MModule: new method `add_mclassdef` to avoid incoherent cache state.
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class MEntity
34 # The visibility of the MEntity.
35 #
36 # MPackages, MGroups and MModules are always public.
37 # The visibility of `MClass` and `MProperty` is defined by the keyword used.
38 # `MClassDef` and `MPropDef` return the visibility of `MClass` and `MProperty`.
39 fun visibility: MVisibility do return public_visibility
40 end
41
42 redef class Model
43 # All known classes
44 var mclasses = new Array[MClass]
45
46 # All known properties
47 var mproperties = new Array[MProperty]
48
49 # Hierarchy of class definition.
50 #
51 # Each classdef is associated with its super-classdefs in regard to
52 # its module of definition.
53 #
54 # ~~~
55 # var m = new ModelDiamond
56 # assert m.mclassdef_hierarchy.has_edge(m.mclassdef_b, m.mclassdef_a)
57 # assert not m.mclassdef_hierarchy.has_edge(m.mclassdef_a, m.mclassdef_b)
58 # assert not m.mclassdef_hierarchy.has_edge(m.mclassdef_b, m.mclassdef_c)
59 # ~~~
60 var mclassdef_hierarchy = new POSet[MClassDef]
61
62 # Class-type hierarchy restricted to the introduction.
63 #
64 # The idea is that what is true on introduction is always true whatever
65 # the module considered.
66 # Therefore, this hierarchy is used for a fast positive subtype check.
67 #
68 # This poset will evolve in a monotonous way:
69 # * Two non connected nodes will remain unconnected
70 # * New nodes can appear with new edges
71 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
72
73 # Global overlapped class-type hierarchy.
74 # The hierarchy when all modules are combined.
75 # Therefore, this hierarchy is used for a fast negative subtype check.
76 #
77 # This poset will evolve in an anarchic way. Loops can even be created.
78 #
79 # FIXME decide what to do on loops
80 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
81
82 # Collections of classes grouped by their short name
83 private var mclasses_by_name = new MultiHashMap[String, MClass]
84
85 # Return all classes named `name`.
86 #
87 # If such a class does not exist, null is returned
88 # (instead of an empty array)
89 #
90 # Visibility or modules are not considered
91 #
92 # ~~~
93 # var m = new ModelStandalone
94 # assert m.get_mclasses_by_name("Object") == [m.mclass_o]
95 # assert m.get_mclasses_by_name("Fail") == null
96 # ~~~
97 fun get_mclasses_by_name(name: String): nullable Array[MClass]
98 do
99 return mclasses_by_name.get_or_null(name)
100 end
101
102 # Collections of properties grouped by their short name
103 private var mproperties_by_name = new MultiHashMap[String, MProperty]
104
105 # Return all properties named `name`.
106 #
107 # If such a property does not exist, null is returned
108 # (instead of an empty array)
109 #
110 # Visibility or modules are not considered
111 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
112 do
113 return mproperties_by_name.get_or_null(name)
114 end
115
116 # The only null type
117 var null_type = new MNullType(self)
118
119 # The only bottom type
120 var bottom_type: MBottomType = null_type.as_notnull
121
122 # Build an ordered tree with from `concerns`
123 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
124 var seen = new HashSet[MConcern]
125 var res = new ConcernsTree
126
127 var todo = new Array[MConcern]
128 todo.add_all mconcerns
129
130 while not todo.is_empty do
131 var c = todo.pop
132 if seen.has(c) then continue
133 var pc = c.parent_concern
134 if pc == null then
135 res.add(null, c)
136 else
137 res.add(pc, c)
138 todo.add(pc)
139 end
140 seen.add(c)
141 end
142
143 return res
144 end
145 end
146
147 # An OrderedTree bound to MEntity.
148 #
149 # We introduce a new class so it can be easily refined by tools working
150 # with a Model.
151 class MEntityTree
152 super OrderedTree[MEntity]
153 end
154
155 # A MEntityTree borned to MConcern.
156 #
157 # TODO remove when nitdoc is fully merged with model_collect
158 class ConcernsTree
159 super OrderedTree[MConcern]
160 end
161
162 redef class MGroup
163 redef var is_test is lazy do
164 var parent = self.parent
165 if parent != null and parent.is_test then return true
166 return name == "tests"
167 end
168 end
169
170 redef class MModule
171 # All the classes introduced in the module
172 var intro_mclasses = new Array[MClass]
173
174 # All the class definitions of the module
175 # (introduction and refinement)
176 var mclassdefs = new Array[MClassDef]
177
178 private var mclassdef_sorter: MClassDefSorter is lazy do
179 return new MClassDefSorter(self)
180 end
181
182 private var mpropdef_sorter: MPropDefSorter is lazy do
183 return new MPropDefSorter(self)
184 end
185
186 # Does the current module has a given class `mclass`?
187 # Return true if the mmodule introduces, refines or imports a class.
188 # Visibility is not considered.
189 fun has_mclass(mclass: MClass): Bool
190 do
191 return self.in_importation <= mclass.intro_mmodule
192 end
193
194 # Full hierarchy of introduced and imported classes.
195 #
196 # Create a new hierarchy got by flattening the classes for the module
197 # and its imported modules.
198 # Visibility is not considered.
199 #
200 # Note: this function is expensive and is usually used for the main
201 # module of a program only. Do not use it to do your own subtype
202 # functions.
203 fun flatten_mclass_hierarchy: POSet[MClass]
204 do
205 var res = self.flatten_mclass_hierarchy_cache
206 if res != null then return res
207 self.flatten_mclass_hierarchy_cache = new POSet[MClass]
208 for m in self.in_importation.greaters do
209 for cd in m.mclassdefs do
210 unsafe_update_hierarchy_cache(cd)
211 end
212 end
213 return self.flatten_mclass_hierarchy_cache.as(not null)
214 end
215
216 # Adds another class definition in the modue.
217 # Updates the class hierarchy cache.
218 fun add_mclassdef(mclassdef: MClassDef)
219 do
220 self.mclassdefs.add(mclassdef)
221 if self.flatten_mclass_hierarchy_cache != null then
222 unsafe_update_hierarchy_cache(mclassdef)
223 end
224 end
225
226 # Adds a class definition inside `flatten_mclass_hierarchy_cache` without
227 # null check. The caller must have initialized the cache.
228 protected fun unsafe_update_hierarchy_cache(mclassdef: MClassDef)
229 do
230 var hierarchy = self.flatten_mclass_hierarchy_cache.as(not null)
231 # Update the cache
232 var c = mclassdef.mclass
233 hierarchy.add_node(c)
234 for s in mclassdef.supertypes do
235 hierarchy.add_edge(c, s.mclass)
236 end
237 end
238
239 # Sort a given array of classes using the linearization order of the module
240 # The most general is first, the most specific is last
241 fun linearize_mclasses(mclasses: Array[MClass])
242 do
243 self.flatten_mclass_hierarchy.sort(mclasses)
244 end
245
246 # Sort a given array of class definitions using the linearization order of the module
247 # the refinement link is stronger than the specialisation link
248 # The most general is first, the most specific is last
249 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
250 do
251 mclassdef_sorter.sort(mclassdefs)
252 end
253
254 # Sort a given array of property definitions using the linearization order of the module
255 # the refinement link is stronger than the specialisation link
256 # The most general is first, the most specific is last
257 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
258 do
259 mpropdef_sorter.sort(mpropdefs)
260 end
261
262 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
263
264 # The primitive type `Object`, the root of the class hierarchy
265 var object_type: MClassType = self.get_primitive_class("Object").mclass_type is lazy
266
267 # The type `Pointer`, super class to all extern classes
268 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
269
270 # The primitive type `Bool`
271 var bool_type: MClassType = self.get_primitive_class("Bool").mclass_type is lazy
272
273 # The primitive type `Int`
274 var int_type: MClassType = self.get_primitive_class("Int").mclass_type is lazy
275
276 # The primitive type `Byte`
277 var byte_type: MClassType = self.get_primitive_class("Byte").mclass_type is lazy
278
279 # The primitive type `Int8`
280 var int8_type: MClassType = self.get_primitive_class("Int8").mclass_type is lazy
281
282 # The primitive type `Int16`
283 var int16_type: MClassType = self.get_primitive_class("Int16").mclass_type is lazy
284
285 # The primitive type `UInt16`
286 var uint16_type: MClassType = self.get_primitive_class("UInt16").mclass_type is lazy
287
288 # The primitive type `Int32`
289 var int32_type: MClassType = self.get_primitive_class("Int32").mclass_type is lazy
290
291 # The primitive type `UInt32`
292 var uint32_type: MClassType = self.get_primitive_class("UInt32").mclass_type is lazy
293
294 # The primitive type `Char`
295 var char_type: MClassType = self.get_primitive_class("Char").mclass_type is lazy
296
297 # The primitive type `Float`
298 var float_type: MClassType = self.get_primitive_class("Float").mclass_type is lazy
299
300 # The primitive type `String`
301 var string_type: MClassType = self.get_primitive_class("String").mclass_type is lazy
302
303 # The primitive type `CString`
304 var c_string_type: MClassType = self.get_primitive_class("CString").mclass_type is lazy
305
306 # A primitive type of `Array`
307 fun array_type(elt_type: MType): MClassType do return array_class.get_mtype([elt_type])
308
309 # The primitive class `Array`
310 var array_class: MClass = self.get_primitive_class("Array") is lazy
311
312 # A primitive type of `NativeArray`
313 fun native_array_type(elt_type: MType): MClassType do return native_array_class.get_mtype([elt_type])
314
315 # The primitive class `NativeArray`
316 var native_array_class: MClass = self.get_primitive_class("NativeArray") is lazy
317
318 # The primitive type `Sys`, the main type of the program, if any
319 fun sys_type: nullable MClassType
320 do
321 var clas = self.model.get_mclasses_by_name("Sys")
322 if clas == null then return null
323 return get_primitive_class("Sys").mclass_type
324 end
325
326 # The primitive type `Finalizable`
327 # Used to tag classes that need to be finalized.
328 fun finalizable_type: nullable MClassType
329 do
330 var clas = self.model.get_mclasses_by_name("Finalizable")
331 if clas == null then return null
332 return get_primitive_class("Finalizable").mclass_type
333 end
334
335 # Force to get the primitive class named `name` or abort
336 fun get_primitive_class(name: String): MClass
337 do
338 var cla = self.model.get_mclasses_by_name(name)
339 # Filter classes by introducing module
340 if cla != null then cla = [for c in cla do if self.in_importation <= c.intro_mmodule then c]
341 if cla == null or cla.is_empty then
342 if name == "Bool" and self.model.get_mclasses_by_name("Object") != null then
343 # Bool is injected because it is needed by engine to code the result
344 # of the implicit casts.
