Merge: proposal for model: Generalize access to `model` form `MEntitiy`.
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import poset
29 import location
30 import mmodule
31 import mdoc
32 import ordered_tree
33 private import more_collections
34
35 redef class Model
36 # All known classes
37 var mclasses: Array[MClass] = new Array[MClass]
38
39 # All known properties
40 var mproperties: Array[MProperty] = new Array[MProperty]
41
42 # Hierarchy of class definition.
43 #
44 # Each classdef is associated with its super-classdefs in regard to
45 # its module of definition.
46 var mclassdef_hierarchy: POSet[MClassDef] = new POSet[MClassDef]
47
48 # Class-type hierarchy restricted to the introduction.
49 #
50 # The idea is that what is true on introduction is always true whatever
51 # the module considered.
52 # Therefore, this hierarchy is used for a fast positive subtype check.
53 #
54 # This poset will evolve in a monotonous way:
55 # * Two non connected nodes will remain unconnected
56 # * New nodes can appear with new edges
57 private var intro_mtype_specialization_hierarchy: POSet[MClassType] = new POSet[MClassType]
58
59 # Global overlapped class-type hierarchy.
60 # The hierarchy when all modules are combined.
61 # Therefore, this hierarchy is used for a fast negative subtype check.
62 #
63 # This poset will evolve in an anarchic way. Loops can even be created.
64 #
65 # FIXME decide what to do on loops
66 private var full_mtype_specialization_hierarchy: POSet[MClassType] = new POSet[MClassType]
67
68 # Collections of classes grouped by their short name
69 private var mclasses_by_name: MultiHashMap[String, MClass] = new MultiHashMap[String, MClass]
70
71 # Return all class named `name`.
72 #
73 # If such a class does not exist, null is returned
74 # (instead of an empty array)
75 #
76 # Visibility or modules are not considered
77 fun get_mclasses_by_name(name: String): nullable Array[MClass]
78 do
79 if mclasses_by_name.has_key(name) then
80 return mclasses_by_name[name]
81 else
82 return null
83 end
84 end
85
86 # Collections of properties grouped by their short name
87 private var mproperties_by_name: MultiHashMap[String, MProperty] = new MultiHashMap[String, MProperty]
88
89 # Return all properties named `name`.
90 #
91 # If such a property does not exist, null is returned
92 # (instead of an empty array)
93 #
94 # Visibility or modules are not considered
95 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
96 do
97 if not mproperties_by_name.has_key(name) then
98 return null
99 else
100 return mproperties_by_name[name]
101 end
102 end
103
104 # The only null type
105 var null_type: MNullType = new MNullType(self)
106
107 # Build an ordered tree with from `concerns`
108 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
109 var seen = new HashSet[MConcern]
110 var res = new ConcernsTree
111
112 var todo = new Array[MConcern]
113 todo.add_all mconcerns
114
115 while not todo.is_empty do
116 var c = todo.pop
117 if seen.has(c) then continue
118 var pc = c.parent_concern
119 if pc == null then
120 res.add(null, c)
121 else
122 res.add(pc, c)
123 todo.add(pc)
124 end
125 seen.add(c)
126 end
127
128 return res
129 end
130 end
131
132 # An OrderedTree that can be easily refined for display purposes
133 class ConcernsTree
134 super OrderedTree[MConcern]
135 end
136
137 redef class MModule
138 # All the classes introduced in the module
139 var intro_mclasses: Array[MClass] = new Array[MClass]
140
141 # All the class definitions of the module
142 # (introduction and refinement)
143 var mclassdefs: Array[MClassDef] = new Array[MClassDef]
144
145 # Does the current module has a given class `mclass`?
146 # Return true if the mmodule introduces, refines or imports a class.
147 # Visibility is not considered.
148 fun has_mclass(mclass: MClass): Bool
149 do
150 return self.in_importation <= mclass.intro_mmodule
151 end
152
153 # Full hierarchy of introduced ans imported classes.
154 #
155 # Create a new hierarchy got by flattening the classes for the module
156 # and its imported modules.
157 # Visibility is not considered.
158 #
159 # Note: this function is expensive and is usually used for the main
160 # module of a program only. Do not use it to do you own subtype
161 # functions.
162 fun flatten_mclass_hierarchy: POSet[MClass]
163 do
164 var res = self.flatten_mclass_hierarchy_cache
165 if res != null then return res
166 res = new POSet[MClass]
167 for m in self.in_importation.greaters do
168 for cd in m.mclassdefs do
169 var c = cd.mclass
170 res.add_node(c)
171 for s in cd.supertypes do
172 res.add_edge(c, s.mclass)
173 end
174 end
175 end
176 self.flatten_mclass_hierarchy_cache = res
177 return res
178 end
179
180 # Sort a given array of classes using the linerarization order of the module
181 # The most general is first, the most specific is last
182 fun linearize_mclasses(mclasses: Array[MClass])
183 do
184 self.flatten_mclass_hierarchy.sort(mclasses)
185 end
186
187 # Sort a given array of class definitions using the linerarization order of the module
188 # the refinement link is stronger than the specialisation link
189 # The most general is first, the most specific is last
190 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
191 do
192 var sorter = new MClassDefSorter(self)
193 sorter.sort(mclassdefs)
194 end
195
196 # Sort a given array of property definitions using the linerarization order of the module
197 # the refinement link is stronger than the specialisation link
198 # The most general is first, the most specific is last
199 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
200 do
201 var sorter = new MPropDefSorter(self)
202 sorter.sort(mpropdefs)
203 end
204
205 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
206
207 # The primitive type `Object`, the root of the class hierarchy
208 fun object_type: MClassType
209 do
210 var res = self.object_type_cache
211 if res != null then return res
212 res = self.get_primitive_class("Object").mclass_type
213 self.object_type_cache = res
214 return res
215 end
216
217 private var object_type_cache: nullable MClassType
218
219 # The primitive type `Bool`
220 fun bool_type: MClassType
221 do
222 var res = self.bool_type_cache
223 if res != null then return res
224 res = self.get_primitive_class("Bool").mclass_type
225 self.bool_type_cache = res
226 return res
227 end
228
229 private var bool_type_cache: nullable MClassType
230
231 # The primitive type `Sys`, the main type of the program, if any
232 fun sys_type: nullable MClassType
233 do
234 var clas = self.model.get_mclasses_by_name("Sys")
235 if clas == null then return null
236 return get_primitive_class("Sys").mclass_type
237 end
238
239 # Force to get the primitive class named `name` or abort
240 fun get_primitive_class(name: String): MClass
241 do
242 var cla = self.model.get_mclasses_by_name(name)
243 if cla == null then
244 if name == "Bool" then
245 var c = new MClass(self, name, 0, enum_kind, public_visibility)
246 var cladef = new MClassDef(self, c.mclass_type, new Location(null, 0,0,0,0), new Array[String])
247 return c
248 end
249 print("Fatal Error: no primitive class {name}")
250 exit(1)
251 end
252 if cla.length != 1 then
253 var msg = "Fatal Error: more than one primitive class {name}:"
254 for c in cla do msg += " {c.full_name}"
255 print msg
256 exit(1)
257 end
258 return cla.first
259 end
260
261 # Try to get the primitive method named `name` on the type `recv`
262 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
263 do
264 var props = self.model.get_mproperties_by_name(name)
265 if props == null then return null
266 var res: nullable MMethod = null
267 for mprop in props do
268 assert mprop isa MMethod
269 var intro = mprop.intro_mclassdef
270 for mclassdef in recv.mclassdefs do
271 if not self.in_importation.greaters.has(mclassdef.mmodule) then continue
272 if not mclassdef.in_hierarchy.greaters.has(intro) then continue
273 if res == null then
274 res = mprop
275 else if res != mprop then
276 print("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
277 abort
278 end
279 end
280 end
281 return res
282 end
283 end
284
285 private class MClassDefSorter
286 super AbstractSorter[MClassDef]
287 var mmodule: MModule
288 redef fun compare(a, b)
289 do
290 var ca = a.mclass
291 var cb = b.mclass
292 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
293 return mmodule.model.mclassdef_hierarchy.compare(a, b)
294 end
295 end
296
297 private class MPropDefSorter
298 super AbstractSorter[MPropDef]
299 var mmodule: MModule
300 redef fun compare(pa, pb)
301 do
302 var a = pa.mclassdef
303 var b = pb.mclassdef
304 var ca = a.mclass
305 var cb = b.mclass
306 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
307 return mmodule.model.mclassdef_hierarchy.compare(a, b)
308 end
309 end
310
311 # A named class
312 #
313 # `MClass` are global to the model; it means that a `MClass` is not bound to a
314 # specific `MModule`.
