model: improve MType::is_subtype for formal types
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class Model
34 # All known classes
35 var mclasses = new Array[MClass]
36
37 # All known properties
38 var mproperties = new Array[MProperty]
39
40 # Hierarchy of class definition.
41 #
42 # Each classdef is associated with its super-classdefs in regard to
43 # its module of definition.
44 var mclassdef_hierarchy = new POSet[MClassDef]
45
46 # Class-type hierarchy restricted to the introduction.
47 #
48 # The idea is that what is true on introduction is always true whatever
49 # the module considered.
50 # Therefore, this hierarchy is used for a fast positive subtype check.
51 #
52 # This poset will evolve in a monotonous way:
53 # * Two non connected nodes will remain unconnected
54 # * New nodes can appear with new edges
55 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
56
57 # Global overlapped class-type hierarchy.
58 # The hierarchy when all modules are combined.
59 # Therefore, this hierarchy is used for a fast negative subtype check.
60 #
61 # This poset will evolve in an anarchic way. Loops can even be created.
62 #
63 # FIXME decide what to do on loops
64 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
65
66 # Collections of classes grouped by their short name
67 private var mclasses_by_name = new MultiHashMap[String, MClass]
68
69 # Return all class named `name`.
70 #
71 # If such a class does not exist, null is returned
72 # (instead of an empty array)
73 #
74 # Visibility or modules are not considered
75 fun get_mclasses_by_name(name: String): nullable Array[MClass]
76 do
77 if mclasses_by_name.has_key(name) then
78 return mclasses_by_name[name]
79 else
80 return null
81 end
82 end
83
84 # Collections of properties grouped by their short name
85 private var mproperties_by_name = new MultiHashMap[String, MProperty]
86
87 # Return all properties named `name`.
88 #
89 # If such a property does not exist, null is returned
90 # (instead of an empty array)
91 #
92 # Visibility or modules are not considered
93 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
94 do
95 if not mproperties_by_name.has_key(name) then
96 return null
97 else
98 return mproperties_by_name[name]
99 end
100 end
101
102 # The only null type
103 var null_type = new MNullType(self)
104
105 # Build an ordered tree with from `concerns`
106 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
107 var seen = new HashSet[MConcern]
108 var res = new ConcernsTree
109
110 var todo = new Array[MConcern]
111 todo.add_all mconcerns
112
113 while not todo.is_empty do
114 var c = todo.pop
115 if seen.has(c) then continue
116 var pc = c.parent_concern
117 if pc == null then
118 res.add(null, c)
119 else
120 res.add(pc, c)
121 todo.add(pc)
122 end
123 seen.add(c)
124 end
125
126 return res
127 end
128 end
129
130 # An OrderedTree that can be easily refined for display purposes
131 class ConcernsTree
132 super OrderedTree[MConcern]
133 end
134
135 redef class MModule
136 # All the classes introduced in the module
137 var intro_mclasses = new Array[MClass]
138
139 # All the class definitions of the module
140 # (introduction and refinement)
141 var mclassdefs = new Array[MClassDef]
142
143 # Does the current module has a given class `mclass`?
144 # Return true if the mmodule introduces, refines or imports a class.
145 # Visibility is not considered.
146 fun has_mclass(mclass: MClass): Bool
147 do
148 return self.in_importation <= mclass.intro_mmodule
149 end
150
151 # Full hierarchy of introduced ans imported classes.
152 #
153 # Create a new hierarchy got by flattening the classes for the module
154 # and its imported modules.
155 # Visibility is not considered.
156 #
157 # Note: this function is expensive and is usually used for the main
158 # module of a program only. Do not use it to do you own subtype
159 # functions.
160 fun flatten_mclass_hierarchy: POSet[MClass]
161 do
162 var res = self.flatten_mclass_hierarchy_cache
163 if res != null then return res
164 res = new POSet[MClass]
165 for m in self.in_importation.greaters do
166 for cd in m.mclassdefs do
167 var c = cd.mclass
168 res.add_node(c)
169 for s in cd.supertypes do
170 res.add_edge(c, s.mclass)
171 end
172 end
173 end
174 self.flatten_mclass_hierarchy_cache = res
175 return res
176 end
177
178 # Sort a given array of classes using the linearization order of the module
179 # The most general is first, the most specific is last
180 fun linearize_mclasses(mclasses: Array[MClass])
181 do
182 self.flatten_mclass_hierarchy.sort(mclasses)
183 end
184
185 # Sort a given array of class definitions using the linearization order of the module
186 # the refinement link is stronger than the specialisation link
187 # The most general is first, the most specific is last
188 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
189 do
190 var sorter = new MClassDefSorter(self)
191 sorter.sort(mclassdefs)
192 end
193
194 # Sort a given array of property definitions using the linearization order of the module
195 # the refinement link is stronger than the specialisation link
196 # The most general is first, the most specific is last
197 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
198 do
199 var sorter = new MPropDefSorter(self)
200 sorter.sort(mpropdefs)
201 end
202
203 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
204
205 # The primitive type `Object`, the root of the class hierarchy
206 fun object_type: MClassType
207 do
208 var res = self.object_type_cache
209 if res != null then return res
210 res = self.get_primitive_class("Object").mclass_type
211 self.object_type_cache = res
212 return res
213 end
214
215 private var object_type_cache: nullable MClassType
216
217 # The type `Pointer`, super class to all extern classes
218 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
219
220 # The primitive type `Bool`
221 fun bool_type: MClassType
222 do
223 var res = self.bool_type_cache
224 if res != null then return res
225 res = self.get_primitive_class("Bool").mclass_type
226 self.bool_type_cache = res
227 return res
228 end
229
230 private var bool_type_cache: nullable MClassType
231
232 # The primitive type `Sys`, the main type of the program, if any
233 fun sys_type: nullable MClassType
234 do
235 var clas = self.model.get_mclasses_by_name("Sys")
236 if clas == null then return null
237 return get_primitive_class("Sys").mclass_type
238 end
239
240 # The primitive type `Finalizable`
241 # Used to tag classes that need to be finalized.