345 var loc = model.no_location
346 var c = new MClass(self, name, loc, null, enum_kind, public_visibility)
347 var cladef = new MClassDef(self, c.mclass_type, loc)
348 cladef.set_supertypes([object_type])
349 cladef.add_in_hierarchy
350 return c
351 end
352 print_error("Fatal Error: no primitive class {name} in {self}")
353 exit(1)
354 abort
355 end
356 if cla.length != 1 then
357 var msg = "Fatal Error: more than one primitive class {name} in {self}:"
358 for c in cla do msg += " {c.full_name}"
359 print_error msg
360 #exit(1)
361 end
362 return cla.first
363 end
364
365 # Try to get the primitive method named `name` on the type `recv`
366 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
367 do
368 var props = self.model.get_mproperties_by_name(name)
369 if props == null then return null
370 var res: nullable MMethod = null
371 var recvtype = recv.intro.bound_mtype
372 for mprop in props do
373 assert mprop isa MMethod
374 if not recvtype.has_mproperty(self, mprop) then continue
375 if res == null then
376 res = mprop
377 else if res != mprop then
378 print_error("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
379 abort
380 end
381 end
382 return res
383 end
384 end
385
386 private class MClassDefSorter
387 super Comparator
388 redef type COMPARED: MClassDef
389 var mmodule: MModule
390 redef fun compare(a, b)
391 do
392 var ca = a.mclass
393 var cb = b.mclass
394 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
395 return mmodule.model.mclassdef_hierarchy.compare(a, b)
396 end
397 end
398
399 private class MPropDefSorter
400 super Comparator
401 redef type COMPARED: MPropDef
402 var mmodule: MModule
403
404 redef fun compare(pa, pb)
405 do
406 var a = pa.mclassdef
407 var b = pb.mclassdef
408 return mmodule.mclassdef_sorter.compare(a, b)
409 end
410 end
411
412 # A named class
413 #
414 # `MClass`es are global to the model; it means that a `MClass` is not bound
415 # to a specific `MModule`.
416 #
417 # This characteristic helps the reasoning about classes in a program since a
418 # single `MClass` object always denote the same class.
419 #
420 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
421 # These do not really have properties nor belong to a hierarchy since the property and the
422 # hierarchy of a class depends of the refinement in the modules.
423 #
424 # Most services on classes require the precision of a module, and no one can asks what are
425 # the super-classes of a class nor what are properties of a class without precising what is
426 # the module considered.
427 #
428 # For instance, during the typing of a source-file, the module considered is the module of the file.
429 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
430 # *is the method `foo` exists in the class `Bar` in the current module?*
431 #
432 # During some global analysis, the module considered may be the main module of the program.
433 class MClass
434 super MEntity
435
436 # The module that introduce the class
437 #
438 # While classes are not bound to a specific module,
439 # the introducing module is used for naming and visibility.
440 var intro_mmodule: MModule
441
442 # The short name of the class
443 # In Nit, the name of a class cannot evolve in refinements
444 redef var name
445
446 redef var location
447
448 # The canonical name of the class
449 #
450 # It is the name of the class prefixed by the full_name of the `intro_mmodule`
451 # Example: `"owner::module::MyClass"`
452 redef var full_name is lazy do
453 return "{self.intro_mmodule.namespace_for(visibility)}::{name}"
454 end
455
456 redef var c_name is lazy do
457 return "{intro_mmodule.c_namespace_for(visibility)}__{name.to_cmangle}"
458 end
459
460 # The number of generic formal parameters
461 # 0 if the class is not generic
462 var arity: Int is noinit
463
464 # Each generic formal parameters in order.
465 # is empty if the class is not generic
466 var mparameters = new Array[MParameterType]
467
468 # A string version of the signature a generic class.
469 #
470 # eg. `Map[K: nullable Object, V: nullable Object]`
471 #
472 # If the class in non generic the name is just given.
473 #
474 # eg. `Object`
475 fun signature_to_s: String
476 do
477 if arity == 0 then return name
478 var res = new FlatBuffer
479 res.append name
480 res.append "["
481 for i in [0..arity[ do
482 if i > 0 then res.append ", "
483 res.append mparameters[i].name
484 res.append ": "
485 res.append intro.bound_mtype.arguments[i].to_s
486 end
487 res.append "]"
488 return res.to_s
489 end
490
491 # Initialize `mparameters` from their names.
492 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
493 autoinit
494 do
495 if parameter_names == null then
496 self.arity = 0
497 else
498 self.arity = parameter_names.length
499 end
500
501 # Create the formal parameter types
502 if arity > 0 then
503 assert parameter_names != null
504 var mparametertypes = new Array[MParameterType]
505 for i in [0..arity[ do
506 var mparametertype = new MParameterType(self, i, parameter_names[i])
507 mparametertypes.add(mparametertype)
508 end
509 self.mparameters = mparametertypes
510 var mclass_type = new MGenericType(self, mparametertypes)
511 self.mclass_type = mclass_type
512 self.get_mtype_cache[mparametertypes] = mclass_type
513 else
514 self.mclass_type = new MClassType(self)
515 end
516 end
517
518 # The kind of the class (interface, abstract class, etc.)
519 #
520 # In Nit, the kind of a class cannot evolve in refinements.
521 var kind: MClassKind
522
523 # The visibility of the class
524 #
525 # In Nit, the visibility of a class cannot evolve in refinements.
526 redef var visibility
527
528 init
529 do
530 intro_mmodule.intro_mclasses.add(self)
531 var model = intro_mmodule.model
532 model.mclasses_by_name.add_one(name, self)
533 model.mclasses.add(self)
534 end
535
536 redef fun model do return intro_mmodule.model
537
538 # All class definitions (introduction and refinements)
539 var mclassdefs = new Array[MClassDef]
540
541 # Alias for `name`
542 redef fun to_s do return self.name
543
544 # The definition that introduces the class.
545 #
546 # Warning: such a definition may not exist in the early life of the object.
547 # In this case, the method will abort.
548 #
549 # Use `try_intro` instead.
550 var intro: MClassDef is noinit
551
552 # The definition that introduces the class or `null` if not yet known.
553 #
554 # SEE: `intro`
555 fun try_intro: nullable MClassDef do
556 if isset _intro then return _intro else return null
557 end
558
559 # Return the class `self` in the class hierarchy of the module `mmodule`.
560 #
561 # SEE: `MModule::flatten_mclass_hierarchy`
562 # REQUIRE: `mmodule.has_mclass(self)`
563 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
564 do
565 return mmodule.flatten_mclass_hierarchy[self]
566 end
567
568 # The principal static type of the class.
569 #
570 # For non-generic class, `mclass_type` is the only `MClassType` based
571 # on self.
572 #
573 # For a generic class, the arguments are the formal parameters.
574 # i.e.: for the class `Array[E:Object]`, the `mclass_type` is `Array[E]`.
575 # If you want `Array[Object]`, see `MClassDef::bound_mtype`.
576 #
577 # For generic classes, the mclass_type is also the way to get a formal
578 # generic parameter type.
579 #
580 # To get other types based on a generic class, see `get_mtype`.
581 #
582 # ENSURE: `mclass_type.mclass == self`
583 var mclass_type: MClassType is noinit
584
585 # Return a generic type based on the class
586 # Is the class is not generic, then the result is `mclass_type`
587 #
588 # REQUIRE: `mtype_arguments.length == self.arity`
589 fun get_mtype(mtype_arguments: Array[MType]): MClassType
590 do
591 assert mtype_arguments.length == self.arity
592 if self.arity == 0 then return self.mclass_type
593 var res = get_mtype_cache.get_or_null(mtype_arguments)
594 if res != null then return res
595 res = new MGenericType(self, mtype_arguments)
596 self.get_mtype_cache[mtype_arguments.to_a] = res
597 return res
598 end
599
600 private var get_mtype_cache = new HashMap[Array[MType], MGenericType]
601
602 # Is there a `new` factory to allow the pseudo instantiation?
603 var has_new_factory = false is writable
604
605 # Is `self` a standard or abstract class kind?
606 var is_class: Bool is lazy do return kind == concrete_kind or kind == abstract_kind
607
608 # Is `self` an interface kind?
609 var is_interface: Bool is lazy do return kind == interface_kind
610
611 # Is `self` an enum kind?
612 var is_enum: Bool is lazy do return kind == enum_kind
613
614 # Is `self` and abstract class?
615 var is_abstract: Bool is lazy do return kind == abstract_kind
616
617 redef var is_test is lazy do return intro.is_test
618
619 redef fun mdoc_or_fallback
620 do
621 # Don’t use `intro.mdoc_or_fallback` because it would create an infinite
622 # recursion.
623 return intro.mdoc
624 end
625 end
626
627
628 # A definition (an introduction or a refinement) of a class in a module
629 #
630 # A `MClassDef` is associated with an explicit (or almost) definition of a
631 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
632 # a specific class and a specific module, and contains declarations like super-classes
633 # or properties.
634 #
635 # It is the class definitions that are the backbone of most things in the model:
636 # ClassDefs are defined with regard with other classdefs.
637 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
638 #
639 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
640 class MClassDef
641 super MEntity
642
643 # The module where the definition is
644 var mmodule: MModule
645
646 # The associated `MClass`
647 var mclass: MClass is noinit
648
649 # The bounded type associated to the mclassdef
650 #
651 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
652 # are the same type.
653 #
654 # Example:
655 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
656 # If you want Array[E], then see `mclass.mclass_type`
657 #
658 # ENSURE: `bound_mtype.mclass == self.mclass`
659 var bound_mtype: MClassType
660
661 redef var location
662
663 redef fun visibility do return mclass.visibility
664
665 # Internal name combining the module and the class
666 # Example: "mymodule$MyClass"
667 redef var to_s is noinit
668
669 init
670 do
671 self.mclass = bound_mtype.mclass
672 mmodule.add_mclassdef(self)
673 mclass.mclassdefs.add(self)
674 if mclass.intro_mmodule == mmodule then
675 assert not isset mclass._intro
676 mclass.intro = self
677 end
678 self.to_s = "{mmodule}${mclass}"
679 end
680
681 # Actually the name of the `mclass`
682 redef fun name do return mclass.name
683
684 # The module and class name separated by a '$'.
685 #
686 # The short-name of the class is used for introduction.
687 # Example: "my_module$MyClass"
688 #
689 # The full-name of the class is used for refinement.
