187 end
1188
1189 # A virtual formal type.
1190 class MVirtualType
1191 super MType
1192
1193 # The property associated with the type.
1194 # Its the definitions of this property that determine the bound or the virtual type.
1195 var mproperty: MVirtualTypeProp
1196
1197 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1198
1199 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1200 do
1201 return lookup_single_definition(mmodule, resolved_receiver).bound.as(not null)
1202 end
1203
1204 private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef
1205 do
1206 assert not resolved_receiver.need_anchor
1207 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1208 if props.is_empty then
1209 abort
1210 else if props.length == 1 then
1211 return props.first
1212 end
1213 var types = new ArraySet[MType]
1214 var res = props.first
1215 for p in props do
1216 types.add(p.bound.as(not null))
1217 if not res.is_fixed then res = p
1218 end
1219 if types.length == 1 then
1220 return res
1221 end
1222 abort
1223 end
1224
1225 # A VT is fixed when:
1226 # * the VT is (re-)defined with the annotation `is fixed`
1227 # * the VT is (indirectly) bound to an enum class (see `enum_kind`) since there is no subtype possible
1228 # * the receiver is an enum class since there is no subtype possible
1229 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1230 do
1231 assert not resolved_receiver.need_anchor
1232 resolved_receiver = resolved_receiver.as_notnullable
1233 assert resolved_receiver isa MClassType # It is the only remaining type
1234
1235 var prop = lookup_single_definition(mmodule, resolved_receiver)
1236 var res = prop.bound.as(not null)
1237
1238 # Recursively lookup the fixed result
1239 res = res.lookup_fixed(mmodule, resolved_receiver)
1240
1241 # 1. For a fixed VT, return the resolved bound
1242 if prop.is_fixed then return res
1243
1244 # 2. For a enum boud, return the bound
1245 if res isa MClassType and res.mclass.kind == enum_kind then return res
1246
1247 # 3. for a enum receiver return the bound
1248 if resolved_receiver.mclass.kind == enum_kind then return res
1249
1250 return self
1251 end
1252
1253 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1254 do
1255 if not cleanup_virtual then return self
1256 assert can_resolve_for(mtype, anchor, mmodule)
1257 # self is a virtual type declared (or inherited) in mtype
1258 # The point of the function it to get the bound of the virtual type that make sense for mtype
1259 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1260 #print "{class_name}: {self}/{mtype}/{anchor}?"
1261 var resolved_receiver
1262 if mtype.need_anchor then
1263 assert anchor != null
1264 resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true)
1265 else
1266 resolved_receiver = mtype
1267 end
1268 # Now, we can get the bound
1269 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1270 # The bound is exactly as declared in the "type" property, so we must resolve it again
1271 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1272
1273 return res
1274 end
1275
1276 redef fun can_resolve_for(mtype, anchor, mmodule)
1277 do
1278 if mtype.need_anchor then
1279 assert anchor != null
1280 mtype = mtype.anchor_to(mmodule, anchor)
1281 end
1282 return mtype.has_mproperty(mmodule, mproperty)
1283 end
1284
1285 redef fun to_s do return self.mproperty.to_s
1286 end
1287
1288 # The type associated to a formal parameter generic type of a class
1289 #
1290 # Each parameter type is associated to a specific class.
1291 # It means that all refinements of a same class "share" the parameter type,
1292 # but that a generic subclass has its own parameter types.
1293 #
1294 # However, in the sense of the meta-model, a parameter type of a class is
1295 # a valid type in a subclass. The "in the sense of the meta-model" is
1296 # important because, in the Nit language, the programmer cannot refers
1297 # directly to the parameter types of the super-classes.
1298 #
1299 # Example:
1300 #
1301 # class A[E]
1302 # fun e: E is abstract
1303 # end
1304 # class B[F]
1305 # super A[Array[F]]
1306 # end
1307 #
1308 # In the class definition B[F], `F` is a valid type but `E` is not.
1309 # However, `self.e` is a valid method call, and the signature of `e` is
1310 # declared `e: E`.
1311 #
1312 # Note that parameter types are shared among class refinements.
1313 # Therefore parameter only have an internal name (see `to_s` for details).
1314 class MParameterType
1315 super MType
1316
1317 # The generic class where the parameter belong
1318 var mclass: MClass
1319
1320 redef fun model do return self.mclass.intro_mmodule.model
1321
1322 # The position of the parameter (0 for the first parameter)
1323 # FIXME: is `position` a better name?
