Merge: introduce nit_env.sh to setup the shell environement
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class Model
34 # All known classes
35 var mclasses = new Array[MClass]
36
37 # All known properties
38 var mproperties = new Array[MProperty]
39
40 # Hierarchy of class definition.
41 #
42 # Each classdef is associated with its super-classdefs in regard to
43 # its module of definition.
44 var mclassdef_hierarchy = new POSet[MClassDef]
45
46 # Class-type hierarchy restricted to the introduction.
47 #
48 # The idea is that what is true on introduction is always true whatever
49 # the module considered.
50 # Therefore, this hierarchy is used for a fast positive subtype check.
51 #
52 # This poset will evolve in a monotonous way:
53 # * Two non connected nodes will remain unconnected
54 # * New nodes can appear with new edges
55 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
56
57 # Global overlapped class-type hierarchy.
58 # The hierarchy when all modules are combined.
59 # Therefore, this hierarchy is used for a fast negative subtype check.
60 #
61 # This poset will evolve in an anarchic way. Loops can even be created.
62 #
63 # FIXME decide what to do on loops
64 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
65
66 # Collections of classes grouped by their short name
67 private var mclasses_by_name = new MultiHashMap[String, MClass]
68
69 # Return all class named `name`.
70 #
71 # If such a class does not exist, null is returned
72 # (instead of an empty array)
73 #
74 # Visibility or modules are not considered
75 fun get_mclasses_by_name(name: String): nullable Array[MClass]
76 do
77 return mclasses_by_name.get_or_null(name)
78 end
79
80 # Collections of properties grouped by their short name
81 private var mproperties_by_name = new MultiHashMap[String, MProperty]
82
83 # Return all properties named `name`.
84 #
85 # If such a property does not exist, null is returned
86 # (instead of an empty array)
87 #
88 # Visibility or modules are not considered
89 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
90 do
91 return mproperties_by_name.get_or_null(name)
92 end
93
94 # The only null type
95 var null_type = new MNullType(self)
96
97 # Build an ordered tree with from `concerns`
98 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
99 var seen = new HashSet[MConcern]
100 var res = new ConcernsTree
101
102 var todo = new Array[MConcern]
103 todo.add_all mconcerns
104
105 while not todo.is_empty do
106 var c = todo.pop
107 if seen.has(c) then continue
108 var pc = c.parent_concern
109 if pc == null then
110 res.add(null, c)
111 else
112 res.add(pc, c)
113 todo.add(pc)
114 end
115 seen.add(c)
116 end
117
118 return res
119 end
120 end
121
122 # An OrderedTree that can be easily refined for display purposes
123 class ConcernsTree
124 super OrderedTree[MConcern]
125 end
126
127 redef class MModule
128 # All the classes introduced in the module
129 var intro_mclasses = new Array[MClass]
130
131 # All the class definitions of the module
132 # (introduction and refinement)
133 var mclassdefs = new Array[MClassDef]
134
135 # Does the current module has a given class `mclass`?
136 # Return true if the mmodule introduces, refines or imports a class.
137 # Visibility is not considered.
138 fun has_mclass(mclass: MClass): Bool
139 do
140 return self.in_importation <= mclass.intro_mmodule
141 end
142
143 # Full hierarchy of introduced ans imported classes.
144 #
145 # Create a new hierarchy got by flattening the classes for the module
146 # and its imported modules.
147 # Visibility is not considered.
148 #
149 # Note: this function is expensive and is usually used for the main
150 # module of a program only. Do not use it to do you own subtype
151 # functions.
152 fun flatten_mclass_hierarchy: POSet[MClass]
153 do
154 var res = self.flatten_mclass_hierarchy_cache
155 if res != null then return res
156 res = new POSet[MClass]
157 for m in self.in_importation.greaters do
158 for cd in m.mclassdefs do
159 var c = cd.mclass
160 res.add_node(c)
161 for s in cd.supertypes do
162 res.add_edge(c, s.mclass)
163 end
164 end
165 end
166 self.flatten_mclass_hierarchy_cache = res
167 return res
168 end
169
170 # Sort a given array of classes using the linearization order of the module
171 # The most general is first, the most specific is last
172 fun linearize_mclasses(mclasses: Array[MClass])
173 do
174 self.flatten_mclass_hierarchy.sort(mclasses)
175 end
176
177 # Sort a given array of class definitions using the linearization order of the module
178 # the refinement link is stronger than the specialisation link
179 # The most general is first, the most specific is last
180 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
181 do
182 var sorter = new MClassDefSorter(self)
183 sorter.sort(mclassdefs)
184 end
185
186 # Sort a given array of property definitions using the linearization order of the module
187 # the refinement link is stronger than the specialisation link
188 # The most general is first, the most specific is last
189 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
190 do
191 var sorter = new MPropDefSorter(self)
192 sorter.sort(mpropdefs)
193 end
194
195 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
196
197 # The primitive type `Object`, the root of the class hierarchy
198 var object_type: MClassType = self.get_primitive_class("Object").mclass_type is lazy
199
200 # The type `Pointer`, super class to all extern classes
201 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
202
203 # The primitive type `Bool`
204 var bool_type: MClassType = self.get_primitive_class("Bool").mclass_type is lazy
205
206 # The primitive type `Int`
207 var int_type: MClassType = self.get_primitive_class("Int").mclass_type is lazy
208
209 # The primitive type `Byte`
210 var byte_type: MClassType = self.get_primitive_class("Byte").mclass_type is lazy
211
212 # The primitive type `Int8`
213 var int8_type: MClassType = self.get_primitive_class("Int8").mclass_type is lazy
214
215 # The primitive type `Int16`
216 var int16_type: MClassType = self.get_primitive_class("Int16").mclass_type is lazy
217
218 # The primitive type `UInt16`
219 var uint16_type: MClassType = self.get_primitive_class("UInt16").mclass_type is lazy
220
221 # The primitive type `Int32`
222 var int32_type: MClassType = self.get_primitive_class("Int32").mclass_type is lazy
223
224 # The primitive type `UInt32`
225 var uint32_type: MClassType = self.get_primitive_class("UInt32").mclass_type is lazy
226
227 # The primitive type `Char`
228 var char_type: MClassType = self.get_primitive_class("Char").mclass_type is lazy
229
230 # The primitive type `Float`
231 var float_type: MClassType = self.get_primitive_class("Float").mclass_type is lazy
232
233 # The primitive type `String`
234 var string_type: MClassType = self.get_primitive_class("String").mclass_type is lazy
235
236 # The primitive type `NativeString`
237 var native_string_type: MClassType = self.get_primitive_class("NativeString").mclass_type is lazy
238
239 # A primitive type of `Array`
240 fun array_type(elt_type: MType): MClassType do return array_class.get_mtype([elt_type])
241
242 # The primitive class `Array`
243 var array_class: MClass = self.get_primitive_class("Array") is lazy
244
245 # A primitive type of `NativeArray`
246 fun native_array_type(elt_type: MType): MClassType do return native_array_class.get_mtype([elt_type])
247
248 # The primitive class `NativeArray`
249 var native_array_class: MClass = self.get_primitive_class("NativeArray") is lazy
250
251 # The primitive type `Sys`, the main type of the program, if any
252 fun sys_type: nullable MClassType
253 do
254 var clas = self.model.get_mclasses_by_name("Sys")
255 if clas == null then return null
256 return get_primitive_class("Sys").mclass_type
257 end
258
259 # The primitive type `Finalizable`
260 # Used to tag classes that need to be finalized.
261 fun finalizable_type: nullable MClassType
262 do
263 var clas = self.model.get_mclasses_by_name("Finalizable")
264 if clas == null then return null
265 return get_primitive_class("Finalizable").mclass_type
266 end
267
268 # Force to get the primitive class named `name` or abort
269 fun get_primitive_class(name: String): MClass
270 do
271 var cla = self.model.get_mclasses_by_name(name)
272 # Filter classes by introducing module
273 if cla != null then cla = [for c in cla do if self.in_importation <= c.intro_mmodule then c]
274 if cla == null or cla.is_empty then
275 if name == "Bool" and self.model.get_mclasses_by_name("Object") != null then
276 # Bool is injected because it is needed by engine to code the result
277 # of the implicit casts.