690 # Example: "my_module$intro_module::MyClass"
691 redef var full_name is lazy do
692 if is_intro then
693 # public gives 'p$A'
694 # private gives 'p::m$A'
695 return "{mmodule.namespace_for(mclass.visibility)}${mclass.name}"
696 else if mclass.intro_mmodule.mpackage != mmodule.mpackage then
697 # public gives 'q::n$p::A'
698 # private gives 'q::n$p::m::A'
699 return "{mmodule.full_name}${mclass.full_name}"
700 else if mclass.visibility > private_visibility then
701 # public gives 'p::n$A'
702 return "{mmodule.full_name}${mclass.name}"
703 else
704 # private gives 'p::n$::m::A' (redundant p is omitted)
705 return "{mmodule.full_name}$::{mclass.intro_mmodule.name}::{mclass.name}"
706 end
707 end
708
709 redef var c_name is lazy do
710 if is_intro then
711 return "{mmodule.c_namespace_for(mclass.visibility)}___{mclass.c_name}"
712 else if mclass.intro_mmodule.mpackage == mmodule.mpackage and mclass.visibility > private_visibility then
713 return "{mmodule.c_name}___{mclass.name.to_cmangle}"
714 else
715 return "{mmodule.c_name}___{mclass.c_name}"
716 end
717 end
718
719 redef fun model do return mmodule.model
720
721 # All declared super-types
722 # FIXME: quite ugly but not better idea yet
723 var supertypes = new Array[MClassType]
724
725 # Register some super-types for the class (ie "super SomeType")
726 #
727 # The hierarchy must not already be set
728 # REQUIRE: `self.in_hierarchy == null`
729 fun set_supertypes(supertypes: Array[MClassType])
730 do
731 assert unique_invocation: self.in_hierarchy == null
732 var mmodule = self.mmodule
733 var model = mmodule.model
734 var mtype = self.bound_mtype
735
736 for supertype in supertypes do
737 self.supertypes.add(supertype)
738
739 # Register in full_type_specialization_hierarchy
740 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
741 # Register in intro_type_specialization_hierarchy
742 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
743 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
744 end
745 end
746
747 end
748
749 # Collect the super-types (set by set_supertypes) to build the hierarchy
750 #
751 # This function can only invoked once by class
752 # REQUIRE: `self.in_hierarchy == null`
753 # ENSURE: `self.in_hierarchy != null`
754 fun add_in_hierarchy
755 do
756 assert unique_invocation: self.in_hierarchy == null
757 var model = mmodule.model
758 var res = model.mclassdef_hierarchy.add_node(self)
759 self.in_hierarchy = res
760 var mtype = self.bound_mtype
761
762 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
763 # The simpliest way is to attach it to collect_mclassdefs
764 for mclassdef in mtype.collect_mclassdefs(mmodule) do
765 res.poset.add_edge(self, mclassdef)
766 end
767 end
768
769 # The view of the class definition in `mclassdef_hierarchy`
770 var in_hierarchy: nullable POSetElement[MClassDef] = null
771
772 # Is the definition the one that introduced `mclass`?
773 fun is_intro: Bool do return isset mclass._intro and mclass.intro == self
774
775 # All properties introduced by the classdef
776 var intro_mproperties = new Array[MProperty]
777
778 # All property introductions and redefinitions in `self` (not inheritance).
779 var mpropdefs = new Array[MPropDef]
780
781 # All property introductions and redefinitions (not inheritance) in `self` by its associated property.
782 var mpropdefs_by_property = new HashMap[MProperty, MPropDef]
783
784 redef fun mdoc_or_fallback do return mdoc or else mclass.mdoc_or_fallback
785 end
786
787 # A global static type
788 #
789 # MType are global to the model; it means that a `MType` is not bound to a
790 # specific `MModule`.
791 # This characteristic helps the reasoning about static types in a program
792 # since a single `MType` object always denote the same type.
793 #
794 # However, because a `MType` is global, it does not really have properties
795 # nor have subtypes to a hierarchy since the property and the class hierarchy
796 # depends of a module.
797 # Moreover, virtual types an formal generic parameter types also depends on
798 # a receiver to have sense.
799 #
800 # Therefore, most method of the types require a module and an anchor.
801 # The module is used to know what are the classes and the specialization
802 # links.
803 # The anchor is used to know what is the bound of the virtual types and formal
804 # generic parameter types.
805 #
806 # MType are not directly usable to get properties. See the `anchor_to` method
807 # and the `MClassType` class.
808 #
809 # FIXME: the order of the parameters is not the best. We mus pick on from:
810 # * foo(mmodule, anchor, othertype)
811 # * foo(othertype, anchor, mmodule)
812 # * foo(anchor, mmodule, othertype)
813 # * foo(othertype, mmodule, anchor)
814 abstract class MType
815 super MEntity
816
817 redef fun name do return to_s
818
819 # Return true if `self` is an subtype of `sup`.
820 # The typing is done using the standard typing policy of Nit.
821 #
822 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
823 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
824 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
825 do
826 var sub = self
827 if sub == sup then return true
828
829 #print "1.is {sub} a {sup}? ===="
830
831 if anchor == null then
832 assert not sub.need_anchor
833 assert not sup.need_anchor
834 else
835 # First, resolve the formal types to the simplest equivalent forms in the receiver
836 assert sub.can_resolve_for(anchor, null, mmodule)
837 sub = sub.lookup_fixed(mmodule, anchor)
838 assert sup.can_resolve_for(anchor, null, mmodule)
839 sup = sup.lookup_fixed(mmodule, anchor)
840 end
841
842 # Does `sup` accept null or not?
843 # Discard the nullable marker if it exists
844 var sup_accept_null = false
845 if sup isa MNullableType then
846 sup_accept_null = true
847 sup = sup.mtype
848 else if sup isa MNotNullType then
849 sup = sup.mtype
850 else if sup isa MNullType then
851 sup_accept_null = true
852 end
853
854 # Can `sub` provide null or not?
855 # Thus we can match with `sup_accept_null`
856 # Also discard the nullable marker if it exists
857 var sub_reject_null = false
858 if sub isa MNullableType then
859 if not sup_accept_null then return false
860 sub = sub.mtype
861 else if sub isa MNotNullType then
862 sub_reject_null = true
863 sub = sub.mtype
864 else if sub isa MNullType then
865 return sup_accept_null
866 end
867 # Now the case of direct null and nullable is over.
868
869 # If `sub` is a formal type, then it is accepted if its bound is accepted
870 while sub isa MFormalType do
871 #print "3.is {sub} a {sup}?"
872
873 # A unfixed formal type can only accept itself
874 if sub == sup then return true
875
876 assert anchor != null
877 sub = sub.lookup_bound(mmodule, anchor)
878 if sub_reject_null then sub = sub.as_notnull
879
880 #print "3.is {sub} a {sup}?"
881
882 # Manage the second layer of null/nullable
883 if sub isa MNullableType then
884 if not sup_accept_null and not sub_reject_null then return false
885 sub = sub.mtype
886 else if sub isa MNotNullType then
887 sub_reject_null = true
888 sub = sub.mtype
889 else if sub isa MNullType then
890 return sup_accept_null
891 end
892 end
893 #print "4.is {sub} a {sup}? <- no more resolution"
894
895 if sub isa MBottomType or sub isa MErrorType then
896 return true
897 end
898
899 assert sub isa MClassType else print_error "{sub} <? {sup}" # It is the only remaining type
900
901 # Handle sup-type when the sub-type is class-based (other cases must have be identified before).
902 if sup isa MFormalType or sup isa MNullType or sup isa MBottomType or sup isa MErrorType then
903 # These types are not super-types of Class-based types.
904 return false
905 end
906
907 assert sup isa MClassType else print_error "got {sup} {sub.inspect}" # It is the only remaining type
908
909 # Now both are MClassType, we need to dig
910
911 if sub == sup then return true
912
913 if anchor == null then anchor = sub # UGLY: any anchor will work
914 var resolved_sub = sub.anchor_to(mmodule, anchor)
915 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
916 if not res then return false
917 if not sup isa MGenericType then return true
918 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
919 assert sub2.mclass == sup.mclass
920 for i in [0..sup.mclass.arity[ do
921 var sub_arg = sub2.arguments[i]
922 var sup_arg = sup.arguments[i]
923 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
924 if not res then return false
925 end
926 return true
927 end
928
929 # The base class type on which self is based
930 #
931 # This base type is used to get property (an internally to perform
932 # unsafe type comparison).
933 #
934 # Beware: some types (like null) are not based on a class thus this
935 # method will crash
936 #
937 # Basically, this function transform the virtual types and parameter
938 # types to their bounds.
939 #
940 # Example
941 #
942 # class A end
943 # class B super A end
944 # class X end
945 # class Y super X end
946 # class G[T: A]
947 # type U: X
948 # end
949 # class H
950 # super G[B]
951 # redef type U: Y
952 # end
953 #
954 # Map[T,U] anchor_to H #-> Map[B,Y]
955 #
956 # Explanation of the example:
957 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
958 # because "redef type U: Y". Therefore, Map[T, U] is bound to
959 # Map[B, Y]
960 #
961 # REQUIRE: `self.need_anchor implies anchor != null`
962 # ENSURE: `not self.need_anchor implies result == self`
963 # ENSURE: `not result.need_anchor`
964 fun anchor_to(mmodule: MModule, anchor: nullable MClassType): MType
965 do
966 if not need_anchor then return self
967 assert anchor != null and not anchor.need_anchor
968 # Just resolve to the anchor and clear all the virtual types
969 var res = self.resolve_for(anchor, null, mmodule, true)
970 assert not res.need_anchor
971 return res
972 end
973
974 # Does `self` contain a virtual type or a formal generic parameter type?
975 # In order to remove those types, you usually want to use `anchor_to`.
976 fun need_anchor: Bool do return true
977
978 # Return the supertype when adapted to a class.
979 #
980 # In Nit, for each super-class of a type, there is a equivalent super-type.
981 #
982 # Example:
983 #
984 # ~~~nitish
985 # class G[T, U] end
986 # class H[V] super G[V, Bool] end
987 #
988 # H[Int] supertype_to G #-> G[Int, Bool]
989 # ~~~
990 #
991 # REQUIRE: `super_mclass` is a super-class of `self`
992 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
993 # ENSURE: `result.mclass = super_mclass`
994 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
995 do
996 if super_mclass.arity == 0 then return super_mclass.mclass_type
997 if self isa MClassType and self.mclass == super_mclass then return self
998 var resolved_self
999 if self.need_anchor then
1000 assert anchor != null
1001 resolved_self = self.anchor_to(mmodule, anchor)
1002 else
1003 resolved_self = self
1004 end
1005 var supertypes = resolved_self.collect_mtypes(mmodule)
1006 for supertype in supertypes do
1007 if supertype.mclass == super_mclass then
1008 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1009 return supertype.resolve_for(self, anchor, mmodule, false)
1010 end
1011 end
1012 abort
1013 end
1014
1015 # Replace formals generic types in self with resolved values in `mtype`
1016 # If `cleanup_virtual` is true, then virtual types are also replaced
1017 # with their bounds.
1018 #
1019 # This function returns self if `need_anchor` is false.
1020 #
1021 # ## Example 1
1022 #
1023 # ~~~
1024 # class G[E] end
1025 # class H[F] super G[F] end
1026 # class X[Z] end
1027 # ~~~
1028 #
1029 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
1030 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
1031 #
1032 # Explanation of the example:
1033 # * Array[E].need_anchor is true because there is a formal generic parameter type E
1034 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
1035 # * Since "H[F] super G[F]", E is in fact F for H
1036 # * More specifically, in H[Int], E is Int
1037 # * So, in H[Int], Array[E] is Array[Int]
1038 #
1039 # This function is mainly used to inherit a signature.