242 fun finalizable_type: nullable MClassType
243 do
244 var clas = self.model.get_mclasses_by_name("Finalizable")
245 if clas == null then return null
246 return get_primitive_class("Finalizable").mclass_type
247 end
248
249 # Force to get the primitive class named `name` or abort
250 fun get_primitive_class(name: String): MClass
251 do
252 var cla = self.model.get_mclasses_by_name(name)
253 if cla == null then
254 if name == "Bool" then
255 var c = new MClass(self, name, null, enum_kind, public_visibility)
256 var cladef = new MClassDef(self, c.mclass_type, new Location(null, 0,0,0,0))
257 return c
258 end
259 print("Fatal Error: no primitive class {name}")
260 exit(1)
261 end
262 if cla.length != 1 then
263 var msg = "Fatal Error: more than one primitive class {name}:"
264 for c in cla do msg += " {c.full_name}"
265 print msg
266 exit(1)
267 end
268 return cla.first
269 end
270
271 # Try to get the primitive method named `name` on the type `recv`
272 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
273 do
274 var props = self.model.get_mproperties_by_name(name)
275 if props == null then return null
276 var res: nullable MMethod = null
277 for mprop in props do
278 assert mprop isa MMethod
279 var intro = mprop.intro_mclassdef
280 for mclassdef in recv.mclassdefs do
281 if not self.in_importation.greaters.has(mclassdef.mmodule) then continue
282 if not mclassdef.in_hierarchy.greaters.has(intro) then continue
283 if res == null then
284 res = mprop
285 else if res != mprop then
286 print("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
287 abort
288 end
289 end
290 end
291 return res
292 end
293 end
294
295 private class MClassDefSorter
296 super Comparator
297 redef type COMPARED: MClassDef
298 var mmodule: MModule
299 redef fun compare(a, b)
300 do
301 var ca = a.mclass
302 var cb = b.mclass
303 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
304 return mmodule.model.mclassdef_hierarchy.compare(a, b)
305 end
306 end
307
308 private class MPropDefSorter
309 super Comparator
310 redef type COMPARED: MPropDef
311 var mmodule: MModule
312 redef fun compare(pa, pb)
313 do
314 var a = pa.mclassdef
315 var b = pb.mclassdef
316 var ca = a.mclass
317 var cb = b.mclass
318 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
319 return mmodule.model.mclassdef_hierarchy.compare(a, b)
320 end
321 end
322
323 # A named class
324 #
325 # `MClass` are global to the model; it means that a `MClass` is not bound to a
326 # specific `MModule`.
327 #
328 # This characteristic helps the reasoning about classes in a program since a
329 # single `MClass` object always denote the same class.
330 #
331 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
332 # These do not really have properties nor belong to a hierarchy since the property and the
333 # hierarchy of a class depends of the refinement in the modules.
334 #
335 # Most services on classes require the precision of a module, and no one can asks what are
336 # the super-classes of a class nor what are properties of a class without precising what is
337 # the module considered.
338 #
339 # For instance, during the typing of a source-file, the module considered is the module of the file.
340 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
341 # *is the method `foo` exists in the class `Bar` in the current module?*
342 #
343 # During some global analysis, the module considered may be the main module of the program.
344 class MClass
345 super MEntity
346
347 # The module that introduce the class
348 # While classes are not bound to a specific module,
349 # the introducing module is used for naming an visibility
350 var intro_mmodule: MModule
351
352 # The short name of the class
353 # In Nit, the name of a class cannot evolve in refinements
354 redef var name: String
355
356 # The canonical name of the class
357 # Example: `"owner::module::MyClass"`
358 fun full_name: String
359 do
360 return "{self.intro_mmodule.full_name}::{name}"
361 end
362
363 # The number of generic formal parameters
364 # 0 if the class is not generic
365 var arity: Int is noinit
366
367 # Each generic formal parameters in order.
368 # is empty if the class is not generic
369 var mparameters = new Array[MParameterType]
370
371 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
372 autoinit
373 do
374 if parameter_names == null then
375 self.arity = 0
376 else
377 self.arity = parameter_names.length
378 end
379
380 # Create the formal parameter types
381 if arity > 0 then
382 assert parameter_names != null
383 var mparametertypes = new Array[MParameterType]
384 for i in [0..arity[ do
385 var mparametertype = new MParameterType(self, i, parameter_names[i])
386 mparametertypes.add(mparametertype)
387 end
388 self.mparameters = mparametertypes
389 var mclass_type = new MGenericType(self, mparametertypes)
390 self.mclass_type = mclass_type
391 self.get_mtype_cache.add(mclass_type)
392 else
393 self.mclass_type = new MClassType(self)
394 end
395 end
396
397 # The kind of the class (interface, abstract class, etc.)
398 # In Nit, the kind of a class cannot evolve in refinements
399 var kind: MClassKind
400
401 # The visibility of the class
402 # In Nit, the visibility of a class cannot evolve in refinements
403 var visibility: MVisibility
404
405 init
406 do
407 intro_mmodule.intro_mclasses.add(self)
408 var model = intro_mmodule.model
409 model.mclasses_by_name.add_one(name, self)
410 model.mclasses.add(self)
411 end
412
413 redef fun model do return intro_mmodule.model
414
415 # All class definitions (introduction and refinements)
416 var mclassdefs = new Array[MClassDef]
417
418 # Alias for `name`
419 redef fun to_s do return self.name
420
421 # The definition that introduces the class.
