model: promote location to any `MEntity`
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class Model
34 # All known classes
35 var mclasses = new Array[MClass]
36
37 # All known properties
38 var mproperties = new Array[MProperty]
39
40 # Hierarchy of class definition.
41 #
42 # Each classdef is associated with its super-classdefs in regard to
43 # its module of definition.
44 var mclassdef_hierarchy = new POSet[MClassDef]
45
46 # Class-type hierarchy restricted to the introduction.
47 #
48 # The idea is that what is true on introduction is always true whatever
49 # the module considered.
50 # Therefore, this hierarchy is used for a fast positive subtype check.
51 #
52 # This poset will evolve in a monotonous way:
53 # * Two non connected nodes will remain unconnected
54 # * New nodes can appear with new edges
55 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
56
57 # Global overlapped class-type hierarchy.
58 # The hierarchy when all modules are combined.
59 # Therefore, this hierarchy is used for a fast negative subtype check.
60 #
61 # This poset will evolve in an anarchic way. Loops can even be created.
62 #
63 # FIXME decide what to do on loops
64 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
65
66 # Collections of classes grouped by their short name
67 private var mclasses_by_name = new MultiHashMap[String, MClass]
68
69 # Return all class named `name`.
70 #
71 # If such a class does not exist, null is returned
72 # (instead of an empty array)
73 #
74 # Visibility or modules are not considered
75 fun get_mclasses_by_name(name: String): nullable Array[MClass]
76 do
77 return mclasses_by_name.get_or_null(name)
78 end
79
80 # Collections of properties grouped by their short name
81 private var mproperties_by_name = new MultiHashMap[String, MProperty]
82
83 # Return all properties named `name`.
84 #
85 # If such a property does not exist, null is returned
86 # (instead of an empty array)
87 #
88 # Visibility or modules are not considered
89 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
90 do
91 return mproperties_by_name.get_or_null(name)
92 end
93
94 # The only null type
95 var null_type = new MNullType(self)
96
97 # Build an ordered tree with from `concerns`
98 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
99 var seen = new HashSet[MConcern]
100 var res = new ConcernsTree
101
102 var todo = new Array[MConcern]
103 todo.add_all mconcerns
104
105 while not todo.is_empty do
106 var c = todo.pop
107 if seen.has(c) then continue
108 var pc = c.parent_concern
109 if pc == null then
110 res.add(null, c)
111 else
112 res.add(pc, c)
113 todo.add(pc)
114 end
115 seen.add(c)
116 end
117
118 return res
119 end
120 end
121
122 # An OrderedTree bound to MEntity.
123 #
124 # We introduce a new class so it can be easily refined by tools working
125 # with a Model.
126 class MEntityTree
127 super OrderedTree[MEntity]
128 end
129
130 # A MEntityTree borned to MConcern.
131 #
132 # TODO remove when nitdoc is fully merged with model_collect
133 class ConcernsTree
134 super OrderedTree[MConcern]
135 end
136
137 redef class MModule
138 # All the classes introduced in the module
139 var intro_mclasses = new Array[MClass]
140
141 # All the class definitions of the module
142 # (introduction and refinement)
143 var mclassdefs = new Array[MClassDef]
144
145 # Does the current module has a given class `mclass`?
146 # Return true if the mmodule introduces, refines or imports a class.
147 # Visibility is not considered.
148 fun has_mclass(mclass: MClass): Bool
149 do
150 return self.in_importation <= mclass.intro_mmodule
151 end
152
153 # Full hierarchy of introduced ans imported classes.
154 #
155 # Create a new hierarchy got by flattening the classes for the module
156 # and its imported modules.
157 # Visibility is not considered.
158 #
159 # Note: this function is expensive and is usually used for the main
160 # module of a program only. Do not use it to do you own subtype
161 # functions.
162 fun flatten_mclass_hierarchy: POSet[MClass]
163 do
164 var res = self.flatten_mclass_hierarchy_cache
165 if res != null then return res
166 res = new POSet[MClass]
167 for m in self.in_importation.greaters do
168 for cd in m.mclassdefs do
169 var c = cd.mclass
170 res.add_node(c)
171 for s in cd.supertypes do
172 res.add_edge(c, s.mclass)
173 end
174 end
175 end
176 self.flatten_mclass_hierarchy_cache = res
177 return res
178 end
179
180 # Sort a given array of classes using the linearization order of the module
181 # The most general is first, the most specific is last
182 fun linearize_mclasses(mclasses: Array[MClass])
183 do
184 self.flatten_mclass_hierarchy.sort(mclasses)
185 end
186
187 # Sort a given array of class definitions using the linearization order of the module
188 # the refinement link is stronger than the specialisation link
189 # The most general is first, the most specific is last
190 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
191 do
192 var sorter = new MClassDefSorter(self)
193 sorter.sort(mclassdefs)
194 end
195
196 # Sort a given array of property definitions using the linearization order of the module
197 # the refinement link is stronger than the specialisation link
198 # The most general is first, the most specific is last
199 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
200 do
201 var sorter = new MPropDefSorter(self)
202 sorter.sort(mpropdefs)
203 end
204
205 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
206
207 # The primitive type `Object`, the root of the class hierarchy
208 var object_type: MClassType = self.get_primitive_class("Object").mclass_type is lazy
209
210 # The type `Pointer`, super class to all extern classes
211 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
212
213 # The primitive type `Bool`
214 var bool_type: MClassType = self.get_primitive_class("Bool").mclass_type is lazy
215
216 # The primitive type `Int`
217 var int_type: MClassType = self.get_primitive_class("Int").mclass_type is lazy
218
219 # The primitive type `Byte`
220 var byte_type: MClassType = self.get_primitive_class("Byte").mclass_type is lazy
221
222 # The primitive type `Int8`
223 var int8_type: MClassType = self.get_primitive_class("Int8").mclass_type is lazy
224
225 # The primitive type `Int16`
226 var int16_type: MClassType = self.get_primitive_class("Int16").mclass_type is lazy
227
228 # The primitive type `UInt16`
229 var uint16_type: MClassType = self.get_primitive_class("UInt16").mclass_type is lazy
230
231 # The primitive type `Int32`
232 var int32_type: MClassType = self.get_primitive_class("Int32").mclass_type is lazy
233
234 # The primitive type `UInt32`
235 var uint32_type: MClassType = self.get_primitive_class("UInt32").mclass_type is lazy
236
237 # The primitive type `Char`
238 var char_type: MClassType = self.get_primitive_class("Char").mclass_type is lazy
239
240 # The primitive type `Float`
241 var float_type: MClassType = self.get_primitive_class("Float").mclass_type is lazy
242
243 # The primitive type `String`
244 var string_type: MClassType = self.get_primitive_class("String").mclass_type is lazy
245
246 # The primitive type `NativeString`
247 var native_string_type: MClassType = self.get_primitive_class("NativeString").mclass_type is lazy
248
249 # A primitive type of `Array`
250 fun array_type(elt_type: MType): MClassType do return array_class.get_mtype([elt_type])
251
252 # The primitive class `Array`
253 var array_class: MClass = self.get_primitive_class("Array") is lazy
254
255 # A primitive type of `NativeArray`
256 fun native_array_type(elt_type: MType): MClassType do return native_array_class.get_mtype([elt_type])
257
258 # The primitive class `NativeArray`
259 var native_array_class: MClass = self.get_primitive_class("NativeArray") is lazy
260
261 # The primitive type `Sys`, the main type of the program, if any
262 fun sys_type: nullable MClassType
263 do
264 var clas = self.model.get_mclasses_by_name("Sys")
265 if clas == null then return null
266 return get_primitive_class("Sys").mclass_type
267 end
268
269 # The primitive type `Finalizable`
270 # Used to tag classes that need to be finalized.
271 fun finalizable_type: nullable MClassType
272 do
273 var clas = self.model.get_mclasses_by_name("Finalizable")
274 if clas == null then return null
275 return get_primitive_class("Finalizable").mclass_type
276 end
277
278 # Force to get the primitive class named `name` or abort
279 fun get_primitive_class(name: String): MClass
280 do
281 var cla = self.model.get_mclasses_by_name(name)
282 # Filter classes by introducing module
283 if cla != null then cla = [for c in cla do if self.in_importation <= c.intro_mmodule then c]
284 if cla == null or cla.is_empty then
285 if name == "Bool" and self.model.get_mclasses_by_name("Object") != null then
286 # Bool is injected because it is needed by engine to code the result
287 # of the implicit casts.