1040 # Because, unlike `anchor_to`, we do not want a full resolution of
1041 # a type but only an adapted version of it.
1042 #
1043 # ## Example 2
1044 #
1045 # ~~~
1046 # class A[E]
1047 # fun foo(e:E):E is abstract
1048 # end
1049 # class B super A[Int] end
1050 # ~~~
1051 #
1052 # The signature on foo is (e: E): E
1053 # If we resolve the signature for B, we get (e:Int):Int
1054 #
1055 # ## Example 3
1056 #
1057 # ~~~nitish
1058 # class A[E]
1059 # fun foo(e:E):E is abstract
1060 # end
1061 # class C[F]
1062 # var a: A[Array[F]]
1063 # fun bar do a.foo(x) # <- x is here
1064 # end
1065 # ~~~
1066 #
1067 # The first question is: is foo available on `a`?
1068 #
1069 # The static type of a is `A[Array[F]]`, that is an open type.
1070 # in order to find a method `foo`, whe must look at a resolved type.
1071 #
1072 # A[Array[F]].anchor_to(C[nullable Object]) #-> A[Array[nullable Object]]
1073 #
1074 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
1075 #
1076 # The next question is: what is the accepted types for `x`?
1077 #
1078 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
1079 #
1080 # E.resolve_for(A[Array[F]],C[nullable Object]) #-> Array[F]
1081 #
1082 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
1083 #
1084 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
1085 # two function instead of one seems also to be a bad idea.
1086 #
1087 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
1088 # ENSURE: `not self.need_anchor implies result == self`
1089 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
1090
1091 # Resolve formal type to its verbatim bound.
1092 # If the type is not formal, just return self
1093 #
1094 # The result is returned exactly as declared in the "type" property (verbatim).
1095 # So it could be another formal type.
1096 #
1097 # In case of conflicts or inconsistencies in the model, the method returns a `MErrorType`.
1098 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self
1099
1100 # Resolve the formal type to its simplest equivalent form.
1101 #
1102 # Formal types are either free or fixed.
1103 # When it is fixed, it means that it is equivalent with a simpler type.
1104 # When a formal type is free, it means that it is only equivalent with itself.
1105 # This method return the most simple equivalent type of `self`.
1106 #
1107 # This method is mainly used for subtype test in order to sanely compare fixed.
1108 #
1109 # By default, return self.
1110 # See the redefinitions for specific behavior in each kind of type.
1111 #
1112 # In case of conflicts or inconsistencies in the model, the method returns a `MErrorType`.
1113 fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self
1114
1115 # Is the type a `MErrorType` or contains an `MErrorType`?
1116 #
1117 # `MErrorType` are used in result with conflict or inconsistencies.
1118 #
1119 # See `is_legal_in` to check conformity with generic bounds.
1120 fun is_ok: Bool do return true
1121
1122 # Is the type legal in a given `mmodule` (with an optional `anchor`)?
1123 #
1124 # A type is valid if:
1125 #
1126 # * it does not contain a `MErrorType` (see `is_ok`).
1127 # * its generic formal arguments are within their bounds.
1128 fun is_legal_in(mmodule: MModule, anchor: nullable MClassType): Bool do return is_ok
1129
1130 # Can the type be resolved?
1131 #
1132 # In order to resolve open types, the formal types must make sence.
1133 #
1134 # ## Example
1135 #
1136 # class A[E]
1137 # end
1138 # class B[F]
1139 # end
1140 #
1141 # ~~~nitish
1142 # E.can_resolve_for(A[Int]) #-> true, E make sense in A
1143 #
1144 # E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
1145 #
1146 # B[E].can_resolve_for(A[F], B[Object]) #-> true,
1147 # # B[E] is a red hearing only the E is important,
1148 # # E make sense in A
1149 # ~~~
1150 #
1151 # REQUIRE: `anchor != null implies not anchor.need_anchor`
1152 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
1153 # ENSURE: `not self.need_anchor implies result == true`
1154 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
1155
1156 # Return the nullable version of the type
1157 # If the type is already nullable then self is returned
1158 fun as_nullable: MType
1159 do
1160 var res = self.as_nullable_cache
1161 if res != null then return res
1162 res = new MNullableType(self)
1163 self.as_nullable_cache = res
1164 return res
1165 end
1166
1167 # Remove the base type of a decorated (proxy) type.
1168 # Is the type is not decorated, then self is returned.
1169 #
1170 # Most of the time it is used to return the not nullable version of a nullable type.
1171 # In this case, this just remove the `nullable` notation, but the result can still contains null.
1172 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
1173 # If you really want to exclude the `null` value, then use `as_notnull`
1174 fun undecorate: MType
1175 do
1176 return self
1177 end
1178
1179 # Returns the not null version of the type.
1180 # That is `self` minus the `null` value.
1181 #
1182 # For most types, this return `self`.
1183 # For formal types, this returns a special `MNotNullType`
1184 fun as_notnull: MType do return self
1185
1186 private var as_nullable_cache: nullable MType = null
1187
1188
1189 # The depth of the type seen as a tree.
1190 #
1191 # * A -> 1
1192 # * G[A] -> 2
1193 # * H[A, B] -> 2
1194 # * H[G[A], B] -> 3
1195 #
1196 # Formal types have a depth of 1.
1197 # Only `MClassType` and `MFormalType` nodes are counted.
1198 fun depth: Int
1199 do
1200 return 1
1201 end
1202
1203 # The length of the type seen as a tree.
1204 #
1205 # * A -> 1
1206 # * G[A] -> 2
1207 # * H[A, B] -> 3
1208 # * H[G[A], B] -> 4
1209 #
1210 # Formal types have a length of 1.
1211 # Only `MClassType` and `MFormalType` nodes are counted.
1212 fun length: Int
1213 do
1214 return 1
1215 end
1216
1217 # Compute all the classdefs inherited/imported.
1218 # The returned set contains:
1219 # * the class definitions from `mmodule` and its imported modules
1220 # * the class definitions of this type and its super-types
1221 #
1222 # This function is used mainly internally.
1223 #
1224 # REQUIRE: `not self.need_anchor`
1225 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
1226
1227 # Compute all the super-classes.
1228 # This function is used mainly internally.
1229 #
1230 # REQUIRE: `not self.need_anchor`
1231 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
1232
1233 # Compute all the declared super-types.
1234 # Super-types are returned as declared in the classdefs (verbatim).
1235 # This function is used mainly internally.
1236 #
1237 # REQUIRE: `not self.need_anchor`
1238 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
1239
1240 # Is the property in self for a given module
1241 # This method does not filter visibility or whatever
1242 #
1243 # REQUIRE: `not self.need_anchor`
1244 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
1245 do
1246 assert not self.need_anchor
1247 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
1248 end
1249 end
1250
1251 # A type based on a class.
1252 #
1253 # `MClassType` have properties (see `has_mproperty`).
1254 class MClassType
1255 super MType
1256
1257 # The associated class
1258 var mclass: MClass
1259
1260 redef fun model do return self.mclass.intro_mmodule.model
1261
1262 redef fun location do return mclass.location
1263
1264 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1265
1266 # The formal arguments of the type
1267 # ENSURE: `result.length == self.mclass.arity`
1268 var arguments = new Array[MType]
1269
1270 redef fun to_s do return mclass.to_s
1271
1272 redef fun full_name do return mclass.full_name
1273
1274 redef fun c_name do return mclass.c_name
1275
1276 redef fun need_anchor do return false
1277
1278 redef fun anchor_to(mmodule, anchor): MClassType
1279 do
1280 return super.as(MClassType)
1281 end
1282
1283 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1284
1285 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1286
1287 redef fun collect_mclassdefs(mmodule)
1288 do
1289 assert not self.need_anchor
1290 var cache = self.collect_mclassdefs_cache
1291 if not cache.has_key(mmodule) then
1292 self.collect_things(mmodule)
1293 end
1294 return cache[mmodule]
1295 end
1296
1297 redef fun collect_mclasses(mmodule)
1298 do
1299 if collect_mclasses_last_module == mmodule then return collect_mclasses_last_module_cache
1300 assert not self.need_anchor
1301 var cache = self.collect_mclasses_cache
1302 if not cache.has_key(mmodule) then
1303 self.collect_things(mmodule)
1304 end
1305 var res = cache[mmodule]
1306 collect_mclasses_last_module = mmodule
1307 collect_mclasses_last_module_cache = res
1308 return res
1309 end
1310
1311 private var collect_mclasses_last_module: nullable MModule = null
1312 private var collect_mclasses_last_module_cache: Set[MClass] is noinit
1313
1314 redef fun collect_mtypes(mmodule)
1315 do
1316 assert not self.need_anchor
1317 var cache = self.collect_mtypes_cache
1318 if not cache.has_key(mmodule) then
1319 self.collect_things(mmodule)
1320 end
1321 return cache[mmodule]
1322 end
1323
1324 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1325 private fun collect_things(mmodule: MModule)
1326 do
1327 var res = new HashSet[MClassDef]
1328 var seen = new HashSet[MClass]
1329 var types = new HashSet[MClassType]
1330 seen.add(self.mclass)
1331 var todo = [self.mclass]
1332 while not todo.is_empty do
1333 var mclass = todo.pop
1334 #print "process {mclass}"
1335 for mclassdef in mclass.mclassdefs do
1336 if not mmodule.in_importation <= mclassdef.mmodule then continue
1337 #print " process {mclassdef}"
1338 res.add(mclassdef)
1339 for supertype in mclassdef.supertypes do
1340 types.add(supertype)
1341 var superclass = supertype.mclass
1342 if seen.has(superclass) then continue
1343 #print " add {superclass}"
1344 seen.add(superclass)
1345 todo.add(superclass)
1346 end
1347 end
1348 end
1349 collect_mclassdefs_cache[mmodule] = res
1350 collect_mclasses_cache[mmodule] = seen
1351 collect_mtypes_cache[mmodule] = types
1352 end
1353
1354 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1355 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1356 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1357
1358 redef fun mdoc_or_fallback do return mclass.mdoc_or_fallback
1359 end
1360
1361 # A type based on a generic class.
1362 # A generic type a just a class with additional formal generic arguments.
1363 class MGenericType
1364 super MClassType
1365
1366 redef var arguments
1367
1368 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1369
1370 init
1371 do
1372 assert self.mclass.arity == arguments.length
1373
1374 self.need_anchor = false
1375 for t in arguments do
1376 if t.need_anchor then
1377 self.need_anchor = true
1378 break
1379 end
1380 end
1381
1382 self.to_s = "{mclass}[{arguments.join(", ")}]"
1383 end
1384
1385 # The short-name of the class, then the full-name of each type arguments within brackets.
1386 # Example: `"Map[String, List[Int]]"`
1387 redef var to_s is noinit
1388
1389 # The full-name of the class, then the full-name of each type arguments within brackets.