315 #
316 # This characteristic helps the reasoning about classes in a program since a
317 # single `MClass` object always denote the same class.
318 #
319 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
320 # These do not really have properties nor belong to a hierarchy since the property and the
321 # hierarchy of a class depends of the refinement in the modules.
322 #
323 # Most services on classes require the precision of a module, and no one can asks what are
324 # the super-classes of a class nor what are properties of a class without precising what is
325 # the module considered.
326 #
327 # For instance, during the typing of a source-file, the module considered is the module of the file.
328 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
329 # *is the method `foo` exists in the class `Bar` in the current module?*
330 #
331 # During some global analysis, the module considered may be the main module of the program.
332 class MClass
333 super MEntity
334
335 # The module that introduce the class
336 # While classes are not bound to a specific module,
337 # the introducing module is used for naming an visibility
338 var intro_mmodule: MModule
339
340 # The short name of the class
341 # In Nit, the name of a class cannot evolve in refinements
342 redef var name: String
343
344 # The canonical name of the class
345 # Example: `"owner::module::MyClass"`
346 fun full_name: String
347 do
348 return "{self.intro_mmodule.full_name}::{name}"
349 end
350
351 # The number of generic formal parameters
352 # 0 if the class is not generic
353 var arity: Int
354
355 # The kind of the class (interface, abstract class, etc.)
356 # In Nit, the kind of a class cannot evolve in refinements
357 var kind: MClassKind
358
359 # The visibility of the class
360 # In Nit, the visibility of a class cannot evolve in refinements
361 var visibility: MVisibility
362
363 init(intro_mmodule: MModule, name: String, arity: Int, kind: MClassKind, visibility: MVisibility)
364 do
365 self.intro_mmodule = intro_mmodule
366 self.name = name
367 self.arity = arity
368 self.kind = kind
369 self.visibility = visibility
370 intro_mmodule.intro_mclasses.add(self)
371 var model = intro_mmodule.model
372 model.mclasses_by_name.add_one(name, self)
373 model.mclasses.add(self)
374
375 # Create the formal parameter types
376 if arity > 0 then
377 var mparametertypes = new Array[MParameterType]
378 for i in [0..arity[ do
379 var mparametertype = new MParameterType(self, i)
380 mparametertypes.add(mparametertype)
381 end
382 var mclass_type = new MGenericType(self, mparametertypes)
383 self.mclass_type = mclass_type
384 self.get_mtype_cache.add(mclass_type)
385 else
386 self.mclass_type = new MClassType(self)
387 end
388 end
389
390 redef fun model do return intro_mmodule.model
391
392 # All class definitions (introduction and refinements)
393 var mclassdefs: Array[MClassDef] = new Array[MClassDef]
394
395 # Alias for `name`
396 redef fun to_s do return self.name
397
398 # The definition that introduced the class
399 # Warning: the introduction is the first `MClassDef` object associated
400 # to self. If self is just created without having any associated
401 # definition, this method will abort
402 fun intro: MClassDef
403 do
404 assert has_a_first_definition: not mclassdefs.is_empty
405 return mclassdefs.first
406 end
407
408 # Return the class `self` in the class hierarchy of the module `mmodule`.
409 #
410 # SEE: `MModule::flatten_mclass_hierarchy`
411 # REQUIRE: `mmodule.has_mclass(self)`
412 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
413 do
414 return mmodule.flatten_mclass_hierarchy[self]
415 end
416
417 # The principal static type of the class.
418 #
419 # For non-generic class, mclass_type is the only `MClassType` based
420 # on self.
421 #
422 # For a generic class, the arguments are the formal parameters.
423 # i.e.: for the class Array[E:Object], the `mclass_type` is Array[E].
424 # If you want Array[Object] the see `MClassDef::bound_mtype`
425 #
426 # For generic classes, the mclass_type is also the way to get a formal
427 # generic parameter type.
428 #
429 # To get other types based on a generic class, see `get_mtype`.
430 #
431 # ENSURE: `mclass_type.mclass == self`
432 var mclass_type: MClassType
433
434 # Return a generic type based on the class
435 # Is the class is not generic, then the result is `mclass_type`
436 #
437 # REQUIRE: `mtype_arguments.length == self.arity`
438 fun get_mtype(mtype_arguments: Array[MType]): MClassType
439 do
440 assert mtype_arguments.length == self.arity
441 if self.arity == 0 then return self.mclass_type
442 for t in self.get_mtype_cache do
443 if t.arguments == mtype_arguments then
444 return t
445 end
446 end
447 var res = new MGenericType(self, mtype_arguments)
448 self.get_mtype_cache.add res
449 return res
450 end
451
452 private var get_mtype_cache: Array[MGenericType] = new Array[MGenericType]
453 end
454
455
456 # A definition (an introduction or a refinement) of a class in a module
457 #
458 # A `MClassDef` is associated with an explicit (or almost) definition of a
459 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
460 # a specific class and a specific module, and contains declarations like super-classes
461 # or properties.
462 #
463 # It is the class definitions that are the backbone of most things in the model:
464 # ClassDefs are defined with regard with other classdefs.
465 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
466 #
467 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
468 class MClassDef
469 super MEntity
470
471 # The module where the definition is
472 var mmodule: MModule
473
474 # The associated `MClass`
475 var mclass: MClass
476
477 # The bounded type associated to the mclassdef
478 #
479 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
480 # are the same type.
