model: move guards `lookup_first_definition` after cache miss
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class Model
34 # All known classes
35 var mclasses = new Array[MClass]
36
37 # All known properties
38 var mproperties = new Array[MProperty]
39
40 # Hierarchy of class definition.
41 #
42 # Each classdef is associated with its super-classdefs in regard to
43 # its module of definition.
44 var mclassdef_hierarchy = new POSet[MClassDef]
45
46 # Class-type hierarchy restricted to the introduction.
47 #
48 # The idea is that what is true on introduction is always true whatever
49 # the module considered.
50 # Therefore, this hierarchy is used for a fast positive subtype check.
51 #
52 # This poset will evolve in a monotonous way:
53 # * Two non connected nodes will remain unconnected
54 # * New nodes can appear with new edges
55 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
56
57 # Global overlapped class-type hierarchy.
58 # The hierarchy when all modules are combined.
59 # Therefore, this hierarchy is used for a fast negative subtype check.
60 #
61 # This poset will evolve in an anarchic way. Loops can even be created.
62 #
63 # FIXME decide what to do on loops
64 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
65
66 # Collections of classes grouped by their short name
67 private var mclasses_by_name = new MultiHashMap[String, MClass]
68
69 # Return all class named `name`.
70 #
71 # If such a class does not exist, null is returned
72 # (instead of an empty array)
73 #
74 # Visibility or modules are not considered
75 fun get_mclasses_by_name(name: String): nullable Array[MClass]
76 do
77 if mclasses_by_name.has_key(name) then
78 return mclasses_by_name[name]
79 else
80 return null
81 end
82 end
83
84 # Collections of properties grouped by their short name
85 private var mproperties_by_name = new MultiHashMap[String, MProperty]
86
87 # Return all properties named `name`.
88 #
89 # If such a property does not exist, null is returned
90 # (instead of an empty array)
91 #
92 # Visibility or modules are not considered
93 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
94 do
95 if not mproperties_by_name.has_key(name) then
96 return null
97 else
98 return mproperties_by_name[name]
99 end
100 end
101
102 # The only null type
103 var null_type = new MNullType(self)
104
105 # Build an ordered tree with from `concerns`
106 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
107 var seen = new HashSet[MConcern]
108 var res = new ConcernsTree
109
110 var todo = new Array[MConcern]
111 todo.add_all mconcerns
112
113 while not todo.is_empty do
114 var c = todo.pop
115 if seen.has(c) then continue
116 var pc = c.parent_concern
117 if pc == null then
118 res.add(null, c)
119 else
120 res.add(pc, c)
121 todo.add(pc)
122 end
123 seen.add(c)
124 end
125
126 return res
127 end
128 end
129
130 # An OrderedTree that can be easily refined for display purposes
131 class ConcernsTree
132 super OrderedTree[MConcern]
133 end
134
135 redef class MModule
136 # All the classes introduced in the module
137 var intro_mclasses = new Array[MClass]
138
139 # All the class definitions of the module
140 # (introduction and refinement)
141 var mclassdefs = new Array[MClassDef]
142
143 # Does the current module has a given class `mclass`?
144 # Return true if the mmodule introduces, refines or imports a class.
145 # Visibility is not considered.
146 fun has_mclass(mclass: MClass): Bool
147 do
148 return self.in_importation <= mclass.intro_mmodule
149 end
150
151 # Full hierarchy of introduced ans imported classes.
152 #
153 # Create a new hierarchy got by flattening the classes for the module
154 # and its imported modules.
155 # Visibility is not considered.
156 #
157 # Note: this function is expensive and is usually used for the main
158 # module of a program only. Do not use it to do you own subtype
159 # functions.
160 fun flatten_mclass_hierarchy: POSet[MClass]
161 do
162 var res = self.flatten_mclass_hierarchy_cache
163 if res != null then return res
164 res = new POSet[MClass]
165 for m in self.in_importation.greaters do
166 for cd in m.mclassdefs do
167 var c = cd.mclass
168 res.add_node(c)
169 for s in cd.supertypes do
170 res.add_edge(c, s.mclass)
171 end
172 end
173 end
174 self.flatten_mclass_hierarchy_cache = res
175 return res
176 end
177
178 # Sort a given array of classes using the linearization order of the module
179 # The most general is first, the most specific is last
180 fun linearize_mclasses(mclasses: Array[MClass])
181 do
182 self.flatten_mclass_hierarchy.sort(mclasses)
183 end
184
185 # Sort a given array of class definitions using the linearization order of the module
186 # the refinement link is stronger than the specialisation link
187 # The most general is first, the most specific is last
188 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
189 do
190 var sorter = new MClassDefSorter(self)
191 sorter.sort(mclassdefs)
192 end
193
194 # Sort a given array of property definitions using the linearization order of the module
195 # the refinement link is stronger than the specialisation link
196 # The most general is first, the most specific is last
197 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
198 do
199 var sorter = new MPropDefSorter(self)
200 sorter.sort(mpropdefs)
201 end
202
203 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
204
205 # The primitive type `Object`, the root of the class hierarchy
206 fun object_type: MClassType
207 do
208 var res = self.object_type_cache
209 if res != null then return res
210 res = self.get_primitive_class("Object").mclass_type
211 self.object_type_cache = res
212 return res
213 end
214
215 private var object_type_cache: nullable MClassType
216
217 # The type `Pointer`, super class to all extern classes
218 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
219
220 # The primitive type `Bool`
221 fun bool_type: MClassType
222 do
223 var res = self.bool_type_cache
224 if res != null then return res
225 res = self.get_primitive_class("Bool").mclass_type
226 self.bool_type_cache = res
227 return res
228 end
229
230 private var bool_type_cache: nullable MClassType
231
232 # The primitive type `Sys`, the main type of the program, if any
233 fun sys_type: nullable MClassType
234 do
235 var clas = self.model.get_mclasses_by_name("Sys")
236 if clas == null then return null
237 return get_primitive_class("Sys").mclass_type
238 end
239
240 # The primitive type `Finalizable`
241 # Used to tag classes that need to be finalized.
242 fun finalizable_type: nullable MClassType
243 do
244 var clas = self.model.get_mclasses_by_name("Finalizable")
245 if clas == null then return null
246 return get_primitive_class("Finalizable").mclass_type
247 end
248
249 # Force to get the primitive class named `name` or abort
250 fun get_primitive_class(name: String): MClass
251 do
252 var cla = self.model.get_mclasses_by_name(name)
253 if cla == null then
254 if name == "Bool" and self.model.get_mclasses_by_name("Object") != null then
255 # Bool is injected because it is needed by engine to code the result
256 # of the implicit casts.
257 var c = new MClass(self, name, null, enum_kind, public_visibility)
258 var cladef = new MClassDef(self, c.mclass_type, new Location(null, 0,0,0,0))
259 cladef.set_supertypes([object_type])
260 cladef.add_in_hierarchy
261 return c
262 end
263 print("Fatal Error: no primitive class {name}")
264 exit(1)
265 end
266 if cla.length != 1 then
267 var msg = "Fatal Error: more than one primitive class {name}:"
268 for c in cla do msg += " {c.full_name}"
269 print msg
270 #exit(1)
271 end
272 return cla.first
273 end
274
275 # Try to get the primitive method named `name` on the type `recv`
276 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
277 do
278 var props = self.model.get_mproperties_by_name(name)
279 if props == null then return null
280 var res: nullable MMethod = null
281 for mprop in props do
282 assert mprop isa MMethod
283 var intro = mprop.intro_mclassdef
284 for mclassdef in recv.mclassdefs do
285 if not self.in_importation.greaters.has(mclassdef.mmodule) then continue
286 if not mclassdef.in_hierarchy.greaters.has(intro) then continue
287 if res == null then
288 res = mprop
289 else if res != mprop then
290 print("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
291 abort
292 end
293 end
294 end
295 return res
296 end
297 end
298
299 private class MClassDefSorter
300 super Comparator
301 redef type COMPARED: MClassDef
302 var mmodule: MModule
303 redef fun compare(a, b)
304 do
305 var ca = a.mclass
306 var cb = b.mclass
307 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
308 return mmodule.model.mclassdef_hierarchy.compare(a, b)
309 end
310 end
311
312 private class MPropDefSorter
313 super Comparator
314 redef type COMPARED: MPropDef
315 var mmodule: MModule
316 redef fun compare(pa, pb)
317 do
318 var a = pa.mclassdef
319 var b = pb.mclassdef
320 var ca = a.mclass
321 var cb = b.mclass
322 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
323 return mmodule.model.mclassdef_hierarchy.compare(a, b)
324 end
325 end
326
327 # A named class
328 #
329 # `MClass` are global to the model; it means that a `MClass` is not bound to a
330 # specific `MModule`.