1390 # Example: `"core::Map[core::String, core::List[core::Int]]"`
1391 redef var full_name is lazy do
1392 var args = new Array[String]
1393 for t in arguments do
1394 args.add t.full_name
1395 end
1396 return "{mclass.full_name}[{args.join(", ")}]"
1397 end
1398
1399 redef var c_name is lazy do
1400 var res = mclass.c_name
1401 # Note: because the arity is known, a prefix notation is enough
1402 for t in arguments do
1403 res += "__"
1404 res += t.c_name
1405 end
1406 return res.to_s
1407 end
1408
1409 redef var need_anchor is noinit
1410
1411 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1412 do
1413 if not need_anchor then return self
1414 assert can_resolve_for(mtype, anchor, mmodule)
1415 var types = new Array[MType]
1416 for t in arguments do
1417 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1418 end
1419 return mclass.get_mtype(types)
1420 end
1421
1422 redef fun can_resolve_for(mtype, anchor, mmodule)
1423 do
1424 if not need_anchor then return true
1425 for t in arguments do
1426 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1427 end
1428 return true
1429 end
1430
1431 redef fun is_ok
1432 do
1433 for t in arguments do if not t.is_ok then return false
1434 return super
1435 end
1436
1437 redef fun is_legal_in(mmodule, anchor)
1438 do
1439 var mtype
1440 if need_anchor then
1441 assert anchor != null
1442 mtype = anchor_to(mmodule, anchor)
1443 else
1444 mtype = self
1445 end
1446 if not mtype.is_ok then return false
1447 return mtype.is_subtype(mmodule, null, mtype.mclass.intro.bound_mtype)
1448 end
1449
1450 redef fun depth
1451 do
1452 var dmax = 0
1453 for a in self.arguments do
1454 var d = a.depth
1455 if d > dmax then dmax = d
1456 end
1457 return dmax + 1
1458 end
1459
1460 redef fun length
1461 do
1462 var res = 1
1463 for a in self.arguments do
1464 res += a.length
1465 end
1466 return res
1467 end
1468 end
1469
1470 # A formal type (either virtual of parametric).
1471 #
1472 # The main issue with formal types is that they offer very little information on their own
1473 # and need a context (anchor and mmodule) to be useful.
1474 abstract class MFormalType
1475 super MType
1476
1477 redef var as_notnull = new MNotNullType(self) is lazy
1478 end
1479
1480 # A virtual formal type.
1481 class MVirtualType
1482 super MFormalType
1483
1484 # The property associated with the type.
1485 # Its the definitions of this property that determine the bound or the virtual type.
1486 var mproperty: MVirtualTypeProp
1487
1488 redef fun location do return mproperty.location
1489
1490 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1491
1492 redef fun lookup_bound(mmodule, resolved_receiver)
1493 do
1494 # There is two possible invalid cases: the vt does not exists in resolved_receiver or the bound is broken
1495 if not resolved_receiver.has_mproperty(mmodule, mproperty) then return new MErrorType(model)
1496 return lookup_single_definition(mmodule, resolved_receiver).bound or else new MErrorType(model)
1497 end
1498
1499 private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef
1500 do
1501 assert not resolved_receiver.need_anchor
1502 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1503 if props.is_empty then
1504 abort
1505 else if props.length == 1 then
1506 return props.first
1507 end
1508 var types = new ArraySet[MType]
1509 var res = props.first
1510 for p in props do
1511 types.add(p.bound.as(not null))
1512 if not res.is_fixed then res = p
1513 end
1514 if types.length == 1 then
1515 return res
1516 end
1517 abort
1518 end
1519
1520 # A VT is fixed when:
1521 # * the VT is (re-)defined with the annotation `is fixed`
1522 # * the receiver is an enum class since there is no subtype that can
1523 # redefine this virtual type
1524 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1525 do
1526 assert not resolved_receiver.need_anchor
1527 resolved_receiver = resolved_receiver.undecorate
1528 assert resolved_receiver isa MClassType # It is the only remaining type
1529
1530 var prop = lookup_single_definition(mmodule, resolved_receiver)
1531 var res = prop.bound
1532 if res == null then return new MErrorType(model)
1533
1534 # Recursively lookup the fixed result
1535 res = res.lookup_fixed(mmodule, resolved_receiver)
1536
1537 # For a fixed VT, return the resolved bound
1538 if prop.is_fixed then return res
1539
1540 # For a enum receiver return the bound
1541 if resolved_receiver.mclass.kind == enum_kind then return res
1542
1543 return self
1544 end
1545
1546 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1547 do
1548 if not cleanup_virtual then return self
1549 assert can_resolve_for(mtype, anchor, mmodule)
1550
1551 if mproperty.is_selftype then return mtype
1552
1553 # self is a virtual type declared (or inherited) in mtype
1554 # The point of the function it to get the bound of the virtual type that make sense for mtype
1555 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1556 #print "{class_name}: {self}/{mtype}/{anchor}?"
1557 var resolved_receiver
1558 if mtype.need_anchor then
1559 assert anchor != null
1560 resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true)
1561 else
1562 resolved_receiver = mtype
1563 end
1564 # Now, we can get the bound
1565 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1566 # The bound is exactly as declared in the "type" property, so we must resolve it again
1567 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1568
1569 return res
1570 end
1571
1572 redef fun can_resolve_for(mtype, anchor, mmodule)
1573 do
1574 if mtype.need_anchor then
1575 assert anchor != null
1576 mtype = mtype.anchor_to(mmodule, anchor)
1577 end
1578 return mtype.has_mproperty(mmodule, mproperty)
1579 end
1580
1581 redef fun to_s do return self.mproperty.to_s
1582
1583 redef fun full_name do return self.mproperty.full_name
1584
1585 redef fun c_name do return self.mproperty.c_name
1586
1587 redef fun mdoc_or_fallback do return mproperty.mdoc_or_fallback
1588 end
1589
1590 # The type associated to a formal parameter generic type of a class
1591 #
1592 # Each parameter type is associated to a specific class.
1593 # It means that all refinements of a same class "share" the parameter type,
1594 # but that a generic subclass has its own parameter types.
1595 #
1596 # However, in the sense of the meta-model, a parameter type of a class is
1597 # a valid type in a subclass. The "in the sense of the meta-model" is
1598 # important because, in the Nit language, the programmer cannot refers
1599 # directly to the parameter types of the super-classes.
1600 #
1601 # Example:
1602 #
1603 # class A[E]
1604 # fun e: E is abstract
1605 # end
1606 # class B[F]
1607 # super A[Array[F]]
1608 # end
1609 #
1610 # In the class definition B[F], `F` is a valid type but `E` is not.
1611 # However, `self.e` is a valid method call, and the signature of `e` is
1612 # declared `e: E`.
1613 #
1614 # Note that parameter types are shared among class refinements.
1615 # Therefore parameter only have an internal name (see `to_s` for details).
1616 class MParameterType
1617 super MFormalType
1618
1619 # The generic class where the parameter belong
1620 var mclass: MClass
1621
1622 redef fun model do return self.mclass.intro_mmodule.model
1623
1624 redef fun location do return mclass.location
1625
1626 # The position of the parameter (0 for the first parameter)
1627 # FIXME: is `position` a better name?
1628 var rank: Int
1629
1630 redef var name
1631
1632 redef fun to_s do return name
1633
1634 redef var full_name is lazy do return "{mclass.full_name}::{name}"
1635
1636 redef var c_name is lazy do return mclass.c_name + "__" + "#{name}".to_cmangle
1637
1638 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1639 do
1640 assert not resolved_receiver.need_anchor
1641 resolved_receiver = resolved_receiver.undecorate
1642 assert resolved_receiver isa MClassType # It is the only remaining type
1643 var goalclass = self.mclass
1644 if resolved_receiver.mclass == goalclass then
1645 return resolved_receiver.arguments[self.rank]
1646 end
1647 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1648 for t in supertypes do
1649 if t.mclass == goalclass then
1650 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1651 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1652 var res = t.arguments[self.rank]
1653 return res
1654 end
1655 end
1656 # Cannot found `self` in `resolved_receiver`
1657 return new MErrorType(model)
1658 end
1659
1660 # A PT is fixed when:
1661 # * The `resolved_receiver` is a subclass of `self.mclass`,
1662 # so it is necessarily fixed in a `super` clause, either with a normal type
1663 # or with another PT.
1664 # See `resolve_for` for examples about related issues.
1665 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1666 do
1667 assert not resolved_receiver.need_anchor
1668 resolved_receiver = resolved_receiver.undecorate
1669 assert resolved_receiver isa MClassType # It is the only remaining type
1670 var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false)
1671 return res
1672 end
1673
1674 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1675 do
1676 assert can_resolve_for(mtype, anchor, mmodule)
1677 #print "{class_name}: {self}/{mtype}/{anchor}?"
1678
1679 if mtype isa MGenericType and mtype.mclass == self.mclass then
1680 return mtype.arguments[self.rank]
1681 end
1682
1683 # self is a parameter type of mtype (or of a super-class of mtype)
1684 # The point of the function it to get the bound of the virtual type that make sense for mtype
1685 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1686 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1687 var resolved_receiver
1688 if mtype.need_anchor then
1689 assert anchor != null
1690 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1691 else
1692 resolved_receiver = mtype
1693 end
1694 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1695 if resolved_receiver isa MParameterType then
1696 assert anchor != null
1697 assert resolved_receiver.mclass == anchor.mclass
1698 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1699 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1700 end
1701 assert resolved_receiver isa MClassType # It is the only remaining type
1702
1703 # Eh! The parameter is in the current class.
1704 # So we return the corresponding argument, no mater what!
1705 if resolved_receiver.mclass == self.mclass then
1706 var res = resolved_receiver.arguments[self.rank]
1707 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1708 return res
1709 end
1710
1711 if resolved_receiver.need_anchor then
1712 assert anchor != null
1713 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1714 end
1715 # Now, we can get the bound
1716 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1717 # The bound is exactly as declared in the "type" property, so we must resolve it again
1718 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1719
1720 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1721
1722 return res
1723 end
1724
1725 redef fun can_resolve_for(mtype, anchor, mmodule)
1726 do
1727 if mtype.need_anchor then
1728 assert anchor != null
1729 mtype = mtype.anchor_to(mmodule, anchor)
1730 end
1731 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1732 end
1733 end
1734
1735 # A type that decorates another type.
1736 #
1737 # The point of this class is to provide a common implementation of sevices that just forward to the original type.
1738 # Specific decorator are expected to redefine (or to extend) the default implementation as this suit them.
