model: add MType::lookup_fixed
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class Model
34 # All known classes
35 var mclasses = new Array[MClass]
36
37 # All known properties
38 var mproperties = new Array[MProperty]
39
40 # Hierarchy of class definition.
41 #
42 # Each classdef is associated with its super-classdefs in regard to
43 # its module of definition.
44 var mclassdef_hierarchy = new POSet[MClassDef]
45
46 # Class-type hierarchy restricted to the introduction.
47 #
48 # The idea is that what is true on introduction is always true whatever
49 # the module considered.
50 # Therefore, this hierarchy is used for a fast positive subtype check.
51 #
52 # This poset will evolve in a monotonous way:
53 # * Two non connected nodes will remain unconnected
54 # * New nodes can appear with new edges
55 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
56
57 # Global overlapped class-type hierarchy.
58 # The hierarchy when all modules are combined.
59 # Therefore, this hierarchy is used for a fast negative subtype check.
60 #
61 # This poset will evolve in an anarchic way. Loops can even be created.
62 #
63 # FIXME decide what to do on loops
64 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
65
66 # Collections of classes grouped by their short name
67 private var mclasses_by_name = new MultiHashMap[String, MClass]
68
69 # Return all class named `name`.
70 #
71 # If such a class does not exist, null is returned
72 # (instead of an empty array)
73 #
74 # Visibility or modules are not considered
75 fun get_mclasses_by_name(name: String): nullable Array[MClass]
76 do
77 if mclasses_by_name.has_key(name) then
78 return mclasses_by_name[name]
79 else
80 return null
81 end
82 end
83
84 # Collections of properties grouped by their short name
85 private var mproperties_by_name = new MultiHashMap[String, MProperty]
86
87 # Return all properties named `name`.
88 #
89 # If such a property does not exist, null is returned
90 # (instead of an empty array)
91 #
92 # Visibility or modules are not considered
93 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
94 do
95 if not mproperties_by_name.has_key(name) then
96 return null
97 else
98 return mproperties_by_name[name]
99 end
100 end
101
102 # The only null type
103 var null_type = new MNullType(self)
104
105 # Build an ordered tree with from `concerns`
106 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
107 var seen = new HashSet[MConcern]
108 var res = new ConcernsTree
109
110 var todo = new Array[MConcern]
111 todo.add_all mconcerns
112
113 while not todo.is_empty do
114 var c = todo.pop
115 if seen.has(c) then continue
116 var pc = c.parent_concern
117 if pc == null then
118 res.add(null, c)
119 else
120 res.add(pc, c)
121 todo.add(pc)
122 end
123 seen.add(c)
124 end
125
126 return res
127 end
128 end
129
130 # An OrderedTree that can be easily refined for display purposes
131 class ConcernsTree
132 super OrderedTree[MConcern]
133 end
134
135 redef class MModule
136 # All the classes introduced in the module
137 var intro_mclasses = new Array[MClass]
138
139 # All the class definitions of the module
140 # (introduction and refinement)
141 var mclassdefs = new Array[MClassDef]
142
143 # Does the current module has a given class `mclass`?
144 # Return true if the mmodule introduces, refines or imports a class.
145 # Visibility is not considered.
146 fun has_mclass(mclass: MClass): Bool
147 do
148 return self.in_importation <= mclass.intro_mmodule
149 end
150
151 # Full hierarchy of introduced ans imported classes.
152 #
153 # Create a new hierarchy got by flattening the classes for the module
154 # and its imported modules.
155 # Visibility is not considered.
156 #
157 # Note: this function is expensive and is usually used for the main
158 # module of a program only. Do not use it to do you own subtype
159 # functions.
160 fun flatten_mclass_hierarchy: POSet[MClass]
161 do
162 var res = self.flatten_mclass_hierarchy_cache
163 if res != null then return res
164 res = new POSet[MClass]
165 for m in self.in_importation.greaters do
166 for cd in m.mclassdefs do
167 var c = cd.mclass
168 res.add_node(c)
169 for s in cd.supertypes do
170 res.add_edge(c, s.mclass)
171 end
172 end
173 end
174 self.flatten_mclass_hierarchy_cache = res
175 return res
176 end
177
178 # Sort a given array of classes using the linearization order of the module
179 # The most general is first, the most specific is last
180 fun linearize_mclasses(mclasses: Array[MClass])
181 do
182 self.flatten_mclass_hierarchy.sort(mclasses)
183 end
184
185 # Sort a given array of class definitions using the linearization order of the module
186 # the refinement link is stronger than the specialisation link
187 # The most general is first, the most specific is last
188 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
189 do
190 var sorter = new MClassDefSorter(self)
191 sorter.sort(mclassdefs)
192 end
193
194 # Sort a given array of property definitions using the linearization order of the module
195 # the refinement link is stronger than the specialisation link
196 # The most general is first, the most specific is last
197 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
198 do
199 var sorter = new MPropDefSorter(self)
200 sorter.sort(mpropdefs)
201 end
202
203 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
204
205 # The primitive type `Object`, the root of the class hierarchy
206 fun object_type: MClassType
207 do
208 var res = self.object_type_cache
209 if res != null then return res
210 res = self.get_primitive_class("Object").mclass_type
211 self.object_type_cache = res
212 return res
213 end
214
215 private var object_type_cache: nullable MClassType
216
217 # The type `Pointer`, super class to all extern classes
218 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
219
220 # The primitive type `Bool`
221 fun bool_type: MClassType
222 do
223 var res = self.bool_type_cache
224 if res != null then return res
225 res = self.get_primitive_class("Bool").mclass_type
226 self.bool_type_cache = res
227 return res
228 end
229
230 private var bool_type_cache: nullable MClassType
231
232 # The primitive type `Sys`, the main type of the program, if any
233 fun sys_type: nullable MClassType
234 do
235 var clas = self.model.get_mclasses_by_name("Sys")
236 if clas == null then return null
237 return get_primitive_class("Sys").mclass_type
238 end
239
240 # The primitive type `Finalizable`
241 # Used to tag classes that need to be finalized.
242 fun finalizable_type: nullable MClassType
243 do
244 var clas = self.model.get_mclasses_by_name("Finalizable")
245 if clas == null then return null
246 return get_primitive_class("Finalizable").mclass_type
247 end
248
249 # Force to get the primitive class named `name` or abort
250 fun get_primitive_class(name: String): MClass
251 do
252 var cla = self.model.get_mclasses_by_name(name)
253 if cla == null then
254 if name == "Bool" then
255 var c = new MClass(self, name, null, enum_kind, public_visibility)
256 var cladef = new MClassDef(self, c.mclass_type, new Location(null, 0,0,0,0))
257 return c
258 end
259 print("Fatal Error: no primitive class {name}")
260 exit(1)
261 end
262 if cla.length != 1 then
263 var msg = "Fatal Error: more than one primitive class {name}:"
264 for c in cla do msg += " {c.full_name}"
265 print msg
266 exit(1)
267 end
268 return cla.first
269 end
270
271 # Try to get the primitive method named `name` on the type `recv`
272 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
273 do
274 var props = self.model.get_mproperties_by_name(name)
275 if props == null then return null
276 var res: nullable MMethod = null
277 for mprop in props do
278 assert mprop isa MMethod
279 var intro = mprop.intro_mclassdef
280 for mclassdef in recv.mclassdefs do
281 if not self.in_importation.greaters.has(mclassdef.mmodule) then continue
282 if not mclassdef.in_hierarchy.greaters.has(intro) then continue
283 if res == null then
284 res = mprop
285 else if res != mprop then
286 print("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
287 abort
288 end
289 end
290 end
291 return res
292 end
293 end
294
295 private class MClassDefSorter
296 super Comparator
297 redef type COMPARED: MClassDef
298 var mmodule: MModule
299 redef fun compare(a, b)
300 do
301 var ca = a.mclass
302 var cb = b.mclass
303 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
304 return mmodule.model.mclassdef_hierarchy.compare(a, b)
305 end
306 end
307
308 private class MPropDefSorter
309 super Comparator
310 redef type COMPARED: MPropDef
311 var mmodule: MModule
312 redef fun compare(pa, pb)
313 do
314 var a = pa.mclassdef
315 var b = pb.mclassdef
316 var ca = a.mclass
317 var cb = b.mclass
318 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
319 return mmodule.model.mclassdef_hierarchy.compare(a, b)
320 end
321 end
322
323 # A named class
324 #
325 # `MClass` are global to the model; it means that a `MClass` is not bound to a
326 # specific `MModule`.