331 #
332 # This characteristic helps the reasoning about classes in a program since a
333 # single `MClass` object always denote the same class.
334 #
335 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
336 # These do not really have properties nor belong to a hierarchy since the property and the
337 # hierarchy of a class depends of the refinement in the modules.
338 #
339 # Most services on classes require the precision of a module, and no one can asks what are
340 # the super-classes of a class nor what are properties of a class without precising what is
341 # the module considered.
342 #
343 # For instance, during the typing of a source-file, the module considered is the module of the file.
344 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
345 # *is the method `foo` exists in the class `Bar` in the current module?*
346 #
347 # During some global analysis, the module considered may be the main module of the program.
348 class MClass
349 super MEntity
350
351 # The module that introduce the class
352 # While classes are not bound to a specific module,
353 # the introducing module is used for naming an visibility
354 var intro_mmodule: MModule
355
356 # The short name of the class
357 # In Nit, the name of a class cannot evolve in refinements
358 redef var name: String
359
360 # The canonical name of the class
361 #
362 # It is the name of the class prefixed by the full_name of the `intro_mmodule`
363 # Example: `"owner::module::MyClass"`
364 redef var full_name is lazy do
365 return "{self.intro_mmodule.namespace_for(visibility)}::{name}"
366 end
367
368 redef var c_name is lazy do
369 return "{intro_mmodule.c_namespace_for(visibility)}__{name.to_cmangle}"
370 end
371
372 # The number of generic formal parameters
373 # 0 if the class is not generic
374 var arity: Int is noinit
375
376 # Each generic formal parameters in order.
377 # is empty if the class is not generic
378 var mparameters = new Array[MParameterType]
379
380 # Initialize `mparameters` from their names.
381 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
382 autoinit
383 do
384 if parameter_names == null then
385 self.arity = 0
386 else
387 self.arity = parameter_names.length
388 end
389
390 # Create the formal parameter types
391 if arity > 0 then
392 assert parameter_names != null
393 var mparametertypes = new Array[MParameterType]
394 for i in [0..arity[ do
395 var mparametertype = new MParameterType(self, i, parameter_names[i])
396 mparametertypes.add(mparametertype)
397 end
398 self.mparameters = mparametertypes
399 var mclass_type = new MGenericType(self, mparametertypes)
400 self.mclass_type = mclass_type
401 self.get_mtype_cache[mparametertypes] = mclass_type
402 else
403 self.mclass_type = new MClassType(self)
404 end
405 end
406
407 # The kind of the class (interface, abstract class, etc.)
408 # In Nit, the kind of a class cannot evolve in refinements
409 var kind: MClassKind
410
411 # The visibility of the class
412 # In Nit, the visibility of a class cannot evolve in refinements
413 var visibility: MVisibility
414
415 init
416 do
417 intro_mmodule.intro_mclasses.add(self)
418 var model = intro_mmodule.model
419 model.mclasses_by_name.add_one(name, self)
420 model.mclasses.add(self)
421 end
422
423 redef fun model do return intro_mmodule.model
424
425 # All class definitions (introduction and refinements)
426 var mclassdefs = new Array[MClassDef]
427
428 # Alias for `name`
429 redef fun to_s do return self.name
430
431 # The definition that introduces the class.
432 #
433 # Warning: such a definition may not exist in the early life of the object.
434 # In this case, the method will abort.
435 var intro: MClassDef is noinit
436
437 # Return the class `self` in the class hierarchy of the module `mmodule`.
438 #
439 # SEE: `MModule::flatten_mclass_hierarchy`
440 # REQUIRE: `mmodule.has_mclass(self)`
441 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
442 do
443 return mmodule.flatten_mclass_hierarchy[self]
444 end
445
446 # The principal static type of the class.
447 #
448 # For non-generic class, mclass_type is the only `MClassType` based
449 # on self.
450 #
451 # For a generic class, the arguments are the formal parameters.
452 # i.e.: for the class Array[E:Object], the `mclass_type` is Array[E].
453 # If you want Array[Object] the see `MClassDef::bound_mtype`
454 #
455 # For generic classes, the mclass_type is also the way to get a formal
456 # generic parameter type.
457 #
458 # To get other types based on a generic class, see `get_mtype`.
459 #
460 # ENSURE: `mclass_type.mclass == self`
461 var mclass_type: MClassType is noinit
462
463 # Return a generic type based on the class
464 # Is the class is not generic, then the result is `mclass_type`
465 #
466 # REQUIRE: `mtype_arguments.length == self.arity`
467 fun get_mtype(mtype_arguments: Array[MType]): MClassType
468 do
469 assert mtype_arguments.length == self.arity
470 if self.arity == 0 then return self.mclass_type
471 var res = get_mtype_cache.get_or_null(mtype_arguments)
472 if res != null then return res
473 res = new MGenericType(self, mtype_arguments)
474 self.get_mtype_cache[mtype_arguments.to_a] = res
475 return res
476 end
477
478 private var get_mtype_cache = new HashMap[Array[MType], MGenericType]
479 end
480
481
482 # A definition (an introduction or a refinement) of a class in a module
483 #
484 # A `MClassDef` is associated with an explicit (or almost) definition of a
485 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
486 # a specific class and a specific module, and contains declarations like super-classes
487 # or properties.
488 #
489 # It is the class definitions that are the backbone of most things in the model:
490 # ClassDefs are defined with regard with other classdefs.
491 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
492 #
493 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
494 class MClassDef
495 super MEntity
496
497 # The module where the definition is
498 var mmodule: MModule
499
500 # The associated `MClass`
501 var mclass: MClass is noinit
502
503 # The bounded type associated to the mclassdef
504 #
505 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
506 # are the same type.
507 #
508 # Example:
509 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
510 # If you want Array[E], then see `mclass.mclass_type`
511 #
512 # ENSURE: `bound_mtype.mclass == self.mclass`
513 var bound_mtype: MClassType
514
515 # The origin of the definition
516 var location: Location
517
518 # Internal name combining the module and the class
519 # Example: "mymodule#MyClass"
520 redef var to_s: String is noinit
521
522 init
523 do
524 self.mclass = bound_mtype.mclass
525 mmodule.mclassdefs.add(self)
526 mclass.mclassdefs.add(self)
527 if mclass.intro_mmodule == mmodule then
528 assert not isset mclass._intro
529 mclass.intro = self
530 end
531 self.to_s = "{mmodule}#{mclass}"
532 end
533
534 # Actually the name of the `mclass`
535 redef fun name do return mclass.name
536
537 # The module and class name separated by a '#'.
538 #
539 # The short-name of the class is used for introduction.
540 # Example: "my_module#MyClass"
541 #
542 # The full-name of the class is used for refinement.