481 #
482 # Example:
483 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
484 # If you want Array[E], then see `mclass.mclass_type`
485 #
486 # ENSURE: `bound_mtype.mclass == self.mclass`
487 var bound_mtype: MClassType
488
489 # Name of each formal generic parameter (in order of declaration)
490 var parameter_names: Array[String]
491
492 # The origin of the definition
493 var location: Location
494
495 # Internal name combining the module and the class
496 # Example: "mymodule#MyClass"
497 redef var to_s: String
498
499 init(mmodule: MModule, bound_mtype: MClassType, location: Location, parameter_names: Array[String])
500 do
501 assert bound_mtype.mclass.arity == parameter_names.length
502 self.bound_mtype = bound_mtype
503 self.mmodule = mmodule
504 self.mclass = bound_mtype.mclass
505 self.location = location
506 mmodule.mclassdefs.add(self)
507 mclass.mclassdefs.add(self)
508 self.parameter_names = parameter_names
509 self.to_s = "{mmodule}#{mclass}"
510 end
511
512 # Actually the name of the `mclass`
513 redef fun name do return mclass.name
514
515 redef fun model do return mmodule.model
516
517 # All declared super-types
518 # FIXME: quite ugly but not better idea yet
519 var supertypes: Array[MClassType] = new Array[MClassType]
520
521 # Register some super-types for the class (ie "super SomeType")
522 #
523 # The hierarchy must not already be set
524 # REQUIRE: `self.in_hierarchy == null`
525 fun set_supertypes(supertypes: Array[MClassType])
526 do
527 assert unique_invocation: self.in_hierarchy == null
528 var mmodule = self.mmodule
529 var model = mmodule.model
530 var mtype = self.bound_mtype
531
532 for supertype in supertypes do
533 self.supertypes.add(supertype)
534
535 # Register in full_type_specialization_hierarchy
536 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
537 # Register in intro_type_specialization_hierarchy
538 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
539 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
540 end
541 end
542
543 end
544
545 # Collect the super-types (set by set_supertypes) to build the hierarchy
546 #
547 # This function can only invoked once by class
548 # REQUIRE: `self.in_hierarchy == null`
549 # ENSURE: `self.in_hierarchy != null`
550 fun add_in_hierarchy
551 do
552 assert unique_invocation: self.in_hierarchy == null
553 var model = mmodule.model
554 var res = model.mclassdef_hierarchy.add_node(self)
555 self.in_hierarchy = res
556 var mtype = self.bound_mtype
557
558 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
559 # The simpliest way is to attach it to collect_mclassdefs
560 for mclassdef in mtype.collect_mclassdefs(mmodule) do
561 res.poset.add_edge(self, mclassdef)
562 end
563 end
564
565 # The view of the class definition in `mclassdef_hierarchy`
566 var in_hierarchy: nullable POSetElement[MClassDef] = null
567
568 # Is the definition the one that introduced `mclass`?
569 fun is_intro: Bool do return mclass.intro == self
570
571 # All properties introduced by the classdef
572 var intro_mproperties: Array[MProperty] = new Array[MProperty]
573
574 # All property definitions in the class (introductions and redefinitions)
575 var mpropdefs: Array[MPropDef] = new Array[MPropDef]
576 end
577
578 # A global static type
579 #
580 # MType are global to the model; it means that a `MType` is not bound to a
581 # specific `MModule`.
582 # This characteristic helps the reasoning about static types in a program
583 # since a single `MType` object always denote the same type.
584 #
585 # However, because a `MType` is global, it does not really have properties
586 # nor have subtypes to a hierarchy since the property and the class hierarchy
587 # depends of a module.
588 # Moreover, virtual types an formal generic parameter types also depends on
589 # a receiver to have sense.
590 #
591 # Therefore, most method of the types require a module and an anchor.
592 # The module is used to know what are the classes and the specialization
593 # links.
594 # The anchor is used to know what is the bound of the virtual types and formal
595 # generic parameter types.
596 #
597 # MType are not directly usable to get properties. See the `anchor_to` method
598 # and the `MClassType` class.
599 #
600 # FIXME: the order of the parameters is not the best. We mus pick on from:
601 # * foo(mmodule, anchor, othertype)
602 # * foo(othertype, anchor, mmodule)
603 # * foo(anchor, mmodule, othertype)
604 # * foo(othertype, mmodule, anchor)
605 abstract class MType
606 super MEntity
607
608 redef fun name do return to_s
609
610 # Return true if `self` is an subtype of `sup`.
611 # The typing is done using the standard typing policy of Nit.
612 #
613 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
614 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
615 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
616 do
617 var sub = self
618 if sub == sup then return true
619 if anchor == null then
620 assert not sub.need_anchor
621 assert not sup.need_anchor
622 else
623 assert sub.can_resolve_for(anchor, null, mmodule)
624 assert sup.can_resolve_for(anchor, null, mmodule)
625 end
626
627 # First, resolve the formal types to a common version in the receiver
628 # The trick here is that fixed formal type will be associed to the bound
629 # And unfixed formal types will be associed to a canonical formal type.
630 if sub isa MParameterType or sub isa MVirtualType then
631 assert anchor != null
632 sub = sub.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, false)
633 end
634 if sup isa MParameterType or sup isa MVirtualType then
635 assert anchor != null
636 sup = sup.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, false)
637 end
638
639 # Does `sup` accept null or not?
640 # Discard the nullable marker if it exists
641 var sup_accept_null = false
642 if sup isa MNullableType then
643 sup_accept_null = true
644 sup = sup.mtype
645 else if sup isa MNullType then
646 sup_accept_null = true
647 end
648
649 # Can `sub` provide null or not?
650 # Thus we can match with `sup_accept_null`
651 # Also discard the nullable marker if it exists
652 if sub isa MNullableType then
653 if not sup_accept_null then return false
654 sub = sub.mtype
655 else if sub isa MNullType then
656 return sup_accept_null
657 end
658 # Now the case of direct null and nullable is over.
659
660 # A unfixed formal type can only accept itself
661 if sup isa MParameterType or sup isa MVirtualType then
662 return sub == sup
663 end
664
665 # If `sub` is a formal type, then it is accepted if its bound is accepted
666 if sub isa MParameterType or sub isa MVirtualType then
667 assert anchor != null
668 sub = sub.anchor_to(mmodule, anchor)
669
670 # Manage the second layer of null/nullable
671 if sub isa MNullableType then
672 if not sup_accept_null then return false
673 sub = sub.mtype
674 else if sub isa MNullType then
675 return sup_accept_null
676 end
677 end
678
679 assert sub isa MClassType # It is the only remaining type
680
681 if sup isa MNullType then
682 # `sup` accepts only null
683 return false
684 end
685
686 assert sup isa MClassType # It is the only remaining type
687
688 # Now both are MClassType, we need to dig
689
690 if sub == sup then return true
691
692 if anchor == null then anchor = sub # UGLY: any anchor will work
693 var resolved_sub = sub.anchor_to(mmodule, anchor)
694 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
695 if res == false then return false
696 if not sup isa MGenericType then return true
697 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
698 assert sub2.mclass == sup.mclass
699 for i in [0..sup.mclass.arity[ do
700 var sub_arg = sub2.arguments[i]
701 var sup_arg = sup.arguments[i]
702 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
703 if res == false then return false
704 end
705 return true
706 end
707
708 # The base class type on which self is based
709 #
710 # This base type is used to get property (an internally to perform
711 # unsafe type comparison).
712 #
713 # Beware: some types (like null) are not based on a class thus this
714 # method will crash
715 #
716 # Basically, this function transform the virtual types and parameter
717 # types to their bounds.
718 #
719 # Example
720 # class A end
721 # class B super A end
722 # class X end
723 # class Y super X end
724 # class G[T: A]
725 # type U: X
726 # end
727 # class H
728 # super G[B]
729 # redef type U: Y
730 # end
731 # Map[T,U] anchor_to H #-> Map[B,Y]
732 #
733 # Explanation of the example:
734 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
735 # because "redef type U: Y". Therefore, Map[T, U] is bound to
736 # Map[B, Y]
737 #
738 # ENSURE: `not self.need_anchor implies result == self`
739 # ENSURE: `not result.need_anchor`
740 fun anchor_to(mmodule: MModule, anchor: MClassType): MType
741 do
742 if not need_anchor then return self
743 assert not anchor.need_anchor
744 # Just resolve to the anchor and clear all the virtual types
745 var res = self.resolve_for(anchor, null, mmodule, true)
746 assert not res.need_anchor
747 return res
748 end
749
750 # Does `self` contain a virtual type or a formal generic parameter type?