278 var c = new MClass(self, name, null, enum_kind, public_visibility)
279 var cladef = new MClassDef(self, c.mclass_type, new Location(null, 0,0,0,0))
280 cladef.set_supertypes([object_type])
281 cladef.add_in_hierarchy
282 return c
283 end
284 print("Fatal Error: no primitive class {name} in {self}")
285 exit(1)
286 abort
287 end
288 if cla.length != 1 then
289 var msg = "Fatal Error: more than one primitive class {name} in {self}:"
290 for c in cla do msg += " {c.full_name}"
291 print msg
292 #exit(1)
293 end
294 return cla.first
295 end
296
297 # Try to get the primitive method named `name` on the type `recv`
298 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
299 do
300 var props = self.model.get_mproperties_by_name(name)
301 if props == null then return null
302 var res: nullable MMethod = null
303 for mprop in props do
304 assert mprop isa MMethod
305 var intro = mprop.intro_mclassdef
306 for mclassdef in recv.mclassdefs do
307 if not self.in_importation.greaters.has(mclassdef.mmodule) then continue
308 if not mclassdef.in_hierarchy.greaters.has(intro) then continue
309 if res == null then
310 res = mprop
311 else if res != mprop then
312 print("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
313 abort
314 end
315 end
316 end
317 return res
318 end
319 end
320
321 private class MClassDefSorter
322 super Comparator
323 redef type COMPARED: MClassDef
324 var mmodule: MModule
325 redef fun compare(a, b)
326 do
327 var ca = a.mclass
328 var cb = b.mclass
329 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
330 return mmodule.model.mclassdef_hierarchy.compare(a, b)
331 end
332 end
333
334 private class MPropDefSorter
335 super Comparator
336 redef type COMPARED: MPropDef
337 var mmodule: MModule
338 redef fun compare(pa, pb)
339 do
340 var a = pa.mclassdef
341 var b = pb.mclassdef
342 var ca = a.mclass
343 var cb = b.mclass
344 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
345 return mmodule.model.mclassdef_hierarchy.compare(a, b)
346 end
347 end
348
349 # A named class
350 #
351 # `MClass` are global to the model; it means that a `MClass` is not bound to a
352 # specific `MModule`.
353 #
354 # This characteristic helps the reasoning about classes in a program since a
355 # single `MClass` object always denote the same class.
356 #
357 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
358 # These do not really have properties nor belong to a hierarchy since the property and the
359 # hierarchy of a class depends of the refinement in the modules.
360 #
361 # Most services on classes require the precision of a module, and no one can asks what are
362 # the super-classes of a class nor what are properties of a class without precising what is
363 # the module considered.
364 #
365 # For instance, during the typing of a source-file, the module considered is the module of the file.
366 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
367 # *is the method `foo` exists in the class `Bar` in the current module?*
368 #
369 # During some global analysis, the module considered may be the main module of the program.
370 class MClass
371 super MEntity
372
373 # The module that introduce the class
374 # While classes are not bound to a specific module,
375 # the introducing module is used for naming an visibility
376 var intro_mmodule: MModule
377
378 # The short name of the class
379 # In Nit, the name of a class cannot evolve in refinements
380 redef var name: String
381
382 # The canonical name of the class
383 #
384 # It is the name of the class prefixed by the full_name of the `intro_mmodule`
385 # Example: `"owner::module::MyClass"`
386 redef var full_name is lazy do
387 return "{self.intro_mmodule.namespace_for(visibility)}::{name}"
388 end
389
390 redef var c_name is lazy do
391 return "{intro_mmodule.c_namespace_for(visibility)}__{name.to_cmangle}"
392 end
393
394 # The number of generic formal parameters
395 # 0 if the class is not generic
396 var arity: Int is noinit
397
398 # Each generic formal parameters in order.
399 # is empty if the class is not generic
400 var mparameters = new Array[MParameterType]
401
402 # A string version of the signature a generic class.
403 #
404 # eg. `Map[K: nullable Object, V: nullable Object]`
405 #
406 # If the class in non generic the name is just given.
407 #
408 # eg. `Object`
409 fun signature_to_s: String
410 do
411 if arity == 0 then return name
412 var res = new FlatBuffer
413 res.append name
414 res.append "["
415 for i in [0..arity[ do
416 if i > 0 then res.append ", "
417 res.append mparameters[i].name
418 res.append ": "
419 res.append intro.bound_mtype.arguments[i].to_s
420 end
421 res.append "]"
422 return res.to_s
423 end
424
425 # Initialize `mparameters` from their names.
426 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
427 autoinit
428 do
429 if parameter_names == null then
430 self.arity = 0
431 else
432 self.arity = parameter_names.length
433 end
434
435 # Create the formal parameter types
436 if arity > 0 then
437 assert parameter_names != null
438 var mparametertypes = new Array[MParameterType]
439 for i in [0..arity[ do
440 var mparametertype = new MParameterType(self, i, parameter_names[i])
441 mparametertypes.add(mparametertype)
442 end
443 self.mparameters = mparametertypes
444 var mclass_type = new MGenericType(self, mparametertypes)
445 self.mclass_type = mclass_type
446 self.get_mtype_cache[mparametertypes] = mclass_type
447 else
448 self.mclass_type = new MClassType(self)
449 end
450 end
451
452 # The kind of the class (interface, abstract class, etc.)
453 # In Nit, the kind of a class cannot evolve in refinements
454 var kind: MClassKind
455
456 # The visibility of the class
457 # In Nit, the visibility of a class cannot evolve in refinements
458 var visibility: MVisibility
459
460 init
461 do
462 intro_mmodule.intro_mclasses.add(self)
463 var model = intro_mmodule.model
464 model.mclasses_by_name.add_one(name, self)
465 model.mclasses.add(self)
466 end
467
468 redef fun model do return intro_mmodule.model
469
470 # All class definitions (introduction and refinements)
471 var mclassdefs = new Array[MClassDef]
472
473 # Alias for `name`
474 redef fun to_s do return self.name
475
476 # The definition that introduces the class.
477 #
478 # Warning: such a definition may not exist in the early life of the object.
479 # In this case, the method will abort.
480 #
481 # Use `try_intro` instead
482 var intro: MClassDef is noinit
483
484 # The definition that introduces the class or null if not yet known.
485 #
486 # See `intro`
487 fun try_intro: nullable MClassDef do
488 if isset _intro then return _intro else return null
489 end
490
491 # Return the class `self` in the class hierarchy of the module `mmodule`.
492 #
493 # SEE: `MModule::flatten_mclass_hierarchy`
494 # REQUIRE: `mmodule.has_mclass(self)`
495 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
496 do
497 return mmodule.flatten_mclass_hierarchy[self]
498 end
499
500 # The principal static type of the class.
501 #
502 # For non-generic class, mclass_type is the only `MClassType` based
503 # on self.
504 #
505 # For a generic class, the arguments are the formal parameters.
506 # i.e.: for the class Array[E:Object], the `mclass_type` is Array[E].
507 # If you want Array[Object] the see `MClassDef::bound_mtype`
508 #
509 # For generic classes, the mclass_type is also the way to get a formal
510 # generic parameter type.
511 #
512 # To get other types based on a generic class, see `get_mtype`.
513 #
514 # ENSURE: `mclass_type.mclass == self`
515 var mclass_type: MClassType is noinit
516
517 # Return a generic type based on the class
518 # Is the class is not generic, then the result is `mclass_type`
519 #
520 # REQUIRE: `mtype_arguments.length == self.arity`
521 fun get_mtype(mtype_arguments: Array[MType]): MClassType
522 do
523 assert mtype_arguments.length == self.arity
524 if self.arity == 0 then return self.mclass_type
525 var res = get_mtype_cache.get_or_null(mtype_arguments)
526 if res != null then return res
527 res = new MGenericType(self, mtype_arguments)
528 self.get_mtype_cache[mtype_arguments.to_a] = res
529 return res
530 end
531
532 private var get_mtype_cache = new HashMap[Array[MType], MGenericType]
533
534 # Is there a `new` factory to allow the pseudo instantiation?
535 var has_new_factory = false is writable
536
537 # Is `self` a standard or abstract class kind?
538 var is_class: Bool is lazy do return kind == concrete_kind or kind == abstract_kind
539
540 # Is `self` an interface kind?
541 var is_interface: Bool is lazy do return kind == interface_kind
542
543 # Is `self` an enum kind?
544 var is_enum: Bool is lazy do return kind == enum_kind
545
546 # Is `self` and abstract class?
547 var is_abstract: Bool is lazy do return kind == abstract_kind
548 end
549
550
551 # A definition (an introduction or a refinement) of a class in a module
552 #
553 # A `MClassDef` is associated with an explicit (or almost) definition of a
554 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
555 # a specific class and a specific module, and contains declarations like super-classes
556 # or properties.
557 #
558 # It is the class definitions that are the backbone of most things in the model:
559 # ClassDefs are defined with regard with other classdefs.
560 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
561 #
562 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
563 class MClassDef
564 super MEntity
565
566 # The module where the definition is
567 var mmodule: MModule
568
569 # The associated `MClass`
570 var mclass: MClass is noinit
571
572 # The bounded type associated to the mclassdef
573 #
574 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
575 # are the same type.
576 #
577 # Example:
578 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
579 # If you want Array[E], then see `mclass.mclass_type`
580 #
581 # ENSURE: `bound_mtype.mclass == self.mclass`
582 var bound_mtype: MClassType
583
584 # The origin of the definition
585 var location: Location
586
587 # Internal name combining the module and the class
588 # Example: "mymodule#MyClass"
589 redef var to_s: String is noinit
590
591 init
592 do
593 self.mclass = bound_mtype.mclass
594 mmodule.mclassdefs.add(self)
595 mclass.mclassdefs.add(self)
596 if mclass.intro_mmodule == mmodule then
597 assert not isset mclass._intro
598 mclass.intro = self
599 end
600 self.to_s = "{mmodule}#{mclass}"
601 end
602
603 # Actually the name of the `mclass`
604 redef fun name do return mclass.name
605
606 # The module and class name separated by a '#'.
607 #
608 # The short-name of the class is used for introduction.
609 # Example: "my_module#MyClass"
610 #
611 # The full-name of the class is used for refinement.