1324 var rank: Int
1325
1326 redef var name
1327
1328 redef fun to_s do return name
1329
1330 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1331 do
1332 assert not resolved_receiver.need_anchor
1333 resolved_receiver = resolved_receiver.as_notnullable
1334 assert resolved_receiver isa MClassType # It is the only remaining type
1335 var goalclass = self.mclass
1336 if resolved_receiver.mclass == goalclass then
1337 return resolved_receiver.arguments[self.rank]
1338 end
1339 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1340 for t in supertypes do
1341 if t.mclass == goalclass then
1342 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1343 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1344 var res = t.arguments[self.rank]
1345 return res
1346 end
1347 end
1348 abort
1349 end
1350
1351 # A PT is fixed when:
1352 # * Its bound is a enum class (see `enum_kind`).
1353 # The PT is just useless, but it is still a case.
1354 # * More usually, the `resolved_receiver` is a subclass of `self.mclass`,
1355 # so it is necessarily fixed in a `super` clause, either with a normal type
1356 # or with another PT.
1357 # See `resolve_for` for examples about related issues.
1358 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1359 do
1360 assert not resolved_receiver.need_anchor
1361 resolved_receiver = resolved_receiver.as_notnullable
1362 assert resolved_receiver isa MClassType # It is the only remaining type
1363 var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false)
1364 return res
1365 end
1366
1367 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1368 do
1369 assert can_resolve_for(mtype, anchor, mmodule)
1370 #print "{class_name}: {self}/{mtype}/{anchor}?"
1371
1372 if mtype isa MGenericType and mtype.mclass == self.mclass then
1373 var res = mtype.arguments[self.rank]
1374 if anchor != null and res.need_anchor then
1375 # Maybe the result can be resolved more if are bound to a final class
1376 var r2 = res.anchor_to(mmodule, anchor)
1377 if r2 isa MClassType and r2.mclass.kind == enum_kind then return r2
1378 end
1379 return res
1380 end
1381
1382 # self is a parameter type of mtype (or of a super-class of mtype)
1383 # The point of the function it to get the bound of the virtual type that make sense for mtype
1384 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1385 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1386 var resolved_receiver
1387 if mtype.need_anchor then
1388 assert anchor != null
1389 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1390 else
1391 resolved_receiver = mtype
1392 end
1393 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1394 if resolved_receiver isa MParameterType then
1395 assert resolved_receiver.mclass == anchor.mclass
1396 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1397 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1398 end
1399 assert resolved_receiver isa MClassType # It is the only remaining type
1400
1401 # Eh! The parameter is in the current class.
1402 # So we return the corresponding argument, no mater what!
1403 if resolved_receiver.mclass == self.mclass then
1404 var res = resolved_receiver.arguments[self.rank]
1405 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1406 return res
1407 end
1408
1409 if resolved_receiver.need_anchor then
1410 assert anchor != null
1411 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1412 end
1413 # Now, we can get the bound
1414 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1415 # The bound is exactly as declared in the "type" property, so we must resolve it again
1416 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1417
1418 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1419
1420 return res
1421 end
1422
1423 redef fun can_resolve_for(mtype, anchor, mmodule)
1424 do
1425 if mtype.need_anchor then
1426 assert anchor != null
1427 mtype = mtype.anchor_to(mmodule, anchor)
1428 end
1429 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1430 end
1431 end
1432
1433 # A type prefixed with "nullable"
1434 class MNullableType
1435 super MType
1436
1437 # The base type of the nullable type
1438 var mtype: MType
1439
1440 redef fun model do return self.mtype.model
1441
1442 init
1443 do
1444 self.to_s = "nullable {mtype}"
1445 end
1446
1447 redef var to_s: String is noinit
1448
1449 redef fun need_anchor do return mtype.need_anchor
1450 redef fun as_nullable do return self
1451 redef fun as_notnullable do return mtype
1452 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1453 do
1454 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1455 return res.as_nullable
1456 end
1457
1458 redef fun can_resolve_for(mtype, anchor, mmodule)
1459 do
1460 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1461 end
1462
1463 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable`
1464 redef fun lookup_fixed(mmodule, resolved_receiver)
1465 do
1466 var t = mtype.lookup_fixed(mmodule, resolved_receiver)
1467 if t == mtype then return self
1468 return t.as_nullable
1469 end
1470
1471 redef fun depth do return self.mtype.depth
1472
1473 redef fun length do return self.mtype.length
1474
1475 redef fun collect_mclassdefs(mmodule)
1476 do
1477 assert not self.need_anchor
1478 return self.mtype.collect_mclassdefs(mmodule)
1479 end
1480
1481 redef fun collect_mclasses(mmodule)
1482 do
1483 assert not self.need_anchor
1484 return self.mtype.collect_mclasses(mmodule)
1485 end
1486
1487 redef fun collect_mtypes(mmodule)
1488 do
1489 assert not self.need_anchor
1490 return self.mtype.collect_mtypes(mmodule)
1491 end
1492 end
1493
1494 # The type of the only value null
1495 #
1496 # The is only one null type per model, see `MModel::null_type`.