751 # In order to remove those types, you usually want to use `anchor_to`.
752 fun need_anchor: Bool do return true
753
754 # Return the supertype when adapted to a class.
755 #
756 # In Nit, for each super-class of a type, there is a equivalent super-type.
757 #
758 # Example:
759 # class G[T, U] end
760 # class H[V] super G[V, Bool] end
761 # H[Int] supertype_to G #-> G[Int, Bool]
762 #
763 # REQUIRE: `super_mclass` is a super-class of `self`
764 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
765 # ENSURE: `result.mclass = super_mclass`
766 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
767 do
768 if super_mclass.arity == 0 then return super_mclass.mclass_type
769 if self isa MClassType and self.mclass == super_mclass then return self
770 var resolved_self
771 if self.need_anchor then
772 assert anchor != null
773 resolved_self = self.anchor_to(mmodule, anchor)
774 else
775 resolved_self = self
776 end
777 var supertypes = resolved_self.collect_mtypes(mmodule)
778 for supertype in supertypes do
779 if supertype.mclass == super_mclass then
780 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
781 return supertype.resolve_for(self, anchor, mmodule, false)
782 end
783 end
784 abort
785 end
786
787 # Replace formals generic types in self with resolved values in `mtype`
788 # If `cleanup_virtual` is true, then virtual types are also replaced
789 # with their bounds.
790 #
791 # This function returns self if `need_anchor` is false.
792 #
793 # ## Example 1
794 #
795 # class G[E] end
796 # class H[F] super G[F] end
797 # class X[Z] end
798 #
799 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
800 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
801 #
802 # Explanation of the example:
803 # * Array[E].need_anchor is true because there is a formal generic parameter type E
804 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
805 # * Since "H[F] super G[F]", E is in fact F for H
806 # * More specifically, in H[Int], E is Int
807 # * So, in H[Int], Array[E] is Array[Int]
808 #
809 # This function is mainly used to inherit a signature.
810 # Because, unlike `anchor_to`, we do not want a full resolution of
811 # a type but only an adapted version of it.
812 #
813 # ## Example 2
814 #
815 # class A[E]
816 # fun foo(e:E):E is abstract
817 # end
818 # class B super A[Int] end
819 #
820 # The signature on foo is (e: E): E
821 # If we resolve the signature for B, we get (e:Int):Int
822 #
823 # ## Example 3
824 #
825 # class A[E]
826 # fun foo(e:E) is abstract
827 # end
828 # class B[F]
829 # var a: A[Array[F]]
830 # fun bar do a.foo(x) # <- x is here
831 # end
832 #
833 # The first question is: is foo available on `a`?
834 #
835 # The static type of a is `A[Array[F]]`, that is an open type.
836 # in order to find a method `foo`, whe must look at a resolved type.
837 #
838 # A[Array[F]].anchor_to(B[nullable Object]) #-> A[Array[nullable Object]]
839 #
840 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
841 #
842 # The next question is: what is the accepted types for `x`?
843 #
844 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
845 #
846 # E.resolve_for(A[Array[F]],B[nullable Object]) #-> Array[F]
847 #
848 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
849 #
850 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
851 # two function instead of one seems also to be a bad idea.
852 #
853 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
854 # ENSURE: `not self.need_anchor implies result == self`
855 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
856
857 # Can the type be resolved?
858 #
859 # In order to resolve open types, the formal types must make sence.
860 #
861 # ## Example
862 #
863 # class A[E]
864 # end
865 # class B[F]
866 # end
867 #
868 # * E.can_resolve_for(A[Int]) #-> true, E make sense in A
869 # * E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
870 # * B[E].can_resolve_for(A[F], B[Object]) #-> true,
871 # B[E] is a red hearing only the E is important,
872 # E make sense in A
873 #
874 # REQUIRE: `anchor != null implies not anchor.need_anchor`
875 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
876 # ENSURE: `not self.need_anchor implies result == true`
877 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
878
879 # Return the nullable version of the type
880 # If the type is already nullable then self is returned
881 fun as_nullable: MType
882 do
883 var res = self.as_nullable_cache
884 if res != null then return res
885 res = new MNullableType(self)
886 self.as_nullable_cache = res
887 return res
888 end
889
890 private var as_nullable_cache: nullable MType = null
891
892
893 # The deph of the type seen as a tree.
894 #
895 # * A -> 1
896 # * G[A] -> 2
897 # * H[A, B] -> 2
898 # * H[G[A], B] -> 3
899 #
900 # Formal types have a depth of 1.
901 fun depth: Int
902 do
903 return 1
904 end
905
906 # The length of the type seen as a tree.
907 #
908 # * A -> 1
909 # * G[A] -> 2
910 # * H[A, B] -> 3
911 # * H[G[A], B] -> 4
912 #
913 # Formal types have a length of 1.
914 fun length: Int
915 do
916 return 1
917 end
918
919 # Compute all the classdefs inherited/imported.
920 # The returned set contains:
921 # * the class definitions from `mmodule` and its imported modules
922 # * the class definitions of this type and its super-types
923 #
924 # This function is used mainly internally.
925 #
926 # REQUIRE: `not self.need_anchor`
927 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
928
929 # Compute all the super-classes.
930 # This function is used mainly internally.
931 #
932 # REQUIRE: `not self.need_anchor`
933 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
934
935 # Compute all the declared super-types.
936 # Super-types are returned as declared in the classdefs (verbatim).
937 # This function is used mainly internally.
938 #
939 # REQUIRE: `not self.need_anchor`
940 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
941
942 # Is the property in self for a given module
943 # This method does not filter visibility or whatever
944 #
945 # REQUIRE: `not self.need_anchor`
946 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
947 do
948 assert not self.need_anchor
949 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
950 end
951 end
952
953 # A type based on a class.
954 #
955 # `MClassType` have properties (see `has_mproperty`).
956 class MClassType
957 super MType
958
959 # The associated class
960 var mclass: MClass
961
962 redef fun model do return self.mclass.intro_mmodule.model
963
964 private init(mclass: MClass)
965 do
966 self.mclass = mclass
967 end
968
969 # The formal arguments of the type
970 # ENSURE: `result.length == self.mclass.arity`
971 var arguments: Array[MType] = new Array[MType]
972
973 redef fun to_s do return mclass.to_s
974
975 redef fun need_anchor do return false
976
977 redef fun anchor_to(mmodule: MModule, anchor: MClassType): MClassType
978 do
979 return super.as(MClassType)
980 end
981
982 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
983
984 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
985
986 redef fun collect_mclassdefs(mmodule)
987 do
988 assert not self.need_anchor
989 var cache = self.collect_mclassdefs_cache
990 if not cache.has_key(mmodule) then
991 self.collect_things(mmodule)
992 end
993 return cache[mmodule]
994 end
995
996 redef fun collect_mclasses(mmodule)
997 do
998 assert not self.need_anchor
999 var cache = self.collect_mclasses_cache
1000 if not cache.has_key(mmodule) then
1001 self.collect_things(mmodule)
1002 end
1003 return cache[mmodule]
1004 end
1005
1006 redef fun collect_mtypes(mmodule)
1007 do
1008 assert not self.need_anchor
1009 var cache = self.collect_mtypes_cache
1010 if not cache.has_key(mmodule) then
1011 self.collect_things(mmodule)
1012 end
1013 return cache[mmodule]
1014 end
1015
1016 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1017 private fun collect_things(mmodule: MModule)
1018 do
1019 var res = new HashSet[MClassDef]
1020 var seen = new HashSet[MClass]
1021 var types = new HashSet[MClassType]
1022 seen.add(self.mclass)
1023 var todo = [self.mclass]
1024 while not todo.is_empty do
1025 var mclass = todo.pop
1026 #print "process {mclass}"
1027 for mclassdef in mclass.mclassdefs do
1028 if not mmodule.in_importation <= mclassdef.mmodule then continue
1029 #print " process {mclassdef}"
1030 res.add(mclassdef)
1031 for supertype in mclassdef.supertypes do
1032 types.add(supertype)
1033 var superclass = supertype.mclass
1034 if seen.has(superclass) then continue
1035 #print " add {superclass}"
1036 seen.add(superclass)
1037 todo.add(superclass)
1038 end
1039 end
1040 end
1041 collect_mclassdefs_cache[mmodule] = res
1042 collect_mclasses_cache[mmodule] = seen
1043 collect_mtypes_cache[mmodule] = types
1044 end
1045
1046 private var collect_mclassdefs_cache: HashMap[MModule, Set[MClassDef]] = new HashMap[MModule, Set[MClassDef]]
1047 private var collect_mclasses_cache: HashMap[MModule, Set[MClass]] = new HashMap[MModule, Set[MClass]]
1048 private var collect_mtypes_cache: HashMap[MModule, Set[MClassType]] = new HashMap[MModule, Set[MClassType]]
1049
1050 end
1051
1052 # A type based on a generic class.