327 #
328 # This characteristic helps the reasoning about classes in a program since a
329 # single `MClass` object always denote the same class.
330 #
331 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
332 # These do not really have properties nor belong to a hierarchy since the property and the
333 # hierarchy of a class depends of the refinement in the modules.
334 #
335 # Most services on classes require the precision of a module, and no one can asks what are
336 # the super-classes of a class nor what are properties of a class without precising what is
337 # the module considered.
338 #
339 # For instance, during the typing of a source-file, the module considered is the module of the file.
340 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
341 # *is the method `foo` exists in the class `Bar` in the current module?*
342 #
343 # During some global analysis, the module considered may be the main module of the program.
344 class MClass
345 super MEntity
346
347 # The module that introduce the class
348 # While classes are not bound to a specific module,
349 # the introducing module is used for naming an visibility
350 var intro_mmodule: MModule
351
352 # The short name of the class
353 # In Nit, the name of a class cannot evolve in refinements
354 redef var name: String
355
356 # The canonical name of the class
357 # Example: `"owner::module::MyClass"`
358 fun full_name: String
359 do
360 return "{self.intro_mmodule.full_name}::{name}"
361 end
362
363 # The number of generic formal parameters
364 # 0 if the class is not generic
365 var arity: Int is noinit
366
367 # Each generic formal parameters in order.
368 # is empty if the class is not generic
369 var mparameters = new Array[MParameterType]
370
371 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
372 autoinit
373 do
374 if parameter_names == null then
375 self.arity = 0
376 else
377 self.arity = parameter_names.length
378 end
379
380 # Create the formal parameter types
381 if arity > 0 then
382 assert parameter_names != null
383 var mparametertypes = new Array[MParameterType]
384 for i in [0..arity[ do
385 var mparametertype = new MParameterType(self, i, parameter_names[i])
386 mparametertypes.add(mparametertype)
387 end
388 self.mparameters = mparametertypes
389 var mclass_type = new MGenericType(self, mparametertypes)
390 self.mclass_type = mclass_type
391 self.get_mtype_cache.add(mclass_type)
392 else
393 self.mclass_type = new MClassType(self)
394 end
395 end
396
397 # The kind of the class (interface, abstract class, etc.)
398 # In Nit, the kind of a class cannot evolve in refinements
399 var kind: MClassKind
400
401 # The visibility of the class
402 # In Nit, the visibility of a class cannot evolve in refinements
403 var visibility: MVisibility
404
405 init
406 do
407 intro_mmodule.intro_mclasses.add(self)
408 var model = intro_mmodule.model
409 model.mclasses_by_name.add_one(name, self)
410 model.mclasses.add(self)
411 end
412
413 redef fun model do return intro_mmodule.model
414
415 # All class definitions (introduction and refinements)
416 var mclassdefs = new Array[MClassDef]
417
418 # Alias for `name`
419 redef fun to_s do return self.name
420
421 # The definition that introduces the class.
422 #
423 # Warning: such a definition may not exist in the early life of the object.
424 # In this case, the method will abort.
425 var intro: MClassDef is noinit
426
427 # Return the class `self` in the class hierarchy of the module `mmodule`.
428 #
429 # SEE: `MModule::flatten_mclass_hierarchy`
430 # REQUIRE: `mmodule.has_mclass(self)`
431 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
432 do
433 return mmodule.flatten_mclass_hierarchy[self]
434 end
435
436 # The principal static type of the class.
437 #
438 # For non-generic class, mclass_type is the only `MClassType` based
439 # on self.
440 #
441 # For a generic class, the arguments are the formal parameters.
442 # i.e.: for the class Array[E:Object], the `mclass_type` is Array[E].
443 # If you want Array[Object] the see `MClassDef::bound_mtype`
444 #
445 # For generic classes, the mclass_type is also the way to get a formal
446 # generic parameter type.
447 #
448 # To get other types based on a generic class, see `get_mtype`.
449 #
450 # ENSURE: `mclass_type.mclass == self`
451 var mclass_type: MClassType is noinit
452
453 # Return a generic type based on the class
454 # Is the class is not generic, then the result is `mclass_type`
455 #
456 # REQUIRE: `mtype_arguments.length == self.arity`
457 fun get_mtype(mtype_arguments: Array[MType]): MClassType
458 do
459 assert mtype_arguments.length == self.arity
460 if self.arity == 0 then return self.mclass_type
461 for t in self.get_mtype_cache do
462 if t.arguments == mtype_arguments then
463 return t
464 end
465 end
466 var res = new MGenericType(self, mtype_arguments)
467 self.get_mtype_cache.add res
468 return res
469 end
470
471 private var get_mtype_cache = new Array[MGenericType]
472 end
473
474
475 # A definition (an introduction or a refinement) of a class in a module
476 #
477 # A `MClassDef` is associated with an explicit (or almost) definition of a
478 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
479 # a specific class and a specific module, and contains declarations like super-classes
480 # or properties.
481 #
482 # It is the class definitions that are the backbone of most things in the model:
483 # ClassDefs are defined with regard with other classdefs.
484 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
485 #
486 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
487 class MClassDef
488 super MEntity
489
490 # The module where the definition is
491 var mmodule: MModule
492
493 # The associated `MClass`
494 var mclass: MClass is noinit
495
496 # The bounded type associated to the mclassdef
497 #
498 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
499 # are the same type.