422 #
423 # Warning: such a definition may not exist in the early life of the object.
424 # In this case, the method will abort.
425 var intro: MClassDef is noinit
426
427 # Return the class `self` in the class hierarchy of the module `mmodule`.
428 #
429 # SEE: `MModule::flatten_mclass_hierarchy`
430 # REQUIRE: `mmodule.has_mclass(self)`
431 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
432 do
433 return mmodule.flatten_mclass_hierarchy[self]
434 end
435
436 # The principal static type of the class.
437 #
438 # For non-generic class, mclass_type is the only `MClassType` based
439 # on self.
440 #
441 # For a generic class, the arguments are the formal parameters.
442 # i.e.: for the class Array[E:Object], the `mclass_type` is Array[E].
443 # If you want Array[Object] the see `MClassDef::bound_mtype`
444 #
445 # For generic classes, the mclass_type is also the way to get a formal
446 # generic parameter type.
447 #
448 # To get other types based on a generic class, see `get_mtype`.
449 #
450 # ENSURE: `mclass_type.mclass == self`
451 var mclass_type: MClassType is noinit
452
453 # Return a generic type based on the class
454 # Is the class is not generic, then the result is `mclass_type`
455 #
456 # REQUIRE: `mtype_arguments.length == self.arity`
457 fun get_mtype(mtype_arguments: Array[MType]): MClassType
458 do
459 assert mtype_arguments.length == self.arity
460 if self.arity == 0 then return self.mclass_type
461 for t in self.get_mtype_cache do
462 if t.arguments == mtype_arguments then
463 return t
464 end
465 end
466 var res = new MGenericType(self, mtype_arguments)
467 self.get_mtype_cache.add res
468 return res
469 end
470
471 private var get_mtype_cache = new Array[MGenericType]
472 end
473
474
475 # A definition (an introduction or a refinement) of a class in a module
476 #
477 # A `MClassDef` is associated with an explicit (or almost) definition of a
478 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
479 # a specific class and a specific module, and contains declarations like super-classes
480 # or properties.
481 #
482 # It is the class definitions that are the backbone of most things in the model:
483 # ClassDefs are defined with regard with other classdefs.
484 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
485 #
486 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
487 class MClassDef
488 super MEntity
489
490 # The module where the definition is
491 var mmodule: MModule
492
493 # The associated `MClass`
494 var mclass: MClass is noinit
495
496 # The bounded type associated to the mclassdef
497 #
498 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
499 # are the same type.
500 #
501 # Example:
502 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
503 # If you want Array[E], then see `mclass.mclass_type`
504 #
505 # ENSURE: `bound_mtype.mclass == self.mclass`
506 var bound_mtype: MClassType
507
508 # The origin of the definition
509 var location: Location
510
511 # Internal name combining the module and the class
512 # Example: "mymodule#MyClass"
513 redef var to_s: String is noinit
514
515 init
516 do
517 self.mclass = bound_mtype.mclass
518 mmodule.mclassdefs.add(self)
519 mclass.mclassdefs.add(self)
520 if mclass.intro_mmodule == mmodule then
521 assert not isset mclass._intro
522 mclass.intro = self
523 end
524 self.to_s = "{mmodule}#{mclass}"
525 end
526
527 # Actually the name of the `mclass`
528 redef fun name do return mclass.name
529
530 redef fun model do return mmodule.model
531
532 # All declared super-types
533 # FIXME: quite ugly but not better idea yet
534 var supertypes = new Array[MClassType]
535
536 # Register some super-types for the class (ie "super SomeType")
537 #
538 # The hierarchy must not already be set
539 # REQUIRE: `self.in_hierarchy == null`
540 fun set_supertypes(supertypes: Array[MClassType])
541 do
542 assert unique_invocation: self.in_hierarchy == null
543 var mmodule = self.mmodule
544 var model = mmodule.model
545 var mtype = self.bound_mtype
546
547 for supertype in supertypes do
548 self.supertypes.add(supertype)
549
550 # Register in full_type_specialization_hierarchy
551 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
552 # Register in intro_type_specialization_hierarchy
553 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
554 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
555 end
556 end
557
558 end
559
560 # Collect the super-types (set by set_supertypes) to build the hierarchy
561 #
562 # This function can only invoked once by class
563 # REQUIRE: `self.in_hierarchy == null`
564 # ENSURE: `self.in_hierarchy != null`
565 fun add_in_hierarchy
566 do
567 assert unique_invocation: self.in_hierarchy == null
568 var model = mmodule.model
569 var res = model.mclassdef_hierarchy.add_node(self)
570 self.in_hierarchy = res
571 var mtype = self.bound_mtype
572
573 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
574 # The simpliest way is to attach it to collect_mclassdefs
575 for mclassdef in mtype.collect_mclassdefs(mmodule) do
576 res.poset.add_edge(self, mclassdef)
577 end
578 end
579
580 # The view of the class definition in `mclassdef_hierarchy`
581 var in_hierarchy: nullable POSetElement[MClassDef] = null
582
583 # Is the definition the one that introduced `mclass`?
584 fun is_intro: Bool do return mclass.intro == self
585
586 # All properties introduced by the classdef
587 var intro_mproperties = new Array[MProperty]
588
589 # All property definitions in the class (introductions and redefinitions)
590 var mpropdefs = new Array[MPropDef]
591 end
592
593 # A global static type
594 #
595 # MType are global to the model; it means that a `MType` is not bound to a
596 # specific `MModule`.
597 # This characteristic helps the reasoning about static types in a program
598 # since a single `MType` object always denote the same type.