1053 # A generic type a just a class with additional formal generic arguments.
1054 class MGenericType
1055 super MClassType
1056
1057 private init(mclass: MClass, arguments: Array[MType])
1058 do
1059 super(mclass)
1060 assert self.mclass.arity == arguments.length
1061 self.arguments = arguments
1062
1063 self.need_anchor = false
1064 for t in arguments do
1065 if t.need_anchor then
1066 self.need_anchor = true
1067 break
1068 end
1069 end
1070
1071 self.to_s = "{mclass}[{arguments.join(", ")}]"
1072 end
1073
1074 # Recursively print the type of the arguments within brackets.
1075 # Example: `"Map[String, List[Int]]"`
1076 redef var to_s: String
1077
1078 redef var need_anchor: Bool
1079
1080 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1081 do
1082 if not need_anchor then return self
1083 assert can_resolve_for(mtype, anchor, mmodule)
1084 var types = new Array[MType]
1085 for t in arguments do
1086 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1087 end
1088 return mclass.get_mtype(types)
1089 end
1090
1091 redef fun can_resolve_for(mtype, anchor, mmodule)
1092 do
1093 if not need_anchor then return true
1094 for t in arguments do
1095 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1096 end
1097 return true
1098 end
1099
1100
1101 redef fun depth
1102 do
1103 var dmax = 0
1104 for a in self.arguments do
1105 var d = a.depth
1106 if d > dmax then dmax = d
1107 end
1108 return dmax + 1
1109 end
1110
1111 redef fun length
1112 do
1113 var res = 1
1114 for a in self.arguments do
1115 res += a.length
1116 end
1117 return res
1118 end
1119 end
1120
1121 # A virtual formal type.
1122 class MVirtualType
1123 super MType
1124
1125 # The property associated with the type.
1126 # Its the definitions of this property that determine the bound or the virtual type.
1127 var mproperty: MProperty
1128
1129 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1130
1131 # Lookup the bound for a given resolved_receiver
1132 # The result may be a other virtual type (or a parameter type)
1133 #
1134 # The result is returned exactly as declared in the "type" property (verbatim).
1135 #
1136 # In case of conflict, the method aborts.
1137 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1138 do
1139 assert not resolved_receiver.need_anchor
1140 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1141 if props.is_empty then
1142 abort
1143 else if props.length == 1 then
1144 return props.first.as(MVirtualTypeDef).bound.as(not null)
1145 end
1146 var types = new ArraySet[MType]
1147 for p in props do
1148 types.add(p.as(MVirtualTypeDef).bound.as(not null))
1149 end
1150 if types.length == 1 then
1151 return types.first
1152 end
1153 abort
1154 end
1155
1156 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1157 do
1158 assert can_resolve_for(mtype, anchor, mmodule)
1159 # self is a virtual type declared (or inherited) in mtype
1160 # The point of the function it to get the bound of the virtual type that make sense for mtype
1161 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1162 #print "{class_name}: {self}/{mtype}/{anchor}?"
1163 var resolved_reciever
1164 if mtype.need_anchor then
1165 assert anchor != null
1166 resolved_reciever = mtype.resolve_for(anchor, null, mmodule, true)
1167 else
1168 resolved_reciever = mtype
1169 end
1170 # Now, we can get the bound
1171 var verbatim_bound = lookup_bound(mmodule, resolved_reciever)
1172 # The bound is exactly as declared in the "type" property, so we must resolve it again
1173 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1174 #print "{class_name}: {self}/{mtype}/{anchor} -> {self}/{resolved_reciever}/{anchor} -> {verbatim_bound}/{mtype}/{anchor} -> {res}"
1175
1176 # What to return here? There is a bunch a special cases:
1177 # If 'cleanup_virtual' we must return the resolved type, since we cannot return self
1178 if cleanup_virtual then return res
1179 # If the reciever is a intern class, then the virtual type cannot be redefined since there is no possible subclass. self is just fixed. so simply return the resolution
1180 if resolved_reciever isa MNullableType then resolved_reciever = resolved_reciever.mtype
1181 if resolved_reciever.as(MClassType).mclass.kind == enum_kind then return res
1182 # If the resolved type isa MVirtualType, it means that self was bound to it, and cannot be unbound. self is just fixed. so return the resolution.
1183 if res isa MVirtualType then return res
1184 # It the resolved type isa intern class, then there is no possible valid redefinition is any potentiel subclass. self is just fixed. so simply return the resolution
1185 if res isa MClassType and res.mclass.kind == enum_kind then return res
1186 # TODO: Add 'fixed' virtual type in the specification.
1187 # TODO: What if bound to a MParameterType?
1188 # Note that Nullable types can always be redefined by the non nullable version, so there is no specific case on it.
1189
1190 # If anything apply, then `self' cannot be resolved, so return self
1191 return self
1192 end
1193
1194 redef fun can_resolve_for(mtype, anchor, mmodule)
1195 do
1196 if mtype.need_anchor then
1197 assert anchor != null
1198 mtype = mtype.anchor_to(mmodule, anchor)
1199 end
1200 return mtype.has_mproperty(mmodule, mproperty)
1201 end
1202
1203 redef fun to_s do return self.mproperty.to_s
1204
1205 init(mproperty: MProperty)
1206 do
1207 self.mproperty = mproperty
1208 end
1209 end
1210
1211 # The type associated the a formal parameter generic type of a class
1212 #
1213 # Each parameter type is associated to a specific class.
1214 # It's mean that all refinements of a same class "share" the parameter type,
1215 # but that a generic subclass has its on parameter types.
1216 #
1217 # However, in the sense of the meta-model, a parameter type of a class is
1218 # a valid type in a subclass. The "in the sense of the meta-model" is
1219 # important because, in the Nit language, the programmer cannot refers
1220 # directly to the parameter types of the super-classes.
1221 #
1222 # Example:
1223 # class A[E]
1224 # fun e: E is abstract
1225 # end
1226 # class B[F]
1227 # super A[Array[F]]
1228 # end
1229 # In the class definition B[F], `F` is a valid type but `E` is not.
1230 # However, `self.e` is a valid method call, and the signature of `e` is
1231 # declared `e: E`.