1739 abstract class MProxyType
1740 super MType
1741 # The base type
1742 var mtype: MType
1743
1744 redef fun location do return mtype.location
1745
1746 redef fun model do return self.mtype.model
1747 redef fun need_anchor do return mtype.need_anchor
1748 redef fun as_nullable do return mtype.as_nullable
1749 redef fun as_notnull do return mtype.as_notnull
1750 redef fun undecorate do return mtype.undecorate
1751 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1752 do
1753 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1754 return res
1755 end
1756
1757 redef fun can_resolve_for(mtype, anchor, mmodule)
1758 do
1759 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1760 end
1761
1762 redef fun is_ok do return mtype.is_ok
1763
1764 redef fun is_legal_in(mmodule, anchor) do return mtype.is_legal_in(mmodule, anchor)
1765
1766 redef fun lookup_fixed(mmodule, resolved_receiver)
1767 do
1768 var t = mtype.lookup_fixed(mmodule, resolved_receiver)
1769 return t
1770 end
1771
1772 redef fun depth do return self.mtype.depth
1773
1774 redef fun length do return self.mtype.length
1775
1776 redef fun collect_mclassdefs(mmodule)
1777 do
1778 assert not self.need_anchor
1779 return self.mtype.collect_mclassdefs(mmodule)
1780 end
1781
1782 redef fun collect_mclasses(mmodule)
1783 do
1784 assert not self.need_anchor
1785 return self.mtype.collect_mclasses(mmodule)
1786 end
1787
1788 redef fun collect_mtypes(mmodule)
1789 do
1790 assert not self.need_anchor
1791 return self.mtype.collect_mtypes(mmodule)
1792 end
1793 end
1794
1795 # A type prefixed with "nullable"
1796 class MNullableType
1797 super MProxyType
1798
1799 init
1800 do
1801 self.to_s = "nullable {mtype}"
1802 end
1803
1804 redef var to_s is noinit
1805
1806 redef var full_name is lazy do return "nullable {mtype.full_name}"
1807
1808 redef var c_name is lazy do return "nullable__{mtype.c_name}"
1809
1810 redef fun as_nullable do return self
1811 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1812 do
1813 var res = super
1814 return res.as_nullable
1815 end
1816
1817 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable`
1818 redef fun lookup_fixed(mmodule, resolved_receiver)
1819 do
1820 var t = super
1821 if t == mtype then return self
1822 return t.as_nullable
1823 end
1824
1825 redef fun mdoc_or_fallback do return mtype.mdoc_or_fallback
1826 end
1827
1828 # A non-null version of a formal type.
1829 #
1830 # When a formal type in bounded to a nullable type, this is the type of the not null version of it.
1831 class MNotNullType
1832 super MProxyType
1833
1834 redef fun to_s do return "not null {mtype}"
1835 redef var full_name is lazy do return "not null {mtype.full_name}"
1836 redef var c_name is lazy do return "notnull__{mtype.c_name}"
1837
1838 redef fun as_notnull do return self
1839
1840 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1841 do
1842 var res = super
1843 return res.as_notnull
1844 end
1845
1846 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_notnull`
1847 redef fun lookup_fixed(mmodule, resolved_receiver)
1848 do
1849 var t = super
1850 if t == mtype then return self
1851 return t.as_notnull
1852 end
1853 end
1854
1855 # The type of the only value null
1856 #
1857 # The is only one null type per model, see `MModel::null_type`.
1858 class MNullType
1859 super MType
1860 redef var model
1861 redef fun to_s do return "null"
1862 redef fun full_name do return "null"
1863 redef fun c_name do return "null"
1864 redef fun as_nullable do return self
1865
1866 redef var as_notnull: MBottomType = new MBottomType(model) is lazy
1867 redef fun need_anchor do return false
1868 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1869 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1870
1871 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1872
1873 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1874
1875 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1876 end
1877
1878 # The special universal most specific type.
1879 #
1880 # This type is intended to be only used internally for type computation or analysis and should not be exposed to the user.
1881 # The bottom type can de used to denote things that are dead (no instance).
1882 #
1883 # Semantically it is the singleton `null.as_notnull`.
1884 # Is also means that `self.as_nullable == null`.
1885 class MBottomType
1886 super MType
1887 redef var model
1888 redef fun to_s do return "bottom"
1889 redef fun full_name do return "bottom"
1890 redef fun c_name do return "bottom"
1891 redef fun as_nullable do return model.null_type
1892 redef fun as_notnull do return self
1893 redef fun need_anchor do return false
1894 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1895 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1896
1897 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1898
1899 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1900
1901 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1902 end
1903
1904 # A special type used as a silent error marker when building types.
1905 #
1906 # This type is intended to be only used internally for type operation and should not be exposed to the user.
1907 # The error type can de used to denote things that are conflicting or inconsistent.
1908 #
1909 # Some methods on types can return a `MErrorType` to denote a broken or a conflicting result.
1910 # Use `is_ok` to check if a type is (or contains) a `MErrorType` .
1911 class MErrorType
1912 super MType
1913 redef var model
1914 redef fun to_s do return "error"
1915 redef fun full_name do return "error"
1916 redef fun c_name do return "error"
1917 redef fun need_anchor do return false
1918 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1919 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1920 redef fun is_ok do return false
1921
1922 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1923
1924 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1925
1926 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1927 end
1928
1929 # A signature of a method
1930 class MSignature
1931 super MType
1932
1933 # The each parameter (in order)
1934 var mparameters: Array[MParameter]
1935
1936 # Returns a parameter named `name`, if any.
1937 fun mparameter_by_name(name: String): nullable MParameter
1938 do
1939 for p in mparameters do
1940 if p.name == name then return p
1941 end
1942 return null
1943 end
1944
1945 # The return type (null for a procedure)
1946 var return_mtype: nullable MType
1947
1948 redef fun depth
1949 do
1950 var dmax = 0
1951 var t = self.return_mtype
1952 if t != null then dmax = t.depth
1953 for p in mparameters do
1954 var d = p.mtype.depth
1955 if d > dmax then dmax = d
1956 end
1957 return dmax + 1
1958 end
1959
1960 redef fun length
1961 do
1962 var res = 1
1963 var t = self.return_mtype
1964 if t != null then res += t.length
1965 for p in mparameters do
1966 res += p.mtype.length
1967 end
1968 return res
1969 end
1970
1971 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1972 init
1973 do
1974 var vararg_rank = -1
1975 for i in [0..mparameters.length[ do
1976 var parameter = mparameters[i]
1977 if parameter.is_vararg then
1978 if vararg_rank >= 0 then
1979 # If there is more than one vararg,
1980 # consider that additional arguments cannot be mapped.
1981 vararg_rank = -1
1982 break
1983 end
1984 vararg_rank = i
1985 end
1986 end
1987 self.vararg_rank = vararg_rank
1988 end
1989
1990 # The rank of the main ellipsis (`...`) for vararg (starting from 0).
1991 # value is -1 if there is no vararg.
1992 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1993 #
1994 # From a model POV, a signature can contain more than one vararg parameter,
1995 # the `vararg_rank` just indicates the one that will receive the additional arguments.
1996 # However, currently, if there is more that one vararg parameter, no one will be the main one,
1997 # and additional arguments will be refused.
1998 var vararg_rank: Int is noinit
1999
2000 # The number of parameters
2001 fun arity: Int do return mparameters.length
2002
2003 redef fun to_s
2004 do
2005 var b = new FlatBuffer
2006 if not mparameters.is_empty then
2007 b.append("(")
2008 var last_mtype = null
2009 for i in [0..mparameters.length[ do
2010 var mparameter = mparameters[i]
2011
2012 # Group types that are common to contiguous parameters
2013 if mparameter.mtype != last_mtype and last_mtype != null then
2014 b.append(": ")
2015 b.append(last_mtype.to_s)
2016 end
2017
2018 if i > 0 then b.append(", ")
2019 b.append(mparameter.name)
2020
2021 if mparameter.is_vararg then
2022 b.append(": ")
2023 b.append(mparameter.mtype.to_s)
2024 b.append("...")
2025 last_mtype = null
2026 else
2027 last_mtype = mparameter.mtype
2028 end
2029 end
2030
2031 if last_mtype != null then
2032 b.append(": ")
2033 b.append(last_mtype.to_s)
2034 end
2035
2036 b.append(")")
2037 end
2038 var ret = self.return_mtype
2039 if ret != null then
2040 b.append(": ")
2041 b.append(ret.to_s)
2042 end
2043 return b.to_s
2044 end
2045
2046 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
2047 do
2048 var params = new Array[MParameter]
2049 for p in self.mparameters do
2050 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
2051 end
2052 var ret = self.return_mtype
2053 if ret != null then
2054 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
2055 end
2056 var res = new MSignature(params, ret)
2057 return res
2058 end
2059 end
2060
2061 # A parameter in a signature
2062 class MParameter
2063 super MEntity
2064
2065 # The name of the parameter
2066 redef var name
2067
2068 # The static type of the parameter
2069 var mtype: MType
2070
2071 # Is the parameter a vararg?
2072 var is_vararg: Bool
2073
2074 redef fun to_s
2075 do
2076 if is_vararg then
2077 return "{name}: {mtype}..."
2078 else
2079 return "{name}: {mtype}"
2080 end
2081 end
2082
2083 # Returns a new parameter with the `mtype` resolved.
2084 # See `MType::resolve_for` for details.
2085 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
2086 do
2087 if not self.mtype.need_anchor then return self
2088 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
2089 var res = new MParameter(self.name, newtype, self.is_vararg)
2090 return res
2091 end
2092
2093 redef fun model do return mtype.model
2094 end
2095
2096 # A service (global property) that generalize method, attribute, etc.
2097 #
2098 # `MProperty` are global to the model; it means that a `MProperty` is not bound
2099 # to a specific `MModule` nor a specific `MClass`.
2100 #
2101 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
2102 # and the other in subclasses and in refinements.
2103 #
2104 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
2105 # of any dynamic type).
2106 # For instance, a call site "x.foo" is associated to a `MProperty`.
2107 abstract class MProperty
2108 super MEntity
2109
2110 # The associated MPropDef subclass.
2111 # The two specialization hierarchy are symmetric.
2112 type MPROPDEF: MPropDef
2113
2114 # The classdef that introduce the property
2115 # While a property is not bound to a specific module, or class,
2116 # the introducing mclassdef is used for naming and visibility
2117 var intro_mclassdef: MClassDef
2118
2119 # The (short) name of the property
2120 redef var name
2121
2122 redef var location
2123
2124 redef fun mdoc_or_fallback
2125 do
2126 # Don’t use `intro.mdoc_or_fallback` because it would create an infinite
2127 # recursion.
2128 return intro.mdoc
2129 end
2130
2131 # The canonical name of the property.
2132 #
2133 # It is currently the short-`name` prefixed by the short-name of the class and the full-name of the module.
2134 # Example: "my_package::my_module::MyClass::my_method"
2135 #
2136 # The full-name of the module is needed because two distinct modules of the same package can
2137 # still refine the same class and introduce homonym properties.
2138 #
2139 # For public properties not introduced by refinement, the module name is not used.
2140 #
2141 # Example: `my_package::MyClass::My_method`
2142 redef var full_name is lazy do
2143 if intro_mclassdef.is_intro then
2144 return "{intro_mclassdef.mmodule.namespace_for(visibility)}::{intro_mclassdef.mclass.name}::{name}"
2145 else
2146 return "{intro_mclassdef.mmodule.full_name}::{intro_mclassdef.mclass.name}::{name}"
2147 end
2148 end
2149
2150 redef var c_name is lazy do
2151 # FIXME use `namespace_for`
2152 return "{intro_mclassdef.mmodule.c_name}__{intro_mclassdef.mclass.name.to_cmangle}__{name.to_cmangle}"
2153 end
2154
2155 # The visibility of the property
2156 redef var visibility
2157
2158 # Is the property usable as an initializer?