288 var c = new MClass(self, name, null, enum_kind, public_visibility)
289 var cladef = new MClassDef(self, c.mclass_type, new Location(null, 0,0,0,0))
290 cladef.set_supertypes([object_type])
291 cladef.add_in_hierarchy
292 return c
293 end
294 print("Fatal Error: no primitive class {name} in {self}")
295 exit(1)
296 abort
297 end
298 if cla.length != 1 then
299 var msg = "Fatal Error: more than one primitive class {name} in {self}:"
300 for c in cla do msg += " {c.full_name}"
301 print msg
302 #exit(1)
303 end
304 return cla.first
305 end
306
307 # Try to get the primitive method named `name` on the type `recv`
308 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
309 do
310 var props = self.model.get_mproperties_by_name(name)
311 if props == null then return null
312 var res: nullable MMethod = null
313 var recvtype = recv.intro.bound_mtype
314 for mprop in props do
315 assert mprop isa MMethod
316 if not recvtype.has_mproperty(self, mprop) then continue
317 if res == null then
318 res = mprop
319 else if res != mprop then
320 print("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
321 abort
322 end
323 end
324 return res
325 end
326 end
327
328 private class MClassDefSorter
329 super Comparator
330 redef type COMPARED: MClassDef
331 var mmodule: MModule
332 redef fun compare(a, b)
333 do
334 var ca = a.mclass
335 var cb = b.mclass
336 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
337 return mmodule.model.mclassdef_hierarchy.compare(a, b)
338 end
339 end
340
341 private class MPropDefSorter
342 super Comparator
343 redef type COMPARED: MPropDef
344 var mmodule: MModule
345 redef fun compare(pa, pb)
346 do
347 var a = pa.mclassdef
348 var b = pb.mclassdef
349 var ca = a.mclass
350 var cb = b.mclass
351 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
352 return mmodule.model.mclassdef_hierarchy.compare(a, b)
353 end
354 end
355
356 # A named class
357 #
358 # `MClass` are global to the model; it means that a `MClass` is not bound to a
359 # specific `MModule`.
360 #
361 # This characteristic helps the reasoning about classes in a program since a
362 # single `MClass` object always denote the same class.
363 #
364 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
365 # These do not really have properties nor belong to a hierarchy since the property and the
366 # hierarchy of a class depends of the refinement in the modules.
367 #
368 # Most services on classes require the precision of a module, and no one can asks what are
369 # the super-classes of a class nor what are properties of a class without precising what is
370 # the module considered.
371 #
372 # For instance, during the typing of a source-file, the module considered is the module of the file.
373 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
374 # *is the method `foo` exists in the class `Bar` in the current module?*
375 #
376 # During some global analysis, the module considered may be the main module of the program.
377 class MClass
378 super MEntity
379
380 # The module that introduce the class
381 # While classes are not bound to a specific module,
382 # the introducing module is used for naming an visibility
383 var intro_mmodule: MModule
384
385 # The short name of the class
386 # In Nit, the name of a class cannot evolve in refinements
387 redef var name
388
389 redef var location
390
391 # The canonical name of the class
392 #
393 # It is the name of the class prefixed by the full_name of the `intro_mmodule`
394 # Example: `"owner::module::MyClass"`
395 redef var full_name is lazy do
396 return "{self.intro_mmodule.namespace_for(visibility)}::{name}"
397 end
398
399 redef var c_name is lazy do
400 return "{intro_mmodule.c_namespace_for(visibility)}__{name.to_cmangle}"
401 end
402
403 # The number of generic formal parameters
404 # 0 if the class is not generic
405 var arity: Int is noinit
406
407 # Each generic formal parameters in order.
408 # is empty if the class is not generic
409 var mparameters = new Array[MParameterType]
410
411 # A string version of the signature a generic class.
412 #
413 # eg. `Map[K: nullable Object, V: nullable Object]`
414 #
415 # If the class in non generic the name is just given.
416 #
417 # eg. `Object`
418 fun signature_to_s: String
419 do
420 if arity == 0 then return name
421 var res = new FlatBuffer
422 res.append name
423 res.append "["
424 for i in [0..arity[ do
425 if i > 0 then res.append ", "
426 res.append mparameters[i].name
427 res.append ": "
428 res.append intro.bound_mtype.arguments[i].to_s
429 end
430 res.append "]"
431 return res.to_s
432 end
433
434 # Initialize `mparameters` from their names.
435 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
436 autoinit
437 do
438 if parameter_names == null then
439 self.arity = 0
440 else
441 self.arity = parameter_names.length
442 end
443
444 # Create the formal parameter types
445 if arity > 0 then
446 assert parameter_names != null
447 var mparametertypes = new Array[MParameterType]
448 for i in [0..arity[ do
449 var mparametertype = new MParameterType(self, i, parameter_names[i])
450 mparametertypes.add(mparametertype)
451 end
452 self.mparameters = mparametertypes
453 var mclass_type = new MGenericType(self, mparametertypes)
454 self.mclass_type = mclass_type
455 self.get_mtype_cache[mparametertypes] = mclass_type
456 else
457 self.mclass_type = new MClassType(self)
458 end
459 end
460
461 # The kind of the class (interface, abstract class, etc.)
462 # In Nit, the kind of a class cannot evolve in refinements
463 var kind: MClassKind
464
465 # The visibility of the class
466 # In Nit, the visibility of a class cannot evolve in refinements
467 var visibility: MVisibility
468
469 init
470 do
471 intro_mmodule.intro_mclasses.add(self)
472 var model = intro_mmodule.model
473 model.mclasses_by_name.add_one(name, self)
474 model.mclasses.add(self)
475 end
476
477 redef fun model do return intro_mmodule.model
478
479 # All class definitions (introduction and refinements)
480 var mclassdefs = new Array[MClassDef]
481
482 # Alias for `name`
483 redef fun to_s do return self.name
484
485 # The definition that introduces the class.
486 #
487 # Warning: such a definition may not exist in the early life of the object.
488 # In this case, the method will abort.
489 #
490 # Use `try_intro` instead
491 var intro: MClassDef is noinit
492
493 # The definition that introduces the class or null if not yet known.
494 #
495 # See `intro`
496 fun try_intro: nullable MClassDef do
497 if isset _intro then return _intro else return null
498 end
499
500 # Return the class `self` in the class hierarchy of the module `mmodule`.
501 #
502 # SEE: `MModule::flatten_mclass_hierarchy`
503 # REQUIRE: `mmodule.has_mclass(self)`
504 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
505 do
506 return mmodule.flatten_mclass_hierarchy[self]
507 end
508
509 # The principal static type of the class.
510 #
511 # For non-generic class, mclass_type is the only `MClassType` based
512 # on self.
513 #
514 # For a generic class, the arguments are the formal parameters.
515 # i.e.: for the class Array[E:Object], the `mclass_type` is Array[E].
516 # If you want Array[Object] the see `MClassDef::bound_mtype`
517 #
518 # For generic classes, the mclass_type is also the way to get a formal
519 # generic parameter type.
520 #
521 # To get other types based on a generic class, see `get_mtype`.
522 #
523 # ENSURE: `mclass_type.mclass == self`
524 var mclass_type: MClassType is noinit
525
526 # Return a generic type based on the class
527 # Is the class is not generic, then the result is `mclass_type`
528 #
529 # REQUIRE: `mtype_arguments.length == self.arity`
530 fun get_mtype(mtype_arguments: Array[MType]): MClassType
531 do
532 assert mtype_arguments.length == self.arity
533 if self.arity == 0 then return self.mclass_type
534 var res = get_mtype_cache.get_or_null(mtype_arguments)
535 if res != null then return res
536 res = new MGenericType(self, mtype_arguments)
537 self.get_mtype_cache[mtype_arguments.to_a] = res
538 return res
539 end
540
541 private var get_mtype_cache = new HashMap[Array[MType], MGenericType]
542
543 # Is there a `new` factory to allow the pseudo instantiation?
544 var has_new_factory = false is writable
545
546 # Is `self` a standard or abstract class kind?
547 var is_class: Bool is lazy do return kind == concrete_kind or kind == abstract_kind
548
549 # Is `self` an interface kind?
550 var is_interface: Bool is lazy do return kind == interface_kind
551
552 # Is `self` an enum kind?
553 var is_enum: Bool is lazy do return kind == enum_kind
554
555 # Is `self` and abstract class?
556 var is_abstract: Bool is lazy do return kind == abstract_kind
557 end
558
559
560 # A definition (an introduction or a refinement) of a class in a module
561 #
562 # A `MClassDef` is associated with an explicit (or almost) definition of a
563 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
564 # a specific class and a specific module, and contains declarations like super-classes
565 # or properties.
566 #
567 # It is the class definitions that are the backbone of most things in the model:
568 # ClassDefs are defined with regard with other classdefs.
569 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
570 #
571 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
572 class MClassDef
573 super MEntity
574
575 # The module where the definition is
576 var mmodule: MModule
577
578 # The associated `MClass`
579 var mclass: MClass is noinit
580
581 # The bounded type associated to the mclassdef
582 #
583 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
584 # are the same type.
585 #
586 # Example:
587 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
588 # If you want Array[E], then see `mclass.mclass_type`
589 #
590 # ENSURE: `bound_mtype.mclass == self.mclass`
591 var bound_mtype: MClassType
592
593 redef var location: Location
594
595 # Internal name combining the module and the class
596 # Example: "mymodule$MyClass"
597 redef var to_s is noinit
598
599 init
600 do
601 self.mclass = bound_mtype.mclass
602 mmodule.mclassdefs.add(self)
603 mclass.mclassdefs.add(self)
604 if mclass.intro_mmodule == mmodule then
605 assert not isset mclass._intro
606 mclass.intro = self
607 end
608 self.to_s = "{mmodule}${mclass}"
609 end
610
611 # Actually the name of the `mclass`
612 redef fun name do return mclass.name
613
614 # The module and class name separated by a '$'.
615 #
616 # The short-name of the class is used for introduction.
617 # Example: "my_module$MyClass"
618 #
619 # The full-name of the class is used for refinement.