543 # Example: "my_module#intro_module::MyClass"
544 redef var full_name is lazy do
545 if is_intro then
546 # public gives 'p#A'
547 # private gives 'p::m#A'
548 return "{mmodule.namespace_for(mclass.visibility)}#{mclass.name}"
549 else if mclass.intro_mmodule.mproject != mmodule.mproject then
550 # public gives 'q::n#p::A'
551 # private gives 'q::n#p::m::A'
552 return "{mmodule.full_name}#{mclass.full_name}"
553 else if mclass.visibility > private_visibility then
554 # public gives 'p::n#A'
555 return "{mmodule.full_name}#{mclass.name}"
556 else
557 # private gives 'p::n#::m::A' (redundant p is omitted)
558 return "{mmodule.full_name}#::{mclass.intro_mmodule.name}::{mclass.name}"
559 end
560 end
561
562 redef var c_name is lazy do
563 if is_intro then
564 return "{mmodule.c_namespace_for(mclass.visibility)}___{mclass.c_name}"
565 else if mclass.intro_mmodule.mproject == mmodule.mproject and mclass.visibility > private_visibility then
566 return "{mmodule.c_name}___{mclass.name.to_cmangle}"
567 else
568 return "{mmodule.c_name}___{mclass.c_name}"
569 end
570 end
571
572 redef fun model do return mmodule.model
573
574 # All declared super-types
575 # FIXME: quite ugly but not better idea yet
576 var supertypes = new Array[MClassType]
577
578 # Register some super-types for the class (ie "super SomeType")
579 #
580 # The hierarchy must not already be set
581 # REQUIRE: `self.in_hierarchy == null`
582 fun set_supertypes(supertypes: Array[MClassType])
583 do
584 assert unique_invocation: self.in_hierarchy == null
585 var mmodule = self.mmodule
586 var model = mmodule.model
587 var mtype = self.bound_mtype
588
589 for supertype in supertypes do
590 self.supertypes.add(supertype)
591
592 # Register in full_type_specialization_hierarchy
593 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
594 # Register in intro_type_specialization_hierarchy
595 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
596 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
597 end
598 end
599
600 end
601
602 # Collect the super-types (set by set_supertypes) to build the hierarchy
603 #
604 # This function can only invoked once by class
605 # REQUIRE: `self.in_hierarchy == null`
606 # ENSURE: `self.in_hierarchy != null`
607 fun add_in_hierarchy
608 do
609 assert unique_invocation: self.in_hierarchy == null
610 var model = mmodule.model
611 var res = model.mclassdef_hierarchy.add_node(self)
612 self.in_hierarchy = res
613 var mtype = self.bound_mtype
614
615 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
616 # The simpliest way is to attach it to collect_mclassdefs
617 for mclassdef in mtype.collect_mclassdefs(mmodule) do
618 res.poset.add_edge(self, mclassdef)
619 end
620 end
621
622 # The view of the class definition in `mclassdef_hierarchy`
623 var in_hierarchy: nullable POSetElement[MClassDef] = null
624
625 # Is the definition the one that introduced `mclass`?
626 fun is_intro: Bool do return mclass.intro == self
627
628 # All properties introduced by the classdef
629 var intro_mproperties = new Array[MProperty]
630
631 # All property definitions in the class (introductions and redefinitions)
632 var mpropdefs = new Array[MPropDef]
633 end
634
635 # A global static type
636 #
637 # MType are global to the model; it means that a `MType` is not bound to a
638 # specific `MModule`.
639 # This characteristic helps the reasoning about static types in a program
640 # since a single `MType` object always denote the same type.
641 #
642 # However, because a `MType` is global, it does not really have properties
643 # nor have subtypes to a hierarchy since the property and the class hierarchy
644 # depends of a module.
645 # Moreover, virtual types an formal generic parameter types also depends on
646 # a receiver to have sense.
647 #
648 # Therefore, most method of the types require a module and an anchor.
649 # The module is used to know what are the classes and the specialization
650 # links.
651 # The anchor is used to know what is the bound of the virtual types and formal
652 # generic parameter types.
653 #
654 # MType are not directly usable to get properties. See the `anchor_to` method
655 # and the `MClassType` class.
656 #
657 # FIXME: the order of the parameters is not the best. We mus pick on from:
658 # * foo(mmodule, anchor, othertype)
659 # * foo(othertype, anchor, mmodule)
660 # * foo(anchor, mmodule, othertype)
661 # * foo(othertype, mmodule, anchor)
662 abstract class MType
663 super MEntity
664
665 redef fun name do return to_s
666
667 # Return true if `self` is an subtype of `sup`.
668 # The typing is done using the standard typing policy of Nit.
669 #
670 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
671 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
672 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
673 do
674 var sub = self
675 if sub == sup then return true
676
677 #print "1.is {sub} a {sup}? ===="
678
679 if anchor == null then
680 assert not sub.need_anchor
681 assert not sup.need_anchor
682 else
683 # First, resolve the formal types to the simplest equivalent forms in the receiver
684 assert sub.can_resolve_for(anchor, null, mmodule)
685 sub = sub.lookup_fixed(mmodule, anchor)
686 assert sup.can_resolve_for(anchor, null, mmodule)
687 sup = sup.lookup_fixed(mmodule, anchor)
688 end
689
690 # Does `sup` accept null or not?
691 # Discard the nullable marker if it exists
692 var sup_accept_null = false
693 if sup isa MNullableType then
694 sup_accept_null = true
695 sup = sup.mtype
696 else if sup isa MNullType then
697 sup_accept_null = true
698 end
699
700 # Can `sub` provide null or not?
701 # Thus we can match with `sup_accept_null`
702 # Also discard the nullable marker if it exists
703 if sub isa MNullableType then
704 if not sup_accept_null then return false
705 sub = sub.mtype
706 else if sub isa MNullType then
707 return sup_accept_null
708 end
709 # Now the case of direct null and nullable is over.
710
711 # If `sub` is a formal type, then it is accepted if its bound is accepted
712 while sub isa MParameterType or sub isa MVirtualType do
713 #print "3.is {sub} a {sup}?"
714
715 # A unfixed formal type can only accept itself
716 if sub == sup then return true
717
718 assert anchor != null
719 sub = sub.lookup_bound(mmodule, anchor)
720
721 #print "3.is {sub} a {sup}?"
722
723 # Manage the second layer of null/nullable
724 if sub isa MNullableType then
725 if not sup_accept_null then return false
726 sub = sub.mtype
727 else if sub isa MNullType then
728 return sup_accept_null
729 end
730 end
731 #print "4.is {sub} a {sup}? <- no more resolution"
732
733 assert sub isa MClassType # It is the only remaining type
734
735 # A unfixed formal type can only accept itself
736 if sup isa MParameterType or sup isa MVirtualType then
737 return false
738 end
739
740 if sup isa MNullType then
741 # `sup` accepts only null
742 return false
743 end
744
745 assert sup isa MClassType # It is the only remaining type
746
747 # Now both are MClassType, we need to dig
748
749 if sub == sup then return true
750
751 if anchor == null then anchor = sub # UGLY: any anchor will work
752 var resolved_sub = sub.anchor_to(mmodule, anchor)
753 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
754 if res == false then return false
755 if not sup isa MGenericType then return true
756 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
757 assert sub2.mclass == sup.mclass
758 for i in [0..sup.mclass.arity[ do
759 var sub_arg = sub2.arguments[i]
760 var sup_arg = sup.arguments[i]
761 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
762 if res == false then return false
763 end
764 return true
765 end
766
767 # The base class type on which self is based
768 #
769 # This base type is used to get property (an internally to perform
770 # unsafe type comparison).
771 #
772 # Beware: some types (like null) are not based on a class thus this
773 # method will crash
774 #
775 # Basically, this function transform the virtual types and parameter
776 # types to their bounds.
777 #
778 # Example
779 #
780 # class A end
781 # class B super A end
782 # class X end
783 # class Y super X end
784 # class G[T: A]
785 # type U: X
786 # end
787 # class H
788 # super G[B]
789 # redef type U: Y
790 # end
791 #
792 # Map[T,U] anchor_to H #-> Map[B,Y]
793 #
794 # Explanation of the example:
795 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
796 # because "redef type U: Y". Therefore, Map[T, U] is bound to
797 # Map[B, Y]
798 #
799 # ENSURE: `not self.need_anchor implies result == self`
800 # ENSURE: `not result.need_anchor`
801 fun anchor_to(mmodule: MModule, anchor: MClassType): MType
802 do
803 if not need_anchor then return self
804 assert not anchor.need_anchor
805 # Just resolve to the anchor and clear all the virtual types
806 var res = self.resolve_for(anchor, null, mmodule, true)
807 assert not res.need_anchor
808 return res
809 end
810
811 # Does `self` contain a virtual type or a formal generic parameter type?
812 # In order to remove those types, you usually want to use `anchor_to`.
813 fun need_anchor: Bool do return true
814
815 # Return the supertype when adapted to a class.
816 #
817 # In Nit, for each super-class of a type, there is a equivalent super-type.
818 #
819 # Example:
820 #
821 # ~~~nitish
822 # class G[T, U] end
823 # class H[V] super G[V, Bool] end
824 #
825 # H[Int] supertype_to G #-> G[Int, Bool]
826 # ~~~
827 #
828 # REQUIRE: `super_mclass` is a super-class of `self`
829 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
830 # ENSURE: `result.mclass = super_mclass`
831 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
832 do
833 if super_mclass.arity == 0 then return super_mclass.mclass_type
834 if self isa MClassType and self.mclass == super_mclass then return self
835 var resolved_self
836 if self.need_anchor then
837 assert anchor != null
838 resolved_self = self.anchor_to(mmodule, anchor)
839 else
840 resolved_self = self
841 end
842 var supertypes = resolved_self.collect_mtypes(mmodule)
843 for supertype in supertypes do
844 if supertype.mclass == super_mclass then
845 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
846 return supertype.resolve_for(self, anchor, mmodule, false)
847 end
848 end
849 abort
850 end
851
852 # Replace formals generic types in self with resolved values in `mtype`
853 # If `cleanup_virtual` is true, then virtual types are also replaced
854 # with their bounds.