1497 class MNullType
1498 super MType
1499 redef var model: Model
1500 redef fun to_s do return "null"
1501 redef fun as_nullable do return self
1502 redef fun need_anchor do return false
1503 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1504 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1505
1506 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1507
1508 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1509
1510 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1511 end
1512
1513 # A signature of a method
1514 class MSignature
1515 super MType
1516
1517 # The each parameter (in order)
1518 var mparameters: Array[MParameter]
1519
1520 # The return type (null for a procedure)
1521 var return_mtype: nullable MType
1522
1523 redef fun depth
1524 do
1525 var dmax = 0
1526 var t = self.return_mtype
1527 if t != null then dmax = t.depth
1528 for p in mparameters do
1529 var d = p.mtype.depth
1530 if d > dmax then dmax = d
1531 end
1532 return dmax + 1
1533 end
1534
1535 redef fun length
1536 do
1537 var res = 1
1538 var t = self.return_mtype
1539 if t != null then res += t.length
1540 for p in mparameters do
1541 res += p.mtype.length
1542 end
1543 return res
1544 end
1545
1546 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1547 init
1548 do
1549 var vararg_rank = -1
1550 for i in [0..mparameters.length[ do
1551 var parameter = mparameters[i]
1552 if parameter.is_vararg then
1553 assert vararg_rank == -1
1554 vararg_rank = i
1555 end
1556 end
1557 self.vararg_rank = vararg_rank
1558 end
1559
1560 # The rank of the ellipsis (`...`) for vararg (starting from 0).
1561 # value is -1 if there is no vararg.
1562 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1563 var vararg_rank: Int is noinit
1564
1565 # The number or parameters
1566 fun arity: Int do return mparameters.length
1567
1568 redef fun to_s
1569 do
1570 var b = new FlatBuffer
1571 if not mparameters.is_empty then
1572 b.append("(")
1573 for i in [0..mparameters.length[ do
1574 var mparameter = mparameters[i]
1575 if i > 0 then b.append(", ")
1576 b.append(mparameter.name)
1577 b.append(": ")
1578 b.append(mparameter.mtype.to_s)
1579 if mparameter.is_vararg then
1580 b.append("...")
1581 end
1582 end
1583 b.append(")")
1584 end
1585 var ret = self.return_mtype
1586 if ret != null then
1587 b.append(": ")
1588 b.append(ret.to_s)
1589 end
1590 return b.to_s
1591 end
1592
1593 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
1594 do
1595 var params = new Array[MParameter]
1596 for p in self.mparameters do
1597 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1598 end
1599 var ret = self.return_mtype
1600 if ret != null then
1601 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1602 end
1603 var res = new MSignature(params, ret)
1604 return res
1605 end
1606 end
1607
1608 # A parameter in a signature
1609 class MParameter
1610 super MEntity
1611
1612 # The name of the parameter
1613 redef var name: String
1614
1615 # The static type of the parameter
1616 var mtype: MType
1617
1618 # Is the parameter a vararg?
1619 var is_vararg: Bool
1620
1621 redef fun to_s
1622 do
1623 if is_vararg then
1624 return "{name}: {mtype}..."
1625 else
1626 return "{name}: {mtype}"
1627 end
1628 end
1629
1630 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
1631 do
1632 if not self.mtype.need_anchor then return self
1633 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1634 var res = new MParameter(self.name, newtype, self.is_vararg)
1635 return res
1636 end
1637
1638 redef fun model do return mtype.model
1639 end
1640
1641 # A service (global property) that generalize method, attribute, etc.
1642 #
1643 # `MProperty` are global to the model; it means that a `MProperty` is not bound
1644 # to a specific `MModule` nor a specific `MClass`.
1645 #
1646 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
1647 # and the other in subclasses and in refinements.
1648 #
1649 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
1650 # of any dynamic type).
1651 # For instance, a call site "x.foo" is associated to a `MProperty`.