620 # Example: "my_module$intro_module::MyClass"
621 redef var full_name is lazy do
622 if is_intro then
623 # public gives 'p$A'
624 # private gives 'p::m$A'
625 return "{mmodule.namespace_for(mclass.visibility)}${mclass.name}"
626 else if mclass.intro_mmodule.mpackage != mmodule.mpackage then
627 # public gives 'q::n$p::A'
628 # private gives 'q::n$p::m::A'
629 return "{mmodule.full_name}${mclass.full_name}"
630 else if mclass.visibility > private_visibility then
631 # public gives 'p::n$A'
632 return "{mmodule.full_name}${mclass.name}"
633 else
634 # private gives 'p::n$::m::A' (redundant p is omitted)
635 return "{mmodule.full_name}$::{mclass.intro_mmodule.name}::{mclass.name}"
636 end
637 end
638
639 redef var c_name is lazy do
640 if is_intro then
641 return "{mmodule.c_namespace_for(mclass.visibility)}___{mclass.c_name}"
642 else if mclass.intro_mmodule.mpackage == mmodule.mpackage and mclass.visibility > private_visibility then
643 return "{mmodule.c_name}___{mclass.name.to_cmangle}"
644 else
645 return "{mmodule.c_name}___{mclass.c_name}"
646 end
647 end
648
649 redef fun model do return mmodule.model
650
651 # All declared super-types
652 # FIXME: quite ugly but not better idea yet
653 var supertypes = new Array[MClassType]
654
655 # Register some super-types for the class (ie "super SomeType")
656 #
657 # The hierarchy must not already be set
658 # REQUIRE: `self.in_hierarchy == null`
659 fun set_supertypes(supertypes: Array[MClassType])
660 do
661 assert unique_invocation: self.in_hierarchy == null
662 var mmodule = self.mmodule
663 var model = mmodule.model
664 var mtype = self.bound_mtype
665
666 for supertype in supertypes do
667 self.supertypes.add(supertype)
668
669 # Register in full_type_specialization_hierarchy
670 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
671 # Register in intro_type_specialization_hierarchy
672 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
673 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
674 end
675 end
676
677 end
678
679 # Collect the super-types (set by set_supertypes) to build the hierarchy
680 #
681 # This function can only invoked once by class
682 # REQUIRE: `self.in_hierarchy == null`
683 # ENSURE: `self.in_hierarchy != null`
684 fun add_in_hierarchy
685 do
686 assert unique_invocation: self.in_hierarchy == null
687 var model = mmodule.model
688 var res = model.mclassdef_hierarchy.add_node(self)
689 self.in_hierarchy = res
690 var mtype = self.bound_mtype
691
692 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
693 # The simpliest way is to attach it to collect_mclassdefs
694 for mclassdef in mtype.collect_mclassdefs(mmodule) do
695 res.poset.add_edge(self, mclassdef)
696 end
697 end
698
699 # The view of the class definition in `mclassdef_hierarchy`
700 var in_hierarchy: nullable POSetElement[MClassDef] = null
701
702 # Is the definition the one that introduced `mclass`?
703 fun is_intro: Bool do return isset mclass._intro and mclass.intro == self
704
705 # All properties introduced by the classdef
706 var intro_mproperties = new Array[MProperty]
707
708 # All property definitions in the class (introductions and redefinitions)
709 var mpropdefs = new Array[MPropDef]
710 end
711
712 # A global static type
713 #
714 # MType are global to the model; it means that a `MType` is not bound to a
715 # specific `MModule`.
716 # This characteristic helps the reasoning about static types in a program
717 # since a single `MType` object always denote the same type.
718 #
719 # However, because a `MType` is global, it does not really have properties
720 # nor have subtypes to a hierarchy since the property and the class hierarchy
721 # depends of a module.
722 # Moreover, virtual types an formal generic parameter types also depends on
723 # a receiver to have sense.
724 #
725 # Therefore, most method of the types require a module and an anchor.
726 # The module is used to know what are the classes and the specialization
727 # links.
728 # The anchor is used to know what is the bound of the virtual types and formal
729 # generic parameter types.
730 #
731 # MType are not directly usable to get properties. See the `anchor_to` method
732 # and the `MClassType` class.
733 #
734 # FIXME: the order of the parameters is not the best. We mus pick on from:
735 # * foo(mmodule, anchor, othertype)
736 # * foo(othertype, anchor, mmodule)
737 # * foo(anchor, mmodule, othertype)
738 # * foo(othertype, mmodule, anchor)
739 abstract class MType
740 super MEntity
741
742 redef fun name do return to_s
743
744 # Return true if `self` is an subtype of `sup`.
745 # The typing is done using the standard typing policy of Nit.
746 #
747 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
748 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
749 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
750 do
751 var sub = self
752 if sub == sup then return true
753
754 #print "1.is {sub} a {sup}? ===="
755
756 if anchor == null then
757 assert not sub.need_anchor
758 assert not sup.need_anchor
759 else
760 # First, resolve the formal types to the simplest equivalent forms in the receiver
761 assert sub.can_resolve_for(anchor, null, mmodule)
762 sub = sub.lookup_fixed(mmodule, anchor)
763 assert sup.can_resolve_for(anchor, null, mmodule)
764 sup = sup.lookup_fixed(mmodule, anchor)
765 end
766
767 # Does `sup` accept null or not?
768 # Discard the nullable marker if it exists
769 var sup_accept_null = false
770 if sup isa MNullableType then
771 sup_accept_null = true
772 sup = sup.mtype
773 else if sup isa MNotNullType then
774 sup = sup.mtype
775 else if sup isa MNullType then
776 sup_accept_null = true
777 end
778
779 # Can `sub` provide null or not?
780 # Thus we can match with `sup_accept_null`
781 # Also discard the nullable marker if it exists
782 var sub_reject_null = false
783 if sub isa MNullableType then
784 if not sup_accept_null then return false
785 sub = sub.mtype
786 else if sub isa MNotNullType then
787 sub_reject_null = true
788 sub = sub.mtype
789 else if sub isa MNullType then
790 return sup_accept_null
791 end
792 # Now the case of direct null and nullable is over.
793
794 # If `sub` is a formal type, then it is accepted if its bound is accepted
795 while sub isa MFormalType do
796 #print "3.is {sub} a {sup}?"
797
798 # A unfixed formal type can only accept itself
799 if sub == sup then return true
800
801 assert anchor != null
802 sub = sub.lookup_bound(mmodule, anchor)
803 if sub_reject_null then sub = sub.as_notnull
804
805 #print "3.is {sub} a {sup}?"
806
807 # Manage the second layer of null/nullable
808 if sub isa MNullableType then
809 if not sup_accept_null and not sub_reject_null then return false
810 sub = sub.mtype
811 else if sub isa MNotNullType then
812 sub_reject_null = true
813 sub = sub.mtype
814 else if sub isa MNullType then
815 return sup_accept_null
816 end
817 end
818 #print "4.is {sub} a {sup}? <- no more resolution"
819
820 if sub isa MBottomType then
821 return true
822 end
823
824 assert sub isa MClassType else print "{sub} <? {sub}" # It is the only remaining type
825
826 # Handle sup-type when the sub-type is class-based (other cases must have be identified before).
827 if sup isa MFormalType or sup isa MNullType or sup isa MBottomType then
828 # These types are not super-types of Class-based types.
829 return false
830 end
831
832 assert sup isa MClassType else print "got {sup} {sub.inspect}" # It is the only remaining type
833
834 # Now both are MClassType, we need to dig
835
836 if sub == sup then return true
837
838 if anchor == null then anchor = sub # UGLY: any anchor will work
839 var resolved_sub = sub.anchor_to(mmodule, anchor)
840 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
841 if res == false then return false
842 if not sup isa MGenericType then return true
843 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
844 assert sub2.mclass == sup.mclass
845 for i in [0..sup.mclass.arity[ do
846 var sub_arg = sub2.arguments[i]
847 var sup_arg = sup.arguments[i]
848 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
849 if res == false then return false
850 end
851 return true
852 end
853
854 # The base class type on which self is based
855 #
856 # This base type is used to get property (an internally to perform
857 # unsafe type comparison).
858 #
859 # Beware: some types (like null) are not based on a class thus this
860 # method will crash
861 #
862 # Basically, this function transform the virtual types and parameter
863 # types to their bounds.
864 #
865 # Example
866 #
867 # class A end
868 # class B super A end
869 # class X end
870 # class Y super X end
871 # class G[T: A]
872 # type U: X
873 # end
874 # class H
875 # super G[B]
876 # redef type U: Y
877 # end
878 #
879 # Map[T,U] anchor_to H #-> Map[B,Y]
880 #
881 # Explanation of the example:
882 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
883 # because "redef type U: Y". Therefore, Map[T, U] is bound to
884 # Map[B, Y]
885 #
886 # ENSURE: `not self.need_anchor implies result == self`
887 # ENSURE: `not result.need_anchor`
888 fun anchor_to(mmodule: MModule, anchor: MClassType): MType
889 do
890 if not need_anchor then return self
891 assert not anchor.need_anchor
892 # Just resolve to the anchor and clear all the virtual types
893 var res = self.resolve_for(anchor, null, mmodule, true)
894 assert not res.need_anchor
895 return res
896 end
897
898 # Does `self` contain a virtual type or a formal generic parameter type?
899 # In order to remove those types, you usually want to use `anchor_to`.
900 fun need_anchor: Bool do return true
901
902 # Return the supertype when adapted to a class.
903 #
904 # In Nit, for each super-class of a type, there is a equivalent super-type.