855 #
856 # This function returns self if `need_anchor` is false.
857 #
858 # ## Example 1
859 #
860 # ~~~
861 # class G[E] end
862 # class H[F] super G[F] end
863 # class X[Z] end
864 # ~~~
865 #
866 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
867 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
868 #
869 # Explanation of the example:
870 # * Array[E].need_anchor is true because there is a formal generic parameter type E
871 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
872 # * Since "H[F] super G[F]", E is in fact F for H
873 # * More specifically, in H[Int], E is Int
874 # * So, in H[Int], Array[E] is Array[Int]
875 #
876 # This function is mainly used to inherit a signature.
877 # Because, unlike `anchor_to`, we do not want a full resolution of
878 # a type but only an adapted version of it.
879 #
880 # ## Example 2
881 #
882 # ~~~
883 # class A[E]
884 # fun foo(e:E):E is abstract
885 # end
886 # class B super A[Int] end
887 # ~~~
888 #
889 # The signature on foo is (e: E): E
890 # If we resolve the signature for B, we get (e:Int):Int
891 #
892 # ## Example 3
893 #
894 # ~~~nitish
895 # class A[E]
896 # fun foo(e:E):E is abstract
897 # end
898 # class C[F]
899 # var a: A[Array[F]]
900 # fun bar do a.foo(x) # <- x is here
901 # end
902 # ~~~
903 #
904 # The first question is: is foo available on `a`?
905 #
906 # The static type of a is `A[Array[F]]`, that is an open type.
907 # in order to find a method `foo`, whe must look at a resolved type.
908 #
909 # A[Array[F]].anchor_to(C[nullable Object]) #-> A[Array[nullable Object]]
910 #
911 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
912 #
913 # The next question is: what is the accepted types for `x`?
914 #
915 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
916 #
917 # E.resolve_for(A[Array[F]],C[nullable Object]) #-> Array[F]
918 #
919 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
920 #
921 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
922 # two function instead of one seems also to be a bad idea.
923 #
924 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
925 # ENSURE: `not self.need_anchor implies result == self`
926 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
927
928 # Resolve formal type to its verbatim bound.
929 # If the type is not formal, just return self
930 #
931 # The result is returned exactly as declared in the "type" property (verbatim).
932 # So it could be another formal type.
933 #
934 # In case of conflict, the method aborts.
935 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self
936
937 # Resolve the formal type to its simplest equivalent form.
938 #
939 # Formal types are either free or fixed.
940 # When it is fixed, it means that it is equivalent with a simpler type.
941 # When a formal type is free, it means that it is only equivalent with itself.
942 # This method return the most simple equivalent type of `self`.
943 #
944 # This method is mainly used for subtype test in order to sanely compare fixed.
945 #
946 # By default, return self.
947 # See the redefinitions for specific behavior in each kind of type.
948 fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self
949
950 # Can the type be resolved?
951 #
952 # In order to resolve open types, the formal types must make sence.
953 #
954 # ## Example
955 #
956 # class A[E]
957 # end
958 # class B[F]
959 # end
960 #
961 # ~~~nitish
962 # E.can_resolve_for(A[Int]) #-> true, E make sense in A
963 #
964 # E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
965 #
966 # B[E].can_resolve_for(A[F], B[Object]) #-> true,
967 # # B[E] is a red hearing only the E is important,
968 # # E make sense in A
969 # ~~~
970 #
971 # REQUIRE: `anchor != null implies not anchor.need_anchor`
972 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
973 # ENSURE: `not self.need_anchor implies result == true`
974 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
975
976 # Return the nullable version of the type
977 # If the type is already nullable then self is returned
978 fun as_nullable: MType
979 do
980 var res = self.as_nullable_cache
981 if res != null then return res
982 res = new MNullableType(self)
983 self.as_nullable_cache = res
984 return res
985 end
986
987 # Return the not nullable version of the type
988 # Is the type is already not nullable, then self is returned.
989 #
990 # Note: this just remove the `nullable` notation, but the result can still contains null.
991 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
992 fun as_notnullable: MType
993 do
994 return self
995 end
996
997 private var as_nullable_cache: nullable MType = null
998
999
1000 # The depth of the type seen as a tree.
1001 #
1002 # * A -> 1
1003 # * G[A] -> 2
1004 # * H[A, B] -> 2
1005 # * H[G[A], B] -> 3
1006 #
1007 # Formal types have a depth of 1.
1008 fun depth: Int
1009 do
1010 return 1
1011 end
1012
1013 # The length of the type seen as a tree.
1014 #
1015 # * A -> 1
1016 # * G[A] -> 2
1017 # * H[A, B] -> 3
1018 # * H[G[A], B] -> 4
1019 #
1020 # Formal types have a length of 1.
1021 fun length: Int
1022 do
1023 return 1
1024 end
1025
1026 # Compute all the classdefs inherited/imported.
1027 # The returned set contains:
1028 # * the class definitions from `mmodule` and its imported modules
1029 # * the class definitions of this type and its super-types
1030 #
1031 # This function is used mainly internally.
1032 #
1033 # REQUIRE: `not self.need_anchor`
1034 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
1035
1036 # Compute all the super-classes.
1037 # This function is used mainly internally.
1038 #
1039 # REQUIRE: `not self.need_anchor`
1040 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
1041
1042 # Compute all the declared super-types.
1043 # Super-types are returned as declared in the classdefs (verbatim).
1044 # This function is used mainly internally.
1045 #
1046 # REQUIRE: `not self.need_anchor`
1047 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
1048
1049 # Is the property in self for a given module
1050 # This method does not filter visibility or whatever
1051 #
1052 # REQUIRE: `not self.need_anchor`
1053 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
1054 do
1055 assert not self.need_anchor
1056 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
1057 end
1058 end
1059
1060 # A type based on a class.
1061 #
1062 # `MClassType` have properties (see `has_mproperty`).
1063 class MClassType
1064 super MType
1065
1066 # The associated class
1067 var mclass: MClass
1068
1069 redef fun model do return self.mclass.intro_mmodule.model
1070
1071 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1072
1073 # The formal arguments of the type
1074 # ENSURE: `result.length == self.mclass.arity`
1075 var arguments = new Array[MType]
1076
1077 redef fun to_s do return mclass.to_s
1078
1079 redef fun full_name do return mclass.full_name
1080
1081 redef fun c_name do return mclass.c_name
1082
1083 redef fun need_anchor do return false
1084
1085 redef fun anchor_to(mmodule: MModule, anchor: MClassType): MClassType
1086 do
1087 return super.as(MClassType)
1088 end
1089
1090 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1091
1092 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1093
1094 redef fun collect_mclassdefs(mmodule)
1095 do
1096 assert not self.need_anchor
1097 var cache = self.collect_mclassdefs_cache
1098 if not cache.has_key(mmodule) then
1099 self.collect_things(mmodule)
1100 end
1101 return cache[mmodule]
1102 end
1103
1104 redef fun collect_mclasses(mmodule)
1105 do
1106 if collect_mclasses_last_module == mmodule then return collect_mclasses_last_module_cache
1107 assert not self.need_anchor
1108 var cache = self.collect_mclasses_cache
1109 if not cache.has_key(mmodule) then
1110 self.collect_things(mmodule)
1111 end
1112 var res = cache[mmodule]
1113 collect_mclasses_last_module = mmodule
1114 collect_mclasses_last_module_cache = res
1115 return res
1116 end
1117
1118 private var collect_mclasses_last_module: nullable MModule = null
1119 private var collect_mclasses_last_module_cache: Set[MClass] is noinit
1120
1121 redef fun collect_mtypes(mmodule)
1122 do
1123 assert not self.need_anchor
1124 var cache = self.collect_mtypes_cache
1125 if not cache.has_key(mmodule) then
1126 self.collect_things(mmodule)
1127 end
1128 return cache[mmodule]
1129 end
1130
1131 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1132 private fun collect_things(mmodule: MModule)
1133 do
1134 var res = new HashSet[MClassDef]
1135 var seen = new HashSet[MClass]
1136 var types = new HashSet[MClassType]
1137 seen.add(self.mclass)
1138 var todo = [self.mclass]
1139 while not todo.is_empty do
1140 var mclass = todo.pop
1141 #print "process {mclass}"
1142 for mclassdef in mclass.mclassdefs do
1143 if not mmodule.in_importation <= mclassdef.mmodule then continue
1144 #print " process {mclassdef}"
1145 res.add(mclassdef)
1146 for supertype in mclassdef.supertypes do
1147 types.add(supertype)
1148 var superclass = supertype.mclass
1149 if seen.has(superclass) then continue
1150 #print " add {superclass}"
1151 seen.add(superclass)
1152 todo.add(superclass)
1153 end
1154 end
1155 end
1156 collect_mclassdefs_cache[mmodule] = res
1157 collect_mclasses_cache[mmodule] = seen
1158 collect_mtypes_cache[mmodule] = types
1159 end
1160
1161 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1162 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1163 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1164
1165 end
1166
1167 # A type based on a generic class.