612 # Example: "my_module#intro_module::MyClass"
613 redef var full_name is lazy do
614 if is_intro then
615 # public gives 'p#A'
616 # private gives 'p::m#A'
617 return "{mmodule.namespace_for(mclass.visibility)}#{mclass.name}"
618 else if mclass.intro_mmodule.mpackage != mmodule.mpackage then
619 # public gives 'q::n#p::A'
620 # private gives 'q::n#p::m::A'
621 return "{mmodule.full_name}#{mclass.full_name}"
622 else if mclass.visibility > private_visibility then
623 # public gives 'p::n#A'
624 return "{mmodule.full_name}#{mclass.name}"
625 else
626 # private gives 'p::n#::m::A' (redundant p is omitted)
627 return "{mmodule.full_name}#::{mclass.intro_mmodule.name}::{mclass.name}"
628 end
629 end
630
631 redef var c_name is lazy do
632 if is_intro then
633 return "{mmodule.c_namespace_for(mclass.visibility)}___{mclass.c_name}"
634 else if mclass.intro_mmodule.mpackage == mmodule.mpackage and mclass.visibility > private_visibility then
635 return "{mmodule.c_name}___{mclass.name.to_cmangle}"
636 else
637 return "{mmodule.c_name}___{mclass.c_name}"
638 end
639 end
640
641 redef fun model do return mmodule.model
642
643 # All declared super-types
644 # FIXME: quite ugly but not better idea yet
645 var supertypes = new Array[MClassType]
646
647 # Register some super-types for the class (ie "super SomeType")
648 #
649 # The hierarchy must not already be set
650 # REQUIRE: `self.in_hierarchy == null`
651 fun set_supertypes(supertypes: Array[MClassType])
652 do
653 assert unique_invocation: self.in_hierarchy == null
654 var mmodule = self.mmodule
655 var model = mmodule.model
656 var mtype = self.bound_mtype
657
658 for supertype in supertypes do
659 self.supertypes.add(supertype)
660
661 # Register in full_type_specialization_hierarchy
662 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
663 # Register in intro_type_specialization_hierarchy
664 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
665 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
666 end
667 end
668
669 end
670
671 # Collect the super-types (set by set_supertypes) to build the hierarchy
672 #
673 # This function can only invoked once by class
674 # REQUIRE: `self.in_hierarchy == null`
675 # ENSURE: `self.in_hierarchy != null`
676 fun add_in_hierarchy
677 do
678 assert unique_invocation: self.in_hierarchy == null
679 var model = mmodule.model
680 var res = model.mclassdef_hierarchy.add_node(self)
681 self.in_hierarchy = res
682 var mtype = self.bound_mtype
683
684 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
685 # The simpliest way is to attach it to collect_mclassdefs
686 for mclassdef in mtype.collect_mclassdefs(mmodule) do
687 res.poset.add_edge(self, mclassdef)
688 end
689 end
690
691 # The view of the class definition in `mclassdef_hierarchy`
692 var in_hierarchy: nullable POSetElement[MClassDef] = null
693
694 # Is the definition the one that introduced `mclass`?
695 fun is_intro: Bool do return isset mclass._intro and mclass.intro == self
696
697 # All properties introduced by the classdef
698 var intro_mproperties = new Array[MProperty]
699
700 # All property definitions in the class (introductions and redefinitions)
701 var mpropdefs = new Array[MPropDef]
702 end
703
704 # A global static type
705 #
706 # MType are global to the model; it means that a `MType` is not bound to a
707 # specific `MModule`.
708 # This characteristic helps the reasoning about static types in a program
709 # since a single `MType` object always denote the same type.
710 #
711 # However, because a `MType` is global, it does not really have properties
712 # nor have subtypes to a hierarchy since the property and the class hierarchy
713 # depends of a module.
714 # Moreover, virtual types an formal generic parameter types also depends on
715 # a receiver to have sense.
716 #
717 # Therefore, most method of the types require a module and an anchor.
718 # The module is used to know what are the classes and the specialization
719 # links.
720 # The anchor is used to know what is the bound of the virtual types and formal
721 # generic parameter types.
722 #
723 # MType are not directly usable to get properties. See the `anchor_to` method
724 # and the `MClassType` class.
725 #
726 # FIXME: the order of the parameters is not the best. We mus pick on from:
727 # * foo(mmodule, anchor, othertype)
728 # * foo(othertype, anchor, mmodule)
729 # * foo(anchor, mmodule, othertype)
730 # * foo(othertype, mmodule, anchor)
731 abstract class MType
732 super MEntity
733
734 redef fun name do return to_s
735
736 # Return true if `self` is an subtype of `sup`.
737 # The typing is done using the standard typing policy of Nit.
738 #
739 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
740 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
741 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
742 do
743 var sub = self
744 if sub == sup then return true
745
746 #print "1.is {sub} a {sup}? ===="
747
748 if anchor == null then
749 assert not sub.need_anchor
750 assert not sup.need_anchor
751 else
752 # First, resolve the formal types to the simplest equivalent forms in the receiver
753 assert sub.can_resolve_for(anchor, null, mmodule)
754 sub = sub.lookup_fixed(mmodule, anchor)
755 assert sup.can_resolve_for(anchor, null, mmodule)
756 sup = sup.lookup_fixed(mmodule, anchor)
757 end
758
759 # Does `sup` accept null or not?
760 # Discard the nullable marker if it exists
761 var sup_accept_null = false
762 if sup isa MNullableType then
763 sup_accept_null = true
764 sup = sup.mtype
765 else if sup isa MNotNullType then
766 sup = sup.mtype
767 else if sup isa MNullType then
768 sup_accept_null = true
769 end
770
771 # Can `sub` provide null or not?
772 # Thus we can match with `sup_accept_null`
773 # Also discard the nullable marker if it exists
774 var sub_reject_null = false
775 if sub isa MNullableType then
776 if not sup_accept_null then return false
777 sub = sub.mtype
778 else if sub isa MNotNullType then
779 sub_reject_null = true
780 sub = sub.mtype
781 else if sub isa MNullType then
782 return sup_accept_null
783 end
784 # Now the case of direct null and nullable is over.
785
786 # If `sub` is a formal type, then it is accepted if its bound is accepted
787 while sub isa MFormalType do
788 #print "3.is {sub} a {sup}?"
789
790 # A unfixed formal type can only accept itself
791 if sub == sup then return true
792
793 assert anchor != null
794 sub = sub.lookup_bound(mmodule, anchor)
795 if sub_reject_null then sub = sub.as_notnull
796
797 #print "3.is {sub} a {sup}?"
798
799 # Manage the second layer of null/nullable
800 if sub isa MNullableType then
801 if not sup_accept_null and not sub_reject_null then return false
802 sub = sub.mtype
803 else if sub isa MNotNullType then
804 sub_reject_null = true
805 sub = sub.mtype
806 else if sub isa MNullType then
807 return sup_accept_null
808 end
809 end
810 #print "4.is {sub} a {sup}? <- no more resolution"
811
812 assert sub isa MClassType else print "{sub} <? {sub}" # It is the only remaining type
813
814 # A unfixed formal type can only accept itself
815 if sup isa MFormalType then
816 return false
817 end
818
819 if sup isa MNullType then
820 # `sup` accepts only null
821 return false
822 end
823
824 assert sup isa MClassType # It is the only remaining type
825
826 # Now both are MClassType, we need to dig
827
828 if sub == sup then return true
829
830 if anchor == null then anchor = sub # UGLY: any anchor will work
831 var resolved_sub = sub.anchor_to(mmodule, anchor)
832 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
833 if res == false then return false
834 if not sup isa MGenericType then return true
835 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
836 assert sub2.mclass == sup.mclass
837 for i in [0..sup.mclass.arity[ do
838 var sub_arg = sub2.arguments[i]
839 var sup_arg = sup.arguments[i]
840 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
841 if res == false then return false
842 end
843 return true
844 end
845
846 # The base class type on which self is based
847 #
848 # This base type is used to get property (an internally to perform
849 # unsafe type comparison).
850 #
851 # Beware: some types (like null) are not based on a class thus this
852 # method will crash
853 #
854 # Basically, this function transform the virtual types and parameter
855 # types to their bounds.
856 #
857 # Example
858 #
859 # class A end
860 # class B super A end
861 # class X end
862 # class Y super X end
863 # class G[T: A]
864 # type U: X
865 # end
866 # class H
867 # super G[B]
868 # redef type U: Y
869 # end
870 #
871 # Map[T,U] anchor_to H #-> Map[B,Y]
872 #
873 # Explanation of the example:
874 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
875 # because "redef type U: Y". Therefore, Map[T, U] is bound to
876 # Map[B, Y]
877 #
878 # ENSURE: `not self.need_anchor implies result == self`
879 # ENSURE: `not result.need_anchor`
880 fun anchor_to(mmodule: MModule, anchor: MClassType): MType
881 do
882 if not need_anchor then return self
883 assert not anchor.need_anchor
884 # Just resolve to the anchor and clear all the virtual types
885 var res = self.resolve_for(anchor, null, mmodule, true)
886 assert not res.need_anchor
887 return res
888 end
889
890 # Does `self` contain a virtual type or a formal generic parameter type?
891 # In order to remove those types, you usually want to use `anchor_to`.
892 fun need_anchor: Bool do return true
893
894 # Return the supertype when adapted to a class.