905 #
906 # Example:
907 #
908 # ~~~nitish
909 # class G[T, U] end
910 # class H[V] super G[V, Bool] end
911 #
912 # H[Int] supertype_to G #-> G[Int, Bool]
913 # ~~~
914 #
915 # REQUIRE: `super_mclass` is a super-class of `self`
916 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
917 # ENSURE: `result.mclass = super_mclass`
918 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
919 do
920 if super_mclass.arity == 0 then return super_mclass.mclass_type
921 if self isa MClassType and self.mclass == super_mclass then return self
922 var resolved_self
923 if self.need_anchor then
924 assert anchor != null
925 resolved_self = self.anchor_to(mmodule, anchor)
926 else
927 resolved_self = self
928 end
929 var supertypes = resolved_self.collect_mtypes(mmodule)
930 for supertype in supertypes do
931 if supertype.mclass == super_mclass then
932 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
933 return supertype.resolve_for(self, anchor, mmodule, false)
934 end
935 end
936 abort
937 end
938
939 # Replace formals generic types in self with resolved values in `mtype`
940 # If `cleanup_virtual` is true, then virtual types are also replaced
941 # with their bounds.
942 #
943 # This function returns self if `need_anchor` is false.
944 #
945 # ## Example 1
946 #
947 # ~~~
948 # class G[E] end
949 # class H[F] super G[F] end
950 # class X[Z] end
951 # ~~~
952 #
953 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
954 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
955 #
956 # Explanation of the example:
957 # * Array[E].need_anchor is true because there is a formal generic parameter type E
958 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
959 # * Since "H[F] super G[F]", E is in fact F for H
960 # * More specifically, in H[Int], E is Int
961 # * So, in H[Int], Array[E] is Array[Int]
962 #
963 # This function is mainly used to inherit a signature.
964 # Because, unlike `anchor_to`, we do not want a full resolution of
965 # a type but only an adapted version of it.
966 #
967 # ## Example 2
968 #
969 # ~~~
970 # class A[E]
971 # fun foo(e:E):E is abstract
972 # end
973 # class B super A[Int] end
974 # ~~~
975 #
976 # The signature on foo is (e: E): E
977 # If we resolve the signature for B, we get (e:Int):Int
978 #
979 # ## Example 3
980 #
981 # ~~~nitish
982 # class A[E]
983 # fun foo(e:E):E is abstract
984 # end
985 # class C[F]
986 # var a: A[Array[F]]
987 # fun bar do a.foo(x) # <- x is here
988 # end
989 # ~~~
990 #
991 # The first question is: is foo available on `a`?
992 #
993 # The static type of a is `A[Array[F]]`, that is an open type.
994 # in order to find a method `foo`, whe must look at a resolved type.
995 #
996 # A[Array[F]].anchor_to(C[nullable Object]) #-> A[Array[nullable Object]]
997 #
998 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
999 #
1000 # The next question is: what is the accepted types for `x`?
1001 #
1002 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
1003 #
1004 # E.resolve_for(A[Array[F]],C[nullable Object]) #-> Array[F]
1005 #
1006 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
1007 #
1008 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
1009 # two function instead of one seems also to be a bad idea.
1010 #
1011 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
1012 # ENSURE: `not self.need_anchor implies result == self`
1013 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
1014
1015 # Resolve formal type to its verbatim bound.
1016 # If the type is not formal, just return self
1017 #
1018 # The result is returned exactly as declared in the "type" property (verbatim).
1019 # So it could be another formal type.
1020 #
1021 # In case of conflicts or inconsistencies in the model, the method returns a `MBottomType`.
1022 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self
1023
1024 # Resolve the formal type to its simplest equivalent form.
1025 #
1026 # Formal types are either free or fixed.
1027 # When it is fixed, it means that it is equivalent with a simpler type.
1028 # When a formal type is free, it means that it is only equivalent with itself.
1029 # This method return the most simple equivalent type of `self`.
1030 #
1031 # This method is mainly used for subtype test in order to sanely compare fixed.
1032 #
1033 # By default, return self.
1034 # See the redefinitions for specific behavior in each kind of type.
1035 #
1036 # In case of conflicts or inconsistencies in the model, the method returns a `MBottomType`.
1037 fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self
1038
1039 # Can the type be resolved?
1040 #
1041 # In order to resolve open types, the formal types must make sence.
1042 #
1043 # ## Example
1044 #
1045 # class A[E]
1046 # end
1047 # class B[F]
1048 # end
1049 #
1050 # ~~~nitish
1051 # E.can_resolve_for(A[Int]) #-> true, E make sense in A
1052 #
1053 # E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
1054 #
1055 # B[E].can_resolve_for(A[F], B[Object]) #-> true,
1056 # # B[E] is a red hearing only the E is important,
1057 # # E make sense in A
1058 # ~~~
1059 #
1060 # REQUIRE: `anchor != null implies not anchor.need_anchor`
1061 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
1062 # ENSURE: `not self.need_anchor implies result == true`
1063 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
1064
1065 # Return the nullable version of the type
1066 # If the type is already nullable then self is returned
1067 fun as_nullable: MType
1068 do
1069 var res = self.as_nullable_cache
1070 if res != null then return res
1071 res = new MNullableType(self)
1072 self.as_nullable_cache = res
1073 return res
1074 end
1075
1076 # Remove the base type of a decorated (proxy) type.
1077 # Is the type is not decorated, then self is returned.
1078 #
1079 # Most of the time it is used to return the not nullable version of a nullable type.
1080 # In this case, this just remove the `nullable` notation, but the result can still contains null.
1081 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
1082 # If you really want to exclude the `null` value, then use `as_notnull`
1083 fun undecorate: MType
1084 do
1085 return self
1086 end
1087
1088 # Returns the not null version of the type.
1089 # That is `self` minus the `null` value.
1090 #
1091 # For most types, this return `self`.
1092 # For formal types, this returns a special `MNotNullType`
1093 fun as_notnull: MType do return self
1094
1095 private var as_nullable_cache: nullable MType = null
1096
1097
1098 # The depth of the type seen as a tree.
1099 #
1100 # * A -> 1
1101 # * G[A] -> 2
1102 # * H[A, B] -> 2
1103 # * H[G[A], B] -> 3
1104 #
1105 # Formal types have a depth of 1.
1106 fun depth: Int
1107 do
1108 return 1
1109 end
1110
1111 # The length of the type seen as a tree.
1112 #
1113 # * A -> 1
1114 # * G[A] -> 2
1115 # * H[A, B] -> 3
1116 # * H[G[A], B] -> 4
1117 #
1118 # Formal types have a length of 1.
1119 fun length: Int
1120 do
1121 return 1
1122 end
1123
1124 # Compute all the classdefs inherited/imported.
1125 # The returned set contains:
1126 # * the class definitions from `mmodule` and its imported modules
1127 # * the class definitions of this type and its super-types
1128 #
1129 # This function is used mainly internally.
1130 #
1131 # REQUIRE: `not self.need_anchor`
1132 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
1133
1134 # Compute all the super-classes.
1135 # This function is used mainly internally.
1136 #
1137 # REQUIRE: `not self.need_anchor`
1138 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
1139
1140 # Compute all the declared super-types.
1141 # Super-types are returned as declared in the classdefs (verbatim).
1142 # This function is used mainly internally.
1143 #
1144 # REQUIRE: `not self.need_anchor`
1145 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
1146
1147 # Is the property in self for a given module
1148 # This method does not filter visibility or whatever
1149 #
1150 # REQUIRE: `not self.need_anchor`
1151 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
1152 do
1153 assert not self.need_anchor
1154 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
1155 end
1156 end
1157
1158 # A type based on a class.
1159 #
1160 # `MClassType` have properties (see `has_mproperty`).
1161 class MClassType
1162 super MType
1163
1164 # The associated class
1165 var mclass: MClass
1166
1167 redef fun model do return self.mclass.intro_mmodule.model
1168
1169 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1170
1171 # The formal arguments of the type
1172 # ENSURE: `result.length == self.mclass.arity`
1173 var arguments = new Array[MType]
1174
1175 redef fun to_s do return mclass.to_s
1176
1177 redef fun full_name do return mclass.full_name
1178
1179 redef fun c_name do return mclass.c_name
1180
1181 redef fun need_anchor do return false
1182
1183 redef fun anchor_to(mmodule: MModule, anchor: MClassType): MClassType
1184 do
1185 return super.as(MClassType)
1186 end
1187
1188 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1189
1190 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1191
1192 redef fun collect_mclassdefs(mmodule)
1193 do
1194 assert not self.need_anchor
1195 var cache = self.collect_mclassdefs_cache
1196 if not cache.has_key(mmodule) then
1197 self.collect_things(mmodule)
1198 end
1199 return cache[mmodule]
1200 end
1201
1202 redef fun collect_mclasses(mmodule)
1203 do
1204 if collect_mclasses_last_module == mmodule then return collect_mclasses_last_module_cache
1205 assert not self.need_anchor
1206 var cache = self.collect_mclasses_cache
1207 if not cache.has_key(mmodule) then
1208 self.collect_things(mmodule)
1209 end
1210 var res = cache[mmodule]
1211 collect_mclasses_last_module = mmodule
1212 collect_mclasses_last_module_cache = res
1213 return res
1214 end
1215
1216 private var collect_mclasses_last_module: nullable MModule = null
1217 private var collect_mclasses_last_module_cache: Set[MClass] is noinit
1218
1219 redef fun collect_mtypes(mmodule)
1220 do
1221 assert not self.need_anchor
1222 var cache = self.collect_mtypes_cache
1223 if not cache.has_key(mmodule) then
1224 self.collect_things(mmodule)
1225 end
1226 return cache[mmodule]
1227 end
1228
1229 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1230 private fun collect_things(mmodule: MModule)
1231 do
1232 var res = new HashSet[MClassDef]
1233 var seen = new HashSet[MClass]
1234 var types = new HashSet[MClassType]
1235 seen.add(self.mclass)
1236 var todo = [self.mclass]
1237 while not todo.is_empty do
1238 var mclass = todo.pop
1239 #print "process {mclass}"
1240 for mclassdef in mclass.mclassdefs do
1241 if not mmodule.in_importation <= mclassdef.mmodule then continue
1242 #print " process {mclassdef}"
1243 res.add(mclassdef)
1244 for supertype in mclassdef.supertypes do
1245 types.add(supertype)
1246 var superclass = supertype.mclass
1247 if seen.has(superclass) then continue
1248 #print " add {superclass}"
1249 seen.add(superclass)
1250 todo.add(superclass)
1251 end
1252 end
1253 end
1254 collect_mclassdefs_cache[mmodule] = res
1255 collect_mclasses_cache[mmodule] = seen
1256 collect_mtypes_cache[mmodule] = types
1257 end
1258
1259 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1260 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1261 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1262
1263 end
1264
1265 # A type based on a generic class.