599 #
600 # However, because a `MType` is global, it does not really have properties
601 # nor have subtypes to a hierarchy since the property and the class hierarchy
602 # depends of a module.
603 # Moreover, virtual types an formal generic parameter types also depends on
604 # a receiver to have sense.
605 #
606 # Therefore, most method of the types require a module and an anchor.
607 # The module is used to know what are the classes and the specialization
608 # links.
609 # The anchor is used to know what is the bound of the virtual types and formal
610 # generic parameter types.
611 #
612 # MType are not directly usable to get properties. See the `anchor_to` method
613 # and the `MClassType` class.
614 #
615 # FIXME: the order of the parameters is not the best. We mus pick on from:
616 # * foo(mmodule, anchor, othertype)
617 # * foo(othertype, anchor, mmodule)
618 # * foo(anchor, mmodule, othertype)
619 # * foo(othertype, mmodule, anchor)
620 abstract class MType
621 super MEntity
622
623 redef fun name do return to_s
624
625 # Return true if `self` is an subtype of `sup`.
626 # The typing is done using the standard typing policy of Nit.
627 #
628 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
629 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
630 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
631 do
632 var sub = self
633 if sub == sup then return true
634
635 #print "1.is {sub} a {sup}? ===="
636
637 if anchor == null then
638 assert not sub.need_anchor
639 assert not sup.need_anchor
640 else
641 # First, resolve the formal types to the simplest equivalent forms in the receiver
642 assert sub.can_resolve_for(anchor, null, mmodule)
643 sub = sub.lookup_fixed(mmodule, anchor)
644 assert sup.can_resolve_for(anchor, null, mmodule)
645 sup = sup.lookup_fixed(mmodule, anchor)
646 end
647
648 # Does `sup` accept null or not?
649 # Discard the nullable marker if it exists
650 var sup_accept_null = false
651 if sup isa MNullableType then
652 sup_accept_null = true
653 sup = sup.mtype
654 else if sup isa MNullType then
655 sup_accept_null = true
656 end
657
658 # Can `sub` provide null or not?
659 # Thus we can match with `sup_accept_null`
660 # Also discard the nullable marker if it exists
661 if sub isa MNullableType then
662 if not sup_accept_null then return false
663 sub = sub.mtype
664 else if sub isa MNullType then
665 return sup_accept_null
666 end
667 # Now the case of direct null and nullable is over.
668
669 # If `sub` is a formal type, then it is accepted if its bound is accepted
670 while sub isa MParameterType or sub isa MVirtualType do
671 #print "3.is {sub} a {sup}?"
672
673 # A unfixed formal type can only accept itself
674 if sub == sup then return true
675
676 assert anchor != null
677 sub = sub.lookup_bound(mmodule, anchor)
678
679 #print "3.is {sub} a {sup}?"
680
681 # Manage the second layer of null/nullable
682 if sub isa MNullableType then
683 if not sup_accept_null then return false
684 sub = sub.mtype
685 else if sub isa MNullType then
686 return sup_accept_null
687 end
688 end
689 #print "4.is {sub} a {sup}? <- no more resolution"
690
691 assert sub isa MClassType # It is the only remaining type
692
693 # A unfixed formal type can only accept itself
694 if sup isa MParameterType or sup isa MVirtualType then
695 return false
696 end
697
698 if sup isa MNullType then
699 # `sup` accepts only null
700 return false
701 end
702
703 assert sup isa MClassType # It is the only remaining type
704
705 # Now both are MClassType, we need to dig
706
707 if sub == sup then return true
708
709 if anchor == null then anchor = sub # UGLY: any anchor will work
710 var resolved_sub = sub.anchor_to(mmodule, anchor)
711 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
712 if res == false then return false
713 if not sup isa MGenericType then return true
714 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
715 assert sub2.mclass == sup.mclass
716 for i in [0..sup.mclass.arity[ do
717 var sub_arg = sub2.arguments[i]
718 var sup_arg = sup.arguments[i]
719 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
720 if res == false then return false
721 end
722 return true
723 end
724
725 # The base class type on which self is based
726 #
727 # This base type is used to get property (an internally to perform
728 # unsafe type comparison).
729 #
730 # Beware: some types (like null) are not based on a class thus this
731 # method will crash
732 #
733 # Basically, this function transform the virtual types and parameter
734 # types to their bounds.
735 #
736 # Example
737 # class A end
738 # class B super A end
739 # class X end
740 # class Y super X end
741 # class G[T: A]
742 # type U: X
743 # end
744 # class H
745 # super G[B]
746 # redef type U: Y
747 # end
748 # Map[T,U] anchor_to H #-> Map[B,Y]
749 #
750 # Explanation of the example:
751 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
752 # because "redef type U: Y". Therefore, Map[T, U] is bound to
753 # Map[B, Y]
754 #
755 # ENSURE: `not self.need_anchor implies result == self`
756 # ENSURE: `not result.need_anchor`
757 fun anchor_to(mmodule: MModule, anchor: MClassType): MType
758 do
759 if not need_anchor then return self
760 assert not anchor.need_anchor
761 # Just resolve to the anchor and clear all the virtual types
762 var res = self.resolve_for(anchor, null, mmodule, true)
763 assert not res.need_anchor
764 return res
765 end
766
767 # Does `self` contain a virtual type or a formal generic parameter type?
768 # In order to remove those types, you usually want to use `anchor_to`.
769 fun need_anchor: Bool do return true
770
771 # Return the supertype when adapted to a class.
772 #
773 # In Nit, for each super-class of a type, there is a equivalent super-type.