895 #
896 # In Nit, for each super-class of a type, there is a equivalent super-type.
897 #
898 # Example:
899 #
900 # ~~~nitish
901 # class G[T, U] end
902 # class H[V] super G[V, Bool] end
903 #
904 # H[Int] supertype_to G #-> G[Int, Bool]
905 # ~~~
906 #
907 # REQUIRE: `super_mclass` is a super-class of `self`
908 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
909 # ENSURE: `result.mclass = super_mclass`
910 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
911 do
912 if super_mclass.arity == 0 then return super_mclass.mclass_type
913 if self isa MClassType and self.mclass == super_mclass then return self
914 var resolved_self
915 if self.need_anchor then
916 assert anchor != null
917 resolved_self = self.anchor_to(mmodule, anchor)
918 else
919 resolved_self = self
920 end
921 var supertypes = resolved_self.collect_mtypes(mmodule)
922 for supertype in supertypes do
923 if supertype.mclass == super_mclass then
924 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
925 return supertype.resolve_for(self, anchor, mmodule, false)
926 end
927 end
928 abort
929 end
930
931 # Replace formals generic types in self with resolved values in `mtype`
932 # If `cleanup_virtual` is true, then virtual types are also replaced
933 # with their bounds.
934 #
935 # This function returns self if `need_anchor` is false.
936 #
937 # ## Example 1
938 #
939 # ~~~
940 # class G[E] end
941 # class H[F] super G[F] end
942 # class X[Z] end
943 # ~~~
944 #
945 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
946 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
947 #
948 # Explanation of the example:
949 # * Array[E].need_anchor is true because there is a formal generic parameter type E
950 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
951 # * Since "H[F] super G[F]", E is in fact F for H
952 # * More specifically, in H[Int], E is Int
953 # * So, in H[Int], Array[E] is Array[Int]
954 #
955 # This function is mainly used to inherit a signature.
956 # Because, unlike `anchor_to`, we do not want a full resolution of
957 # a type but only an adapted version of it.
958 #
959 # ## Example 2
960 #
961 # ~~~
962 # class A[E]
963 # fun foo(e:E):E is abstract
964 # end
965 # class B super A[Int] end
966 # ~~~
967 #
968 # The signature on foo is (e: E): E
969 # If we resolve the signature for B, we get (e:Int):Int
970 #
971 # ## Example 3
972 #
973 # ~~~nitish
974 # class A[E]
975 # fun foo(e:E):E is abstract
976 # end
977 # class C[F]
978 # var a: A[Array[F]]
979 # fun bar do a.foo(x) # <- x is here
980 # end
981 # ~~~
982 #
983 # The first question is: is foo available on `a`?
984 #
985 # The static type of a is `A[Array[F]]`, that is an open type.
986 # in order to find a method `foo`, whe must look at a resolved type.
987 #
988 # A[Array[F]].anchor_to(C[nullable Object]) #-> A[Array[nullable Object]]
989 #
990 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
991 #
992 # The next question is: what is the accepted types for `x`?
993 #
994 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
995 #
996 # E.resolve_for(A[Array[F]],C[nullable Object]) #-> Array[F]
997 #
998 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
999 #
1000 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
1001 # two function instead of one seems also to be a bad idea.
1002 #
1003 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
1004 # ENSURE: `not self.need_anchor implies result == self`
1005 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
1006
1007 # Resolve formal type to its verbatim bound.
1008 # If the type is not formal, just return self
1009 #
1010 # The result is returned exactly as declared in the "type" property (verbatim).
1011 # So it could be another formal type.
1012 #
1013 # In case of conflict, the method aborts.
1014 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self
1015
1016 # Resolve the formal type to its simplest equivalent form.
1017 #
1018 # Formal types are either free or fixed.
1019 # When it is fixed, it means that it is equivalent with a simpler type.
1020 # When a formal type is free, it means that it is only equivalent with itself.
1021 # This method return the most simple equivalent type of `self`.
1022 #
1023 # This method is mainly used for subtype test in order to sanely compare fixed.
1024 #
1025 # By default, return self.
1026 # See the redefinitions for specific behavior in each kind of type.
1027 fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self
1028
1029 # Can the type be resolved?
1030 #
1031 # In order to resolve open types, the formal types must make sence.
1032 #
1033 # ## Example
1034 #
1035 # class A[E]
1036 # end
1037 # class B[F]
1038 # end
1039 #
1040 # ~~~nitish
1041 # E.can_resolve_for(A[Int]) #-> true, E make sense in A
1042 #
1043 # E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
1044 #
1045 # B[E].can_resolve_for(A[F], B[Object]) #-> true,
1046 # # B[E] is a red hearing only the E is important,
1047 # # E make sense in A
1048 # ~~~
1049 #
1050 # REQUIRE: `anchor != null implies not anchor.need_anchor`
1051 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
1052 # ENSURE: `not self.need_anchor implies result == true`
1053 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
1054
1055 # Return the nullable version of the type
1056 # If the type is already nullable then self is returned
1057 fun as_nullable: MType
1058 do
1059 var res = self.as_nullable_cache
1060 if res != null then return res
1061 res = new MNullableType(self)
1062 self.as_nullable_cache = res
1063 return res
1064 end
1065
1066 # Remove the base type of a decorated (proxy) type.
1067 # Is the type is not decorated, then self is returned.
1068 #
1069 # Most of the time it is used to return the not nullable version of a nullable type.
1070 # In this case, this just remove the `nullable` notation, but the result can still contains null.
1071 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
1072 # If you really want to exclude the `null` value, then use `as_notnull`
1073 fun undecorate: MType
1074 do
1075 return self
1076 end
1077
1078 # Returns the not null version of the type.
1079 # That is `self` minus the `null` value.
1080 #
1081 # For most types, this return `self`.
1082 # For formal types, this returns a special `MNotNullType`
1083 fun as_notnull: MType do return self
1084
1085 private var as_nullable_cache: nullable MType = null
1086
1087
1088 # The depth of the type seen as a tree.
1089 #
1090 # * A -> 1
1091 # * G[A] -> 2
1092 # * H[A, B] -> 2
1093 # * H[G[A], B] -> 3
1094 #
1095 # Formal types have a depth of 1.
1096 fun depth: Int
1097 do
1098 return 1
1099 end
1100
1101 # The length of the type seen as a tree.
1102 #
1103 # * A -> 1
1104 # * G[A] -> 2
1105 # * H[A, B] -> 3
1106 # * H[G[A], B] -> 4
1107 #
1108 # Formal types have a length of 1.
1109 fun length: Int
1110 do
1111 return 1
1112 end
1113
1114 # Compute all the classdefs inherited/imported.
1115 # The returned set contains:
1116 # * the class definitions from `mmodule` and its imported modules
1117 # * the class definitions of this type and its super-types
1118 #
1119 # This function is used mainly internally.
1120 #
1121 # REQUIRE: `not self.need_anchor`
1122 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
1123
1124 # Compute all the super-classes.
1125 # This function is used mainly internally.
1126 #
1127 # REQUIRE: `not self.need_anchor`
1128 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
1129
1130 # Compute all the declared super-types.
1131 # Super-types are returned as declared in the classdefs (verbatim).
1132 # This function is used mainly internally.
1133 #
1134 # REQUIRE: `not self.need_anchor`
1135 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
1136
1137 # Is the property in self for a given module
1138 # This method does not filter visibility or whatever
1139 #
1140 # REQUIRE: `not self.need_anchor`
1141 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
1142 do
1143 assert not self.need_anchor
1144 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
1145 end
1146 end
1147
1148 # A type based on a class.
1149 #
1150 # `MClassType` have properties (see `has_mproperty`).
1151 class MClassType
1152 super MType
1153
1154 # The associated class
1155 var mclass: MClass
1156
1157 redef fun model do return self.mclass.intro_mmodule.model
1158
1159 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1160
1161 # The formal arguments of the type
1162 # ENSURE: `result.length == self.mclass.arity`
1163 var arguments = new Array[MType]
1164
1165 redef fun to_s do return mclass.to_s
1166
1167 redef fun full_name do return mclass.full_name
1168
1169 redef fun c_name do return mclass.c_name
1170
1171 redef fun need_anchor do return false
1172
1173 redef fun anchor_to(mmodule: MModule, anchor: MClassType): MClassType
1174 do
1175 return super.as(MClassType)
1176 end
1177
1178 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1179
1180 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1181
1182 redef fun collect_mclassdefs(mmodule)
1183 do
1184 assert not self.need_anchor
1185 var cache = self.collect_mclassdefs_cache
1186 if not cache.has_key(mmodule) then
1187 self.collect_things(mmodule)
1188 end
1189 return cache[mmodule]
1190 end
1191
1192 redef fun collect_mclasses(mmodule)
1193 do
1194 if collect_mclasses_last_module == mmodule then return collect_mclasses_last_module_cache
1195 assert not self.need_anchor
1196 var cache = self.collect_mclasses_cache
1197 if not cache.has_key(mmodule) then
1198 self.collect_things(mmodule)
1199 end
1200 var res = cache[mmodule]
1201 collect_mclasses_last_module = mmodule
1202 collect_mclasses_last_module_cache = res
1203 return res
1204 end
1205
1206 private var collect_mclasses_last_module: nullable MModule = null
1207 private var collect_mclasses_last_module_cache: Set[MClass] is noinit
1208
1209 redef fun collect_mtypes(mmodule)
1210 do
1211 assert not self.need_anchor
1212 var cache = self.collect_mtypes_cache
1213 if not cache.has_key(mmodule) then
1214 self.collect_things(mmodule)
1215 end
1216 return cache[mmodule]
1217 end
1218
1219 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1220 private fun collect_things(mmodule: MModule)
1221 do
1222 var res = new HashSet[MClassDef]
1223 var seen = new HashSet[MClass]
1224 var types = new HashSet[MClassType]
1225 seen.add(self.mclass)
1226 var todo = [self.mclass]
1227 while not todo.is_empty do
1228 var mclass = todo.pop
1229 #print "process {mclass}"
1230 for mclassdef in mclass.mclassdefs do
1231 if not mmodule.in_importation <= mclassdef.mmodule then continue
1232 #print " process {mclassdef}"
1233 res.add(mclassdef)
1234 for supertype in mclassdef.supertypes do
1235 types.add(supertype)
1236 var superclass = supertype.mclass
1237 if seen.has(superclass) then continue
1238 #print " add {superclass}"
1239 seen.add(superclass)
1240 todo.add(superclass)
1241 end
1242 end
1243 end
1244 collect_mclassdefs_cache[mmodule] = res
1245 collect_mclasses_cache[mmodule] = seen
1246 collect_mtypes_cache[mmodule] = types
1247 end
1248
1249 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1250 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1251 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1252
1253 end
1254
1255 # A type based on a generic class.