2159 var is_autoinit = false is writable
2160
2161 init
2162 do
2163 intro_mclassdef.intro_mproperties.add(self)
2164 var model = intro_mclassdef.mmodule.model
2165 model.mproperties_by_name.add_one(name, self)
2166 model.mproperties.add(self)
2167 end
2168
2169 # All definitions of the property.
2170 # The first is the introduction,
2171 # The other are redefinitions (in refinements and in subclasses)
2172 var mpropdefs = new Array[MPROPDEF]
2173
2174 # The definition that introduces the property.
2175 #
2176 # Warning: such a definition may not exist in the early life of the object.
2177 # In this case, the method will abort.
2178 var intro: MPROPDEF is noinit
2179
2180 redef fun model do return intro.model
2181
2182 # Alias for `name`
2183 redef fun to_s do return name
2184
2185 # Return the most specific property definitions defined or inherited by a type.
2186 # The selection knows that refinement is stronger than specialization;
2187 # however, in case of conflict more than one property are returned.
2188 # If mtype does not know mproperty then an empty array is returned.
2189 #
2190 # If you want the really most specific property, then look at `lookup_first_definition`
2191 #
2192 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2193 # ENSURE: `not mtype.has_mproperty(mmodule, self) == result.is_empty`
2194 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2195 do
2196 assert not mtype.need_anchor
2197 mtype = mtype.undecorate
2198
2199 var cache = self.lookup_definitions_cache[mmodule, mtype]
2200 if cache != null then return cache
2201
2202 #print "select prop {mproperty} for {mtype} in {self}"
2203 # First, select all candidates
2204 var candidates = new Array[MPROPDEF]
2205
2206 # Here we have two strategies: iterate propdefs or iterate classdefs.
2207 var mpropdefs = self.mpropdefs
2208 if mpropdefs.length <= 1 or mpropdefs.length < mtype.collect_mclassdefs(mmodule).length then
2209 # Iterate on all definitions of `self`, keep only those inherited by `mtype` in `mmodule`
2210 for mpropdef in mpropdefs do
2211 # If the definition is not imported by the module, then skip
2212 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2213 # If the definition is not inherited by the type, then skip
2214 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2215 # Else, we keep it
2216 candidates.add(mpropdef)
2217 end
2218 else
2219 # Iterate on all super-classdefs of `mtype`, keep only the definitions of `self`, if any.
2220 for mclassdef in mtype.collect_mclassdefs(mmodule) do
2221 var p = mclassdef.mpropdefs_by_property.get_or_null(self)
2222 if p != null then candidates.add p
2223 end
2224 end
2225
2226 # Fast track for only one candidate
2227 if candidates.length <= 1 then
2228 self.lookup_definitions_cache[mmodule, mtype] = candidates
2229 return candidates
2230 end
2231
2232 # Second, filter the most specific ones
2233 return select_most_specific(mmodule, candidates)
2234 end
2235
2236 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2237
2238 # Return the most specific property definitions inherited by a type.
2239 # The selection knows that refinement is stronger than specialization;
2240 # however, in case of conflict more than one property are returned.
2241 # If mtype does not know mproperty then an empty array is returned.
2242 #
2243 # If you want the really most specific property, then look at `lookup_next_definition`
2244 #
2245 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2246 # ENSURE: `not mtype.has_mproperty(mmodule, self) implies result.is_empty`
2247 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2248 do
2249 assert not mtype.need_anchor
2250 mtype = mtype.undecorate
2251
2252 # First, select all candidates
2253 var candidates = new Array[MPROPDEF]
2254 for mpropdef in self.mpropdefs do
2255 # If the definition is not imported by the module, then skip
2256 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2257 # If the definition is not inherited by the type, then skip
2258 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2259 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
2260 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
2261 # Else, we keep it
2262 candidates.add(mpropdef)
2263 end
2264 # Fast track for only one candidate
2265 if candidates.length <= 1 then return candidates
2266
2267 # Second, filter the most specific ones
2268 return select_most_specific(mmodule, candidates)
2269 end
2270
2271 # Return an array containing olny the most specific property definitions
2272 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
2273 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
2274 do
2275 var res = new Array[MPROPDEF]
2276 for pd1 in candidates do
2277 var cd1 = pd1.mclassdef
2278 var c1 = cd1.mclass
2279 var keep = true
2280 for pd2 in candidates do
2281 if pd2 == pd1 then continue # do not compare with self!
2282 var cd2 = pd2.mclassdef
2283 var c2 = cd2.mclass
2284 if c2.mclass_type == c1.mclass_type then
2285 if cd2.mmodule.in_importation < cd1.mmodule then
2286 # cd2 refines cd1; therefore we skip pd1
2287 keep = false
2288 break
2289 end
2290 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
2291 # cd2 < cd1; therefore we skip pd1
2292 keep = false
2293 break
2294 end
2295 end
2296 if keep then
2297 res.add(pd1)
2298 end
2299 end
2300 if res.is_empty then
2301 print_error "All lost! {candidates.join(", ")}"
2302 # FIXME: should be abort!
2303 end
2304 return res
2305 end
2306
2307 # Return the most specific definition in the linearization of `mtype`.
2308 #
2309 # If you want to know the next properties in the linearization,
2310 # look at `MPropDef::lookup_next_definition`.
2311 #
2312 # FIXME: the linearization is still unspecified
2313 #
2314 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2315 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2316 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
2317 do
2318 return lookup_all_definitions(mmodule, mtype).first
2319 end
2320
2321 # Return all definitions in a linearization order
2322 # Most specific first, most general last
2323 #
2324 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2325 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2326 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2327 do
2328 mtype = mtype.undecorate
2329
2330 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
2331 if cache != null then return cache
2332
2333 assert not mtype.need_anchor
2334 assert mtype.has_mproperty(mmodule, self)
2335
2336 #print "select prop {mproperty} for {mtype} in {self}"
2337 # First, select all candidates
2338 var candidates = new Array[MPROPDEF]
2339 for mpropdef in self.mpropdefs do
2340 # If the definition is not imported by the module, then skip
2341 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2342 # If the definition is not inherited by the type, then skip
2343 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2344 # Else, we keep it
2345 candidates.add(mpropdef)
2346 end
2347 # Fast track for only one candidate
2348 if candidates.length <= 1 then
2349 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2350 return candidates
2351 end
2352
2353 mmodule.linearize_mpropdefs(candidates)
2354 candidates = candidates.reversed
2355 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2356 return candidates
2357 end
2358
2359 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2360
2361 redef var is_test is lazy do return intro.is_test
2362
2363 # Does self have the `before` annotation?
2364 var is_before: Bool is lazy do return intro.is_before
2365
2366 # Does self have the `before_all` annotation?
2367 var is_before_all: Bool is lazy do return intro.is_before_all
2368
2369 # Does self have the `after` annotation?
2370 var is_after: Bool is lazy do return intro.is_after
2371
2372 # Does self have the `after_all` annotation?
2373 var is_after_all: Bool is lazy do return intro.is_after_all
2374 end
2375
2376 # A global method
2377 class MMethod
2378 super MProperty
2379
2380 redef type MPROPDEF: MMethodDef
2381
2382 # Is the property defined at the top_level of the module?
2383 # Currently such a property are stored in `Object`
2384 var is_toplevel: Bool = false is writable
2385
2386 # Is the property a constructor?
2387 # Warning, this property can be inherited by subclasses with or without being a constructor
2388 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
2389 var is_init: Bool = false is writable
2390
2391 # The constructor is a (the) root init with empty signature but a set of initializers
2392 var is_root_init: Bool = false is writable
2393
2394 # Is the property a 'new' constructor?
2395 var is_new: Bool = false is writable
2396
2397 # Is the property a legal constructor for a given class?
2398 # As usual, visibility is not considered.
2399 # FIXME not implemented
2400 fun is_init_for(mclass: MClass): Bool
2401 do
2402 return self.is_init
2403 end
2404
2405 # A specific method that is safe to call on null.
2406 # Currently, only `==`, `!=` and `is_same_instance` are safe
2407 fun is_null_safe: Bool do return name == "==" or name == "!=" or name == "is_same_instance"
2408
2409 # Is this method a getter (auto or not)?
2410 #
2411 # See `getter_for`.
2412 fun is_getter: Bool do return getter_for != null
2413
2414 # The attribute this getter is for
2415 #
2416 # Return `null` is this method is not a getter.
2417 var getter_for: nullable MAttribute = null is writable
2418
2419 # Is this method a setter (auto or not)?
2420 #
2421 # See `setter_for`.
2422 fun is_setter: Bool do return setter_for != null
2423
2424 # The attribute this setter is for
2425 #
2426 # Return `null` is this method is not a setter.
2427 var setter_for: nullable MAttribute = null is writable
2428
2429 # Is this method a getter or a setter?
2430 fun is_accessor: Bool do return is_getter or is_setter
2431 end
2432
2433 # A global attribute
2434 class MAttribute
2435 super MProperty
2436
2437 redef type MPROPDEF: MAttributeDef
2438
2439 # Does this attribute have a getter (auto or not)?
2440 #
2441 # See `getter`.
2442 fun has_getter: Bool do return getter != null
2443
2444 # The getter of this attribute (if any)
2445 var getter: nullable MProperty = null is writable
2446
2447 # Does this attribute have a setter (auto or not)?
2448 #
2449 # See `setter`.
2450 fun has_setter: Bool do return setter != null
2451
2452 # The setter of this attribute (if any)
2453 var setter: nullable MProperty = null is writable
2454 end
2455
2456 # A global virtual type
2457 class MVirtualTypeProp
2458 super MProperty
2459
2460 redef type MPROPDEF: MVirtualTypeDef
2461
2462 # The formal type associated to the virtual type property
2463 var mvirtualtype = new MVirtualType(self)
2464
2465 # Is `self` the special virtual type `SELF`?
2466 var is_selftype: Bool is lazy do return name == "SELF"
2467 end
2468
2469 # A definition of a property (local property)
2470 #
2471 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
2472 # specific class definition (which belong to a specific module)
2473 abstract class MPropDef
2474 super MEntity
2475
2476 # The associated `MProperty` subclass.
2477 # the two specialization hierarchy are symmetric
2478 type MPROPERTY: MProperty
2479
2480 # Self class
2481 type MPROPDEF: MPropDef
2482
2483 # The class definition where the property definition is
2484 var mclassdef: MClassDef
2485
2486 # The associated global property
2487 var mproperty: MPROPERTY
2488
2489 redef var location
2490
2491 redef fun visibility do return mproperty.visibility
2492
2493 init
2494 do
2495 mclassdef.mpropdefs.add(self)
2496 mproperty.mpropdefs.add(self)
2497 mclassdef.mpropdefs_by_property[mproperty] = self
2498 if mproperty.intro_mclassdef == mclassdef then
2499 assert not isset mproperty._intro
2500 mproperty.intro = self
2501 end
2502 self.to_s = "{mclassdef}${mproperty}"
2503 end
2504
2505 # Actually the name of the `mproperty`
2506 redef fun name do return mproperty.name
2507
2508 # The full-name of mpropdefs combine the information about the `classdef` and the `mproperty`.