774 #
775 # Example:
776 # class G[T, U] end
777 # class H[V] super G[V, Bool] end
778 # H[Int] supertype_to G #-> G[Int, Bool]
779 #
780 # REQUIRE: `super_mclass` is a super-class of `self`
781 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
782 # ENSURE: `result.mclass = super_mclass`
783 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
784 do
785 if super_mclass.arity == 0 then return super_mclass.mclass_type
786 if self isa MClassType and self.mclass == super_mclass then return self
787 var resolved_self
788 if self.need_anchor then
789 assert anchor != null
790 resolved_self = self.anchor_to(mmodule, anchor)
791 else
792 resolved_self = self
793 end
794 var supertypes = resolved_self.collect_mtypes(mmodule)
795 for supertype in supertypes do
796 if supertype.mclass == super_mclass then
797 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
798 return supertype.resolve_for(self, anchor, mmodule, false)
799 end
800 end
801 abort
802 end
803
804 # Replace formals generic types in self with resolved values in `mtype`
805 # If `cleanup_virtual` is true, then virtual types are also replaced
806 # with their bounds.
807 #
808 # This function returns self if `need_anchor` is false.
809 #
810 # ## Example 1
811 #
812 # class G[E] end
813 # class H[F] super G[F] end
814 # class X[Z] end
815 #
816 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
817 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
818 #
819 # Explanation of the example:
820 # * Array[E].need_anchor is true because there is a formal generic parameter type E
821 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
822 # * Since "H[F] super G[F]", E is in fact F for H
823 # * More specifically, in H[Int], E is Int
824 # * So, in H[Int], Array[E] is Array[Int]
825 #
826 # This function is mainly used to inherit a signature.
827 # Because, unlike `anchor_to`, we do not want a full resolution of
828 # a type but only an adapted version of it.
829 #
830 # ## Example 2
831 #
832 # class A[E]
833 # fun foo(e:E):E is abstract
834 # end
835 # class B super A[Int] end
836 #
837 # The signature on foo is (e: E): E
838 # If we resolve the signature for B, we get (e:Int):Int
839 #
840 # ## Example 3
841 #
842 # class A[E]
843 # fun foo(e:E) is abstract
844 # end
845 # class B[F]
846 # var a: A[Array[F]]
847 # fun bar do a.foo(x) # <- x is here
848 # end
849 #
850 # The first question is: is foo available on `a`?
851 #
852 # The static type of a is `A[Array[F]]`, that is an open type.
853 # in order to find a method `foo`, whe must look at a resolved type.
854 #
855 # A[Array[F]].anchor_to(B[nullable Object]) #-> A[Array[nullable Object]]
856 #
857 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
858 #
859 # The next question is: what is the accepted types for `x`?
860 #
861 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
862 #
863 # E.resolve_for(A[Array[F]],B[nullable Object]) #-> Array[F]
864 #
865 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
866 #
867 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
868 # two function instead of one seems also to be a bad idea.
869 #
870 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
871 # ENSURE: `not self.need_anchor implies result == self`
872 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
873
874 # Resolve formal type to its verbatim bound.
875 # If the type is not formal, just return self
876 #
877 # The result is returned exactly as declared in the "type" property (verbatim).
878 # So it could be another formal type.
879 #
880 # In case of conflict, the method aborts.
881 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self
882
883 # Resolve the formal type to its simplest equivalent form.
884 #
885 # Formal types are either free or fixed.
886 # When it is fixed, it means that it is equivalent with a simpler type.
887 # When a formal type is free, it means that it is only equivalent with itself.
888 # This method return the most simple equivalent type of `self`.
889 #
890 # This method is mainly used for subtype test in order to sanely compare fixed.
891 #
892 # By default, return self.
893 # See the redefinitions for specific behavior in each kind of type.
894 fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self
895
896 # Can the type be resolved?
897 #
898 # In order to resolve open types, the formal types must make sence.
899 #
900 # ## Example
901 #
902 # class A[E]
903 # end
904 # class B[F]
905 # end
906 #
907 # * E.can_resolve_for(A[Int]) #-> true, E make sense in A
908 # * E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
909 # * B[E].can_resolve_for(A[F], B[Object]) #-> true,
910 # B[E] is a red hearing only the E is important,
911 # E make sense in A
912 #
913 # REQUIRE: `anchor != null implies not anchor.need_anchor`
914 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
915 # ENSURE: `not self.need_anchor implies result == true`
916 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
917
918 # Return the nullable version of the type
919 # If the type is already nullable then self is returned
920 fun as_nullable: MType
921 do
922 var res = self.as_nullable_cache
923 if res != null then return res
924 res = new MNullableType(self)
925 self.as_nullable_cache = res
926 return res
927 end
928
929 # Return the not nullable version of the type
930 # Is the type is already not nullable, then self is returned.
931 #
932 # Note: this just remove the `nullable` notation, but the result can still contains null.
933 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
934 fun as_notnullable: MType
935 do
936 return self
937 end
938
939 private var as_nullable_cache: nullable MType = null
940
941
942 # The depth of the type seen as a tree.
943 #
944 # * A -> 1
945 # * G[A] -> 2
946 # * H[A, B] -> 2
947 # * H[G[A], B] -> 3
948 #
949 # Formal types have a depth of 1.
950 fun depth: Int
951 do
952 return 1
953 end
954
955 # The length of the type seen as a tree.
956 #
957 # * A -> 1
958 # * G[A] -> 2
959 # * H[A, B] -> 3
960 # * H[G[A], B] -> 4
961 #
962 # Formal types have a length of 1.
963 fun length: Int
964 do
965 return 1
966 end
967
968 # Compute all the classdefs inherited/imported.