1232 #
1233 # Note that parameter types are shared among class refinements.
1234 # Therefore parameter only have an internal name (see `to_s` for details).
1235 # TODO: Add a `name_for` to get better messages.
1236 class MParameterType
1237 super MType
1238
1239 # The generic class where the parameter belong
1240 var mclass: MClass
1241
1242 redef fun model do return self.mclass.intro_mmodule.model
1243
1244 # The position of the parameter (0 for the first parameter)
1245 # FIXME: is `position` a better name?
1246 var rank: Int
1247
1248 # Internal name of the parameter type
1249 # Names of parameter types changes in each class definition
1250 # Therefore, this method return an internal name.
1251 # Example: return "G#1" for the second parameter of the class G
1252 # FIXME: add a way to get the real name in a classdef
1253 redef fun to_s do return "{mclass}#{rank}"
1254
1255 # Resolve the bound for a given resolved_receiver
1256 # The result may be a other virtual type (or a parameter type)
1257 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1258 do
1259 assert not resolved_receiver.need_anchor
1260 var goalclass = self.mclass
1261 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1262 for t in supertypes do
1263 if t.mclass == goalclass then
1264 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1265 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1266 var res = t.arguments[self.rank]
1267 return res
1268 end
1269 end
1270 abort
1271 end
1272
1273 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1274 do
1275 assert can_resolve_for(mtype, anchor, mmodule)
1276 #print "{class_name}: {self}/{mtype}/{anchor}?"
1277
1278 if mtype isa MGenericType and mtype.mclass == self.mclass then
1279 return mtype.arguments[self.rank]
1280 end
1281
1282 # self is a parameter type of mtype (or of a super-class of mtype)
1283 # The point of the function it to get the bound of the virtual type that make sense for mtype
1284 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1285 # FIXME: What happend here is far from clear. Thus this part must be validated and clarified
1286 var resolved_receiver
1287 if mtype.need_anchor then
1288 assert anchor != null
1289 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1290 else
1291 resolved_receiver = mtype
1292 end
1293 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1294 if resolved_receiver isa MParameterType then
1295 assert resolved_receiver.mclass == anchor.mclass
1296 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1297 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1298 end
1299 assert resolved_receiver isa MClassType
1300
1301 # Eh! The parameter is in the current class.
1302 # So we return the corresponding argument, no mater what!
1303 if resolved_receiver.mclass == self.mclass then
1304 var res = resolved_receiver.arguments[self.rank]
1305 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1306 return res
1307 end
1308
1309 if resolved_receiver.need_anchor then
1310 assert anchor != null
1311 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1312 end
1313 # Now, we can get the bound
1314 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1315 # The bound is exactly as declared in the "type" property, so we must resolve it again
1316 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1317
1318 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1319
1320 return res
1321 end
1322
1323 redef fun can_resolve_for(mtype, anchor, mmodule)
1324 do
1325 if mtype.need_anchor then
1326 assert anchor != null
1327 mtype = mtype.anchor_to(mmodule, anchor)
1328 end
1329 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1330 end
1331
1332 init(mclass: MClass, rank: Int)
1333 do
1334 self.mclass = mclass
1335 self.rank = rank
1336 end
1337 end
1338
1339 # A type prefixed with "nullable"
1340 class MNullableType
1341 super MType
1342
1343 # The base type of the nullable type
1344 var mtype: MType
1345
1346 redef fun model do return self.mtype.model
1347
1348 init(mtype: MType)
1349 do
1350 self.mtype = mtype
1351 self.to_s = "nullable {mtype}"
1352 end
1353
1354 redef var to_s: String
1355
1356 redef fun need_anchor do return mtype.need_anchor
1357 redef fun as_nullable do return self
1358 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1359 do
1360 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1361 return res.as_nullable
1362 end
1363
1364 redef fun can_resolve_for(mtype, anchor, mmodule)
1365 do
1366 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1367 end
1368
1369 redef fun depth do return self.mtype.depth
1370
1371 redef fun length do return self.mtype.length
1372
1373 redef fun collect_mclassdefs(mmodule)
1374 do
1375 assert not self.need_anchor
1376 return self.mtype.collect_mclassdefs(mmodule)
1377 end
1378
1379 redef fun collect_mclasses(mmodule)
1380 do
1381 assert not self.need_anchor
1382 return self.mtype.collect_mclasses(mmodule)
1383 end
1384
1385 redef fun collect_mtypes(mmodule)
1386 do
1387 assert not self.need_anchor
1388 return self.mtype.collect_mtypes(mmodule)
1389 end
1390 end
1391
1392 # The type of the only value null
1393 #
1394 # The is only one null type per model, see `MModel::null_type`.
1395 class MNullType
1396 super MType
1397 redef var model: Model
1398 protected init(model: Model)
1399 do
1400 self.model = model
1401 end
1402 redef fun to_s do return "null"
1403 redef fun as_nullable do return self
1404 redef fun need_anchor do return false
1405 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1406 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1407
1408 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1409
1410 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1411
1412 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1413 end
1414
1415 # A signature of a method
1416 class MSignature
1417 super MType
1418
1419 # The each parameter (in order)
1420 var mparameters: Array[MParameter]
1421
1422 # The return type (null for a procedure)
1423 var return_mtype: nullable MType
1424
1425 redef fun depth
1426 do
1427 var dmax = 0
1428 var t = self.return_mtype
1429 if t != null then dmax = t.depth
1430 for p in mparameters do
1431 var d = p.mtype.depth
1432 if d > dmax then dmax = d
1433 end
1434 return dmax + 1
1435 end
1436
1437 redef fun length
1438 do
1439 var res = 1
1440 var t = self.return_mtype
1441 if t != null then res += t.length
1442 for p in mparameters do
1443 res += p.mtype.length
1444 end
1445 return res
1446 end
1447
1448 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1449 init(mparameters: Array[MParameter], return_mtype: nullable MType)
1450 do
1451 var vararg_rank = -1
1452 for i in [0..mparameters.length[ do
1453 var parameter = mparameters[i]
1454 if parameter.is_vararg then
1455 assert vararg_rank == -1
1456 vararg_rank = i
1457 end
1458 end
1459 self.mparameters = mparameters
1460 self.return_mtype = return_mtype
1461 self.vararg_rank = vararg_rank
1462 end
1463
1464 # The rank of the ellipsis (`...`) for vararg (starting from 0).
1465 # value is -1 if there is no vararg.
1466 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1467 var vararg_rank: Int
1468
1469 # The number or parameters
1470 fun arity: Int do return mparameters.length
1471
1472 redef fun to_s
1473 do
1474 var b = new FlatBuffer
1475 if not mparameters.is_empty then
1476 b.append("(")
1477 for i in [0..mparameters.length[ do
1478 var mparameter = mparameters[i]
1479 if i > 0 then b.append(", ")
1480 b.append(mparameter.name)
1481 b.append(": ")
1482 b.append(mparameter.mtype.to_s)
1483 if mparameter.is_vararg then
1484 b.append("...")
1485 end
1486 end
1487 b.append(")")
1488 end
1489 var ret = self.return_mtype
1490 if ret != null then
1491 b.append(": ")
1492 b.append(ret.to_s)
1493 end
1494 return b.to_s
1495 end
1496
1497 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
1498 do
1499 var params = new Array[MParameter]
1500 for p in self.mparameters do
1501 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1502 end
1503 var ret = self.return_mtype
1504 if ret != null then
1505 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1506 end
1507 var res = new MSignature(params, ret)
1508 return res
1509 end
1510 end
1511
1512 # A parameter in a signature
1513 class MParameter
1514 super MEntity
1515
1516 # The name of the parameter
1517 redef var name: String
1518
1519 # The static type of the parameter
1520 var mtype: MType
1521
1522 # Is the parameter a vararg?