500 #
501 # Example:
502 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
503 # If you want Array[E], then see `mclass.mclass_type`
504 #
505 # ENSURE: `bound_mtype.mclass == self.mclass`
506 var bound_mtype: MClassType
507
508 # The origin of the definition
509 var location: Location
510
511 # Internal name combining the module and the class
512 # Example: "mymodule#MyClass"
513 redef var to_s: String is noinit
514
515 init
516 do
517 self.mclass = bound_mtype.mclass
518 mmodule.mclassdefs.add(self)
519 mclass.mclassdefs.add(self)
520 if mclass.intro_mmodule == mmodule then
521 assert not isset mclass._intro
522 mclass.intro = self
523 end
524 self.to_s = "{mmodule}#{mclass}"
525 end
526
527 # Actually the name of the `mclass`
528 redef fun name do return mclass.name
529
530 redef fun model do return mmodule.model
531
532 # All declared super-types
533 # FIXME: quite ugly but not better idea yet
534 var supertypes = new Array[MClassType]
535
536 # Register some super-types for the class (ie "super SomeType")
537 #
538 # The hierarchy must not already be set
539 # REQUIRE: `self.in_hierarchy == null`
540 fun set_supertypes(supertypes: Array[MClassType])
541 do
542 assert unique_invocation: self.in_hierarchy == null
543 var mmodule = self.mmodule
544 var model = mmodule.model
545 var mtype = self.bound_mtype
546
547 for supertype in supertypes do
548 self.supertypes.add(supertype)
549
550 # Register in full_type_specialization_hierarchy
551 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
552 # Register in intro_type_specialization_hierarchy
553 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
554 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
555 end
556 end
557
558 end
559
560 # Collect the super-types (set by set_supertypes) to build the hierarchy
561 #
562 # This function can only invoked once by class
563 # REQUIRE: `self.in_hierarchy == null`
564 # ENSURE: `self.in_hierarchy != null`
565 fun add_in_hierarchy
566 do
567 assert unique_invocation: self.in_hierarchy == null
568 var model = mmodule.model
569 var res = model.mclassdef_hierarchy.add_node(self)
570 self.in_hierarchy = res
571 var mtype = self.bound_mtype
572
573 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
574 # The simpliest way is to attach it to collect_mclassdefs
575 for mclassdef in mtype.collect_mclassdefs(mmodule) do
576 res.poset.add_edge(self, mclassdef)
577 end
578 end
579
580 # The view of the class definition in `mclassdef_hierarchy`
581 var in_hierarchy: nullable POSetElement[MClassDef] = null
582
583 # Is the definition the one that introduced `mclass`?
584 fun is_intro: Bool do return mclass.intro == self
585
586 # All properties introduced by the classdef
587 var intro_mproperties = new Array[MProperty]
588
589 # All property definitions in the class (introductions and redefinitions)
590 var mpropdefs = new Array[MPropDef]
591 end
592
593 # A global static type
594 #
595 # MType are global to the model; it means that a `MType` is not bound to a
596 # specific `MModule`.
597 # This characteristic helps the reasoning about static types in a program
598 # since a single `MType` object always denote the same type.
599 #
600 # However, because a `MType` is global, it does not really have properties
601 # nor have subtypes to a hierarchy since the property and the class hierarchy
602 # depends of a module.
603 # Moreover, virtual types an formal generic parameter types also depends on
604 # a receiver to have sense.
605 #
606 # Therefore, most method of the types require a module and an anchor.
607 # The module is used to know what are the classes and the specialization
608 # links.
609 # The anchor is used to know what is the bound of the virtual types and formal
610 # generic parameter types.
611 #
612 # MType are not directly usable to get properties. See the `anchor_to` method
613 # and the `MClassType` class.
614 #
615 # FIXME: the order of the parameters is not the best. We mus pick on from:
616 # * foo(mmodule, anchor, othertype)
617 # * foo(othertype, anchor, mmodule)
618 # * foo(anchor, mmodule, othertype)
619 # * foo(othertype, mmodule, anchor)
620 abstract class MType
621 super MEntity
622
623 redef fun name do return to_s
624
625 # Return true if `self` is an subtype of `sup`.
626 # The typing is done using the standard typing policy of Nit.
627 #
628 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
629 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
630 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
631 do
632 var sub = self
633 if sub == sup then return true
634 if anchor == null then
635 assert not sub.need_anchor
636 assert not sup.need_anchor
637 else
638 assert sub.can_resolve_for(anchor, null, mmodule)
639 assert sup.can_resolve_for(anchor, null, mmodule)
640 end
641
642 # First, resolve the formal types to a common version in the receiver
643 # The trick here is that fixed formal type will be associated to the bound
644 # And unfixed formal types will be associated to a canonical formal type.
645 if sub isa MParameterType or sub isa MVirtualType then
646 assert anchor != null
647 sub = sub.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, false)
648 end
649 if sup isa MParameterType or sup isa MVirtualType then
650 assert anchor != null
651 sup = sup.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, false)
652 end
653
654 # Does `sup` accept null or not?
655 # Discard the nullable marker if it exists
656 var sup_accept_null = false
657 if sup isa MNullableType then
658 sup_accept_null = true
659 sup = sup.mtype
660 else if sup isa MNullType then
661 sup_accept_null = true
662 end
663
664 # Can `sub` provide null or not?
665 # Thus we can match with `sup_accept_null`
666 # Also discard the nullable marker if it exists
667 if sub isa MNullableType then
668 if not sup_accept_null then return false
669 sub = sub.mtype
670 else if sub isa MNullType then
671 return sup_accept_null
672 end
673 # Now the case of direct null and nullable is over.
674
675 # A unfixed formal type can only accept itself
676 if sup isa MParameterType or sup isa MVirtualType then
677 return sub == sup
678 end
679
680 # If `sub` is a formal type, then it is accepted if its bound is accepted
681 if sub isa MParameterType or sub isa MVirtualType then
682 assert anchor != null
683 sub = sub.anchor_to(mmodule, anchor)
684
685 # Manage the second layer of null/nullable
686 if sub isa MNullableType then
687 if not sup_accept_null then return false
688 sub = sub.mtype
689 else if sub isa MNullType then
690 return sup_accept_null
691 end
692 end
693
694 assert sub isa MClassType # It is the only remaining type
695
696 if sup isa MNullType then
697 # `sup` accepts only null
698 return false
699 end
700
701 assert sup isa MClassType # It is the only remaining type
702
703 # Now both are MClassType, we need to dig
704
705 if sub == sup then return true
706
707 if anchor == null then anchor = sub # UGLY: any anchor will work
708 var resolved_sub = sub.anchor_to(mmodule, anchor)
709 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
710 if res == false then return false
711 if not sup isa MGenericType then return true
712 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
713 assert sub2.mclass == sup.mclass
714 for i in [0..sup.mclass.arity[ do
715 var sub_arg = sub2.arguments[i]
716 var sup_arg = sup.arguments[i]
717 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
718 if res == false then return false
719 end
720 return true
721 end
722
723 # The base class type on which self is based
724 #
725 # This base type is used to get property (an internally to perform
726 # unsafe type comparison).
727 #
728 # Beware: some types (like null) are not based on a class thus this
729 # method will crash
730 #
731 # Basically, this function transform the virtual types and parameter
732 # types to their bounds.
733 #
734 # Example
735 # class A end
736 # class B super A end
737 # class X end
738 # class Y super X end
739 # class G[T: A]
740 # type U: X
741 # end
742 # class H
743 # super G[B]
744 # redef type U: Y
745 # end
746 # Map[T,U] anchor_to H #-> Map[B,Y]
747 #
748 # Explanation of the example:
749 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
750 # because "redef type U: Y". Therefore, Map[T, U] is bound to
751 # Map[B, Y]
752 #
753 # ENSURE: `not self.need_anchor implies result == self`
754 # ENSURE: `not result.need_anchor`
755 fun anchor_to(mmodule: MModule, anchor: MClassType): MType
756 do
757 if not need_anchor then return self
758 assert not anchor.need_anchor
759 # Just resolve to the anchor and clear all the virtual types
760 var res = self.resolve_for(anchor, null, mmodule, true)
761 assert not res.need_anchor
762 return res
763 end
764
765 # Does `self` contain a virtual type or a formal generic parameter type?
766 # In order to remove those types, you usually want to use `anchor_to`.
767 fun need_anchor: Bool do return true
768
769 # Return the supertype when adapted to a class.
770 #
771 # In Nit, for each super-class of a type, there is a equivalent super-type.