969 # The returned set contains:
970 # * the class definitions from `mmodule` and its imported modules
971 # * the class definitions of this type and its super-types
972 #
973 # This function is used mainly internally.
974 #
975 # REQUIRE: `not self.need_anchor`
976 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
977
978 # Compute all the super-classes.
979 # This function is used mainly internally.
980 #
981 # REQUIRE: `not self.need_anchor`
982 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
983
984 # Compute all the declared super-types.
985 # Super-types are returned as declared in the classdefs (verbatim).
986 # This function is used mainly internally.
987 #
988 # REQUIRE: `not self.need_anchor`
989 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
990
991 # Is the property in self for a given module
992 # This method does not filter visibility or whatever
993 #
994 # REQUIRE: `not self.need_anchor`
995 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
996 do
997 assert not self.need_anchor
998 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
999 end
1000 end
1001
1002 # A type based on a class.
1003 #
1004 # `MClassType` have properties (see `has_mproperty`).
1005 class MClassType
1006 super MType
1007
1008 # The associated class
1009 var mclass: MClass
1010
1011 redef fun model do return self.mclass.intro_mmodule.model
1012
1013 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1014
1015 # The formal arguments of the type
1016 # ENSURE: `result.length == self.mclass.arity`
1017 var arguments = new Array[MType]
1018
1019 redef fun to_s do return mclass.to_s
1020
1021 redef fun need_anchor do return false
1022
1023 redef fun anchor_to(mmodule: MModule, anchor: MClassType): MClassType
1024 do
1025 return super.as(MClassType)
1026 end
1027
1028 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1029
1030 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1031
1032 redef fun collect_mclassdefs(mmodule)
1033 do
1034 assert not self.need_anchor
1035 var cache = self.collect_mclassdefs_cache
1036 if not cache.has_key(mmodule) then
1037 self.collect_things(mmodule)
1038 end
1039 return cache[mmodule]
1040 end
1041
1042 redef fun collect_mclasses(mmodule)
1043 do
1044 assert not self.need_anchor
1045 var cache = self.collect_mclasses_cache
1046 if not cache.has_key(mmodule) then
1047 self.collect_things(mmodule)
1048 end
1049 return cache[mmodule]
1050 end
1051
1052 redef fun collect_mtypes(mmodule)
1053 do
1054 assert not self.need_anchor
1055 var cache = self.collect_mtypes_cache
1056 if not cache.has_key(mmodule) then
1057 self.collect_things(mmodule)
1058 end
1059 return cache[mmodule]
1060 end
1061
1062 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1063 private fun collect_things(mmodule: MModule)
1064 do
1065 var res = new HashSet[MClassDef]
1066 var seen = new HashSet[MClass]
1067 var types = new HashSet[MClassType]
1068 seen.add(self.mclass)
1069 var todo = [self.mclass]
1070 while not todo.is_empty do
1071 var mclass = todo.pop
1072 #print "process {mclass}"
1073 for mclassdef in mclass.mclassdefs do
1074 if not mmodule.in_importation <= mclassdef.mmodule then continue
1075 #print " process {mclassdef}"
1076 res.add(mclassdef)
1077 for supertype in mclassdef.supertypes do
1078 types.add(supertype)
1079 var superclass = supertype.mclass
1080 if seen.has(superclass) then continue
1081 #print " add {superclass}"
1082 seen.add(superclass)
1083 todo.add(superclass)
1084 end
1085 end
1086 end
1087 collect_mclassdefs_cache[mmodule] = res
1088 collect_mclasses_cache[mmodule] = seen
1089 collect_mtypes_cache[mmodule] = types
1090 end
1091
1092 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1093 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1094 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1095
1096 end
1097
1098 # A type based on a generic class.
1099 # A generic type a just a class with additional formal generic arguments.
1100 class MGenericType
1101 super MClassType
1102
1103 redef var arguments
1104
1105 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1106
1107 init
1108 do
1109 assert self.mclass.arity == arguments.length
1110
1111 self.need_anchor = false
1112 for t in arguments do
1113 if t.need_anchor then
1114 self.need_anchor = true
1115 break
1116 end
1117 end
1118
1119 self.to_s = "{mclass}[{arguments.join(", ")}]"
1120 end
1121
1122 # Recursively print the type of the arguments within brackets.
1123 # Example: `"Map[String, List[Int]]"`
1124 redef var to_s: String is noinit
1125
1126 redef var need_anchor: Bool is noinit
1127
1128 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1129 do
1130 if not need_anchor then return self
1131 assert can_resolve_for(mtype, anchor, mmodule)
1132 var types = new Array[MType]
1133 for t in arguments do
1134 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1135 end
1136 return mclass.get_mtype(types)
1137 end
1138
1139 redef fun can_resolve_for(mtype, anchor, mmodule)
1140 do
1141 if not need_anchor then return true
1142 for t in arguments do
1143 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1144 end
1145 return true
1146 end
1147
1148
1149 redef fun depth
1150 do
1151 var dmax = 0
1152 for a in self.arguments do
1153 var d = a.depth
1154 if d > dmax then dmax = d
1155 end
1156 return dmax + 1
1157 end
1158
1159 redef fun length
1160 do
1161 var res = 1
1162 for a in self.arguments do
1163 res += a.length
1164 end
1165 return res
1166 end
1167 end
1168
1169 # A virtual formal type.
1170 class MVirtualType
1171 super MType
1172
1173 # The property associated with the type.
1174 # Its the definitions of this property that determine the bound or the virtual type.