1256 # A generic type a just a class with additional formal generic arguments.
1257 class MGenericType
1258 super MClassType
1259
1260 redef var arguments
1261
1262 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1263
1264 init
1265 do
1266 assert self.mclass.arity == arguments.length
1267
1268 self.need_anchor = false
1269 for t in arguments do
1270 if t.need_anchor then
1271 self.need_anchor = true
1272 break
1273 end
1274 end
1275
1276 self.to_s = "{mclass}[{arguments.join(", ")}]"
1277 end
1278
1279 # The short-name of the class, then the full-name of each type arguments within brackets.
1280 # Example: `"Map[String, List[Int]]"`
1281 redef var to_s: String is noinit
1282
1283 # The full-name of the class, then the full-name of each type arguments within brackets.
1284 # Example: `"core::Map[core::String, core::List[core::Int]]"`
1285 redef var full_name is lazy do
1286 var args = new Array[String]
1287 for t in arguments do
1288 args.add t.full_name
1289 end
1290 return "{mclass.full_name}[{args.join(", ")}]"
1291 end
1292
1293 redef var c_name is lazy do
1294 var res = mclass.c_name
1295 # Note: because the arity is known, a prefix notation is enough
1296 for t in arguments do
1297 res += "__"
1298 res += t.c_name
1299 end
1300 return res.to_s
1301 end
1302
1303 redef var need_anchor: Bool is noinit
1304
1305 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1306 do
1307 if not need_anchor then return self
1308 assert can_resolve_for(mtype, anchor, mmodule)
1309 var types = new Array[MType]
1310 for t in arguments do
1311 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1312 end
1313 return mclass.get_mtype(types)
1314 end
1315
1316 redef fun can_resolve_for(mtype, anchor, mmodule)
1317 do
1318 if not need_anchor then return true
1319 for t in arguments do
1320 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1321 end
1322 return true
1323 end
1324
1325
1326 redef fun depth
1327 do
1328 var dmax = 0
1329 for a in self.arguments do
1330 var d = a.depth
1331 if d > dmax then dmax = d
1332 end
1333 return dmax + 1
1334 end
1335
1336 redef fun length
1337 do
1338 var res = 1
1339 for a in self.arguments do
1340 res += a.length
1341 end
1342 return res
1343 end
1344 end
1345
1346 # A formal type (either virtual of parametric).
1347 #
1348 # The main issue with formal types is that they offer very little information on their own
1349 # and need a context (anchor and mmodule) to be useful.
1350 abstract class MFormalType
1351 super MType
1352
1353 redef var as_notnull = new MNotNullType(self) is lazy
1354 end
1355
1356 # A virtual formal type.
1357 class MVirtualType
1358 super MFormalType
1359
1360 # The property associated with the type.
1361 # Its the definitions of this property that determine the bound or the virtual type.
1362 var mproperty: MVirtualTypeProp
1363
1364 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1365
1366 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1367 do
1368 return lookup_single_definition(mmodule, resolved_receiver).bound.as(not null)
1369 end
1370
1371 private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef
1372 do
1373 assert not resolved_receiver.need_anchor
1374 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1375 if props.is_empty then
1376 abort
1377 else if props.length == 1 then
1378 return props.first
1379 end
1380 var types = new ArraySet[MType]
1381 var res = props.first
1382 for p in props do
1383 types.add(p.bound.as(not null))
1384 if not res.is_fixed then res = p
1385 end
1386 if types.length == 1 then
1387 return res
1388 end
1389 abort
1390 end
1391
1392 # A VT is fixed when:
1393 # * the VT is (re-)defined with the annotation `is fixed`
1394 # * the VT is (indirectly) bound to an enum class (see `enum_kind`) since there is no subtype possible
1395 # * the receiver is an enum class since there is no subtype possible
1396 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1397 do
1398 assert not resolved_receiver.need_anchor
1399 resolved_receiver = resolved_receiver.undecorate
1400 assert resolved_receiver isa MClassType # It is the only remaining type
1401
1402 var prop = lookup_single_definition(mmodule, resolved_receiver)
1403 var res = prop.bound.as(not null)
1404
1405 # Recursively lookup the fixed result
1406 res = res.lookup_fixed(mmodule, resolved_receiver)
1407
1408 # 1. For a fixed VT, return the resolved bound
1409 if prop.is_fixed then return res
1410
1411 # 2. For a enum boud, return the bound
1412 if res isa MClassType and res.mclass.kind == enum_kind then return res
1413
1414 # 3. for a enum receiver return the bound
1415 if resolved_receiver.mclass.kind == enum_kind then return res
1416
1417 return self
1418 end
1419
1420 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1421 do
1422 if not cleanup_virtual then return self
1423 assert can_resolve_for(mtype, anchor, mmodule)
1424 # self is a virtual type declared (or inherited) in mtype
1425 # The point of the function it to get the bound of the virtual type that make sense for mtype
1426 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1427 #print "{class_name}: {self}/{mtype}/{anchor}?"
1428 var resolved_receiver
1429 if mtype.need_anchor then
1430 assert anchor != null
1431 resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true)
1432 else
1433 resolved_receiver = mtype
1434 end
1435 # Now, we can get the bound
1436 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1437 # The bound is exactly as declared in the "type" property, so we must resolve it again
1438 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1439
1440 return res
1441 end
1442
1443 redef fun can_resolve_for(mtype, anchor, mmodule)
1444 do
1445 if mtype.need_anchor then
1446 assert anchor != null
1447 mtype = mtype.anchor_to(mmodule, anchor)
1448 end
1449 return mtype.has_mproperty(mmodule, mproperty)
1450 end
1451
1452 redef fun to_s do return self.mproperty.to_s
1453
1454 redef fun full_name do return self.mproperty.full_name
1455
1456 redef fun c_name do return self.mproperty.c_name
1457 end
1458
1459 # The type associated to a formal parameter generic type of a class
1460 #
1461 # Each parameter type is associated to a specific class.
1462 # It means that all refinements of a same class "share" the parameter type,
1463 # but that a generic subclass has its own parameter types.
1464 #
1465 # However, in the sense of the meta-model, a parameter type of a class is
1466 # a valid type in a subclass. The "in the sense of the meta-model" is
1467 # important because, in the Nit language, the programmer cannot refers
1468 # directly to the parameter types of the super-classes.
1469 #
1470 # Example:
1471 #
1472 # class A[E]
1473 # fun e: E is abstract
1474 # end
1475 # class B[F]
1476 # super A[Array[F]]
1477 # end
1478 #
1479 # In the class definition B[F], `F` is a valid type but `E` is not.
1480 # However, `self.e` is a valid method call, and the signature of `e` is
1481 # declared `e: E`.
1482 #
1483 # Note that parameter types are shared among class refinements.
1484 # Therefore parameter only have an internal name (see `to_s` for details).
1485 class MParameterType
1486 super MFormalType
1487
1488 # The generic class where the parameter belong
1489 var mclass: MClass
1490
1491 redef fun model do return self.mclass.intro_mmodule.model
1492
1493 # The position of the parameter (0 for the first parameter)
1494 # FIXME: is `position` a better name?
1495 var rank: Int
1496
1497 redef var name
1498
1499 redef fun to_s do return name
1500
1501 redef var full_name is lazy do return "{mclass.full_name}::{name}"
1502
1503 redef var c_name is lazy do return mclass.c_name + "__" + "#{name}".to_cmangle
1504
1505 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1506 do
1507 assert not resolved_receiver.need_anchor
1508 resolved_receiver = resolved_receiver.undecorate
1509 assert resolved_receiver isa MClassType # It is the only remaining type
1510 var goalclass = self.mclass
1511 if resolved_receiver.mclass == goalclass then
1512 return resolved_receiver.arguments[self.rank]
1513 end
1514 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1515 for t in supertypes do
1516 if t.mclass == goalclass then
1517 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1518 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1519 var res = t.arguments[self.rank]
1520 return res
1521 end
1522 end
1523 abort
1524 end
1525
1526 # A PT is fixed when:
1527 # * Its bound is a enum class (see `enum_kind`).