2509 #
2510 # Therefore the combination of identifiers is awful,
2511 # the worst case being
2512 #
2513 # * a property "p::m::A::x"
2514 # * redefined in a refinement of a class "q::n::B"
2515 # * in a module "r::o"
2516 # * so "r::o$q::n::B$p::m::A::x"
2517 #
2518 # Fortunately, the full-name is simplified when entities are repeated.
2519 # For the previous case, the simplest form is "p$A$x".
2520 redef var full_name is lazy do
2521 var res = new FlatBuffer
2522
2523 # The first part is the mclassdef. Worst case is "r::o$q::n::B"
2524 res.append mclassdef.full_name
2525
2526 res.append "$"
2527
2528 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2529 # intro are unambiguous in a class
2530 res.append name
2531 else
2532 # Just try to simplify each part
2533 if mclassdef.mmodule.mpackage != mproperty.intro_mclassdef.mmodule.mpackage then
2534 # precise "p::m" only if "p" != "r"
2535 res.append mproperty.intro_mclassdef.mmodule.namespace_for(mproperty.visibility)
2536 res.append "::"
2537 else if mproperty.visibility <= private_visibility then
2538 # Same package ("p"=="q"), but private visibility,
2539 # does the module part ("::m") need to be displayed
2540 if mclassdef.mmodule.namespace_for(mclassdef.mclass.visibility) != mproperty.intro_mclassdef.mmodule.mpackage then
2541 res.append "::"
2542 res.append mproperty.intro_mclassdef.mmodule.name
2543 res.append "::"
2544 end
2545 end
2546 # precise "B" because it is not the same class than "A"
2547 res.append mproperty.intro_mclassdef.name
2548 res.append "::"
2549 # Always use the property name "x"
2550 res.append mproperty.name
2551 end
2552 return res.to_s
2553 end
2554
2555 redef var c_name is lazy do
2556 var res = new FlatBuffer
2557 res.append mclassdef.c_name
2558 res.append "___"
2559 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2560 res.append name.to_cmangle
2561 else
2562 if mclassdef.mmodule != mproperty.intro_mclassdef.mmodule then
2563 res.append mproperty.intro_mclassdef.mmodule.c_name
2564 res.append "__"
2565 end
2566 res.append mproperty.intro_mclassdef.name.to_cmangle
2567 res.append "__"
2568 res.append mproperty.name.to_cmangle
2569 end
2570 return res.to_s
2571 end
2572
2573 redef fun model do return mclassdef.model
2574
2575 # Internal name combining the module, the class and the property
2576 # Example: "mymodule$MyClass$mymethod"
2577 redef var to_s is noinit
2578
2579 # Is self the definition that introduce the property?
2580 fun is_intro: Bool do return isset mproperty._intro and mproperty.intro == self
2581
2582 # Return the next definition in linearization of `mtype`.
2583 #
2584 # This method is used to determine what method is called by a super.
2585 #
2586 # REQUIRE: `not mtype.need_anchor`
2587 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
2588 do
2589 assert not mtype.need_anchor
2590
2591 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
2592 var i = mpropdefs.iterator
2593 while i.is_ok and i.item != self do i.next
2594 assert has_property: i.is_ok
2595 i.next
2596 assert has_next_property: i.is_ok
2597 return i.item
2598 end
2599
2600 redef fun mdoc_or_fallback do return mdoc or else mproperty.mdoc_or_fallback
2601
2602 # Does self have the `before` annotation?
2603 var is_before = false is writable
2604
2605 # Does self have the `before_all` annotation?
2606 var is_before_all = false is writable
2607
2608 # Does self have the `after` annotation?
2609 var is_after = false is writable
2610
2611 # Does self have the `after_all` annotation?
2612 var is_after_all = false is writable
2613 end
2614
2615 # A local definition of a method
2616 class MMethodDef
2617 super MPropDef
2618
2619 redef type MPROPERTY: MMethod
2620 redef type MPROPDEF: MMethodDef
2621
2622 # The signature attached to the property definition
2623 var msignature: nullable MSignature = null is writable
2624
2625 # The signature attached to the `new` call on a root-init
2626 # This is a concatenation of the signatures of the initializers
2627 #
2628 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2629 var new_msignature: nullable MSignature = null is writable
2630
2631 # List of initialisers to call in root-inits
2632 #
2633 # They could be setters or attributes
2634 #
2635 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2636 var initializers = new Array[MProperty]
2637
2638 # Is the method definition abstract?
2639 var is_abstract: Bool = false is writable
2640
2641 # Is the method definition intern?
2642 var is_intern = false is writable
2643
2644 # Is the method definition extern?
2645 var is_extern = false is writable
2646
2647 # An optional constant value returned in functions.
2648 #
2649 # Only some specific primitife value are accepted by engines.
2650 # Is used when there is no better implementation available.
2651 #
2652 # Currently used only for the implementation of the `--define`
2653 # command-line option.
2654 # SEE: module `mixin`.
2655 var constant_value: nullable Object = null is writable
2656 end
2657
2658 # A local definition of an attribute
2659 class MAttributeDef
2660 super MPropDef
2661
2662 redef type MPROPERTY: MAttribute
2663 redef type MPROPDEF: MAttributeDef
2664
2665 # The static type of the attribute
2666 var static_mtype: nullable MType = null is writable
2667 end
2668
2669 # A local definition of a virtual type
2670 class MVirtualTypeDef
2671 super MPropDef
2672
2673 redef type MPROPERTY: MVirtualTypeProp
2674 redef type MPROPDEF: MVirtualTypeDef
2675
2676 # The bound of the virtual type
2677 var bound: nullable MType = null is writable
2678
2679 # Is the bound fixed?
2680 var is_fixed = false is writable
2681 end
2682
2683 # A kind of class.
2684 #
2685 # * `abstract_kind`
2686 # * `concrete_kind`
2687 # * `interface_kind`
2688 # * `enum_kind`
2689 # * `extern_kind`
2690 #
2691 # Note this class is basically an enum.
2692 # FIXME: use a real enum once user-defined enums are available
2693 class MClassKind
2694 redef var to_s
2695
2696 # Can a class of kind `self` define a membership predicate?
2697 var can_customize_isa: Bool
2698
2699 # Can a class of kind `self` define a constructor?
2700 var can_init: Bool
2701
2702 # Is a constructor required?
2703 var need_init: Bool
2704
2705 # TODO: private init because enumeration.
2706
2707 # Can a class of kind `self` specializes a class of kind `other`?
2708 fun can_specialize(other: MClassKind): Bool
2709 do
2710 if other == interface_kind then
2711 # everybody can specialize interfaces
2712 return true
2713 else if self == interface_kind or self == enum_kind then
2714 # no other case for interfaces and enums
2715 return false
2716 else if self == subset_kind then
2717 # A subset may specialize anything, except another subset.
2718 # TODO: Allow sub-subsets once we can handle them.
2719 return other != subset_kind
2720 else if self == extern_kind then
2721 # only compatible with themselves
2722 return self == other
2723 else
2724 # assert self == abstract_kind or self == concrete_kind
2725 return other == abstract_kind or other == concrete_kind
2726 end
2727 end
2728 end
2729
2730 # The class kind `abstract`
2731 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", false, true, true)
2732 # The class kind `concrete`
2733 fun concrete_kind: MClassKind do return once new MClassKind("class", false, true, true)
2734 # The class kind `interface`
2735 fun interface_kind: MClassKind do return once new MClassKind("interface", false, true, false)
2736 # The class kind `enum`
2737 fun enum_kind: MClassKind do return once new MClassKind("enum", false, true, false)
2738 # The class kind `extern`
2739 fun extern_kind: MClassKind do return once new MClassKind("extern class", false, true, false)
2740 # The class kind `subset`
2741 fun subset_kind: MClassKind do return once new MClassKind("subset", true, false, false)
2742
2743 # A standalone pre-constructed model used to test various model-related methods.
2744 #
2745 # When instantiated, a standalone model is already filled with entities that are exposed as attributes.
2746 class ModelStandalone
2747 super Model
2748
2749 redef var location = new Location.opaque_file("ModelStandalone")
2750
2751 # The first module
2752 var mmodule0 = new MModule(self, null, "module0", location)
2753
2754 # The root Object class
2755 var mclass_o = new MClass(mmodule0, "Object", location, null, interface_kind, public_visibility)
2756
2757 # The introduction of `mclass_o`
2758 var mclassdef_o = new MClassDef(mmodule0, mclass_o.mclass_type, location)
2759 end
2760
2761 # A standalone model with the common class diamond-hierarchy ABCD
2762 class ModelDiamond
2763 super ModelStandalone
2764
2765 # A, a simple subclass of Object
2766 var mclass_a = new MClass(mmodule0, "A", location, null, concrete_kind, public_visibility)
2767
2768 # The introduction of `mclass_a`
2769 var mclassdef_a: MClassDef do
2770 var res = new MClassDef(mmodule0, mclass_a.mclass_type, location)
2771 res.set_supertypes([mclass_o.mclass_type])
2772 res.add_in_hierarchy
2773 return res
2774 end
2775
2776 # B, a subclass of A (`mclass_a`)
2777 var mclass_b = new MClass(mmodule0, "B", location, null, concrete_kind, public_visibility)
2778
2779 # The introduction of `mclass_b`
2780 var mclassdef_b: MClassDef do
2781 var res = new MClassDef(mmodule0, mclass_b.mclass_type, location)
2782 res.set_supertypes([mclass_a.mclass_type])
2783 res.add_in_hierarchy
2784 return res
2785 end
2786
2787 # C, another subclass of A (`mclass_a`)
2788 var mclass_c = new MClass(mmodule0, "C", location, null, concrete_kind, public_visibility)
2789
2790 # The introduction of `mclass_c`
2791 var mclassdef_c: MClassDef do
2792 var res = new MClassDef(mmodule0, mclass_c.mclass_type, location)
2793 res.set_supertypes([mclass_a.mclass_type])
2794 res.add_in_hierarchy
2795 return res
2796 end
2797
2798 # D, a multiple subclass of B (`mclass_b`) and C (`mclass_c`)
2799 var mclass_d = new MClass(mmodule0, "D", location, null, concrete_kind, public_visibility)
2800
2801 # The introduction of `mclass_d`
2802 var mclassdef_d: MClassDef do
2803 var res = new MClassDef(mmodule0, mclass_d.mclass_type, location)
2804 res.set_supertypes([mclass_b.mclass_type, mclass_c.mclass_type])
2805 res.add_in_hierarchy
2806 return res
2807 end
2808 end