1168 # A generic type a just a class with additional formal generic arguments.
1169 class MGenericType
1170 super MClassType
1171
1172 redef var arguments
1173
1174 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1175
1176 init
1177 do
1178 assert self.mclass.arity == arguments.length
1179
1180 self.need_anchor = false
1181 for t in arguments do
1182 if t.need_anchor then
1183 self.need_anchor = true
1184 break
1185 end
1186 end
1187
1188 self.to_s = "{mclass}[{arguments.join(", ")}]"
1189 end
1190
1191 # The short-name of the class, then the full-name of each type arguments within brackets.
1192 # Example: `"Map[String, List[Int]]"`
1193 redef var to_s: String is noinit
1194
1195 # The full-name of the class, then the full-name of each type arguments within brackets.
1196 # Example: `"standard::Map[standard::String, standard::List[standard::Int]]"`
1197 redef var full_name is lazy do
1198 var args = new Array[String]
1199 for t in arguments do
1200 args.add t.full_name
1201 end
1202 return "{mclass.full_name}[{args.join(", ")}]}"
1203 end
1204
1205 redef var c_name is lazy do
1206 var res = mclass.c_name
1207 # Note: because the arity is known, a prefix notation is enough
1208 for t in arguments do
1209 res += "__"
1210 res += t.c_name
1211 end
1212 return res.to_s
1213 end
1214
1215 redef var need_anchor: Bool is noinit
1216
1217 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1218 do
1219 if not need_anchor then return self
1220 assert can_resolve_for(mtype, anchor, mmodule)
1221 var types = new Array[MType]
1222 for t in arguments do
1223 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1224 end
1225 return mclass.get_mtype(types)
1226 end
1227
1228 redef fun can_resolve_for(mtype, anchor, mmodule)
1229 do
1230 if not need_anchor then return true
1231 for t in arguments do
1232 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1233 end
1234 return true
1235 end
1236
1237
1238 redef fun depth
1239 do
1240 var dmax = 0
1241 for a in self.arguments do
1242 var d = a.depth
1243 if d > dmax then dmax = d
1244 end
1245 return dmax + 1
1246 end
1247
1248 redef fun length
1249 do
1250 var res = 1
1251 for a in self.arguments do
1252 res += a.length
1253 end
1254 return res
1255 end
1256 end
1257
1258 # A virtual formal type.
1259 class MVirtualType
1260 super MType
1261
1262 # The property associated with the type.
1263 # Its the definitions of this property that determine the bound or the virtual type.
1264 var mproperty: MVirtualTypeProp
1265
1266 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1267
1268 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1269 do
1270 return lookup_single_definition(mmodule, resolved_receiver).bound.as(not null)
1271 end
1272
1273 private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef
1274 do
1275 assert not resolved_receiver.need_anchor
1276 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1277 if props.is_empty then
1278 abort
1279 else if props.length == 1 then
1280 return props.first
1281 end
1282 var types = new ArraySet[MType]
1283 var res = props.first
1284 for p in props do
1285 types.add(p.bound.as(not null))
1286 if not res.is_fixed then res = p
1287 end
1288 if types.length == 1 then
1289 return res
1290 end
1291 abort
1292 end
1293
1294 # A VT is fixed when:
1295 # * the VT is (re-)defined with the annotation `is fixed`
1296 # * the VT is (indirectly) bound to an enum class (see `enum_kind`) since there is no subtype possible
1297 # * the receiver is an enum class since there is no subtype possible
1298 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1299 do
1300 assert not resolved_receiver.need_anchor
1301 resolved_receiver = resolved_receiver.as_notnullable
1302 assert resolved_receiver isa MClassType # It is the only remaining type
1303
1304 var prop = lookup_single_definition(mmodule, resolved_receiver)
1305 var res = prop.bound.as(not null)
1306
1307 # Recursively lookup the fixed result
1308 res = res.lookup_fixed(mmodule, resolved_receiver)
1309
1310 # 1. For a fixed VT, return the resolved bound
1311 if prop.is_fixed then return res
1312
1313 # 2. For a enum boud, return the bound
1314 if res isa MClassType and res.mclass.kind == enum_kind then return res
1315
1316 # 3. for a enum receiver return the bound
1317 if resolved_receiver.mclass.kind == enum_kind then return res
1318
1319 return self
1320 end
1321
1322 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1323 do
1324 if not cleanup_virtual then return self
1325 assert can_resolve_for(mtype, anchor, mmodule)
1326 # self is a virtual type declared (or inherited) in mtype
1327 # The point of the function it to get the bound of the virtual type that make sense for mtype
1328 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1329 #print "{class_name}: {self}/{mtype}/{anchor}?"
1330 var resolved_receiver
1331 if mtype.need_anchor then
1332 assert anchor != null
1333 resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true)
1334 else
1335 resolved_receiver = mtype
1336 end
1337 # Now, we can get the bound
1338 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1339 # The bound is exactly as declared in the "type" property, so we must resolve it again
1340 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1341
1342 return res
1343 end
1344
1345 redef fun can_resolve_for(mtype, anchor, mmodule)
1346 do
1347 if mtype.need_anchor then
1348 assert anchor != null
1349 mtype = mtype.anchor_to(mmodule, anchor)
1350 end
1351 return mtype.has_mproperty(mmodule, mproperty)
1352 end
1353
1354 redef fun to_s do return self.mproperty.to_s
1355
1356 redef fun full_name do return self.mproperty.full_name
1357
1358 redef fun c_name do return self.mproperty.c_name
1359 end
1360
1361 # The type associated to a formal parameter generic type of a class
1362 #
1363 # Each parameter type is associated to a specific class.
1364 # It means that all refinements of a same class "share" the parameter type,
1365 # but that a generic subclass has its own parameter types.
1366 #
1367 # However, in the sense of the meta-model, a parameter type of a class is
1368 # a valid type in a subclass. The "in the sense of the meta-model" is
1369 # important because, in the Nit language, the programmer cannot refers
1370 # directly to the parameter types of the super-classes.
1371 #
1372 # Example:
1373 #
1374 # class A[E]
1375 # fun e: E is abstract
1376 # end
1377 # class B[F]
1378 # super A[Array[F]]
1379 # end
1380 #
1381 # In the class definition B[F], `F` is a valid type but `E` is not.
1382 # However, `self.e` is a valid method call, and the signature of `e` is
1383 # declared `e: E`.
1384 #
1385 # Note that parameter types are shared among class refinements.
1386 # Therefore parameter only have an internal name (see `to_s` for details).
1387 class MParameterType
1388 super MType
1389
1390 # The generic class where the parameter belong
1391 var mclass: MClass
1392
1393 redef fun model do return self.mclass.intro_mmodule.model
1394
1395 # The position of the parameter (0 for the first parameter)
1396 # FIXME: is `position` a better name?