1523 var is_vararg: Bool
1524
1525 init(name: String, mtype: MType, is_vararg: Bool) do
1526 self.name = name
1527 self.mtype = mtype
1528 self.is_vararg = is_vararg
1529 end
1530
1531 redef fun to_s
1532 do
1533 if is_vararg then
1534 return "{name}: {mtype}..."
1535 else
1536 return "{name}: {mtype}"
1537 end
1538 end
1539
1540 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
1541 do
1542 if not self.mtype.need_anchor then return self
1543 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1544 var res = new MParameter(self.name, newtype, self.is_vararg)
1545 return res
1546 end
1547
1548 redef fun model do return mtype.model
1549 end
1550
1551 # A service (global property) that generalize method, attribute, etc.
1552 #
1553 # `MProperty` are global to the model; it means that a `MProperty` is not bound
1554 # to a specific `MModule` nor a specific `MClass`.
1555 #
1556 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
1557 # and the other in subclasses and in refinements.
1558 #
1559 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
1560 # of any dynamic type).
1561 # For instance, a call site "x.foo" is associated to a `MProperty`.
1562 abstract class MProperty
1563 super MEntity
1564
1565 # The associated MPropDef subclass.
1566 # The two specialization hierarchy are symmetric.
1567 type MPROPDEF: MPropDef
1568
1569 # The classdef that introduce the property
1570 # While a property is not bound to a specific module, or class,
1571 # the introducing mclassdef is used for naming and visibility
1572 var intro_mclassdef: MClassDef
1573
1574 # The (short) name of the property
1575 redef var name: String
1576
1577 # The canonical name of the property
1578 # Example: "owner::my_module::MyClass::my_method"
1579 fun full_name: String
1580 do
1581 return "{self.intro_mclassdef.mmodule.full_name}::{self.intro_mclassdef.mclass.name}::{name}"
1582 end
1583
1584 # The visibility of the property
1585 var visibility: MVisibility
1586
1587 init(intro_mclassdef: MClassDef, name: String, visibility: MVisibility)
1588 do
1589 self.intro_mclassdef = intro_mclassdef
1590 self.name = name
1591 self.visibility = visibility
1592 intro_mclassdef.intro_mproperties.add(self)
1593 var model = intro_mclassdef.mmodule.model
1594 model.mproperties_by_name.add_one(name, self)
1595 model.mproperties.add(self)
1596 end
1597
1598 # All definitions of the property.
1599 # The first is the introduction,
1600 # The other are redefinitions (in refinements and in subclasses)
1601 var mpropdefs: Array[MPROPDEF] = new Array[MPROPDEF]
1602
1603 # The definition that introduced the property
1604 # Warning: the introduction is the first `MPropDef` object
1605 # associated to self. If self is just created without having any
1606 # associated definition, this method will abort
1607 fun intro: MPROPDEF do return mpropdefs.first
1608
1609 redef fun model do return intro.model
1610
1611 # Alias for `name`
1612 redef fun to_s do return name
1613
1614 # Return the most specific property definitions defined or inherited by a type.
1615 # The selection knows that refinement is stronger than specialization;
1616 # however, in case of conflict more than one property are returned.
1617 # If mtype does not know mproperty then an empty array is returned.
1618 #
1619 # If you want the really most specific property, then look at `lookup_first_definition`
1620 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1621 do
1622 assert not mtype.need_anchor
1623 if mtype isa MNullableType then mtype = mtype.mtype
1624
1625 var cache = self.lookup_definitions_cache[mmodule, mtype]
1626 if cache != null then return cache
1627
1628 #print "select prop {mproperty} for {mtype} in {self}"
1629 # First, select all candidates
1630 var candidates = new Array[MPROPDEF]
1631 for mpropdef in self.mpropdefs do
1632 # If the definition is not imported by the module, then skip
1633 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1634 # If the definition is not inherited by the type, then skip
1635 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1636 # Else, we keep it
1637 candidates.add(mpropdef)
1638 end
1639 # Fast track for only one candidate
1640 if candidates.length <= 1 then
1641 self.lookup_definitions_cache[mmodule, mtype] = candidates
1642 return candidates
1643 end
1644
1645 # Second, filter the most specific ones
1646 return select_most_specific(mmodule, candidates)
1647 end
1648
1649 private var lookup_definitions_cache: HashMap2[MModule, MType, Array[MPROPDEF]] = new HashMap2[MModule, MType, Array[MPROPDEF]]
1650
1651 # Return the most specific property definitions inherited by a type.
1652 # The selection knows that refinement is stronger than specialization;
1653 # however, in case of conflict more than one property are returned.
1654 # If mtype does not know mproperty then an empty array is returned.
1655 #
1656 # If you want the really most specific property, then look at `lookup_next_definition`
1657 #
1658 # FIXME: Move to `MPropDef`?
1659 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1660 do
1661 assert not mtype.need_anchor
1662 if mtype isa MNullableType then mtype = mtype.mtype
1663
1664 # First, select all candidates
1665 var candidates = new Array[MPROPDEF]
1666 for mpropdef in self.mpropdefs do
1667 # If the definition is not imported by the module, then skip
1668 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1669 # If the definition is not inherited by the type, then skip
1670 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1671 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
1672 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
1673 # Else, we keep it
1674 candidates.add(mpropdef)
1675 end
1676 # Fast track for only one candidate
1677 if candidates.length <= 1 then return candidates
1678
1679 # Second, filter the most specific ones
1680 return select_most_specific(mmodule, candidates)
1681 end
1682
1683 # Return an array containing olny the most specific property definitions
1684 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
1685 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
1686 do
1687 var res = new Array[MPROPDEF]
1688 for pd1 in candidates do
1689 var cd1 = pd1.mclassdef
1690 var c1 = cd1.mclass
1691 var keep = true
1692 for pd2 in candidates do
1693 if pd2 == pd1 then continue # do not compare with self!
1694 var cd2 = pd2.mclassdef
1695 var c2 = cd2.mclass
1696 if c2.mclass_type == c1.mclass_type then
1697 if cd2.mmodule.in_importation < cd1.mmodule then
1698 # cd2 refines cd1; therefore we skip pd1
1699 keep = false
1700 break
1701 end
1702 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
1703 # cd2 < cd1; therefore we skip pd1
1704 keep = false
1705 break
1706 end
1707 end
1708 if keep then
1709 res.add(pd1)
1710 end
1711 end
1712 if res.is_empty then
1713 print "All lost! {candidates.join(", ")}"
1714 # FIXME: should be abort!
1715 end
1716 return res
1717 end
1718
1719 # Return the most specific definition in the linearization of `mtype`.
1720 #
1721 # If you want to know the next properties in the linearization,
1722 # look at `MPropDef::lookup_next_definition`.