1175 var mproperty: MVirtualTypeProp
1176
1177 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1178
1179 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1180 do
1181 return lookup_single_definition(mmodule, resolved_receiver).bound.as(not null)
1182 end
1183
1184 private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef
1185 do
1186 assert not resolved_receiver.need_anchor
1187 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1188 if props.is_empty then
1189 abort
1190 else if props.length == 1 then
1191 return props.first
1192 end
1193 var types = new ArraySet[MType]
1194 var res = props.first
1195 for p in props do
1196 types.add(p.bound.as(not null))
1197 if not res.is_fixed then res = p
1198 end
1199 if types.length == 1 then
1200 return res
1201 end
1202 abort
1203 end
1204
1205 # A VT is fixed when:
1206 # * the VT is (re-)defined with the annotation `is fixed`
1207 # * the VT is (indirectly) bound to an enum class (see `enum_kind`) since there is no subtype possible
1208 # * the receiver is an enum class since there is no subtype possible
1209 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1210 do
1211 assert not resolved_receiver.need_anchor
1212 resolved_receiver = resolved_receiver.as_notnullable
1213 assert resolved_receiver isa MClassType # It is the only remaining type
1214
1215 var prop = lookup_single_definition(mmodule, resolved_receiver)
1216 var res = prop.bound.as(not null)
1217
1218 # Recursively lookup the fixed result
1219 res = res.lookup_fixed(mmodule, resolved_receiver)
1220
1221 # 1. For a fixed VT, return the resolved bound
1222 if prop.is_fixed then return res
1223
1224 # 2. For a enum boud, return the bound
1225 if res isa MClassType and res.mclass.kind == enum_kind then return res
1226
1227 # 3. for a enum receiver return the bound
1228 if resolved_receiver.mclass.kind == enum_kind then return res
1229
1230 return self
1231 end
1232
1233 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1234 do
1235 if not cleanup_virtual then return self
1236 assert can_resolve_for(mtype, anchor, mmodule)
1237 # self is a virtual type declared (or inherited) in mtype
1238 # The point of the function it to get the bound of the virtual type that make sense for mtype
1239 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1240 #print "{class_name}: {self}/{mtype}/{anchor}?"
1241 var resolved_receiver
1242 if mtype.need_anchor then
1243 assert anchor != null
1244 resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true)
1245 else
1246 resolved_receiver = mtype
1247 end
1248 # Now, we can get the bound
1249 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1250 # The bound is exactly as declared in the "type" property, so we must resolve it again
1251 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1252
1253 return res
1254 end
1255
1256 redef fun can_resolve_for(mtype, anchor, mmodule)
1257 do
1258 if mtype.need_anchor then
1259 assert anchor != null
1260 mtype = mtype.anchor_to(mmodule, anchor)
1261 end
1262 return mtype.has_mproperty(mmodule, mproperty)
1263 end
1264
1265 redef fun to_s do return self.mproperty.to_s
1266 end
1267
1268 # The type associated to a formal parameter generic type of a class
1269 #
1270 # Each parameter type is associated to a specific class.
1271 # It means that all refinements of a same class "share" the parameter type,
1272 # but that a generic subclass has its own parameter types.
1273 #
1274 # However, in the sense of the meta-model, a parameter type of a class is
1275 # a valid type in a subclass. The "in the sense of the meta-model" is
1276 # important because, in the Nit language, the programmer cannot refers
1277 # directly to the parameter types of the super-classes.
1278 #
1279 # Example:
1280 # class A[E]
1281 # fun e: E is abstract
1282 # end
1283 # class B[F]
1284 # super A[Array[F]]
1285 # end
1286 # In the class definition B[F], `F` is a valid type but `E` is not.
1287 # However, `self.e` is a valid method call, and the signature of `e` is
1288 # declared `e: E`.
1289 #
1290 # Note that parameter types are shared among class refinements.
1291 # Therefore parameter only have an internal name (see `to_s` for details).
1292 class MParameterType
1293 super MType
1294
1295 # The generic class where the parameter belong
1296 var mclass: MClass
1297
1298 redef fun model do return self.mclass.intro_mmodule.model
1299
1300 # The position of the parameter (0 for the first parameter)
1301 # FIXME: is `position` a better name?
1302 var rank: Int
1303
1304 redef var name
1305
1306 redef fun to_s do return name
1307
1308 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1309 do
1310 assert not resolved_receiver.need_anchor
1311 assert resolved_receiver isa MClassType
1312 var goalclass = self.mclass
1313 if resolved_receiver.mclass == goalclass then
1314 return resolved_receiver.arguments[self.rank]
1315 end
1316 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1317 for t in supertypes do
1318 if t.mclass == goalclass then
1319 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1320 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1321 var res = t.arguments[self.rank]
1322 return res
1323 end
1324 end
1325 abort
1326 end
1327
1328 # A PT is fixed when:
1329 # * Its bound is a enum class (see `enum_kind`).
1330 # The PT is just useless, but it is still a case.
1331 # * More usually, the `resolved_receiver` is a subclass of `self.mclass`,
1332 # so it is necessarily fixed in a `super` clause, either with a normal type
1333 # or with another PT.
1334 # See `resolve_for` for examples about related issues.
1335 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1336 do
1337 assert resolved_receiver isa MClassType
1338 var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false)
1339 return res
1340 end
1341
1342 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1343 do
1344 assert can_resolve_for(mtype, anchor, mmodule)
1345 #print "{class_name}: {self}/{mtype}/{anchor}?"