1266 # A generic type a just a class with additional formal generic arguments.
1267 class MGenericType
1268 super MClassType
1269
1270 redef var arguments
1271
1272 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1273
1274 init
1275 do
1276 assert self.mclass.arity == arguments.length
1277
1278 self.need_anchor = false
1279 for t in arguments do
1280 if t.need_anchor then
1281 self.need_anchor = true
1282 break
1283 end
1284 end
1285
1286 self.to_s = "{mclass}[{arguments.join(", ")}]"
1287 end
1288
1289 # The short-name of the class, then the full-name of each type arguments within brackets.
1290 # Example: `"Map[String, List[Int]]"`
1291 redef var to_s is noinit
1292
1293 # The full-name of the class, then the full-name of each type arguments within brackets.
1294 # Example: `"core::Map[core::String, core::List[core::Int]]"`
1295 redef var full_name is lazy do
1296 var args = new Array[String]
1297 for t in arguments do
1298 args.add t.full_name
1299 end
1300 return "{mclass.full_name}[{args.join(", ")}]"
1301 end
1302
1303 redef var c_name is lazy do
1304 var res = mclass.c_name
1305 # Note: because the arity is known, a prefix notation is enough
1306 for t in arguments do
1307 res += "__"
1308 res += t.c_name
1309 end
1310 return res.to_s
1311 end
1312
1313 redef var need_anchor is noinit
1314
1315 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1316 do
1317 if not need_anchor then return self
1318 assert can_resolve_for(mtype, anchor, mmodule)
1319 var types = new Array[MType]
1320 for t in arguments do
1321 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1322 end
1323 return mclass.get_mtype(types)
1324 end
1325
1326 redef fun can_resolve_for(mtype, anchor, mmodule)
1327 do
1328 if not need_anchor then return true
1329 for t in arguments do
1330 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1331 end
1332 return true
1333 end
1334
1335
1336 redef fun depth
1337 do
1338 var dmax = 0
1339 for a in self.arguments do
1340 var d = a.depth
1341 if d > dmax then dmax = d
1342 end
1343 return dmax + 1
1344 end
1345
1346 redef fun length
1347 do
1348 var res = 1
1349 for a in self.arguments do
1350 res += a.length
1351 end
1352 return res
1353 end
1354 end
1355
1356 # A formal type (either virtual of parametric).
1357 #
1358 # The main issue with formal types is that they offer very little information on their own
1359 # and need a context (anchor and mmodule) to be useful.
1360 abstract class MFormalType
1361 super MType
1362
1363 redef var as_notnull = new MNotNullType(self) is lazy
1364 end
1365
1366 # A virtual formal type.
1367 class MVirtualType
1368 super MFormalType
1369
1370 # The property associated with the type.
1371 # Its the definitions of this property that determine the bound or the virtual type.
1372 var mproperty: MVirtualTypeProp
1373
1374 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1375
1376 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1377 do
1378 return lookup_single_definition(mmodule, resolved_receiver).bound or else new MBottomType(model)
1379 end
1380
1381 private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef
1382 do
1383 assert not resolved_receiver.need_anchor
1384 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1385 if props.is_empty then
1386 abort
1387 else if props.length == 1 then
1388 return props.first
1389 end
1390 var types = new ArraySet[MType]
1391 var res = props.first
1392 for p in props do
1393 types.add(p.bound.as(not null))
1394 if not res.is_fixed then res = p
1395 end
1396 if types.length == 1 then
1397 return res
1398 end
1399 abort
1400 end
1401
1402 # A VT is fixed when:
1403 # * the VT is (re-)defined with the annotation `is fixed`
1404 # * the VT is (indirectly) bound to an enum class (see `enum_kind`) since there is no subtype possible
1405 # * the receiver is an enum class since there is no subtype possible
1406 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1407 do
1408 assert not resolved_receiver.need_anchor
1409 resolved_receiver = resolved_receiver.undecorate
1410 assert resolved_receiver isa MClassType # It is the only remaining type
1411
1412 var prop = lookup_single_definition(mmodule, resolved_receiver)
1413 var res = prop.bound
1414 if res == null then return new MBottomType(model)
1415
1416 # Recursively lookup the fixed result
1417 res = res.lookup_fixed(mmodule, resolved_receiver)
1418
1419 # 1. For a fixed VT, return the resolved bound
1420 if prop.is_fixed then return res
1421
1422 # 2. For a enum boud, return the bound
1423 if res isa MClassType and res.mclass.kind == enum_kind then return res
1424
1425 # 3. for a enum receiver return the bound
1426 if resolved_receiver.mclass.kind == enum_kind then return res
1427
1428 return self
1429 end
1430
1431 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1432 do
1433 if not cleanup_virtual then return self
1434 assert can_resolve_for(mtype, anchor, mmodule)
1435 # self is a virtual type declared (or inherited) in mtype
1436 # The point of the function it to get the bound of the virtual type that make sense for mtype
1437 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1438 #print "{class_name}: {self}/{mtype}/{anchor}?"
1439 var resolved_receiver
1440 if mtype.need_anchor then
1441 assert anchor != null
1442 resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true)
1443 else
1444 resolved_receiver = mtype
1445 end
1446 # Now, we can get the bound
1447 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1448 # The bound is exactly as declared in the "type" property, so we must resolve it again
1449 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1450
1451 return res
1452 end
1453
1454 redef fun can_resolve_for(mtype, anchor, mmodule)
1455 do
1456 if mtype.need_anchor then
1457 assert anchor != null
1458 mtype = mtype.anchor_to(mmodule, anchor)
1459 end
1460 return mtype.has_mproperty(mmodule, mproperty)
1461 end
1462
1463 redef fun to_s do return self.mproperty.to_s
1464
1465 redef fun full_name do return self.mproperty.full_name
1466
1467 redef fun c_name do return self.mproperty.c_name
1468 end
1469
1470 # The type associated to a formal parameter generic type of a class
1471 #
1472 # Each parameter type is associated to a specific class.
1473 # It means that all refinements of a same class "share" the parameter type,
1474 # but that a generic subclass has its own parameter types.
1475 #
1476 # However, in the sense of the meta-model, a parameter type of a class is
1477 # a valid type in a subclass. The "in the sense of the meta-model" is
1478 # important because, in the Nit language, the programmer cannot refers
1479 # directly to the parameter types of the super-classes.
1480 #
1481 # Example:
1482 #
1483 # class A[E]
1484 # fun e: E is abstract
1485 # end
1486 # class B[F]
1487 # super A[Array[F]]
1488 # end
1489 #
1490 # In the class definition B[F], `F` is a valid type but `E` is not.
1491 # However, `self.e` is a valid method call, and the signature of `e` is
1492 # declared `e: E`.
1493 #
1494 # Note that parameter types are shared among class refinements.
1495 # Therefore parameter only have an internal name (see `to_s` for details).
1496 class MParameterType
1497 super MFormalType
1498
1499 # The generic class where the parameter belong
1500 var mclass: MClass
1501
1502 redef fun model do return self.mclass.intro_mmodule.model
1503
1504 # The position of the parameter (0 for the first parameter)
1505 # FIXME: is `position` a better name?
1506 var rank: Int
1507
1508 redef var name
1509
1510 redef fun to_s do return name
1511
1512 redef var full_name is lazy do return "{mclass.full_name}::{name}"
1513
1514 redef var c_name is lazy do return mclass.c_name + "__" + "#{name}".to_cmangle
1515
1516 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1517 do
1518 assert not resolved_receiver.need_anchor
1519 resolved_receiver = resolved_receiver.undecorate
1520 assert resolved_receiver isa MClassType # It is the only remaining type
1521 var goalclass = self.mclass
1522 if resolved_receiver.mclass == goalclass then
1523 return resolved_receiver.arguments[self.rank]
1524 end
1525 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1526 for t in supertypes do
1527 if t.mclass == goalclass then
1528 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1529 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1530 var res = t.arguments[self.rank]
1531 return res
1532 end
1533 end
1534 abort
1535 end
1536
1537 # A PT is fixed when:
1538 # * Its bound is a enum class (see `enum_kind`).
1539 # The PT is just useless, but it is still a case.