1397 var rank: Int
1398
1399 redef var name
1400
1401 redef fun to_s do return name
1402
1403 redef var full_name is lazy do return "{mclass.full_name}::{name}"
1404
1405 redef var c_name is lazy do return mclass.c_name + "__" + "#{name}".to_cmangle
1406
1407 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1408 do
1409 assert not resolved_receiver.need_anchor
1410 resolved_receiver = resolved_receiver.as_notnullable
1411 assert resolved_receiver isa MClassType # It is the only remaining type
1412 var goalclass = self.mclass
1413 if resolved_receiver.mclass == goalclass then
1414 return resolved_receiver.arguments[self.rank]
1415 end
1416 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1417 for t in supertypes do
1418 if t.mclass == goalclass then
1419 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1420 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1421 var res = t.arguments[self.rank]
1422 return res
1423 end
1424 end
1425 abort
1426 end
1427
1428 # A PT is fixed when:
1429 # * Its bound is a enum class (see `enum_kind`).
1430 # The PT is just useless, but it is still a case.
1431 # * More usually, the `resolved_receiver` is a subclass of `self.mclass`,
1432 # so it is necessarily fixed in a `super` clause, either with a normal type
1433 # or with another PT.
1434 # See `resolve_for` for examples about related issues.
1435 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1436 do
1437 assert not resolved_receiver.need_anchor
1438 resolved_receiver = resolved_receiver.as_notnullable
1439 assert resolved_receiver isa MClassType # It is the only remaining type
1440 var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false)
1441 return res
1442 end
1443
1444 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1445 do
1446 assert can_resolve_for(mtype, anchor, mmodule)
1447 #print "{class_name}: {self}/{mtype}/{anchor}?"
1448
1449 if mtype isa MGenericType and mtype.mclass == self.mclass then
1450 var res = mtype.arguments[self.rank]
1451 if anchor != null and res.need_anchor then
1452 # Maybe the result can be resolved more if are bound to a final class
1453 var r2 = res.anchor_to(mmodule, anchor)
1454 if r2 isa MClassType and r2.mclass.kind == enum_kind then return r2
1455 end
1456 return res
1457 end
1458
1459 # self is a parameter type of mtype (or of a super-class of mtype)
1460 # The point of the function it to get the bound of the virtual type that make sense for mtype
1461 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1462 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1463 var resolved_receiver
1464 if mtype.need_anchor then
1465 assert anchor != null
1466 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1467 else
1468 resolved_receiver = mtype
1469 end
1470 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1471 if resolved_receiver isa MParameterType then
1472 assert resolved_receiver.mclass == anchor.mclass
1473 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1474 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1475 end
1476 assert resolved_receiver isa MClassType # It is the only remaining type
1477
1478 # Eh! The parameter is in the current class.
1479 # So we return the corresponding argument, no mater what!
1480 if resolved_receiver.mclass == self.mclass then
1481 var res = resolved_receiver.arguments[self.rank]
1482 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1483 return res
1484 end
1485
1486 if resolved_receiver.need_anchor then
1487 assert anchor != null
1488 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1489 end
1490 # Now, we can get the bound
1491 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1492 # The bound is exactly as declared in the "type" property, so we must resolve it again
1493 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1494
1495 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1496
1497 return res
1498 end
1499
1500 redef fun can_resolve_for(mtype, anchor, mmodule)
1501 do
1502 if mtype.need_anchor then
1503 assert anchor != null
1504 mtype = mtype.anchor_to(mmodule, anchor)
1505 end
1506 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1507 end
1508 end
1509
1510 # A type prefixed with "nullable"
1511 class MNullableType
1512 super MType
1513
1514 # The base type of the nullable type
1515 var mtype: MType
1516
1517 redef fun model do return self.mtype.model
1518
1519 init
1520 do
1521 self.to_s = "nullable {mtype}"
1522 end
1523
1524 redef var to_s: String is noinit
1525
1526 redef var full_name is lazy do return "nullable {mtype.full_name}"
1527
1528 redef var c_name is lazy do return "nullable__{mtype.c_name}"
1529
1530 redef fun need_anchor do return mtype.need_anchor
1531 redef fun as_nullable do return self
1532 redef fun as_notnullable do return mtype
1533 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1534 do
1535 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1536 return res.as_nullable
1537 end
1538
1539 redef fun can_resolve_for(mtype, anchor, mmodule)
1540 do
1541 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1542 end
1543
1544 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable`
1545 redef fun lookup_fixed(mmodule, resolved_receiver)
1546 do
1547 var t = mtype.lookup_fixed(mmodule, resolved_receiver)
1548 if t == mtype then return self
1549 return t.as_nullable
1550 end
1551
1552 redef fun depth do return self.mtype.depth
1553
1554 redef fun length do return self.mtype.length
1555
1556 redef fun collect_mclassdefs(mmodule)
1557 do
1558 assert not self.need_anchor
1559 return self.mtype.collect_mclassdefs(mmodule)
1560 end
1561
1562 redef fun collect_mclasses(mmodule)
1563 do
1564 assert not self.need_anchor
1565 return self.mtype.collect_mclasses(mmodule)
1566 end
1567
1568 redef fun collect_mtypes(mmodule)
1569 do
1570 assert not self.need_anchor
1571 return self.mtype.collect_mtypes(mmodule)
1572 end
1573 end
1574
1575 # The type of the only value null
1576 #
1577 # The is only one null type per model, see `MModel::null_type`.
1578 class MNullType
1579 super MType
1580 redef var model: Model
1581 redef fun to_s do return "null"
1582 redef fun full_name do return "null"
1583 redef fun c_name do return "null"
1584 redef fun as_nullable do return self
1585 redef fun need_anchor do return false
1586 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1587 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1588
1589 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1590
1591 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1592
1593 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1594 end
1595
1596 # A signature of a method
1597 class MSignature
1598 super MType
1599
1600 # The each parameter (in order)
1601 var mparameters: Array[MParameter]
1602
1603 # The return type (null for a procedure)
1604 var return_mtype: nullable MType
1605
1606 redef fun depth
1607 do
1608 var dmax = 0
1609 var t = self.return_mtype
1610 if t != null then dmax = t.depth
1611 for p in mparameters do
1612 var d = p.mtype.depth
1613 if d > dmax then dmax = d
1614 end
1615 return dmax + 1
1616 end
1617
1618 redef fun length
1619 do
1620 var res = 1
1621 var t = self.return_mtype
1622 if t != null then res += t.length
1623 for p in mparameters do
1624 res += p.mtype.length
1625 end
1626 return res
1627 end
1628
1629 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1630 init
1631 do
1632 var vararg_rank = -1
1633 for i in [0..mparameters.length[ do
1634 var parameter = mparameters[i]
1635 if parameter.is_vararg then
1636 assert vararg_rank == -1
1637 vararg_rank = i
1638 end
1639 end
1640 self.vararg_rank = vararg_rank
1641 end
1642
1643 # The rank of the ellipsis (`...`) for vararg (starting from 0).
1644 # value is -1 if there is no vararg.
1645 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1646 var vararg_rank: Int is noinit
1647
1648 # The number or parameters
1649 fun arity: Int do return mparameters.length
1650
1651 redef fun to_s
1652 do
1653 var b = new FlatBuffer
1654 if not mparameters.is_empty then
1655 b.append("(")
1656 for i in [0..mparameters.length[ do
1657 var mparameter = mparameters[i]
1658 if i > 0 then b.append(", ")
1659 b.append(mparameter.name)
1660 b.append(": ")
1661 b.append(mparameter.mtype.to_s)
1662 if mparameter.is_vararg then
1663 b.append("...")
1664 end
1665 end
1666 b.append(")")
1667 end
1668 var ret = self.return_mtype
1669 if ret != null then
1670 b.append(": ")
1671 b.append(ret.to_s)
1672 end
1673 return b.to_s
1674 end
1675
1676 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
1677 do
1678 var params = new Array[MParameter]
1679 for p in self.mparameters do
1680 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1681 end
1682 var ret = self.return_mtype
1683 if ret != null then
1684 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1685 end
1686 var res = new MSignature(params, ret)
1687 return res
1688 end
1689 end
1690
1691 # A parameter in a signature
1692 class MParameter
1693 super MEntity
1694
1695 # The name of the parameter
1696 redef var name: String
1697
1698 # The static type of the parameter
1699 var mtype: MType
1700
1701 # Is the parameter a vararg?
1702 var is_vararg: Bool
1703
1704 redef fun to_s
1705 do
1706 if is_vararg then
1707 return "{name}: {mtype}..."
1708 else
1709 return "{name}: {mtype}"
1710 end
1711 end
1712
1713 # Returns a new parameter with the `mtype` resolved.
1714 # See `MType::resolve_for` for details.