1723 #
1724 # FIXME: the linearisation is still unspecified
1725 #
1726 # REQUIRE: `not mtype.need_anchor`
1727 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
1728 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
1729 do
1730 assert mtype.has_mproperty(mmodule, self)
1731 return lookup_all_definitions(mmodule, mtype).first
1732 end
1733
1734 # Return all definitions in a linearisation order
1735 # Most speficic first, most general last
1736 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1737 do
1738 assert not mtype.need_anchor
1739 if mtype isa MNullableType then mtype = mtype.mtype
1740
1741 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
1742 if cache != null then return cache
1743
1744 #print "select prop {mproperty} for {mtype} in {self}"
1745 # First, select all candidates
1746 var candidates = new Array[MPROPDEF]
1747 for mpropdef in self.mpropdefs do
1748 # If the definition is not imported by the module, then skip
1749 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1750 # If the definition is not inherited by the type, then skip
1751 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1752 # Else, we keep it
1753 candidates.add(mpropdef)
1754 end
1755 # Fast track for only one candidate
1756 if candidates.length <= 1 then
1757 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
1758 return candidates
1759 end
1760
1761 mmodule.linearize_mpropdefs(candidates)
1762 candidates = candidates.reversed
1763 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
1764 return candidates
1765 end
1766
1767 private var lookup_all_definitions_cache: HashMap2[MModule, MType, Array[MPROPDEF]] = new HashMap2[MModule, MType, Array[MPROPDEF]]
1768 end
1769
1770 # A global method
1771 class MMethod
1772 super MProperty
1773
1774 redef type MPROPDEF: MMethodDef
1775
1776 init(intro_mclassdef: MClassDef, name: String, visibility: MVisibility)
1777 do
1778 super
1779 end
1780
1781 # Is the property defined at the top_level of the module?
1782 # Currently such a property are stored in `Object`
1783 var is_toplevel: Bool writable = false
1784
1785 # Is the property a constructor?
1786 # Warning, this property can be inherited by subclasses with or without being a constructor
1787 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
1788 var is_init: Bool writable = false
1789
1790 # The the property a 'new' contructor?
1791 var is_new: Bool writable = false
1792
1793 # Is the property a legal constructor for a given class?
1794 # As usual, visibility is not considered.
1795 # FIXME not implemented
1796 fun is_init_for(mclass: MClass): Bool
1797 do
1798 return self.is_init
1799 end
1800 end
1801
1802 # A global attribute
1803 class MAttribute
1804 super MProperty
1805
1806 redef type MPROPDEF: MAttributeDef
1807
1808 init(intro_mclassdef: MClassDef, name: String, visibility: MVisibility)
1809 do
1810 super
1811 end
1812 end
1813
1814 # A global virtual type
1815 class MVirtualTypeProp
1816 super MProperty
1817
1818 redef type MPROPDEF: MVirtualTypeDef
1819
1820 init(intro_mclassdef: MClassDef, name: String, visibility: MVisibility)
1821 do
1822 super
1823 end
1824
1825 # The formal type associated to the virtual type property
1826 var mvirtualtype: MVirtualType = new MVirtualType(self)
1827 end
1828
1829 # A definition of a property (local property)
1830 #
1831 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
1832 # specific class definition (which belong to a specific module)
1833 abstract class MPropDef
1834 super MEntity
1835
1836 # The associated `MProperty` subclass.
1837 # the two specialization hierarchy are symmetric
1838 type MPROPERTY: MProperty
1839
1840 # Self class
1841 type MPROPDEF: MPropDef
1842
1843 # The origin of the definition
1844 var location: Location
1845
1846 # The class definition where the property definition is
1847 var mclassdef: MClassDef
1848
1849 # The associated global property
1850 var mproperty: MPROPERTY
1851
1852 init(mclassdef: MClassDef, mproperty: MPROPERTY, location: Location)
1853 do
1854 self.mclassdef = mclassdef
1855 self.mproperty = mproperty
1856 self.location = location
1857 mclassdef.mpropdefs.add(self)
1858 mproperty.mpropdefs.add(self)
1859 self.to_s = "{mclassdef}#{mproperty}"
1860 end
1861
1862 # Actually the name of the `mproperty`
1863 redef fun name do return mproperty.name
1864
1865 redef fun model do return mclassdef.model
1866
1867 # Internal name combining the module, the class and the property
1868 # Example: "mymodule#MyClass#mymethod"
1869 redef var to_s: String
1870
1871 # Is self the definition that introduce the property?
1872 fun is_intro: Bool do return mproperty.intro == self
1873
1874 # Return the next definition in linearization of `mtype`.
1875 #
1876 # This method is used to determine what method is called by a super.
1877 #
1878 # REQUIRE: `not mtype.need_anchor`
1879 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
1880 do
1881 assert not mtype.need_anchor
1882
1883 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
1884 var i = mpropdefs.iterator
1885 while i.is_ok and i.item != self do i.next
1886 assert has_property: i.is_ok
1887 i.next
1888 assert has_next_property: i.is_ok
1889 return i.item
1890 end
1891 end
1892
1893 # A local definition of a method
1894 class MMethodDef
1895 super MPropDef
1896
1897 redef type MPROPERTY: MMethod
1898 redef type MPROPDEF: MMethodDef
1899
1900 init(mclassdef: MClassDef, mproperty: MPROPERTY, location: Location)
1901 do
1902 super
1903 end
1904
1905 # The signature attached to the property definition
1906 var msignature: nullable MSignature writable = null
1907
1908 # Is the method definition abstract?
1909 var is_abstract: Bool writable = false
1910
1911 # Is the method definition intern?
1912 var is_intern writable = false
1913
1914 # Is the method definition extern?
1915 var is_extern writable = false
1916 end
1917
1918 # A local definition of an attribute
1919 class MAttributeDef
1920 super MPropDef
1921
1922 redef type MPROPERTY: MAttribute
1923 redef type MPROPDEF: MAttributeDef
1924
1925 init(mclassdef: MClassDef, mproperty: MPROPERTY, location: Location)
1926 do
1927 super
1928 end
1929
1930 # The static type of the attribute
1931 var static_mtype: nullable MType writable = null
1932 end
1933
1934 # A local definition of a virtual type
1935 class MVirtualTypeDef
1936 super MPropDef
1937
1938 redef type MPROPERTY: MVirtualTypeProp
1939 redef type MPROPDEF: MVirtualTypeDef
1940
1941 init(mclassdef: MClassDef, mproperty: MPROPERTY, location: Location)
1942 do
1943 super
1944 end
1945
1946 # The bound of the virtual type
1947 var bound: nullable MType writable = null
1948 end
1949
1950 # A kind of class.
1951 #
1952 # * `abstract_kind`
1953 # * `concrete_kind`
1954 # * `interface_kind`
1955 # * `enum_kind`
1956 # * `extern_kind`
1957 #
1958 # Note this class is basically an enum.
1959 # FIXME: use a real enum once user-defined enums are available
1960 class MClassKind
1961 redef var to_s: String
1962
1963 # Is a constructor required?
1964 var need_init: Bool
1965 private init(s: String, need_init: Bool)
1966 do
1967 self.to_s = s
1968 self.need_init = need_init
1969 end
1970
1971 # Can a class of kind `self` specializes a class of kine `other`?
1972 fun can_specialize(other: MClassKind): Bool
1973 do
1974 if other == interface_kind then return true # everybody can specialize interfaces
1975 if self == interface_kind or self == enum_kind then
1976 # no other case for interfaces
1977 return false
1978 else if self == extern_kind then
1979 # only compatible with themselve
1980 return self == other
1981 else if other == enum_kind or other == extern_kind then
1982 # abstract_kind and concrete_kind are incompatible
1983 return false
1984 end
1985 # remain only abstract_kind and concrete_kind
1986 return true
1987 end
1988 end
1989
1990 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", true)
1991 fun concrete_kind: MClassKind do return once new MClassKind("class", true)
1992 fun interface_kind: MClassKind do return once new MClassKind("interface", false)
1993 fun enum_kind: MClassKind do return once new MClassKind("enum", false)
1994 fun extern_kind: MClassKind do return once new MClassKind("extern class", false)