1652 abstract class MProperty
1653 super MEntity
1654
1655 # The associated MPropDef subclass.
1656 # The two specialization hierarchy are symmetric.
1657 type MPROPDEF: MPropDef
1658
1659 # The classdef that introduce the property
1660 # While a property is not bound to a specific module, or class,
1661 # the introducing mclassdef is used for naming and visibility
1662 var intro_mclassdef: MClassDef
1663
1664 # The (short) name of the property
1665 redef var name: String
1666
1667 # The canonical name of the property
1668 # Example: "owner::my_module::MyClass::my_method"
1669 fun full_name: String
1670 do
1671 return "{self.intro_mclassdef.mmodule.full_name}::{self.intro_mclassdef.mclass.name}::{name}"
1672 end
1673
1674 # The visibility of the property
1675 var visibility: MVisibility
1676
1677 init
1678 do
1679 intro_mclassdef.intro_mproperties.add(self)
1680 var model = intro_mclassdef.mmodule.model
1681 model.mproperties_by_name.add_one(name, self)
1682 model.mproperties.add(self)
1683 end
1684
1685 # All definitions of the property.
1686 # The first is the introduction,
1687 # The other are redefinitions (in refinements and in subclasses)
1688 var mpropdefs = new Array[MPROPDEF]
1689
1690 # The definition that introduces the property.
1691 #
1692 # Warning: such a definition may not exist in the early life of the object.
1693 # In this case, the method will abort.
1694 var intro: MPROPDEF is noinit
1695
1696 redef fun model do return intro.model
1697
1698 # Alias for `name`
1699 redef fun to_s do return name
1700
1701 # Return the most specific property definitions defined or inherited by a type.
1702 # The selection knows that refinement is stronger than specialization;
1703 # however, in case of conflict more than one property are returned.
1704 # If mtype does not know mproperty then an empty array is returned.
1705 #
1706 # If you want the really most specific property, then look at `lookup_first_definition`
1707 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1708 do
1709 assert not mtype.need_anchor
1710 mtype = mtype.as_notnullable
1711
1712 var cache = self.lookup_definitions_cache[mmodule, mtype]
1713 if cache != null then return cache
1714
1715 #print "select prop {mproperty} for {mtype} in {self}"
1716 # First, select all candidates
1717 var candidates = new Array[MPROPDEF]
1718 for mpropdef in self.mpropdefs do
1719 # If the definition is not imported by the module, then skip
1720 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1721 # If the definition is not inherited by the type, then skip
1722 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1723 # Else, we keep it
1724 candidates.add(mpropdef)
1725 end
1726 # Fast track for only one candidate
1727 if candidates.length <= 1 then
1728 self.lookup_definitions_cache[mmodule, mtype] = candidates
1729 return candidates
1730 end
1731
1732 # Second, filter the most specific ones
1733 return select_most_specific(mmodule, candidates)
1734 end
1735
1736 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
1737
1738 # Return the most specific property definitions inherited by a type.
1739 # The selection knows that refinement is stronger than specialization;
1740 # however, in case of conflict more than one property are returned.
1741 # If mtype does not know mproperty then an empty array is returned.
1742 #
1743 # If you want the really most specific property, then look at `lookup_next_definition`
1744 #
1745 # FIXME: Move to `MPropDef`?
1746 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1747 do
1748 assert not mtype.need_anchor
1749 mtype = mtype.as_notnullable
1750
1751 # First, select all candidates
1752 var candidates = new Array[MPROPDEF]
1753 for mpropdef in self.mpropdefs do
1754 # If the definition is not imported by the module, then skip
1755 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1756 # If the definition is not inherited by the type, then skip
1757 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1758 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
1759 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
1760 # Else, we keep it
1761 candidates.add(mpropdef)
1762 end
1763 # Fast track for only one candidate
1764 if candidates.length <= 1 then return candidates
1765
1766 # Second, filter the most specific ones
1767 return select_most_specific(mmodule, candidates)
1768 end
1769
1770 # Return an array containing olny the most specific property definitions
1771 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
1772 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
1773 do
1774 var res = new Array[MPROPDEF]
1775 for pd1 in candidates do
1776 var cd1 = pd1.mclassdef
1777 var c1 = cd1.mclass
1778 var keep = true
1779 for pd2 in candidates do
1780 if pd2 == pd1 then continue # do not compare with self!