1715 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
1716 do
1717 if not self.mtype.need_anchor then return self
1718 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1719 var res = new MParameter(self.name, newtype, self.is_vararg)
1720 return res
1721 end
1722
1723 redef fun model do return mtype.model
1724 end
1725
1726 # A service (global property) that generalize method, attribute, etc.
1727 #
1728 # `MProperty` are global to the model; it means that a `MProperty` is not bound
1729 # to a specific `MModule` nor a specific `MClass`.
1730 #
1731 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
1732 # and the other in subclasses and in refinements.
1733 #
1734 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
1735 # of any dynamic type).
1736 # For instance, a call site "x.foo" is associated to a `MProperty`.
1737 abstract class MProperty
1738 super MEntity
1739
1740 # The associated MPropDef subclass.
1741 # The two specialization hierarchy are symmetric.
1742 type MPROPDEF: MPropDef
1743
1744 # The classdef that introduce the property
1745 # While a property is not bound to a specific module, or class,
1746 # the introducing mclassdef is used for naming and visibility
1747 var intro_mclassdef: MClassDef
1748
1749 # The (short) name of the property
1750 redef var name: String
1751
1752 # The canonical name of the property.
1753 #
1754 # It is the short-`name` prefixed by the short-name of the class and the full-name of the module.
1755 # Example: "my_project::my_module::MyClass::my_method"
1756 redef var full_name is lazy do
1757 return "{intro_mclassdef.mmodule.namespace_for(visibility)}::{intro_mclassdef.mclass.name}::{name}"
1758 end
1759
1760 redef var c_name is lazy do
1761 # FIXME use `namespace_for`
1762 return "{intro_mclassdef.mmodule.c_name}__{intro_mclassdef.mclass.name.to_cmangle}__{name.to_cmangle}"
1763 end
1764
1765 # The visibility of the property
1766 var visibility: MVisibility
1767
1768 init
1769 do
1770 intro_mclassdef.intro_mproperties.add(self)
1771 var model = intro_mclassdef.mmodule.model
1772 model.mproperties_by_name.add_one(name, self)
1773 model.mproperties.add(self)
1774 end
1775
1776 # All definitions of the property.
1777 # The first is the introduction,
1778 # The other are redefinitions (in refinements and in subclasses)
1779 var mpropdefs = new Array[MPROPDEF]
1780
1781 # The definition that introduces the property.
1782 #
1783 # Warning: such a definition may not exist in the early life of the object.
1784 # In this case, the method will abort.
1785 var intro: MPROPDEF is noinit
1786
1787 redef fun model do return intro.model
1788
1789 # Alias for `name`
1790 redef fun to_s do return name
1791
1792 # Return the most specific property definitions defined or inherited by a type.
1793 # The selection knows that refinement is stronger than specialization;
1794 # however, in case of conflict more than one property are returned.
1795 # If mtype does not know mproperty then an empty array is returned.
1796 #
1797 # If you want the really most specific property, then look at `lookup_first_definition`
1798 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1799 do
1800 assert not mtype.need_anchor
1801 mtype = mtype.as_notnullable
1802
1803 var cache = self.lookup_definitions_cache[mmodule, mtype]
1804 if cache != null then return cache
1805
1806 #print "select prop {mproperty} for {mtype} in {self}"
1807 # First, select all candidates
1808 var candidates = new Array[MPROPDEF]
1809 for mpropdef in self.mpropdefs do
1810 # If the definition is not imported by the module, then skip
1811 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1812 # If the definition is not inherited by the type, then skip
1813 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1814 # Else, we keep it
1815 candidates.add(mpropdef)
1816 end
1817 # Fast track for only one candidate
1818 if candidates.length <= 1 then
1819 self.lookup_definitions_cache[mmodule, mtype] = candidates
1820 return candidates
1821 end
1822
1823 # Second, filter the most specific ones
1824 return select_most_specific(mmodule, candidates)
1825 end
1826
1827 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
1828
1829 # Return the most specific property definitions inherited by a type.
1830 # The selection knows that refinement is stronger than specialization;
1831 # however, in case of conflict more than one property are returned.
1832 # If mtype does not know mproperty then an empty array is returned.
1833 #
1834 # If you want the really most specific property, then look at `lookup_next_definition`
1835 #
1836 # FIXME: Move to `MPropDef`?
1837 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1838 do
1839 assert not mtype.need_anchor
1840 mtype = mtype.as_notnullable
1841
1842 # First, select all candidates
1843 var candidates = new Array[MPROPDEF]
1844 for mpropdef in self.mpropdefs do
1845 # If the definition is not imported by the module, then skip
1846 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1847 # If the definition is not inherited by the type, then skip
1848 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1849 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
1850 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
1851 # Else, we keep it
1852 candidates.add(mpropdef)
1853 end
1854 # Fast track for only one candidate
1855 if candidates.length <= 1 then return candidates
1856
1857 # Second, filter the most specific ones
1858 return select_most_specific(mmodule, candidates)
1859 end
1860
1861 # Return an array containing olny the most specific property definitions
1862 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
1863 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
1864 do
1865 var res = new Array[MPROPDEF]
1866 for pd1 in candidates do
1867 var cd1 = pd1.mclassdef
1868 var c1 = cd1.mclass
1869 var keep = true
1870 for pd2 in candidates do
1871 if pd2 == pd1 then continue # do not compare with self!
1872 var cd2 = pd2.mclassdef
1873 var c2 = cd2.mclass
1874 if c2.mclass_type == c1.mclass_type then
1875 if cd2.mmodule.in_importation < cd1.mmodule then
1876 # cd2 refines cd1; therefore we skip pd1
1877 keep = false
1878 break
1879 end
1880 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
1881 # cd2 < cd1; therefore we skip pd1
1882 keep = false
1883 break
1884 end
1885 end
1886 if keep then
1887 res.add(pd1)
1888 end
1889 end
1890 if res.is_empty then
1891 print "All lost! {candidates.join(", ")}"
1892 # FIXME: should be abort!
1893 end
1894 return res
1895 end
1896
1897 # Return the most specific definition in the linearization of `mtype`.
1898 #
1899 # If you want to know the next properties in the linearization,
1900 # look at `MPropDef::lookup_next_definition`.
1901 #
1902 # FIXME: the linearization is still unspecified
1903 #
1904 # REQUIRE: `not mtype.need_anchor`
1905 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
1906 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
1907 do
1908 return lookup_all_definitions(mmodule, mtype).first
1909 end
1910
1911 # Return all definitions in a linearization order
1912 # Most specific first, most general last
1913 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1914 do
1915 mtype = mtype.as_notnullable
1916
1917 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
1918 if cache != null then return cache
1919
1920 assert not mtype.need_anchor
1921 assert mtype.has_mproperty(mmodule, self)
1922
1923 #print "select prop {mproperty} for {mtype} in {self}"
1924 # First, select all candidates
1925 var candidates = new Array[MPROPDEF]
1926 for mpropdef in self.mpropdefs do
1927 # If the definition is not imported by the module, then skip
1928 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1929 # If the definition is not inherited by the type, then skip
1930 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1931 # Else, we keep it
1932 candidates.add(mpropdef)
1933 end
1934 # Fast track for only one candidate
1935 if candidates.length <= 1 then
1936 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
1937 return candidates
1938 end
1939
1940 mmodule.linearize_mpropdefs(candidates)
1941 candidates = candidates.reversed
1942 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
1943 return candidates
1944 end
1945
1946 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
1947 end
1948
1949 # A global method
1950 class MMethod
1951 super MProperty
1952
1953 redef type MPROPDEF: MMethodDef
1954
1955 # Is the property defined at the top_level of the module?
1956 # Currently such a property are stored in `Object`
1957 var is_toplevel: Bool = false is writable
1958
1959 # Is the property a constructor?
1960 # Warning, this property can be inherited by subclasses with or without being a constructor
1961 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
1962 var is_init: Bool = false is writable
1963
1964 # The constructor is a (the) root init with empty signature but a set of initializers
1965 var is_root_init: Bool = false is writable
1966
1967 # Is the property a 'new' constructor?
1968 var is_new: Bool = false is writable
1969
1970 # Is the property a legal constructor for a given class?
1971 # As usual, visibility is not considered.