772 #
773 # Example:
774 # class G[T, U] end
775 # class H[V] super G[V, Bool] end
776 # H[Int] supertype_to G #-> G[Int, Bool]
777 #
778 # REQUIRE: `super_mclass` is a super-class of `self`
779 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
780 # ENSURE: `result.mclass = super_mclass`
781 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
782 do
783 if super_mclass.arity == 0 then return super_mclass.mclass_type
784 if self isa MClassType and self.mclass == super_mclass then return self
785 var resolved_self
786 if self.need_anchor then
787 assert anchor != null
788 resolved_self = self.anchor_to(mmodule, anchor)
789 else
790 resolved_self = self
791 end
792 var supertypes = resolved_self.collect_mtypes(mmodule)
793 for supertype in supertypes do
794 if supertype.mclass == super_mclass then
795 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
796 return supertype.resolve_for(self, anchor, mmodule, false)
797 end
798 end
799 abort
800 end
801
802 # Replace formals generic types in self with resolved values in `mtype`
803 # If `cleanup_virtual` is true, then virtual types are also replaced
804 # with their bounds.
805 #
806 # This function returns self if `need_anchor` is false.
807 #
808 # ## Example 1
809 #
810 # class G[E] end
811 # class H[F] super G[F] end
812 # class X[Z] end
813 #
814 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
815 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
816 #
817 # Explanation of the example:
818 # * Array[E].need_anchor is true because there is a formal generic parameter type E
819 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
820 # * Since "H[F] super G[F]", E is in fact F for H
821 # * More specifically, in H[Int], E is Int
822 # * So, in H[Int], Array[E] is Array[Int]
823 #
824 # This function is mainly used to inherit a signature.
825 # Because, unlike `anchor_to`, we do not want a full resolution of
826 # a type but only an adapted version of it.
827 #
828 # ## Example 2
829 #
830 # class A[E]
831 # fun foo(e:E):E is abstract
832 # end
833 # class B super A[Int] end
834 #
835 # The signature on foo is (e: E): E
836 # If we resolve the signature for B, we get (e:Int):Int
837 #
838 # ## Example 3
839 #
840 # class A[E]
841 # fun foo(e:E) is abstract
842 # end
843 # class B[F]
844 # var a: A[Array[F]]
845 # fun bar do a.foo(x) # <- x is here
846 # end
847 #
848 # The first question is: is foo available on `a`?
849 #
850 # The static type of a is `A[Array[F]]`, that is an open type.
851 # in order to find a method `foo`, whe must look at a resolved type.
852 #
853 # A[Array[F]].anchor_to(B[nullable Object]) #-> A[Array[nullable Object]]
854 #
855 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
856 #
857 # The next question is: what is the accepted types for `x`?
858 #
859 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
860 #
861 # E.resolve_for(A[Array[F]],B[nullable Object]) #-> Array[F]
862 #
863 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
864 #
865 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
866 # two function instead of one seems also to be a bad idea.
867 #
868 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
869 # ENSURE: `not self.need_anchor implies result == self`
870 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
871
872 # Resolve formal type to its verbatim bound.
873 # If the type is not formal, just return self
874 #
875 # The result is returned exactly as declared in the "type" property (verbatim).
876 # So it could be another formal type.
877 #
878 # In case of conflict, the method aborts.
879 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self
880
881 # Resolve the formal type to its simplest equivalent form.
882 #
883 # Formal types are either free or fixed.
884 # When it is fixed, it means that it is equivalent with a simpler type.
885 # When a formal type is free, it means that it is only equivalent with itself.
886 # This method return the most simple equivalent type of `self`.
887 #
888 # This method is mainly used for subtype test in order to sanely compare fixed.
889 #
890 # By default, return self.
891 # See the redefinitions for specific behavior in each kind of type.
892 fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self
893
894 # Can the type be resolved?
895 #
896 # In order to resolve open types, the formal types must make sence.
897 #
898 # ## Example
899 #
900 # class A[E]
901 # end
902 # class B[F]
903 # end
904 #
905 # * E.can_resolve_for(A[Int]) #-> true, E make sense in A
906 # * E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
907 # * B[E].can_resolve_for(A[F], B[Object]) #-> true,
908 # B[E] is a red hearing only the E is important,
909 # E make sense in A
910 #
911 # REQUIRE: `anchor != null implies not anchor.need_anchor`
912 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
913 # ENSURE: `not self.need_anchor implies result == true`
914 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
915
916 # Return the nullable version of the type
917 # If the type is already nullable then self is returned
918 fun as_nullable: MType
919 do
920 var res = self.as_nullable_cache
921 if res != null then return res
922 res = new MNullableType(self)
923 self.as_nullable_cache = res
924 return res
925 end
926
927 # Return the not nullable version of the type
928 # Is the type is already not nullable, then self is returned.
929 #
930 # Note: this just remove the `nullable` notation, but the result can still contains null.
931 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
932 fun as_notnullable: MType
933 do
934 return self
935 end
936
937 private var as_nullable_cache: nullable MType = null
938
939
940 # The depth of the type seen as a tree.
941 #
942 # * A -> 1
943 # * G[A] -> 2
944 # * H[A, B] -> 2
945 # * H[G[A], B] -> 3
946 #
947 # Formal types have a depth of 1.
948 fun depth: Int
949 do
950 return 1
951 end
952
953 # The length of the type seen as a tree.
954 #
955 # * A -> 1
956 # * G[A] -> 2
957 # * H[A, B] -> 3
958 # * H[G[A], B] -> 4
959 #
960 # Formal types have a length of 1.
961 fun length: Int
962 do
963 return 1
964 end
965
966 # Compute all the classdefs inherited/imported.
967 # The returned set contains:
968 # * the class definitions from `mmodule` and its imported modules
969 # * the class definitions of this type and its super-types
970 #
971 # This function is used mainly internally.
972 #
973 # REQUIRE: `not self.need_anchor`
974 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
975
976 # Compute all the super-classes.
977 # This function is used mainly internally.
978 #
979 # REQUIRE: `not self.need_anchor`
980 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
981
982 # Compute all the declared super-types.
983 # Super-types are returned as declared in the classdefs (verbatim).
984 # This function is used mainly internally.
985 #
986 # REQUIRE: `not self.need_anchor`
987 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
988
989 # Is the property in self for a given module
990 # This method does not filter visibility or whatever
991 #
992 # REQUIRE: `not self.need_anchor`
993 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
994 do
995 assert not self.need_anchor
996 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
997 end
998 end
999
1000 # A type based on a class.
1001 #
1002 # `MClassType` have properties (see `has_mproperty`).