1781 var cd2 = pd2.mclassdef
1782 var c2 = cd2.mclass
1783 if c2.mclass_type == c1.mclass_type then
1784 if cd2.mmodule.in_importation < cd1.mmodule then
1785 # cd2 refines cd1; therefore we skip pd1
1786 keep = false
1787 break
1788 end
1789 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
1790 # cd2 < cd1; therefore we skip pd1
1791 keep = false
1792 break
1793 end
1794 end
1795 if keep then
1796 res.add(pd1)
1797 end
1798 end
1799 if res.is_empty then
1800 print "All lost! {candidates.join(", ")}"
1801 # FIXME: should be abort!
1802 end
1803 return res
1804 end
1805
1806 # Return the most specific definition in the linearization of `mtype`.
1807 #
1808 # If you want to know the next properties in the linearization,
1809 # look at `MPropDef::lookup_next_definition`.
1810 #
1811 # FIXME: the linearization is still unspecified
1812 #
1813 # REQUIRE: `not mtype.need_anchor`
1814 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
1815 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
1816 do
1817 assert mtype.has_mproperty(mmodule, self)
1818 return lookup_all_definitions(mmodule, mtype).first
1819 end
1820
1821 # Return all definitions in a linearization order
1822 # Most specific first, most general last
1823 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1824 do
1825 assert not mtype.need_anchor
1826 mtype = mtype.as_notnullable
1827
1828 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
1829 if cache != null then return cache
1830
1831 #print "select prop {mproperty} for {mtype} in {self}"
1832 # First, select all candidates
1833 var candidates = new Array[MPROPDEF]
1834 for mpropdef in self.mpropdefs do
1835 # If the definition is not imported by the module, then skip
1836 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1837 # If the definition is not inherited by the type, then skip
1838 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1839 # Else, we keep it
1840 candidates.add(mpropdef)
1841 end
1842 # Fast track for only one candidate
1843 if candidates.length <= 1 then
1844 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
1845 return candidates
1846 end
1847
1848 mmodule.linearize_mpropdefs(candidates)
1849 candidates = candidates.reversed
1850 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
1851 return candidates
1852 end
1853
1854 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
1855 end
1856
1857 # A global method
1858 class MMethod
1859 super MProperty
1860
1861 redef type MPROPDEF: MMethodDef
1862
1863 # Is the property defined at the top_level of the module?
1864 # Currently such a property are stored in `Object`
1865 var is_toplevel: Bool = false is writable
1866
1867 # Is the property a constructor?
1868 # Warning, this property can be inherited by subclasses with or without being a constructor
1869 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
1870 var is_init: Bool = false is writable
1871
1872 # The constructor is a (the) root init with empty signature but a set of initializers
1873 var is_root_init: Bool = false is writable
1874
1875 # Is the property a 'new' constructor?
1876 var is_new: Bool = false is writable
1877
1878 # Is the property a legal constructor for a given class?
1879 # As usual, visibility is not considered.
1880 # FIXME not implemented
1881 fun is_init_for(mclass: MClass): Bool
1882 do
1883 return self.is_init
1884 end
1885 end
1886
1887 # A global attribute
1888 class MAttribute
1889 super MProperty
1890
1891 redef type MPROPDEF: MAttributeDef
1892
1893 end
1894
1895 # A global virtual type
1896 class MVirtualTypeProp
1897 super MProperty
1898
1899 redef type MPROPDEF: MVirtualTypeDef
1900
1901 # The formal type associated to the virtual type property
1902 var mvirtualtype = new MVirtualType(self)
1903 end
1904
1905 # A definition of a property (local property)
1906 #
1907 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
1908 # specific class definition (which belong to a specific module)
1909 abstract class MPropDef
1910 super MEntity
1911
1912 # The associated `MProperty` subclass.
1913 # the two specialization hierarchy are symmetric
1914 type MPROPERTY: MProperty
1915
1916 # Self class
1917 type MPROPDEF: MPropDef
1918
1919 # The class definition where the property definition is
1920 var mclassdef: MClassDef
1921
1922 # The associated global property
1923 var mproperty: MPROPERTY
1924
1925 # The origin of the definition
1926 var location: Location
1927
1928 init
1929 do
1930 mclassdef.mpropdefs.add(self)
1931 mproperty.mpropdefs.add(self)
1932 if mproperty.intro_mclassdef == mclassdef then
1933 assert not isset mproperty._intro
1934 mproperty.intro = self
1935 end
1936 self.to_s = "{mclassdef}#{mproperty}"
1937 end
1938
1939 # Actually the name of the `mproperty`
1940 redef fun name do return mproperty.name
1941
1942 redef fun model do return mclassdef.model
1943
1944 # Internal name combining the module, the class and the property
1945 # Example: "mymodule#MyClass#mymethod"
1946 redef var to_s: String is noinit
1947
1948 # Is self the definition that introduce the property?