1528 # The PT is just useless, but it is still a case.
1529 # * More usually, the `resolved_receiver` is a subclass of `self.mclass`,
1530 # so it is necessarily fixed in a `super` clause, either with a normal type
1531 # or with another PT.
1532 # See `resolve_for` for examples about related issues.
1533 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1534 do
1535 assert not resolved_receiver.need_anchor
1536 resolved_receiver = resolved_receiver.undecorate
1537 assert resolved_receiver isa MClassType # It is the only remaining type
1538 var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false)
1539 return res
1540 end
1541
1542 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1543 do
1544 assert can_resolve_for(mtype, anchor, mmodule)
1545 #print "{class_name}: {self}/{mtype}/{anchor}?"
1546
1547 if mtype isa MGenericType and mtype.mclass == self.mclass then
1548 var res = mtype.arguments[self.rank]
1549 if anchor != null and res.need_anchor then
1550 # Maybe the result can be resolved more if are bound to a final class
1551 var r2 = res.anchor_to(mmodule, anchor)
1552 if r2 isa MClassType and r2.mclass.kind == enum_kind then return r2
1553 end
1554 return res
1555 end
1556
1557 # self is a parameter type of mtype (or of a super-class of mtype)
1558 # The point of the function it to get the bound of the virtual type that make sense for mtype
1559 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1560 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1561 var resolved_receiver
1562 if mtype.need_anchor then
1563 assert anchor != null
1564 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1565 else
1566 resolved_receiver = mtype
1567 end
1568 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1569 if resolved_receiver isa MParameterType then
1570 assert anchor != null
1571 assert resolved_receiver.mclass == anchor.mclass
1572 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1573 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1574 end
1575 assert resolved_receiver isa MClassType # It is the only remaining type
1576
1577 # Eh! The parameter is in the current class.
1578 # So we return the corresponding argument, no mater what!
1579 if resolved_receiver.mclass == self.mclass then
1580 var res = resolved_receiver.arguments[self.rank]
1581 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1582 return res
1583 end
1584
1585 if resolved_receiver.need_anchor then
1586 assert anchor != null
1587 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1588 end
1589 # Now, we can get the bound
1590 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1591 # The bound is exactly as declared in the "type" property, so we must resolve it again
1592 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1593
1594 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1595
1596 return res
1597 end
1598
1599 redef fun can_resolve_for(mtype, anchor, mmodule)
1600 do
1601 if mtype.need_anchor then
1602 assert anchor != null
1603 mtype = mtype.anchor_to(mmodule, anchor)
1604 end
1605 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1606 end
1607 end
1608
1609 # A type that decorates another type.
1610 #
1611 # The point of this class is to provide a common implementation of sevices that just forward to the original type.
1612 # Specific decorator are expected to redefine (or to extend) the default implementation as this suit them.
1613 abstract class MProxyType
1614 super MType
1615 # The base type
1616 var mtype: MType
1617
1618 redef fun model do return self.mtype.model
1619 redef fun need_anchor do return mtype.need_anchor
1620 redef fun as_nullable do return mtype.as_nullable
1621 redef fun as_notnull do return mtype.as_notnull
1622 redef fun undecorate do return mtype.undecorate
1623 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1624 do
1625 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1626 return res
1627 end
1628
1629 redef fun can_resolve_for(mtype, anchor, mmodule)
1630 do
1631 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1632 end
1633
1634 redef fun lookup_fixed(mmodule, resolved_receiver)
1635 do
1636 var t = mtype.lookup_fixed(mmodule, resolved_receiver)
1637 return t
1638 end
1639
1640 redef fun depth do return self.mtype.depth
1641
1642 redef fun length do return self.mtype.length
1643
1644 redef fun collect_mclassdefs(mmodule)
1645 do
1646 assert not self.need_anchor
1647 return self.mtype.collect_mclassdefs(mmodule)
1648 end
1649
1650 redef fun collect_mclasses(mmodule)
1651 do
1652 assert not self.need_anchor
1653 return self.mtype.collect_mclasses(mmodule)
1654 end
1655
1656 redef fun collect_mtypes(mmodule)
1657 do
1658 assert not self.need_anchor
1659 return self.mtype.collect_mtypes(mmodule)
1660 end
1661 end
1662
1663 # A type prefixed with "nullable"
1664 class MNullableType
1665 super MProxyType
1666
1667 init
1668 do
1669 self.to_s = "nullable {mtype}"
1670 end
1671
1672 redef var to_s: String is noinit
1673
1674 redef var full_name is lazy do return "nullable {mtype.full_name}"
1675
1676 redef var c_name is lazy do return "nullable__{mtype.c_name}"
1677
1678 redef fun as_nullable do return self
1679 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1680 do
1681 var res = super
1682 return res.as_nullable
1683 end
1684
1685 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable`
1686 redef fun lookup_fixed(mmodule, resolved_receiver)
1687 do
1688 var t = super
1689 if t == mtype then return self
1690 return t.as_nullable
1691 end
1692 end
1693
1694 # A non-null version of a formal type.
1695 #
1696 # When a formal type in bounded to a nullable type, this is the type of the not null version of it.
1697 class MNotNullType
1698 super MProxyType
1699
1700 redef fun to_s do return "not null {mtype}"
1701 redef var full_name is lazy do return "not null {mtype.full_name}"
1702 redef var c_name is lazy do return "notnull__{mtype.c_name}"
1703
1704 redef fun as_notnull do return self
1705
1706 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1707 do
1708 var res = super
1709 return res.as_notnull
1710 end
1711
1712 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_notnull`
1713 redef fun lookup_fixed(mmodule, resolved_receiver)
1714 do
1715 var t = super
1716 if t == mtype then return self
1717 return t.as_notnull
1718 end
1719 end
1720
1721 # The type of the only value null
1722 #
1723 # The is only one null type per model, see `MModel::null_type`.
1724 class MNullType
1725 super MType
1726 redef var model: Model
1727 redef fun to_s do return "null"
1728 redef fun full_name do return "null"
1729 redef fun c_name do return "null"
1730 redef fun as_nullable do return self
1731
1732 redef var as_notnull = new MBottomType(model) is lazy
1733 redef fun need_anchor do return false
1734 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1735 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1736
1737 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1738
1739 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1740
1741 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1742 end
1743
1744 # The special universal most specific type.
1745 #
1746 # This type is intended to be only used internally for type computation or analysis and should not be exposed to the user.
1747 # The bottom type can de used to denote things that are absurd, dead, or the absence of knowledge.
1748 #
1749 # Semantically it is the singleton `null.as_notnull`.
1750 class MBottomType
1751 super MType
1752 redef var model: Model
1753 redef fun to_s do return "bottom"
1754 redef fun full_name do return "bottom"
1755 redef fun c_name do return "bottom"
1756 redef fun as_nullable do return model.null_type
1757 redef fun as_notnull do return self
1758 redef fun need_anchor do return false
1759 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1760 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1761
1762 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1763
1764 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1765
1766 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1767 end
1768
1769 # A signature of a method
1770 class MSignature
1771 super MType
1772
1773 # The each parameter (in order)
1774 var mparameters: Array[MParameter]
1775
1776 # Returns a parameter named `name`, if any.
1777 fun mparameter_by_name(name: String): nullable MParameter
1778 do
1779 for p in mparameters do
1780 if p.name == name then return p
1781 end
1782 return null
1783 end
1784
1785 # The return type (null for a procedure)
1786 var return_mtype: nullable MType
1787
1788 redef fun depth
1789 do
1790 var dmax = 0
1791 var t = self.return_mtype
1792 if t != null then dmax = t.depth
1793 for p in mparameters do
1794 var d = p.mtype.depth
1795 if d > dmax then dmax = d
1796 end
1797 return dmax + 1
1798 end
1799
1800 redef fun length
1801 do
1802 var res = 1
1803 var t = self.return_mtype
1804 if t != null then res += t.length
1805 for p in mparameters do
1806 res += p.mtype.length
1807 end
1808 return res
1809 end
1810
1811 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1812 init
1813 do
1814 var vararg_rank = -1
1815 for i in [0..mparameters.length[ do
1816 var parameter = mparameters[i]
1817 if parameter.is_vararg then
1818 assert vararg_rank == -1
1819 vararg_rank = i
1820 end
1821 end
1822 self.vararg_rank = vararg_rank
1823 end
1824
1825 # The rank of the ellipsis (`...`) for vararg (starting from 0).
1826 # value is -1 if there is no vararg.
1827 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1828 var vararg_rank: Int is noinit
1829
1830 # The number of parameters
1831 fun arity: Int do return mparameters.length
1832
1833 redef fun to_s
1834 do
1835 var b = new FlatBuffer
1836 if not mparameters.is_empty then
1837 b.append("(")
1838 for i in [0..mparameters.length[ do
1839 var mparameter = mparameters[i]
1840 if i > 0 then b.append(", ")
1841 b.append(mparameter.name)
1842 b.append(": ")
1843 b.append(mparameter.mtype.to_s)
1844 if mparameter.is_vararg then
1845 b.append("...")