1003 class MClassType
1004 super MType
1005
1006 # The associated class
1007 var mclass: MClass
1008
1009 redef fun model do return self.mclass.intro_mmodule.model
1010
1011 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1012
1013 # The formal arguments of the type
1014 # ENSURE: `result.length == self.mclass.arity`
1015 var arguments = new Array[MType]
1016
1017 redef fun to_s do return mclass.to_s
1018
1019 redef fun need_anchor do return false
1020
1021 redef fun anchor_to(mmodule: MModule, anchor: MClassType): MClassType
1022 do
1023 return super.as(MClassType)
1024 end
1025
1026 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1027
1028 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1029
1030 redef fun collect_mclassdefs(mmodule)
1031 do
1032 assert not self.need_anchor
1033 var cache = self.collect_mclassdefs_cache
1034 if not cache.has_key(mmodule) then
1035 self.collect_things(mmodule)
1036 end
1037 return cache[mmodule]
1038 end
1039
1040 redef fun collect_mclasses(mmodule)
1041 do
1042 assert not self.need_anchor
1043 var cache = self.collect_mclasses_cache
1044 if not cache.has_key(mmodule) then
1045 self.collect_things(mmodule)
1046 end
1047 return cache[mmodule]
1048 end
1049
1050 redef fun collect_mtypes(mmodule)
1051 do
1052 assert not self.need_anchor
1053 var cache = self.collect_mtypes_cache
1054 if not cache.has_key(mmodule) then
1055 self.collect_things(mmodule)
1056 end
1057 return cache[mmodule]
1058 end
1059
1060 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1061 private fun collect_things(mmodule: MModule)
1062 do
1063 var res = new HashSet[MClassDef]
1064 var seen = new HashSet[MClass]
1065 var types = new HashSet[MClassType]
1066 seen.add(self.mclass)
1067 var todo = [self.mclass]
1068 while not todo.is_empty do
1069 var mclass = todo.pop
1070 #print "process {mclass}"
1071 for mclassdef in mclass.mclassdefs do
1072 if not mmodule.in_importation <= mclassdef.mmodule then continue
1073 #print " process {mclassdef}"
1074 res.add(mclassdef)
1075 for supertype in mclassdef.supertypes do
1076 types.add(supertype)
1077 var superclass = supertype.mclass
1078 if seen.has(superclass) then continue
1079 #print " add {superclass}"
1080 seen.add(superclass)
1081 todo.add(superclass)
1082 end
1083 end
1084 end
1085 collect_mclassdefs_cache[mmodule] = res
1086 collect_mclasses_cache[mmodule] = seen
1087 collect_mtypes_cache[mmodule] = types
1088 end
1089
1090 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1091 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1092 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1093
1094 end
1095
1096 # A type based on a generic class.
1097 # A generic type a just a class with additional formal generic arguments.
1098 class MGenericType
1099 super MClassType
1100
1101 redef var arguments
1102
1103 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1104
1105 init
1106 do
1107 assert self.mclass.arity == arguments.length
1108
1109 self.need_anchor = false
1110 for t in arguments do
1111 if t.need_anchor then
1112 self.need_anchor = true
1113 break
1114 end
1115 end
1116
1117 self.to_s = "{mclass}[{arguments.join(", ")}]"
1118 end
1119
1120 # Recursively print the type of the arguments within brackets.
1121 # Example: `"Map[String, List[Int]]"`
1122 redef var to_s: String is noinit
1123
1124 redef var need_anchor: Bool is noinit
1125
1126 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1127 do
1128 if not need_anchor then return self
1129 assert can_resolve_for(mtype, anchor, mmodule)
1130 var types = new Array[MType]
1131 for t in arguments do
1132 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1133 end
1134 return mclass.get_mtype(types)
1135 end
1136
1137 redef fun can_resolve_for(mtype, anchor, mmodule)
1138 do
1139 if not need_anchor then return true
1140 for t in arguments do
1141 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1142 end
1143 return true
1144 end
1145
1146
1147 redef fun depth
1148 do
1149 var dmax = 0
1150 for a in self.arguments do
1151 var d = a.depth
1152 if d > dmax then dmax = d
1153 end
1154 return dmax + 1
1155 end
1156
1157 redef fun length
1158 do
1159 var res = 1
1160 for a in self.arguments do
1161 res += a.length
1162 end
1163 return res
1164 end
1165 end
1166
1167 # A virtual formal type.
1168 class MVirtualType
1169 super MType
1170
1171 # The property associated with the type.
1172 # Its the definitions of this property that determine the bound or the virtual type.
1173 var mproperty: MVirtualTypeProp
1174
1175 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1176
1177 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1178 do
1179 return lookup_single_definition(mmodule, resolved_receiver).bound.as(not null)
1180 end
1181
1182 private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef
1183 do
1184 assert not resolved_receiver.need_anchor
1185 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1186 if props.is_empty then
1187 abort
1188 else if props.length == 1 then
1189 return props.first
1190 end
1191 var types = new ArraySet[MType]
1192 var res = props.first
1193 for p in props do
1194 types.add(p.bound.as(not null))
1195 if not res.is_fixed then res = p
1196 end
1197 if types.length == 1 then
1198 return res
1199 end
1200 abort
1201 end
1202
1203 # A VT is fixed when:
1204 # * the VT is (re-)defined with the annotation `is fixed`
1205 # * the VT is (indirectly) bound to an enum class (see `enum_kind`) since there is no subtype possible
1206 # * the receiver is an enum class since there is no subtype possible
1207 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1208 do
1209 assert not resolved_receiver.need_anchor
1210 resolved_receiver = resolved_receiver.as_notnullable
1211 assert resolved_receiver isa MClassType # It is the only remaining type
1212
1213 var prop = lookup_single_definition(mmodule, resolved_receiver)
1214 var res = prop.bound.as(not null)
1215
1216 # Recursively lookup the fixed result
1217 res = res.lookup_fixed(mmodule, resolved_receiver)
1218
1219 # 1. For a fixed VT, return the resolved bound
1220 if prop.is_fixed then return res
1221
1222 # 2. For a enum boud, return the bound
1223 if res isa MClassType and res.mclass.kind == enum_kind then return res
1224
1225 # 3. for a enum receiver return the bound
1226 if resolved_receiver.mclass.kind == enum_kind then return res
1227
1228 return self
1229 end
1230
1231 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1232 do
1233 if not cleanup_virtual then return self
1234 assert can_resolve_for(mtype, anchor, mmodule)
1235 # self is a virtual type declared (or inherited) in mtype
1236 # The point of the function it to get the bound of the virtual type that make sense for mtype
1237 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1238 #print "{class_name}: {self}/{mtype}/{anchor}?"
1239 var resolved_receiver
1240 if mtype.need_anchor then
1241 assert anchor != null
1242 resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true)
1243 else
1244 resolved_receiver = mtype
1245 end
1246 # Now, we can get the bound
1247 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1248 # The bound is exactly as declared in the "type" property, so we must resolve it again
1249 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1250
1251 return res
1252 end
1253
1254 redef fun can_resolve_for(mtype, anchor, mmodule)
1255 do
1256 if mtype.need_anchor then
1257 assert anchor != null
1258 mtype = mtype.anchor_to(mmodule, anchor)
1259 end
1260 return mtype.has_mproperty(mmodule, mproperty)
1261 end
1262
1263 redef fun to_s do return self.mproperty.to_s
1264 end
1265
1266 # The type associated to a formal parameter generic type of a class
1267 #
1268 # Each parameter type is associated to a specific class.
1269 # It means that all refinements of a same class "share" the parameter type,
1270 # but that a generic subclass has its own parameter types.
1271 #
1272 # However, in the sense of the meta-model, a parameter type of a class is
1273 # a valid type in a subclass. The "in the sense of the meta-model" is
1274 # important because, in the Nit language, the programmer cannot refers
1275 # directly to the parameter types of the super-classes.
1276 #
1277 # Example:
1278 # class A[E]
1279 # fun e: E is abstract
1280 # end
1281 # class B[F]
1282 # super A[Array[F]]
1283 # end
1284 # In the class definition B[F], `F` is a valid type but `E` is not.
1285 # However, `self.e` is a valid method call, and the signature of `e` is
1286 # declared `e: E`.
1287 #
1288 # Note that parameter types are shared among class refinements.