1949 fun is_intro: Bool do return mproperty.intro == self
1950
1951 # Return the next definition in linearization of `mtype`.
1952 #
1953 # This method is used to determine what method is called by a super.
1954 #
1955 # REQUIRE: `not mtype.need_anchor`
1956 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
1957 do
1958 assert not mtype.need_anchor
1959
1960 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
1961 var i = mpropdefs.iterator
1962 while i.is_ok and i.item != self do i.next
1963 assert has_property: i.is_ok
1964 i.next
1965 assert has_next_property: i.is_ok
1966 return i.item
1967 end
1968 end
1969
1970 # A local definition of a method
1971 class MMethodDef
1972 super MPropDef
1973
1974 redef type MPROPERTY: MMethod
1975 redef type MPROPDEF: MMethodDef
1976
1977 # The signature attached to the property definition
1978 var msignature: nullable MSignature = null is writable
1979
1980 # The signature attached to the `new` call on a root-init
1981 # This is a concatenation of the signatures of the initializers
1982 #
1983 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
1984 var new_msignature: nullable MSignature = null is writable
1985
1986 # List of initialisers to call in root-inits
1987 #
1988 # They could be setters or attributes
1989 #
1990 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
1991 var initializers = new Array[MProperty]
1992
1993 # Is the method definition abstract?
1994 var is_abstract: Bool = false is writable
1995
1996 # Is the method definition intern?
1997 var is_intern = false is writable
1998
1999 # Is the method definition extern?
2000 var is_extern = false is writable
2001
2002 # An optional constant value returned in functions.
2003 #
2004 # Only some specific primitife value are accepted by engines.
2005 # Is used when there is no better implementation available.
2006 #
2007 # Currently used only for the implementation of the `--define`
2008 # command-line option.
2009 # SEE: module `mixin`.
2010 var constant_value: nullable Object = null is writable
2011 end
2012
2013 # A local definition of an attribute
2014 class MAttributeDef
2015 super MPropDef
2016
2017 redef type MPROPERTY: MAttribute
2018 redef type MPROPDEF: MAttributeDef
2019
2020 # The static type of the attribute
2021 var static_mtype: nullable MType = null is writable
2022 end
2023
2024 # A local definition of a virtual type
2025 class MVirtualTypeDef
2026 super MPropDef
2027
2028 redef type MPROPERTY: MVirtualTypeProp
2029 redef type MPROPDEF: MVirtualTypeDef
2030
2031 # The bound of the virtual type
2032 var bound: nullable MType = null is writable
2033
2034 # Is the bound fixed?
2035 var is_fixed = false is writable
2036 end
2037
2038 # A kind of class.
2039 #
2040 # * `abstract_kind`
2041 # * `concrete_kind`
2042 # * `interface_kind`
2043 # * `enum_kind`
2044 # * `extern_kind`
2045 #
2046 # Note this class is basically an enum.
2047 # FIXME: use a real enum once user-defined enums are available
2048 class MClassKind
2049 redef var to_s: String
2050
2051 # Is a constructor required?
2052 var need_init: Bool
2053
2054 # TODO: private init because enumeration.
2055
2056 # Can a class of kind `self` specializes a class of kine `other`?
2057 fun can_specialize(other: MClassKind): Bool
2058 do
2059 if other == interface_kind then return true # everybody can specialize interfaces
2060 if self == interface_kind or self == enum_kind then
2061 # no other case for interfaces
2062 return false
2063 else if self == extern_kind then
2064 # only compatible with themselves
2065 return self == other
2066 else if other == enum_kind or other == extern_kind then
2067 # abstract_kind and concrete_kind are incompatible
2068 return false
2069 end
2070 # remain only abstract_kind and concrete_kind
2071 return true
2072 end
2073 end
2074
2075 # The class kind `abstract`
2076 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", true)
2077 # The class kind `concrete`
2078 fun concrete_kind: MClassKind do return once new MClassKind("class", true)
2079 # The class kind `interface`
2080 fun interface_kind: MClassKind do return once new MClassKind("interface", false)
2081 # The class kind `enum`
2082 fun enum_kind: MClassKind do return once new MClassKind("enum", false)
2083 # The class kind `extern`
2084 fun extern_kind: MClassKind do return once new MClassKind("extern class", false)