1846 end
1847 end
1848 b.append(")")
1849 end
1850 var ret = self.return_mtype
1851 if ret != null then
1852 b.append(": ")
1853 b.append(ret.to_s)
1854 end
1855 return b.to_s
1856 end
1857
1858 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
1859 do
1860 var params = new Array[MParameter]
1861 for p in self.mparameters do
1862 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1863 end
1864 var ret = self.return_mtype
1865 if ret != null then
1866 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1867 end
1868 var res = new MSignature(params, ret)
1869 return res
1870 end
1871 end
1872
1873 # A parameter in a signature
1874 class MParameter
1875 super MEntity
1876
1877 # The name of the parameter
1878 redef var name: String
1879
1880 # The static type of the parameter
1881 var mtype: MType
1882
1883 # Is the parameter a vararg?
1884 var is_vararg: Bool
1885
1886 redef fun to_s
1887 do
1888 if is_vararg then
1889 return "{name}: {mtype}..."
1890 else
1891 return "{name}: {mtype}"
1892 end
1893 end
1894
1895 # Returns a new parameter with the `mtype` resolved.
1896 # See `MType::resolve_for` for details.
1897 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
1898 do
1899 if not self.mtype.need_anchor then return self
1900 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1901 var res = new MParameter(self.name, newtype, self.is_vararg)
1902 return res
1903 end
1904
1905 redef fun model do return mtype.model
1906 end
1907
1908 # A service (global property) that generalize method, attribute, etc.
1909 #
1910 # `MProperty` are global to the model; it means that a `MProperty` is not bound
1911 # to a specific `MModule` nor a specific `MClass`.
1912 #
1913 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
1914 # and the other in subclasses and in refinements.
1915 #
1916 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
1917 # of any dynamic type).
1918 # For instance, a call site "x.foo" is associated to a `MProperty`.
1919 abstract class MProperty
1920 super MEntity
1921
1922 # The associated MPropDef subclass.
1923 # The two specialization hierarchy are symmetric.
1924 type MPROPDEF: MPropDef
1925
1926 # The classdef that introduce the property
1927 # While a property is not bound to a specific module, or class,
1928 # the introducing mclassdef is used for naming and visibility
1929 var intro_mclassdef: MClassDef
1930
1931 # The (short) name of the property
1932 redef var name: String
1933
1934 # The canonical name of the property.
1935 #
1936 # It is the short-`name` prefixed by the short-name of the class and the full-name of the module.
1937 # Example: "my_package::my_module::MyClass::my_method"
1938 redef var full_name is lazy do
1939 return "{intro_mclassdef.mmodule.namespace_for(visibility)}::{intro_mclassdef.mclass.name}::{name}"
1940 end
1941
1942 redef var c_name is lazy do
1943 # FIXME use `namespace_for`
1944 return "{intro_mclassdef.mmodule.c_name}__{intro_mclassdef.mclass.name.to_cmangle}__{name.to_cmangle}"
1945 end
1946
1947 # The visibility of the property
1948 var visibility: MVisibility
1949
1950 # Is the property usable as an initializer?
1951 var is_autoinit = false is writable
1952
1953 init
1954 do
1955 intro_mclassdef.intro_mproperties.add(self)
1956 var model = intro_mclassdef.mmodule.model
1957 model.mproperties_by_name.add_one(name, self)
1958 model.mproperties.add(self)
1959 end
1960
1961 # All definitions of the property.
1962 # The first is the introduction,
1963 # The other are redefinitions (in refinements and in subclasses)
1964 var mpropdefs = new Array[MPROPDEF]
1965
1966 # The definition that introduces the property.
1967 #
1968 # Warning: such a definition may not exist in the early life of the object.
1969 # In this case, the method will abort.
1970 var intro: MPROPDEF is noinit
1971
1972 redef fun model do return intro.model
1973
1974 # Alias for `name`
1975 redef fun to_s do return name
1976
1977 # Return the most specific property definitions defined or inherited by a type.
1978 # The selection knows that refinement is stronger than specialization;
1979 # however, in case of conflict more than one property are returned.
1980 # If mtype does not know mproperty then an empty array is returned.
1981 #
1982 # If you want the really most specific property, then look at `lookup_first_definition`
1983 #
1984 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
1985 # ENSURE: `not mtype.has_mproperty(mmodule, self) == result.is_empty`
1986 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1987 do
1988 assert not mtype.need_anchor
1989 mtype = mtype.undecorate
1990
1991 var cache = self.lookup_definitions_cache[mmodule, mtype]
1992 if cache != null then return cache
1993
1994 #print "select prop {mproperty} for {mtype} in {self}"
1995 # First, select all candidates
1996 var candidates = new Array[MPROPDEF]
1997 for mpropdef in self.mpropdefs do
1998 # If the definition is not imported by the module, then skip
1999 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2000 # If the definition is not inherited by the type, then skip
2001 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2002 # Else, we keep it
2003 candidates.add(mpropdef)
2004 end
2005 # Fast track for only one candidate
2006 if candidates.length <= 1 then
2007 self.lookup_definitions_cache[mmodule, mtype] = candidates
2008 return candidates
2009 end
2010
2011 # Second, filter the most specific ones
2012 return select_most_specific(mmodule, candidates)
2013 end
2014
2015 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2016
2017 # Return the most specific property definitions inherited by a type.
2018 # The selection knows that refinement is stronger than specialization;
2019 # however, in case of conflict more than one property are returned.
2020 # If mtype does not know mproperty then an empty array is returned.
2021 #
2022 # If you want the really most specific property, then look at `lookup_next_definition`
2023 #
2024 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2025 # ENSURE: `not mtype.has_mproperty(mmodule, self) implies result.is_empty`
2026 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2027 do
2028 assert not mtype.need_anchor
2029 mtype = mtype.undecorate
2030
2031 # First, select all candidates
2032 var candidates = new Array[MPROPDEF]
2033 for mpropdef in self.mpropdefs do
2034 # If the definition is not imported by the module, then skip
2035 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2036 # If the definition is not inherited by the type, then skip
2037 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2038 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
2039 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
2040 # Else, we keep it
2041 candidates.add(mpropdef)
2042 end
2043 # Fast track for only one candidate
2044 if candidates.length <= 1 then return candidates
2045
2046 # Second, filter the most specific ones
2047 return select_most_specific(mmodule, candidates)
2048 end
2049
2050 # Return an array containing olny the most specific property definitions
2051 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
2052 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
2053 do
2054 var res = new Array[MPROPDEF]
2055 for pd1 in candidates do
2056 var cd1 = pd1.mclassdef
2057 var c1 = cd1.mclass
2058 var keep = true
2059 for pd2 in candidates do
2060 if pd2 == pd1 then continue # do not compare with self!
2061 var cd2 = pd2.mclassdef
2062 var c2 = cd2.mclass
2063 if c2.mclass_type == c1.mclass_type then
2064 if cd2.mmodule.in_importation < cd1.mmodule then
2065 # cd2 refines cd1; therefore we skip pd1
2066 keep = false
2067 break
2068 end
2069 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
2070 # cd2 < cd1; therefore we skip pd1
2071 keep = false
2072 break
2073 end
2074 end
2075 if keep then
2076 res.add(pd1)
2077 end
2078 end
2079 if res.is_empty then
2080 print "All lost! {candidates.join(", ")}"
2081 # FIXME: should be abort!
2082 end
2083 return res
2084 end
2085
2086 # Return the most specific definition in the linearization of `mtype`.
2087 #
2088 # If you want to know the next properties in the linearization,
2089 # look at `MPropDef::lookup_next_definition`.
2090 #
2091 # FIXME: the linearization is still unspecified
2092 #
2093 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2094 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2095 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
2096 do
2097 return lookup_all_definitions(mmodule, mtype).first
2098 end
2099
2100 # Return all definitions in a linearization order
2101 # Most specific first, most general last
2102 #
2103 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2104 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2105 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2106 do
2107 mtype = mtype.undecorate
2108
2109 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
2110 if cache != null then return cache
2111
2112 assert not mtype.need_anchor
2113 assert mtype.has_mproperty(mmodule, self)
2114
2115 #print "select prop {mproperty} for {mtype} in {self}"
2116 # First, select all candidates
2117 var candidates = new Array[MPROPDEF]
2118 for mpropdef in self.mpropdefs do
2119 # If the definition is not imported by the module, then skip
2120 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2121 # If the definition is not inherited by the type, then skip
2122 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2123 # Else, we keep it
2124 candidates.add(mpropdef)
2125 end
2126 # Fast track for only one candidate
2127 if candidates.length <= 1 then
2128 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2129 return candidates
2130 end
2131
2132 mmodule.linearize_mpropdefs(candidates)
2133 candidates = candidates.reversed
2134 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2135 return candidates
2136 end
2137
2138 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2139 end
2140
2141 # A global method
2142 class MMethod
2143 super MProperty
2144
2145 redef type MPROPDEF: MMethodDef
2146
2147 # Is the property defined at the top_level of the module?
2148 # Currently such a property are stored in `Object`
2149 var is_toplevel: Bool = false is writable
2150
2151 # Is the property a constructor?