1972 # FIXME not implemented
1973 fun is_init_for(mclass: MClass): Bool
1974 do
1975 return self.is_init
1976 end
1977 end
1978
1979 # A global attribute
1980 class MAttribute
1981 super MProperty
1982
1983 redef type MPROPDEF: MAttributeDef
1984
1985 end
1986
1987 # A global virtual type
1988 class MVirtualTypeProp
1989 super MProperty
1990
1991 redef type MPROPDEF: MVirtualTypeDef
1992
1993 # The formal type associated to the virtual type property
1994 var mvirtualtype = new MVirtualType(self)
1995 end
1996
1997 # A definition of a property (local property)
1998 #
1999 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
2000 # specific class definition (which belong to a specific module)
2001 abstract class MPropDef
2002 super MEntity
2003
2004 # The associated `MProperty` subclass.
2005 # the two specialization hierarchy are symmetric
2006 type MPROPERTY: MProperty
2007
2008 # Self class
2009 type MPROPDEF: MPropDef
2010
2011 # The class definition where the property definition is
2012 var mclassdef: MClassDef
2013
2014 # The associated global property
2015 var mproperty: MPROPERTY
2016
2017 # The origin of the definition
2018 var location: Location
2019
2020 init
2021 do
2022 mclassdef.mpropdefs.add(self)
2023 mproperty.mpropdefs.add(self)
2024 if mproperty.intro_mclassdef == mclassdef then
2025 assert not isset mproperty._intro
2026 mproperty.intro = self
2027 end
2028 self.to_s = "{mclassdef}#{mproperty}"
2029 end
2030
2031 # Actually the name of the `mproperty`
2032 redef fun name do return mproperty.name
2033
2034 # The full-name of mpropdefs combine the information about the `classdef` and the `mproperty`.
2035 #
2036 # Therefore the combination of identifiers is awful,
2037 # the worst case being
2038 #
2039 # * a property "p::m::A::x"
2040 # * redefined in a refinement of a class "q::n::B"
2041 # * in a module "r::o"
2042 # * so "r::o#q::n::B#p::m::A::x"
2043 #
2044 # Fortunately, the full-name is simplified when entities are repeated.
2045 # For the previous case, the simplest form is "p#A#x".
2046 redef var full_name is lazy do
2047 var res = new FlatBuffer
2048
2049 # The first part is the mclassdef. Worst case is "r::o#q::n::B"
2050 res.append mclassdef.full_name
2051
2052 res.append "#"
2053
2054 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2055 # intro are unambiguous in a class
2056 res.append name
2057 else
2058 # Just try to simplify each part
2059 if mclassdef.mmodule.mproject != mproperty.intro_mclassdef.mmodule.mproject then
2060 # precise "p::m" only if "p" != "r"
2061 res.append mproperty.intro_mclassdef.mmodule.full_name
2062 res.append "::"
2063 else if mproperty.visibility <= private_visibility then
2064 # Same project ("p"=="q"), but private visibility,
2065 # does the module part ("::m") need to be displayed
2066 if mclassdef.mmodule.namespace_for(mclassdef.mclass.visibility) != mproperty.intro_mclassdef.mmodule.mproject then
2067 res.append "::"
2068 res.append mproperty.intro_mclassdef.mmodule.name
2069 res.append "::"
2070 end
2071 end
2072 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2073 # precise "B" only if not the same class than "A"
2074 res.append mproperty.intro_mclassdef.name
2075 res.append "::"
2076 end
2077 # Always use the property name "x"
2078 res.append mproperty.name
2079 end
2080 return res.to_s
2081 end
2082
2083 redef var c_name is lazy do
2084 var res = new FlatBuffer
2085 res.append mclassdef.c_name
2086 res.append "___"
2087 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2088 res.append name.to_cmangle
2089 else
2090 if mclassdef.mmodule != mproperty.intro_mclassdef.mmodule then
2091 res.append mproperty.intro_mclassdef.mmodule.c_name
2092 res.append "__"
2093 end
2094 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2095 res.append mproperty.intro_mclassdef.name.to_cmangle
2096 res.append "__"
2097 end
2098 res.append mproperty.name.to_cmangle
2099 end
2100 return res.to_s
2101 end
2102
2103 redef fun model do return mclassdef.model
2104
2105 # Internal name combining the module, the class and the property
2106 # Example: "mymodule#MyClass#mymethod"
2107 redef var to_s: String is noinit
2108
2109 # Is self the definition that introduce the property?
2110 fun is_intro: Bool do return mproperty.intro == self
2111
2112 # Return the next definition in linearization of `mtype`.
2113 #
2114 # This method is used to determine what method is called by a super.
2115 #
2116 # REQUIRE: `not mtype.need_anchor`
2117 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
2118 do
2119 assert not mtype.need_anchor
2120
2121 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
2122 var i = mpropdefs.iterator
2123 while i.is_ok and i.item != self do i.next
2124 assert has_property: i.is_ok
2125 i.next
2126 assert has_next_property: i.is_ok
2127 return i.item
2128 end
2129 end
2130
2131 # A local definition of a method
2132 class MMethodDef
2133 super MPropDef
2134
2135 redef type MPROPERTY: MMethod
2136 redef type MPROPDEF: MMethodDef
2137
2138 # The signature attached to the property definition
2139 var msignature: nullable MSignature = null is writable
2140
2141 # The signature attached to the `new` call on a root-init
2142 # This is a concatenation of the signatures of the initializers
2143 #
2144 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2145 var new_msignature: nullable MSignature = null is writable
2146
2147 # List of initialisers to call in root-inits
2148 #
2149 # They could be setters or attributes
2150 #
2151 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2152 var initializers = new Array[MProperty]
2153
2154 # Is the method definition abstract?
2155 var is_abstract: Bool = false is writable
2156
2157 # Is the method definition intern?
2158 var is_intern = false is writable
2159
2160 # Is the method definition extern?
2161 var is_extern = false is writable
2162
2163 # An optional constant value returned in functions.
2164 #
2165 # Only some specific primitife value are accepted by engines.
2166 # Is used when there is no better implementation available.
2167 #
2168 # Currently used only for the implementation of the `--define`
2169 # command-line option.
2170 # SEE: module `mixin`.
2171 var constant_value: nullable Object = null is writable
2172 end
2173
2174 # A local definition of an attribute
2175 class MAttributeDef
2176 super MPropDef
2177
2178 redef type MPROPERTY: MAttribute
2179 redef type MPROPDEF: MAttributeDef
2180
2181 # The static type of the attribute
2182 var static_mtype: nullable MType = null is writable
2183 end
2184
2185 # A local definition of a virtual type
2186 class MVirtualTypeDef
2187 super MPropDef
2188
2189 redef type MPROPERTY: MVirtualTypeProp
2190 redef type MPROPDEF: MVirtualTypeDef
2191
2192 # The bound of the virtual type
2193 var bound: nullable MType = null is writable
2194
2195 # Is the bound fixed?
2196 var is_fixed = false is writable
2197 end
2198
2199 # A kind of class.
2200 #
2201 # * `abstract_kind`
2202 # * `concrete_kind`
2203 # * `interface_kind`
2204 # * `enum_kind`
2205 # * `extern_kind`
2206 #
2207 # Note this class is basically an enum.
2208 # FIXME: use a real enum once user-defined enums are available
2209 class MClassKind
2210 redef var to_s: String
2211
2212 # Is a constructor required?
2213 var need_init: Bool
2214
2215 # TODO: private init because enumeration.
2216
2217 # Can a class of kind `self` specializes a class of kine `other`?
2218 fun can_specialize(other: MClassKind): Bool
2219 do
2220 if other == interface_kind then return true # everybody can specialize interfaces
2221 if self == interface_kind or self == enum_kind then
2222 # no other case for interfaces
2223 return false
2224 else if self == extern_kind then
2225 # only compatible with themselves
2226 return self == other
2227 else if other == enum_kind or other == extern_kind then
2228 # abstract_kind and concrete_kind are incompatible
2229 return false
2230 end
2231 # remain only abstract_kind and concrete_kind
2232 return true
2233 end
2234 end
2235
2236 # The class kind `abstract`
2237 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", true)
2238 # The class kind `concrete`
2239 fun concrete_kind: MClassKind do return once new MClassKind("class", true)
2240 # The class kind `interface`
2241 fun interface_kind: MClassKind do return once new MClassKind("interface", false)
2242 # The class kind `enum`
2243 fun enum_kind: MClassKind do return once new MClassKind("enum", false)
2244 # The class kind `extern`
2245 fun extern_kind: MClassKind do return once new MClassKind("extern class", false)