1540 # * More usually, the `resolved_receiver` is a subclass of `self.mclass`,
1541 # so it is necessarily fixed in a `super` clause, either with a normal type
1542 # or with another PT.
1543 # See `resolve_for` for examples about related issues.
1544 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1545 do
1546 assert not resolved_receiver.need_anchor
1547 resolved_receiver = resolved_receiver.undecorate
1548 assert resolved_receiver isa MClassType # It is the only remaining type
1549 var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false)
1550 return res
1551 end
1552
1553 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1554 do
1555 assert can_resolve_for(mtype, anchor, mmodule)
1556 #print "{class_name}: {self}/{mtype}/{anchor}?"
1557
1558 if mtype isa MGenericType and mtype.mclass == self.mclass then
1559 var res = mtype.arguments[self.rank]
1560 if anchor != null and res.need_anchor then
1561 # Maybe the result can be resolved more if are bound to a final class
1562 var r2 = res.anchor_to(mmodule, anchor)
1563 if r2 isa MClassType and r2.mclass.kind == enum_kind then return r2
1564 end
1565 return res
1566 end
1567
1568 # self is a parameter type of mtype (or of a super-class of mtype)
1569 # The point of the function it to get the bound of the virtual type that make sense for mtype
1570 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1571 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1572 var resolved_receiver
1573 if mtype.need_anchor then
1574 assert anchor != null
1575 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1576 else
1577 resolved_receiver = mtype
1578 end
1579 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1580 if resolved_receiver isa MParameterType then
1581 assert anchor != null
1582 assert resolved_receiver.mclass == anchor.mclass
1583 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1584 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1585 end
1586 assert resolved_receiver isa MClassType # It is the only remaining type
1587
1588 # Eh! The parameter is in the current class.
1589 # So we return the corresponding argument, no mater what!
1590 if resolved_receiver.mclass == self.mclass then
1591 var res = resolved_receiver.arguments[self.rank]
1592 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1593 return res
1594 end
1595
1596 if resolved_receiver.need_anchor then
1597 assert anchor != null
1598 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1599 end
1600 # Now, we can get the bound
1601 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1602 # The bound is exactly as declared in the "type" property, so we must resolve it again
1603 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1604
1605 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1606
1607 return res
1608 end
1609
1610 redef fun can_resolve_for(mtype, anchor, mmodule)
1611 do
1612 if mtype.need_anchor then
1613 assert anchor != null
1614 mtype = mtype.anchor_to(mmodule, anchor)
1615 end
1616 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1617 end
1618 end
1619
1620 # A type that decorates another type.
1621 #
1622 # The point of this class is to provide a common implementation of sevices that just forward to the original type.
1623 # Specific decorator are expected to redefine (or to extend) the default implementation as this suit them.
1624 abstract class MProxyType
1625 super MType
1626 # The base type
1627 var mtype: MType
1628
1629 redef fun model do return self.mtype.model
1630 redef fun need_anchor do return mtype.need_anchor
1631 redef fun as_nullable do return mtype.as_nullable
1632 redef fun as_notnull do return mtype.as_notnull
1633 redef fun undecorate do return mtype.undecorate
1634 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1635 do
1636 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1637 return res
1638 end
1639
1640 redef fun can_resolve_for(mtype, anchor, mmodule)
1641 do
1642 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1643 end
1644
1645 redef fun lookup_fixed(mmodule, resolved_receiver)
1646 do
1647 var t = mtype.lookup_fixed(mmodule, resolved_receiver)
1648 return t
1649 end
1650
1651 redef fun depth do return self.mtype.depth
1652
1653 redef fun length do return self.mtype.length
1654
1655 redef fun collect_mclassdefs(mmodule)
1656 do
1657 assert not self.need_anchor
1658 return self.mtype.collect_mclassdefs(mmodule)
1659 end
1660
1661 redef fun collect_mclasses(mmodule)
1662 do
1663 assert not self.need_anchor
1664 return self.mtype.collect_mclasses(mmodule)
1665 end
1666
1667 redef fun collect_mtypes(mmodule)
1668 do
1669 assert not self.need_anchor
1670 return self.mtype.collect_mtypes(mmodule)
1671 end
1672 end
1673
1674 # A type prefixed with "nullable"
1675 class MNullableType
1676 super MProxyType
1677
1678 init
1679 do
1680 self.to_s = "nullable {mtype}"
1681 end
1682
1683 redef var to_s is noinit
1684
1685 redef var full_name is lazy do return "nullable {mtype.full_name}"
1686
1687 redef var c_name is lazy do return "nullable__{mtype.c_name}"
1688
1689 redef fun as_nullable do return self
1690 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1691 do
1692 var res = super
1693 return res.as_nullable
1694 end
1695
1696 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable`
1697 redef fun lookup_fixed(mmodule, resolved_receiver)
1698 do
1699 var t = super
1700 if t == mtype then return self
1701 return t.as_nullable
1702 end
1703 end
1704
1705 # A non-null version of a formal type.
1706 #
1707 # When a formal type in bounded to a nullable type, this is the type of the not null version of it.
1708 class MNotNullType
1709 super MProxyType
1710
1711 redef fun to_s do return "not null {mtype}"
1712 redef var full_name is lazy do return "not null {mtype.full_name}"
1713 redef var c_name is lazy do return "notnull__{mtype.c_name}"
1714
1715 redef fun as_notnull do return self
1716
1717 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1718 do
1719 var res = super
1720 return res.as_notnull
1721 end
1722
1723 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_notnull`
1724 redef fun lookup_fixed(mmodule, resolved_receiver)
1725 do
1726 var t = super
1727 if t == mtype then return self
1728 return t.as_notnull
1729 end
1730 end
1731
1732 # The type of the only value null
1733 #
1734 # The is only one null type per model, see `MModel::null_type`.
1735 class MNullType
1736 super MType
1737 redef var model
1738 redef fun to_s do return "null"
1739 redef fun full_name do return "null"
1740 redef fun c_name do return "null"
1741 redef fun as_nullable do return self
1742
1743 redef var as_notnull = new MBottomType(model) is lazy
1744 redef fun need_anchor do return false
1745 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1746 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1747
1748 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1749
1750 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1751
1752 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1753 end
1754
1755 # The special universal most specific type.
1756 #
1757 # This type is intended to be only used internally for type computation or analysis and should not be exposed to the user.
1758 # The bottom type can de used to denote things that are absurd, dead, or the absence of knowledge.
1759 #
1760 # Semantically it is the singleton `null.as_notnull`.
1761 class MBottomType
1762 super MType
1763 redef var model
1764 redef fun to_s do return "bottom"
1765 redef fun full_name do return "bottom"
1766 redef fun c_name do return "bottom"
1767 redef fun as_nullable do return model.null_type
1768 redef fun as_notnull do return self
1769 redef fun need_anchor do return false
1770 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1771 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1772
1773 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1774
1775 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1776
1777 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1778 end
1779
1780 # A signature of a method
1781 class MSignature
1782 super MType
1783
1784 # The each parameter (in order)
1785 var mparameters: Array[MParameter]
1786
1787 # Returns a parameter named `name`, if any.
1788 fun mparameter_by_name(name: String): nullable MParameter
1789 do
1790 for p in mparameters do
1791 if p.name == name then return p
1792 end
1793 return null
1794 end
1795
1796 # The return type (null for a procedure)
1797 var return_mtype: nullable MType
1798
1799 redef fun depth
1800 do
1801 var dmax = 0
1802 var t = self.return_mtype
1803 if t != null then dmax = t.depth
1804 for p in mparameters do
1805 var d = p.mtype.depth
1806 if d > dmax then dmax = d
1807 end
1808 return dmax + 1
1809 end
1810
1811 redef fun length
1812 do
1813 var res = 1
1814 var t = self.return_mtype
1815 if t != null then res += t.length
1816 for p in mparameters do
1817 res += p.mtype.length
1818 end
1819 return res
1820 end
1821
1822 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1823 init
1824 do
1825 var vararg_rank = -1
1826 for i in [0..mparameters.length[ do
1827 var parameter = mparameters[i]
1828 if parameter.is_vararg then
1829 if vararg_rank >= 0 then
1830 # If there is more than one vararg,
1831 # consider that additional arguments cannot be mapped.
1832 vararg_rank = -1
1833 break
1834 end
1835 vararg_rank = i
1836 end
1837 end
1838 self.vararg_rank = vararg_rank
1839 end
1840
1841 # The rank of the main ellipsis (`...`) for vararg (starting from 0).
1842 # value is -1 if there is no vararg.
1843 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1844 #
1845 # From a model POV, a signature can contain more than one vararg parameter,
1846 # the `vararg_rank` just indicates the one that will receive the additional arguments.
1847 # However, currently, if there is more that one vararg parameter, no one will be the main one,
1848 # and additional arguments will be refused.
1849 var vararg_rank: Int is noinit
1850
1851 # The number of parameters
1852 fun arity: Int do return mparameters.length
1853
1854 redef fun to_s
1855 do
1856 var b = new FlatBuffer
1857 if not mparameters.is_empty then
1858 b.append("(")
1859 for i in [0..mparameters.length[ do
1860 var mparameter = mparameters[i]
1861 if i > 0 then b.append(", ")
1862 b.append(mparameter.name)
1863 b.append(": ")
1864 b.append(mparameter.mtype.to_s)
1865 if mparameter.is_vararg then
1866 b.append("...")