1289 # Therefore parameter only have an internal name (see `to_s` for details).
1290 class MParameterType
1291 super MType
1292
1293 # The generic class where the parameter belong
1294 var mclass: MClass
1295
1296 redef fun model do return self.mclass.intro_mmodule.model
1297
1298 # The position of the parameter (0 for the first parameter)
1299 # FIXME: is `position` a better name?
1300 var rank: Int
1301
1302 redef var name
1303
1304 redef fun to_s do return name
1305
1306 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1307 do
1308 assert not resolved_receiver.need_anchor
1309 assert resolved_receiver isa MClassType
1310 var goalclass = self.mclass
1311 if resolved_receiver.mclass == goalclass then
1312 return resolved_receiver.arguments[self.rank]
1313 end
1314 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1315 for t in supertypes do
1316 if t.mclass == goalclass then
1317 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1318 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1319 var res = t.arguments[self.rank]
1320 return res
1321 end
1322 end
1323 abort
1324 end
1325
1326 # A PT is fixed when:
1327 # * Its bound is a enum class (see `enum_kind`).
1328 # The PT is just useless, but it is still a case.
1329 # * More usually, the `resolved_receiver` is a subclass of `self.mclass`,
1330 # so it is necessarily fixed in a `super` clause, either with a normal type
1331 # or with another PT.
1332 # See `resolve_for` for examples about related issues.
1333 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1334 do
1335 assert resolved_receiver isa MClassType
1336 var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false)
1337 return res
1338 end
1339
1340 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1341 do
1342 assert can_resolve_for(mtype, anchor, mmodule)
1343 #print "{class_name}: {self}/{mtype}/{anchor}?"
1344
1345 if mtype isa MGenericType and mtype.mclass == self.mclass then
1346 var res = mtype.arguments[self.rank]
1347 if anchor != null and res.need_anchor then
1348 # Maybe the result can be resolved more if are bound to a final class
1349 var r2 = res.anchor_to(mmodule, anchor)
1350 if r2 isa MClassType and r2.mclass.kind == enum_kind then return r2
1351 end
1352 return res
1353 end
1354
1355 # self is a parameter type of mtype (or of a super-class of mtype)
1356 # The point of the function it to get the bound of the virtual type that make sense for mtype
1357 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1358 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1359 var resolved_receiver
1360 if mtype.need_anchor then
1361 assert anchor != null
1362 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1363 else
1364 resolved_receiver = mtype
1365 end
1366 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1367 if resolved_receiver isa MParameterType then
1368 assert resolved_receiver.mclass == anchor.mclass
1369 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1370 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1371 end
1372 assert resolved_receiver isa MClassType
1373
1374 # Eh! The parameter is in the current class.
1375 # So we return the corresponding argument, no mater what!
1376 if resolved_receiver.mclass == self.mclass then
1377 var res = resolved_receiver.arguments[self.rank]
1378 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1379 return res
1380 end
1381
1382 if resolved_receiver.need_anchor then
1383 assert anchor != null
1384 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1385 end
1386 # Now, we can get the bound
1387 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1388 # The bound is exactly as declared in the "type" property, so we must resolve it again
1389 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1390
1391 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1392
1393 return res
1394 end
1395
1396 redef fun can_resolve_for(mtype, anchor, mmodule)
1397 do
1398 if mtype.need_anchor then
1399 assert anchor != null
1400 mtype = mtype.anchor_to(mmodule, anchor)
1401 end
1402 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1403 end
1404 end
1405
1406 # A type prefixed with "nullable"
1407 class MNullableType
1408 super MType
1409
1410 # The base type of the nullable type
1411 var mtype: MType
1412
1413 redef fun model do return self.mtype.model
1414
1415 init
1416 do
1417 self.to_s = "nullable {mtype}"
1418 end
1419
1420 redef var to_s: String is noinit
1421
1422 redef fun need_anchor do return mtype.need_anchor
1423 redef fun as_nullable do return self
1424 redef fun as_notnullable do return mtype
1425 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1426 do
1427 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1428 return res.as_nullable
1429 end
1430
1431 redef fun can_resolve_for(mtype, anchor, mmodule)
1432 do
1433 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1434 end
1435
1436 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable`
1437 redef fun lookup_fixed(mmodule, resolved_receiver)
1438 do
1439 var t = mtype.lookup_fixed(mmodule, resolved_receiver)
1440 if t == mtype then return self
1441 return t.as_nullable
1442 end
1443
1444 redef fun depth do return self.mtype.depth
1445
1446 redef fun length do return self.mtype.length
1447
1448 redef fun collect_mclassdefs(mmodule)
1449 do
1450 assert not self.need_anchor
1451 return self.mtype.collect_mclassdefs(mmodule)
1452 end
1453
1454 redef fun collect_mclasses(mmodule)
1455 do
1456 assert not self.need_anchor
1457 return self.mtype.collect_mclasses(mmodule)
1458 end
1459
1460 redef fun collect_mtypes(mmodule)
1461 do
1462 assert not self.need_anchor
1463 return self.mtype.collect_mtypes(mmodule)
1464 end
1465 end
1466
1467 # The type of the only value null
1468 #
1469 # The is only one null type per model, see `MModel::null_type`.
1470 class MNullType
1471 super MType
1472 redef var model: Model
1473 redef fun to_s do return "null"
1474 redef fun as_nullable do return self
1475 redef fun need_anchor do return false
1476 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1477 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1478
1479 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1480
1481 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1482
1483 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1484 end
1485
1486 # A signature of a method
1487 class MSignature
1488 super MType
1489
1490 # The each parameter (in order)
1491 var mparameters: Array[MParameter]
1492
1493 # The return type (null for a procedure)
1494 var return_mtype: nullable MType
1495
1496 redef fun depth
1497 do
1498 var dmax = 0
1499 var t = self.return_mtype
1500 if t != null then dmax = t.depth
1501 for p in mparameters do
1502 var d = p.mtype.depth
1503 if d > dmax then dmax = d
1504 end
1505 return dmax + 1
1506 end
1507
1508 redef fun length
1509 do
1510 var res = 1
1511 var t = self.return_mtype
1512 if t != null then res += t.length
1513 for p in mparameters do
1514 res += p.mtype.length
1515 end
1516 return res
1517 end
1518
1519 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1520 init
1521 do
1522 var vararg_rank = -1
1523 for i in [0..mparameters.length[ do
1524 var parameter = mparameters[i]
1525 if parameter.is_vararg then
1526 assert vararg_rank == -1
1527 vararg_rank = i
1528 end
1529 end
1530 self.vararg_rank = vararg_rank
1531 end
1532
1533 # The rank of the ellipsis (`...`) for vararg (starting from 0).
1534 # value is -1 if there is no vararg.
1535 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1536 var vararg_rank: Int is noinit
1537
1538 # The number or parameters
1539 fun arity: Int do return mparameters.length
1540
1541 redef fun to_s
1542 do
1543 var b = new FlatBuffer
1544 if not mparameters.is_empty then
1545 b.append("(")
1546 for i in [0..mparameters.length[ do
1547 var mparameter = mparameters[i]
1548 if i > 0 then b.append(", ")
1549 b.append(mparameter.name)
1550 b.append(": ")
1551 b.append(mparameter.mtype.to_s)
1552 if mparameter.is_vararg then
1553 b.append("...")