2152 # Warning, this property can be inherited by subclasses with or without being a constructor
2153 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
2154 var is_init: Bool = false is writable
2155
2156 # The constructor is a (the) root init with empty signature but a set of initializers
2157 var is_root_init: Bool = false is writable
2158
2159 # Is the property a 'new' constructor?
2160 var is_new: Bool = false is writable
2161
2162 # Is the property a legal constructor for a given class?
2163 # As usual, visibility is not considered.
2164 # FIXME not implemented
2165 fun is_init_for(mclass: MClass): Bool
2166 do
2167 return self.is_init
2168 end
2169
2170 # A specific method that is safe to call on null.
2171 # Currently, only `==`, `!=` and `is_same_instance` are safe
2172 fun is_null_safe: Bool do return name == "==" or name == "!=" or name == "is_same_instance"
2173 end
2174
2175 # A global attribute
2176 class MAttribute
2177 super MProperty
2178
2179 redef type MPROPDEF: MAttributeDef
2180
2181 end
2182
2183 # A global virtual type
2184 class MVirtualTypeProp
2185 super MProperty
2186
2187 redef type MPROPDEF: MVirtualTypeDef
2188
2189 # The formal type associated to the virtual type property
2190 var mvirtualtype = new MVirtualType(self)
2191 end
2192
2193 # A definition of a property (local property)
2194 #
2195 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
2196 # specific class definition (which belong to a specific module)
2197 abstract class MPropDef
2198 super MEntity
2199
2200 # The associated `MProperty` subclass.
2201 # the two specialization hierarchy are symmetric
2202 type MPROPERTY: MProperty
2203
2204 # Self class
2205 type MPROPDEF: MPropDef
2206
2207 # The class definition where the property definition is
2208 var mclassdef: MClassDef
2209
2210 # The associated global property
2211 var mproperty: MPROPERTY
2212
2213 # The origin of the definition
2214 var location: Location
2215
2216 init
2217 do
2218 mclassdef.mpropdefs.add(self)
2219 mproperty.mpropdefs.add(self)
2220 if mproperty.intro_mclassdef == mclassdef then
2221 assert not isset mproperty._intro
2222 mproperty.intro = self
2223 end
2224 self.to_s = "{mclassdef}#{mproperty}"
2225 end
2226
2227 # Actually the name of the `mproperty`
2228 redef fun name do return mproperty.name
2229
2230 # The full-name of mpropdefs combine the information about the `classdef` and the `mproperty`.
2231 #
2232 # Therefore the combination of identifiers is awful,
2233 # the worst case being
2234 #
2235 # * a property "p::m::A::x"
2236 # * redefined in a refinement of a class "q::n::B"
2237 # * in a module "r::o"
2238 # * so "r::o#q::n::B#p::m::A::x"
2239 #
2240 # Fortunately, the full-name is simplified when entities are repeated.
2241 # For the previous case, the simplest form is "p#A#x".
2242 redef var full_name is lazy do
2243 var res = new FlatBuffer
2244
2245 # The first part is the mclassdef. Worst case is "r::o#q::n::B"
2246 res.append mclassdef.full_name
2247
2248 res.append "#"
2249
2250 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2251 # intro are unambiguous in a class
2252 res.append name
2253 else
2254 # Just try to simplify each part
2255 if mclassdef.mmodule.mpackage != mproperty.intro_mclassdef.mmodule.mpackage then
2256 # precise "p::m" only if "p" != "r"
2257 res.append mproperty.intro_mclassdef.mmodule.full_name
2258 res.append "::"
2259 else if mproperty.visibility <= private_visibility then
2260 # Same package ("p"=="q"), but private visibility,
2261 # does the module part ("::m") need to be displayed
2262 if mclassdef.mmodule.namespace_for(mclassdef.mclass.visibility) != mproperty.intro_mclassdef.mmodule.mpackage then
2263 res.append "::"
2264 res.append mproperty.intro_mclassdef.mmodule.name
2265 res.append "::"
2266 end
2267 end
2268 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2269 # precise "B" only if not the same class than "A"
2270 res.append mproperty.intro_mclassdef.name
2271 res.append "::"
2272 end
2273 # Always use the property name "x"
2274 res.append mproperty.name
2275 end
2276 return res.to_s
2277 end
2278
2279 redef var c_name is lazy do
2280 var res = new FlatBuffer
2281 res.append mclassdef.c_name
2282 res.append "___"
2283 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2284 res.append name.to_cmangle
2285 else
2286 if mclassdef.mmodule != mproperty.intro_mclassdef.mmodule then
2287 res.append mproperty.intro_mclassdef.mmodule.c_name
2288 res.append "__"
2289 end
2290 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2291 res.append mproperty.intro_mclassdef.name.to_cmangle
2292 res.append "__"
2293 end
2294 res.append mproperty.name.to_cmangle
2295 end
2296 return res.to_s
2297 end
2298
2299 redef fun model do return mclassdef.model
2300
2301 # Internal name combining the module, the class and the property
2302 # Example: "mymodule#MyClass#mymethod"
2303 redef var to_s: String is noinit
2304
2305 # Is self the definition that introduce the property?
2306 fun is_intro: Bool do return isset mproperty._intro and mproperty.intro == self
2307
2308 # Return the next definition in linearization of `mtype`.
2309 #
2310 # This method is used to determine what method is called by a super.
2311 #
2312 # REQUIRE: `not mtype.need_anchor`
2313 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
2314 do
2315 assert not mtype.need_anchor
2316
2317 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
2318 var i = mpropdefs.iterator
2319 while i.is_ok and i.item != self do i.next
2320 assert has_property: i.is_ok
2321 i.next
2322 assert has_next_property: i.is_ok
2323 return i.item
2324 end
2325 end
2326
2327 # A local definition of a method
2328 class MMethodDef
2329 super MPropDef
2330
2331 redef type MPROPERTY: MMethod
2332 redef type MPROPDEF: MMethodDef
2333
2334 # The signature attached to the property definition
2335 var msignature: nullable MSignature = null is writable
2336
2337 # The signature attached to the `new` call on a root-init
2338 # This is a concatenation of the signatures of the initializers
2339 #
2340 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2341 var new_msignature: nullable MSignature = null is writable
2342
2343 # List of initialisers to call in root-inits
2344 #
2345 # They could be setters or attributes
2346 #
2347 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2348 var initializers = new Array[MProperty]
2349
2350 # Is the method definition abstract?
2351 var is_abstract: Bool = false is writable
2352
2353 # Is the method definition intern?
2354 var is_intern = false is writable
2355
2356 # Is the method definition extern?
2357 var is_extern = false is writable
2358
2359 # An optional constant value returned in functions.
2360 #
2361 # Only some specific primitife value are accepted by engines.
2362 # Is used when there is no better implementation available.
2363 #
2364 # Currently used only for the implementation of the `--define`
2365 # command-line option.
2366 # SEE: module `mixin`.
2367 var constant_value: nullable Object = null is writable
2368 end
2369
2370 # A local definition of an attribute
2371 class MAttributeDef
2372 super MPropDef
2373
2374 redef type MPROPERTY: MAttribute
2375 redef type MPROPDEF: MAttributeDef
2376
2377 # The static type of the attribute
2378 var static_mtype: nullable MType = null is writable
2379 end
2380
2381 # A local definition of a virtual type
2382 class MVirtualTypeDef
2383 super MPropDef
2384
2385 redef type MPROPERTY: MVirtualTypeProp
2386 redef type MPROPDEF: MVirtualTypeDef
2387
2388 # The bound of the virtual type
2389 var bound: nullable MType = null is writable
2390
2391 # Is the bound fixed?
2392 var is_fixed = false is writable
2393 end
2394
2395 # A kind of class.
2396 #
2397 # * `abstract_kind`
2398 # * `concrete_kind`
2399 # * `interface_kind`
2400 # * `enum_kind`
2401 # * `extern_kind`
2402 #
2403 # Note this class is basically an enum.
2404 # FIXME: use a real enum once user-defined enums are available
2405 class MClassKind
2406 redef var to_s: String
2407
2408 # Is a constructor required?
2409 var need_init: Bool
2410
2411 # TODO: private init because enumeration.
2412
2413 # Can a class of kind `self` specializes a class of kine `other`?
2414 fun can_specialize(other: MClassKind): Bool
2415 do
2416 if other == interface_kind then return true # everybody can specialize interfaces
2417 if self == interface_kind or self == enum_kind then
2418 # no other case for interfaces
2419 return false
2420 else if self == extern_kind then
2421 # only compatible with themselves
2422 return self == other
2423 else if other == enum_kind or other == extern_kind then
2424 # abstract_kind and concrete_kind are incompatible
2425 return false
2426 end
2427 # remain only abstract_kind and concrete_kind
2428 return true
2429 end
2430 end
2431
2432 # The class kind `abstract`
2433 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", true)
2434 # The class kind `concrete`
2435 fun concrete_kind: MClassKind do return once new MClassKind("class", true)
2436 # The class kind `interface`
2437 fun interface_kind: MClassKind do return once new MClassKind("interface", false)
2438 # The class kind `enum`
2439 fun enum_kind: MClassKind do return once new MClassKind("enum", false)
2440 # The class kind `extern`
2441 fun extern_kind: MClassKind do return once new MClassKind("extern class", false)