1867 end
1868 end
1869 b.append(")")
1870 end
1871 var ret = self.return_mtype
1872 if ret != null then
1873 b.append(": ")
1874 b.append(ret.to_s)
1875 end
1876 return b.to_s
1877 end
1878
1879 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
1880 do
1881 var params = new Array[MParameter]
1882 for p in self.mparameters do
1883 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1884 end
1885 var ret = self.return_mtype
1886 if ret != null then
1887 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1888 end
1889 var res = new MSignature(params, ret)
1890 return res
1891 end
1892 end
1893
1894 # A parameter in a signature
1895 class MParameter
1896 super MEntity
1897
1898 # The name of the parameter
1899 redef var name
1900
1901 # The static type of the parameter
1902 var mtype: MType
1903
1904 # Is the parameter a vararg?
1905 var is_vararg: Bool
1906
1907 redef fun to_s
1908 do
1909 if is_vararg then
1910 return "{name}: {mtype}..."
1911 else
1912 return "{name}: {mtype}"
1913 end
1914 end
1915
1916 # Returns a new parameter with the `mtype` resolved.
1917 # See `MType::resolve_for` for details.
1918 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
1919 do
1920 if not self.mtype.need_anchor then return self
1921 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1922 var res = new MParameter(self.name, newtype, self.is_vararg)
1923 return res
1924 end
1925
1926 redef fun model do return mtype.model
1927 end
1928
1929 # A service (global property) that generalize method, attribute, etc.
1930 #
1931 # `MProperty` are global to the model; it means that a `MProperty` is not bound
1932 # to a specific `MModule` nor a specific `MClass`.
1933 #
1934 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
1935 # and the other in subclasses and in refinements.
1936 #
1937 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
1938 # of any dynamic type).
1939 # For instance, a call site "x.foo" is associated to a `MProperty`.
1940 abstract class MProperty
1941 super MEntity
1942
1943 # The associated MPropDef subclass.
1944 # The two specialization hierarchy are symmetric.
1945 type MPROPDEF: MPropDef
1946
1947 # The classdef that introduce the property
1948 # While a property is not bound to a specific module, or class,
1949 # the introducing mclassdef is used for naming and visibility
1950 var intro_mclassdef: MClassDef
1951
1952 # The (short) name of the property
1953 redef var name
1954
1955 # The canonical name of the property.
1956 #
1957 # It is currently the short-`name` prefixed by the short-name of the class and the full-name of the module.
1958 # Example: "my_package::my_module::MyClass::my_method"
1959 #
1960 # The full-name of the module is needed because two distinct modules of the same package can
1961 # still refine the same class and introduce homonym properties.
1962 #
1963 # For public properties not introduced by refinement, the module name is not used.
1964 #
1965 # Example: `my_package::MyClass::My_method`
1966 redef var full_name is lazy do
1967 if intro_mclassdef.is_intro then
1968 return "{intro_mclassdef.mmodule.namespace_for(visibility)}::{intro_mclassdef.mclass.name}::{name}"
1969 else
1970 return "{intro_mclassdef.mmodule.full_name}::{intro_mclassdef.mclass.name}::{name}"
1971 end
1972 end
1973
1974 redef var c_name is lazy do
1975 # FIXME use `namespace_for`
1976 return "{intro_mclassdef.mmodule.c_name}__{intro_mclassdef.mclass.name.to_cmangle}__{name.to_cmangle}"
1977 end
1978
1979 # The visibility of the property
1980 var visibility: MVisibility
1981
1982 # Is the property usable as an initializer?
1983 var is_autoinit = false is writable
1984
1985 init
1986 do
1987 intro_mclassdef.intro_mproperties.add(self)
1988 var model = intro_mclassdef.mmodule.model
1989 model.mproperties_by_name.add_one(name, self)
1990 model.mproperties.add(self)
1991 end
1992
1993 # All definitions of the property.
1994 # The first is the introduction,
1995 # The other are redefinitions (in refinements and in subclasses)
1996 var mpropdefs = new Array[MPROPDEF]
1997
1998 # The definition that introduces the property.
1999 #
2000 # Warning: such a definition may not exist in the early life of the object.
2001 # In this case, the method will abort.
2002 var intro: MPROPDEF is noinit
2003
2004 redef fun model do return intro.model
2005
2006 # Alias for `name`
2007 redef fun to_s do return name
2008
2009 # Return the most specific property definitions defined or inherited by a type.
2010 # The selection knows that refinement is stronger than specialization;
2011 # however, in case of conflict more than one property are returned.
2012 # If mtype does not know mproperty then an empty array is returned.
2013 #
2014 # If you want the really most specific property, then look at `lookup_first_definition`
2015 #
2016 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2017 # ENSURE: `not mtype.has_mproperty(mmodule, self) == result.is_empty`
2018 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2019 do
2020 assert not mtype.need_anchor
2021 mtype = mtype.undecorate
2022
2023 var cache = self.lookup_definitions_cache[mmodule, mtype]
2024 if cache != null then return cache
2025
2026 #print "select prop {mproperty} for {mtype} in {self}"
2027 # First, select all candidates
2028 var candidates = new Array[MPROPDEF]
2029 for mpropdef in self.mpropdefs do
2030 # If the definition is not imported by the module, then skip
2031 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2032 # If the definition is not inherited by the type, then skip
2033 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2034 # Else, we keep it
2035 candidates.add(mpropdef)
2036 end
2037 # Fast track for only one candidate
2038 if candidates.length <= 1 then
2039 self.lookup_definitions_cache[mmodule, mtype] = candidates
2040 return candidates
2041 end
2042
2043 # Second, filter the most specific ones
2044 return select_most_specific(mmodule, candidates)
2045 end
2046
2047 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2048
2049 # Return the most specific property definitions inherited by a type.
2050 # The selection knows that refinement is stronger than specialization;
2051 # however, in case of conflict more than one property are returned.
2052 # If mtype does not know mproperty then an empty array is returned.
2053 #
2054 # If you want the really most specific property, then look at `lookup_next_definition`
2055 #
2056 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2057 # ENSURE: `not mtype.has_mproperty(mmodule, self) implies result.is_empty`
2058 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2059 do
2060 assert not mtype.need_anchor
2061 mtype = mtype.undecorate
2062
2063 # First, select all candidates
2064 var candidates = new Array[MPROPDEF]
2065 for mpropdef in self.mpropdefs do
2066 # If the definition is not imported by the module, then skip
2067 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2068 # If the definition is not inherited by the type, then skip
2069 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2070 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
2071 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
2072 # Else, we keep it
2073 candidates.add(mpropdef)
2074 end
2075 # Fast track for only one candidate
2076 if candidates.length <= 1 then return candidates
2077
2078 # Second, filter the most specific ones
2079 return select_most_specific(mmodule, candidates)
2080 end
2081
2082 # Return an array containing olny the most specific property definitions
2083 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
2084 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
2085 do
2086 var res = new Array[MPROPDEF]
2087 for pd1 in candidates do
2088 var cd1 = pd1.mclassdef
2089 var c1 = cd1.mclass
2090 var keep = true
2091 for pd2 in candidates do
2092 if pd2 == pd1 then continue # do not compare with self!
2093 var cd2 = pd2.mclassdef
2094 var c2 = cd2.mclass
2095 if c2.mclass_type == c1.mclass_type then
2096 if cd2.mmodule.in_importation < cd1.mmodule then
2097 # cd2 refines cd1; therefore we skip pd1
2098 keep = false
2099 break
2100 end
2101 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
2102 # cd2 < cd1; therefore we skip pd1
2103 keep = false
2104 break
2105 end
2106 end
2107 if keep then
2108 res.add(pd1)
2109 end
2110 end
2111 if res.is_empty then
2112 print "All lost! {candidates.join(", ")}"
2113 # FIXME: should be abort!
2114 end
2115 return res
2116 end
2117
2118 # Return the most specific definition in the linearization of `mtype`.
2119 #
2120 # If you want to know the next properties in the linearization,
2121 # look at `MPropDef::lookup_next_definition`.
2122 #
2123 # FIXME: the linearization is still unspecified
2124 #
2125 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2126 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2127 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
2128 do
2129 return lookup_all_definitions(mmodule, mtype).first
2130 end
2131
2132 # Return all definitions in a linearization order
2133 # Most specific first, most general last
2134 #
2135 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2136 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2137 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2138 do
2139 mtype = mtype.undecorate
2140
2141 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
2142 if cache != null then return cache
2143
2144 assert not mtype.need_anchor
2145 assert mtype.has_mproperty(mmodule, self)
2146
2147 #print "select prop {mproperty} for {mtype} in {self}"
2148 # First, select all candidates
2149 var candidates = new Array[MPROPDEF]
2150 for mpropdef in self.mpropdefs do
2151 # If the definition is not imported by the module, then skip
2152 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2153 # If the definition is not inherited by the type, then skip
2154 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2155 # Else, we keep it
2156 candidates.add(mpropdef)
2157 end
2158 # Fast track for only one candidate
2159 if candidates.length <= 1 then
2160 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2161 return candidates
2162 end
2163
2164 mmodule.linearize_mpropdefs(candidates)
2165 candidates = candidates.reversed
2166 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2167 return candidates
2168 end
2169
2170 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2171 end
2172
2173 # A global method
2174 class MMethod
2175 super MProperty
2176
2177 redef type MPROPDEF: MMethodDef
2178
2179 # Is the property defined at the top_level of the module?