1554 end
1555 end
1556 b.append(")")
1557 end
1558 var ret = self.return_mtype
1559 if ret != null then
1560 b.append(": ")
1561 b.append(ret.to_s)
1562 end
1563 return b.to_s
1564 end
1565
1566 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
1567 do
1568 var params = new Array[MParameter]
1569 for p in self.mparameters do
1570 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1571 end
1572 var ret = self.return_mtype
1573 if ret != null then
1574 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1575 end
1576 var res = new MSignature(params, ret)
1577 return res
1578 end
1579 end
1580
1581 # A parameter in a signature
1582 class MParameter
1583 super MEntity
1584
1585 # The name of the parameter
1586 redef var name: String
1587
1588 # The static type of the parameter
1589 var mtype: MType
1590
1591 # Is the parameter a vararg?
1592 var is_vararg: Bool
1593
1594 redef fun to_s
1595 do
1596 if is_vararg then
1597 return "{name}: {mtype}..."
1598 else
1599 return "{name}: {mtype}"
1600 end
1601 end
1602
1603 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
1604 do
1605 if not self.mtype.need_anchor then return self
1606 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1607 var res = new MParameter(self.name, newtype, self.is_vararg)
1608 return res
1609 end
1610
1611 redef fun model do return mtype.model
1612 end
1613
1614 # A service (global property) that generalize method, attribute, etc.
1615 #
1616 # `MProperty` are global to the model; it means that a `MProperty` is not bound
1617 # to a specific `MModule` nor a specific `MClass`.
1618 #
1619 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
1620 # and the other in subclasses and in refinements.
1621 #
1622 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
1623 # of any dynamic type).
1624 # For instance, a call site "x.foo" is associated to a `MProperty`.
1625 abstract class MProperty
1626 super MEntity
1627
1628 # The associated MPropDef subclass.
1629 # The two specialization hierarchy are symmetric.
1630 type MPROPDEF: MPropDef
1631
1632 # The classdef that introduce the property
1633 # While a property is not bound to a specific module, or class,
1634 # the introducing mclassdef is used for naming and visibility
1635 var intro_mclassdef: MClassDef
1636
1637 # The (short) name of the property
1638 redef var name: String
1639
1640 # The canonical name of the property
1641 # Example: "owner::my_module::MyClass::my_method"
1642 fun full_name: String
1643 do
1644 return "{self.intro_mclassdef.mmodule.full_name}::{self.intro_mclassdef.mclass.name}::{name}"
1645 end
1646
1647 # The visibility of the property
1648 var visibility: MVisibility
1649
1650 init
1651 do
1652 intro_mclassdef.intro_mproperties.add(self)
1653 var model = intro_mclassdef.mmodule.model
1654 model.mproperties_by_name.add_one(name, self)
1655 model.mproperties.add(self)
1656 end
1657
1658 # All definitions of the property.
1659 # The first is the introduction,
1660 # The other are redefinitions (in refinements and in subclasses)
1661 var mpropdefs = new Array[MPROPDEF]
1662
1663 # The definition that introduces the property.
1664 #
1665 # Warning: such a definition may not exist in the early life of the object.
1666 # In this case, the method will abort.
1667 var intro: MPROPDEF is noinit
1668
1669 redef fun model do return intro.model
1670
1671 # Alias for `name`
1672 redef fun to_s do return name
1673
1674 # Return the most specific property definitions defined or inherited by a type.
1675 # The selection knows that refinement is stronger than specialization;
1676 # however, in case of conflict more than one property are returned.
1677 # If mtype does not know mproperty then an empty array is returned.
1678 #
1679 # If you want the really most specific property, then look at `lookup_first_definition`
1680 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1681 do
1682 assert not mtype.need_anchor
1683 mtype = mtype.as_notnullable
1684
1685 var cache = self.lookup_definitions_cache[mmodule, mtype]
1686 if cache != null then return cache
1687
1688 #print "select prop {mproperty} for {mtype} in {self}"
1689 # First, select all candidates
1690 var candidates = new Array[MPROPDEF]
1691 for mpropdef in self.mpropdefs do
1692 # If the definition is not imported by the module, then skip
1693 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1694 # If the definition is not inherited by the type, then skip
1695 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1696 # Else, we keep it
1697 candidates.add(mpropdef)
1698 end
1699 # Fast track for only one candidate
1700 if candidates.length <= 1 then
1701 self.lookup_definitions_cache[mmodule, mtype] = candidates
1702 return candidates
1703 end
1704
1705 # Second, filter the most specific ones
1706 return select_most_specific(mmodule, candidates)
1707 end
1708
1709 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
1710
1711 # Return the most specific property definitions inherited by a type.
1712 # The selection knows that refinement is stronger than specialization;
1713 # however, in case of conflict more than one property are returned.
1714 # If mtype does not know mproperty then an empty array is returned.
1715 #
1716 # If you want the really most specific property, then look at `lookup_next_definition`
1717 #
1718 # FIXME: Move to `MPropDef`?
1719 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1720 do
1721 assert not mtype.need_anchor
1722 mtype = mtype.as_notnullable
1723
1724 # First, select all candidates
1725 var candidates = new Array[MPROPDEF]
1726 for mpropdef in self.mpropdefs do
1727 # If the definition is not imported by the module, then skip
1728 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1729 # If the definition is not inherited by the type, then skip
1730 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1731 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
1732 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
1733 # Else, we keep it
1734 candidates.add(mpropdef)
1735 end
1736 # Fast track for only one candidate
1737 if candidates.length <= 1 then return candidates
1738
1739 # Second, filter the most specific ones
1740 return select_most_specific(mmodule, candidates)
1741 end
1742
1743 # Return an array containing olny the most specific property definitions
1744 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
1745 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
1746 do
1747 var res = new Array[MPROPDEF]
1748 for pd1 in candidates do
1749 var cd1 = pd1.mclassdef
1750 var c1 = cd1.mclass
1751 var keep = true
1752 for pd2 in candidates do
1753 if pd2 == pd1 then continue # do not compare with self!
1754 var cd2 = pd2.mclassdef
1755 var c2 = cd2.mclass
1756 if c2.mclass_type == c1.mclass_type then
1757 if cd2.mmodule.in_importation < cd1.mmodule then
1758 # cd2 refines cd1; therefore we skip pd1
1759 keep = false
1760 break
1761 end
1762 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
1763 # cd2 < cd1; therefore we skip pd1
1764 keep = false
1765 break
1766 end
1767 end
1768 if keep then
1769 res.add(pd1)
1770 end
1771 end
1772 if res.is_empty then
1773 print "All lost! {candidates.join(", ")}"
1774 # FIXME: should be abort!
1775 end
1776 return res
1777 end
1778
1779 # Return the most specific definition in the linearization of `mtype`.
1780 #
1781 # If you want to know the next properties in the linearization,
1782 # look at `MPropDef::lookup_next_definition`.
1783 #
1784 # FIXME: the linearization is still unspecified
1785 #
1786 # REQUIRE: `not mtype.need_anchor`
1787 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
1788 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
1789 do
1790 assert mtype.has_mproperty(mmodule, self)
1791 return lookup_all_definitions(mmodule, mtype).first
1792 end
1793
1794 # Return all definitions in a linearization order
1795 # Most specific first, most general last
1796 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1797 do
1798 assert not mtype.need_anchor
1799 mtype = mtype.as_notnullable
1800
1801 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
1802 if cache != null then return cache
1803
1804 #print "select prop {mproperty} for {mtype} in {self}"
1805 # First, select all candidates
1806 var candidates = new Array[MPROPDEF]
1807 for mpropdef in self.mpropdefs do
1808 # If the definition is not imported by the module, then skip
1809 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1810 # If the definition is not inherited by the type, then skip
1811 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1812 # Else, we keep it
1813 candidates.add(mpropdef)
1814 end
1815 # Fast track for only one candidate
1816 if candidates.length <= 1 then
1817 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
1818 return candidates
1819 end
1820
1821 mmodule.linearize_mpropdefs(candidates)
1822 candidates = candidates.reversed
1823 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
1824 return candidates
1825 end
1826
1827 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
1828 end
1829
1830 # A global method
1831 class MMethod
1832 super MProperty
1833
1834 redef type MPROPDEF: MMethodDef
1835
1836 # Is the property defined at the top_level of the module?
1837 # Currently such a property are stored in `Object`
1838 var is_toplevel: Bool = false is writable
1839
1840 # Is the property a constructor?
1841 # Warning, this property can be inherited by subclasses with or without being a constructor
1842 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
1843 var is_init: Bool = false is writable
1844
1845 # The constructor is a (the) root init with empty signature but a set of initializers
1846 var is_root_init: Bool = false is writable
1847
1848 # Is the property a 'new' constructor?
1849 var is_new: Bool = false is writable
1850
1851 # Is the property a legal constructor for a given class?
1852 # As usual, visibility is not considered.
1853 # FIXME not implemented
1854 fun is_init_for(mclass: MClass): Bool
1855 do
1856 return self.is_init
1857 end
1858 end
1859
1860 # A global attribute
1861 class MAttribute
1862 super MProperty
1863
1864 redef type MPROPDEF: MAttributeDef
1865
1866 end
1867
1868 # A global virtual type
1869 class MVirtualTypeProp
1870 super MProperty
1871
1872 redef type MPROPDEF: MVirtualTypeDef
1873
1874 # The formal type associated to the virtual type property
1875 var mvirtualtype = new MVirtualType(self)
1876 end
1877
1878 # A definition of a property (local property)
1879 #
1880 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
1881 # specific class definition (which belong to a specific module)
1882 abstract class MPropDef
1883 super MEntity
1884
1885 # The associated `MProperty` subclass.
1886 # the two specialization hierarchy are symmetric
1887 type MPROPERTY: MProperty
1888
1889 # Self class
1890 type MPROPDEF: MPropDef
1891
1892 # The class definition where the property definition is
1893 var mclassdef: MClassDef
1894
1895 # The associated global property
1896 var mproperty: MPROPERTY
1897
1898 # The origin of the definition
1899 var location: Location
1900
1901 init
1902 do
1903 mclassdef.mpropdefs.add(self)
1904 mproperty.mpropdefs.add(self)
1905 if mproperty.intro_mclassdef == mclassdef then
1906 assert not isset mproperty._intro
1907 mproperty.intro = self
1908 end
1909 self.to_s = "{mclassdef}#{mproperty}"
1910 end
1911
1912 # Actually the name of the `mproperty`
1913 redef fun name do return mproperty.name
1914
1915 redef fun model do return mclassdef.model
1916
1917 # Internal name combining the module, the class and the property
1918 # Example: "mymodule#MyClass#mymethod"
1919 redef var to_s: String is noinit
1920
1921 # Is self the definition that introduce the property?
1922 fun is_intro: Bool do return mproperty.intro == self
1923
1924 # Return the next definition in linearization of `mtype`.
1925 #
1926 # This method is used to determine what method is called by a super.
1927 #
1928 # REQUIRE: `not mtype.need_anchor`
1929 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
1930 do
1931 assert not mtype.need_anchor
1932
1933 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
1934 var i = mpropdefs.iterator
1935 while i.is_ok and i.item != self do i.next
1936 assert has_property: i.is_ok
1937 i.next
1938 assert has_next_property: i.is_ok
1939 return i.item
1940 end
1941 end
1942
1943 # A local definition of a method
1944 class MMethodDef
1945 super MPropDef
1946
1947 redef type MPROPERTY: MMethod
1948 redef type MPROPDEF: MMethodDef
1949
1950 # The signature attached to the property definition
1951 var msignature: nullable MSignature = null is writable
1952
1953 # The signature attached to the `new` call on a root-init
1954 # This is a concatenation of the signatures of the initializers
1955 #
1956 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
1957 var new_msignature: nullable MSignature = null is writable
1958
1959 # List of initialisers to call in root-inits
1960 #
1961 # They could be setters or attributes
1962 #
1963 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
1964 var initializers = new Array[MProperty]
1965
1966 # Is the method definition abstract?
1967 var is_abstract: Bool = false is writable
1968
1969 # Is the method definition intern?
1970 var is_intern = false is writable
1971
1972 # Is the method definition extern?
1973 var is_extern = false is writable
1974
1975 # An optional constant value returned in functions.
1976 #
1977 # Only some specific primitife value are accepted by engines.
1978 # Is used when there is no better implementation available.
1979 #
1980 # Currently used only for the implementation of the `--define`
1981 # command-line option.
1982 # SEE: module `mixin`.
1983 var constant_value: nullable Object = null is writable
1984 end
1985
1986 # A local definition of an attribute
1987 class MAttributeDef
1988 super MPropDef
1989
1990 redef type MPROPERTY: MAttribute
1991 redef type MPROPDEF: MAttributeDef
1992
1993 # The static type of the attribute
1994 var static_mtype: nullable MType = null is writable
1995 end
1996
1997 # A local definition of a virtual type
1998 class MVirtualTypeDef
1999 super MPropDef
2000
2001 redef type MPROPERTY: MVirtualTypeProp
2002 redef type MPROPDEF: MVirtualTypeDef
2003
2004 # The bound of the virtual type
2005 var bound: nullable MType = null is writable
2006
2007 # Is the bound fixed?
2008 var is_fixed = false is writable
2009 end
2010
2011 # A kind of class.
2012 #
2013 # * `abstract_kind`
2014 # * `concrete_kind`
2015 # * `interface_kind`
2016 # * `enum_kind`
2017 # * `extern_kind`
2018 #
2019 # Note this class is basically an enum.
2020 # FIXME: use a real enum once user-defined enums are available
2021 class MClassKind
2022 redef var to_s: String
2023
2024 # Is a constructor required?
2025 var need_init: Bool
2026
2027 # TODO: private init because enumeration.
2028
2029 # Can a class of kind `self` specializes a class of kine `other`?
2030 fun can_specialize(other: MClassKind): Bool
2031 do
2032 if other == interface_kind then return true # everybody can specialize interfaces
2033 if self == interface_kind or self == enum_kind then
2034 # no other case for interfaces
2035 return false
2036 else if self == extern_kind then
2037 # only compatible with themselves
2038 return self == other
2039 else if other == enum_kind or other == extern_kind then
2040 # abstract_kind and concrete_kind are incompatible
2041 return false
2042 end
2043 # remain only abstract_kind and concrete_kind
2044 return true
2045 end
2046 end
2047
2048 # The class kind `abstract`
2049 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", true)
2050 # The class kind `concrete`
2051 fun concrete_kind: MClassKind do return once new MClassKind("class", true)
2052 # The class kind `interface`
2053 fun interface_kind: MClassKind do return once new MClassKind("interface", false)
2054 # The class kind `enum`
2055 fun enum_kind: MClassKind do return once new MClassKind("enum", false)
2056 # The class kind `extern`
2057 fun extern_kind: MClassKind do return once new MClassKind("extern class", false)