2180 # Currently such a property are stored in `Object`
2181 var is_toplevel: Bool = false is writable
2182
2183 # Is the property a constructor?
2184 # Warning, this property can be inherited by subclasses with or without being a constructor
2185 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
2186 var is_init: Bool = false is writable
2187
2188 # The constructor is a (the) root init with empty signature but a set of initializers
2189 var is_root_init: Bool = false is writable
2190
2191 # Is the property a 'new' constructor?
2192 var is_new: Bool = false is writable
2193
2194 # Is the property a legal constructor for a given class?
2195 # As usual, visibility is not considered.
2196 # FIXME not implemented
2197 fun is_init_for(mclass: MClass): Bool
2198 do
2199 return self.is_init
2200 end
2201
2202 # A specific method that is safe to call on null.
2203 # Currently, only `==`, `!=` and `is_same_instance` are safe
2204 fun is_null_safe: Bool do return name == "==" or name == "!=" or name == "is_same_instance"
2205 end
2206
2207 # A global attribute
2208 class MAttribute
2209 super MProperty
2210
2211 redef type MPROPDEF: MAttributeDef
2212
2213 end
2214
2215 # A global virtual type
2216 class MVirtualTypeProp
2217 super MProperty
2218
2219 redef type MPROPDEF: MVirtualTypeDef
2220
2221 # The formal type associated to the virtual type property
2222 var mvirtualtype = new MVirtualType(self)
2223 end
2224
2225 # A definition of a property (local property)
2226 #
2227 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
2228 # specific class definition (which belong to a specific module)
2229 abstract class MPropDef
2230 super MEntity
2231
2232 # The associated `MProperty` subclass.
2233 # the two specialization hierarchy are symmetric
2234 type MPROPERTY: MProperty
2235
2236 # Self class
2237 type MPROPDEF: MPropDef
2238
2239 # The class definition where the property definition is
2240 var mclassdef: MClassDef
2241
2242 # The associated global property
2243 var mproperty: MPROPERTY
2244
2245 redef var location: Location
2246
2247 init
2248 do
2249 mclassdef.mpropdefs.add(self)
2250 mproperty.mpropdefs.add(self)
2251 if mproperty.intro_mclassdef == mclassdef then
2252 assert not isset mproperty._intro
2253 mproperty.intro = self
2254 end
2255 self.to_s = "{mclassdef}${mproperty}"
2256 end
2257
2258 # Actually the name of the `mproperty`
2259 redef fun name do return mproperty.name
2260
2261 # The full-name of mpropdefs combine the information about the `classdef` and the `mproperty`.
2262 #
2263 # Therefore the combination of identifiers is awful,
2264 # the worst case being
2265 #
2266 # * a property "p::m::A::x"
2267 # * redefined in a refinement of a class "q::n::B"
2268 # * in a module "r::o"
2269 # * so "r::o$q::n::B$p::m::A::x"
2270 #
2271 # Fortunately, the full-name is simplified when entities are repeated.
2272 # For the previous case, the simplest form is "p$A$x".
2273 redef var full_name is lazy do
2274 var res = new FlatBuffer
2275
2276 # The first part is the mclassdef. Worst case is "r::o$q::n::B"
2277 res.append mclassdef.full_name
2278
2279 res.append "$"
2280
2281 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2282 # intro are unambiguous in a class
2283 res.append name
2284 else
2285 # Just try to simplify each part
2286 if mclassdef.mmodule.mpackage != mproperty.intro_mclassdef.mmodule.mpackage then
2287 # precise "p::m" only if "p" != "r"
2288 res.append mproperty.intro_mclassdef.mmodule.namespace_for(mproperty.visibility)
2289 res.append "::"
2290 else if mproperty.visibility <= private_visibility then
2291 # Same package ("p"=="q"), but private visibility,
2292 # does the module part ("::m") need to be displayed
2293 if mclassdef.mmodule.namespace_for(mclassdef.mclass.visibility) != mproperty.intro_mclassdef.mmodule.mpackage then
2294 res.append "::"
2295 res.append mproperty.intro_mclassdef.mmodule.name
2296 res.append "::"
2297 end
2298 end
2299 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2300 # precise "B" only if not the same class than "A"
2301 res.append mproperty.intro_mclassdef.name
2302 res.append "::"
2303 end
2304 # Always use the property name "x"
2305 res.append mproperty.name
2306 end
2307 return res.to_s
2308 end
2309
2310 redef var c_name is lazy do
2311 var res = new FlatBuffer
2312 res.append mclassdef.c_name
2313 res.append "___"
2314 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2315 res.append name.to_cmangle
2316 else
2317 if mclassdef.mmodule != mproperty.intro_mclassdef.mmodule then
2318 res.append mproperty.intro_mclassdef.mmodule.c_name
2319 res.append "__"
2320 end
2321 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2322 res.append mproperty.intro_mclassdef.name.to_cmangle
2323 res.append "__"
2324 end
2325 res.append mproperty.name.to_cmangle
2326 end
2327 return res.to_s
2328 end
2329
2330 redef fun model do return mclassdef.model
2331
2332 # Internal name combining the module, the class and the property
2333 # Example: "mymodule$MyClass$mymethod"
2334 redef var to_s is noinit
2335
2336 # Is self the definition that introduce the property?
2337 fun is_intro: Bool do return isset mproperty._intro and mproperty.intro == self
2338
2339 # Return the next definition in linearization of `mtype`.
2340 #
2341 # This method is used to determine what method is called by a super.
2342 #
2343 # REQUIRE: `not mtype.need_anchor`
2344 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
2345 do
2346 assert not mtype.need_anchor
2347
2348 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
2349 var i = mpropdefs.iterator
2350 while i.is_ok and i.item != self do i.next
2351 assert has_property: i.is_ok
2352 i.next
2353 assert has_next_property: i.is_ok
2354 return i.item
2355 end
2356 end
2357
2358 # A local definition of a method
2359 class MMethodDef
2360 super MPropDef
2361
2362 redef type MPROPERTY: MMethod
2363 redef type MPROPDEF: MMethodDef
2364
2365 # The signature attached to the property definition
2366 var msignature: nullable MSignature = null is writable
2367
2368 # The signature attached to the `new` call on a root-init
2369 # This is a concatenation of the signatures of the initializers
2370 #
2371 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2372 var new_msignature: nullable MSignature = null is writable
2373
2374 # List of initialisers to call in root-inits
2375 #
2376 # They could be setters or attributes
2377 #
2378 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2379 var initializers = new Array[MProperty]
2380
2381 # Is the method definition abstract?
2382 var is_abstract: Bool = false is writable
2383
2384 # Is the method definition intern?
2385 var is_intern = false is writable
2386
2387 # Is the method definition extern?
2388 var is_extern = false is writable
2389
2390 # An optional constant value returned in functions.
2391 #
2392 # Only some specific primitife value are accepted by engines.
2393 # Is used when there is no better implementation available.
2394 #
2395 # Currently used only for the implementation of the `--define`
2396 # command-line option.
2397 # SEE: module `mixin`.
2398 var constant_value: nullable Object = null is writable
2399 end
2400
2401 # A local definition of an attribute
2402 class MAttributeDef
2403 super MPropDef
2404
2405 redef type MPROPERTY: MAttribute
2406 redef type MPROPDEF: MAttributeDef
2407
2408 # The static type of the attribute
2409 var static_mtype: nullable MType = null is writable
2410 end
2411
2412 # A local definition of a virtual type
2413 class MVirtualTypeDef
2414 super MPropDef
2415
2416 redef type MPROPERTY: MVirtualTypeProp
2417 redef type MPROPDEF: MVirtualTypeDef
2418
2419 # The bound of the virtual type
2420 var bound: nullable MType = null is writable
2421
2422 # Is the bound fixed?
2423 var is_fixed = false is writable
2424 end
2425
2426 # A kind of class.
2427 #
2428 # * `abstract_kind`
2429 # * `concrete_kind`
2430 # * `interface_kind`
2431 # * `enum_kind`
2432 # * `extern_kind`
2433 #
2434 # Note this class is basically an enum.
2435 # FIXME: use a real enum once user-defined enums are available
2436 class MClassKind
2437 redef var to_s
2438
2439 # Is a constructor required?
2440 var need_init: Bool
2441
2442 # TODO: private init because enumeration.
2443
2444 # Can a class of kind `self` specializes a class of kine `other`?
2445 fun can_specialize(other: MClassKind): Bool
2446 do
2447 if other == interface_kind then return true # everybody can specialize interfaces
2448 if self == interface_kind or self == enum_kind then
2449 # no other case for interfaces
2450 return false
2451 else if self == extern_kind then
2452 # only compatible with themselves
2453 return self == other
2454 else if other == enum_kind or other == extern_kind then
2455 # abstract_kind and concrete_kind are incompatible
2456 return false
2457 end
2458 # remain only abstract_kind and concrete_kind
2459 return true
2460 end
2461 end
2462
2463 # The class kind `abstract`
2464 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", true)
2465 # The class kind `concrete`
2466 fun concrete_kind: MClassKind do return once new MClassKind("class", true)
2467 # The class kind `interface`
2468 fun interface_kind: MClassKind do return once new MClassKind("interface", false)
2469 # The class kind `enum`
2470 fun enum_kind: MClassKind do return once new MClassKind("enum", false)
2471 # The class kind `extern`
2472 fun extern_kind: MClassKind do return once new MClassKind("extern class", false)