1346
1347 if mtype isa MGenericType and mtype.mclass == self.mclass then
1348 var res = mtype.arguments[self.rank]
1349 if anchor != null and res.need_anchor then
1350 # Maybe the result can be resolved more if are bound to a final class
1351 var r2 = res.anchor_to(mmodule, anchor)
1352 if r2 isa MClassType and r2.mclass.kind == enum_kind then return r2
1353 end
1354 return res
1355 end
1356
1357 # self is a parameter type of mtype (or of a super-class of mtype)
1358 # The point of the function it to get the bound of the virtual type that make sense for mtype
1359 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1360 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1361 var resolved_receiver
1362 if mtype.need_anchor then
1363 assert anchor != null
1364 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1365 else
1366 resolved_receiver = mtype
1367 end
1368 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1369 if resolved_receiver isa MParameterType then
1370 assert resolved_receiver.mclass == anchor.mclass
1371 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1372 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1373 end
1374 assert resolved_receiver isa MClassType
1375
1376 # Eh! The parameter is in the current class.
1377 # So we return the corresponding argument, no mater what!
1378 if resolved_receiver.mclass == self.mclass then
1379 var res = resolved_receiver.arguments[self.rank]
1380 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1381 return res
1382 end
1383
1384 if resolved_receiver.need_anchor then
1385 assert anchor != null
1386 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1387 end
1388 # Now, we can get the bound
1389 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1390 # The bound is exactly as declared in the "type" property, so we must resolve it again
1391 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1392
1393 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1394
1395 return res
1396 end
1397
1398 redef fun can_resolve_for(mtype, anchor, mmodule)
1399 do
1400 if mtype.need_anchor then
1401 assert anchor != null
1402 mtype = mtype.anchor_to(mmodule, anchor)
1403 end
1404 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1405 end
1406 end
1407
1408 # A type prefixed with "nullable"
1409 class MNullableType
1410 super MType
1411
1412 # The base type of the nullable type
1413 var mtype: MType
1414
1415 redef fun model do return self.mtype.model
1416
1417 init
1418 do
1419 self.to_s = "nullable {mtype}"
1420 end
1421
1422 redef var to_s: String is noinit
1423
1424 redef fun need_anchor do return mtype.need_anchor
1425 redef fun as_nullable do return self
1426 redef fun as_notnullable do return mtype
1427 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1428 do
1429 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1430 return res.as_nullable
1431 end
1432
1433 redef fun can_resolve_for(mtype, anchor, mmodule)
1434 do
1435 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1436 end
1437
1438 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable`
1439 redef fun lookup_fixed(mmodule, resolved_receiver)
1440 do
1441 var t = mtype.lookup_fixed(mmodule, resolved_receiver)
1442 if t == mtype then return self
1443 return t.as_nullable
1444 end
1445
1446 redef fun depth do return self.mtype.depth
1447
1448 redef fun length do return self.mtype.length
1449
1450 redef fun collect_mclassdefs(mmodule)
1451 do
1452 assert not self.need_anchor
1453 return self.mtype.collect_mclassdefs(mmodule)
1454 end
1455
1456 redef fun collect_mclasses(mmodule)
1457 do
1458 assert not self.need_anchor
1459 return self.mtype.collect_mclasses(mmodule)
1460 end
1461
1462 redef fun collect_mtypes(mmodule)
1463 do
1464 assert not self.need_anchor
1465 return self.mtype.collect_mtypes(mmodule)
1466 end
1467 end
1468
1469 # The type of the only value null
1470 #
1471 # The is only one null type per model, see `MModel::null_type`.
1472 class MNullType
1473 super MType
1474 redef var model: Model
1475 redef fun to_s do return "null"
1476 redef fun as_nullable do return self
1477 redef fun need_anchor do return false
1478 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1479 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1480
1481 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1482
1483 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1484
1485 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1486 end
1487
1488 # A signature of a method
1489 class MSignature
1490 super MType
1491
1492 # The each parameter (in order)
1493 var mparameters: Array[MParameter]
1494
1495 # The return type (null for a procedure)
1496 var return_mtype: nullable MType
1497
1498 redef fun depth
1499 do
1500 var dmax = 0
1501 var t = self.return_mtype
1502 if t != null then dmax = t.depth
1503 for p in mparameters do
1504 var d = p.mtype.depth
1505 if d > dmax then dmax = d
1506 end
1507 return dmax + 1
1508 end
1509
1510 redef fun length
1511 do
1512 var res = 1
1513 var t = self.return_mtype
1514 if t != null then res += t.length
1515 for p in mparameters do
1516 res += p.mtype.length
1517 end
1518 return res
1519 end
1520
1521 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1522 init
1523 do
1524 var vararg_rank = -1
1525 for i in [0..mparameters.length[ do
1526 var parameter = mparameters[i]
1527 if parameter.is_vararg then
1528 assert vararg_rank == -1
1529 vararg_rank = i
1530 end
1531 end
1532 self.vararg_rank = vararg_rank
1533 end
1534
1535 # The rank of the ellipsis (`...`) for vararg (starting from 0).
1536 # value is -1 if there is no vararg.
1537 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1538 var vararg_rank: Int is noinit
1539
1540 # The number or parameters
1541 fun arity: Int do return mparameters.length
1542
1543 redef fun to_s
1544 do
1545 var b = new FlatBuffer
1546 if not mparameters.is_empty then
1547 b.append("(")
1548 for i in [0..mparameters.length[ do
1549 var mparameter = mparameters[i]
1550 if i > 0 then b.append(", ")
1551 b.append(mparameter.name)
1552 b.append(": ")
1553 b.append(mparameter.mtype.to_s)
1554 if mparameter.is_vararg then
1555 b.append("...")
1556 end
1557 end
1558 b.append(")")
1559 end
1560 var ret = self.return_mtype
1561 if ret != null then
1562 b.append(": ")
1563 b.append(ret.to_s)
1564 end
1565 return b.to_s
1566 end
1567
1568 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
1569 do
1570 var params = new Array[MParameter]
1571 for p in self.mparameters do
1572 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1573 end
1574 var ret = self.return_mtype
1575 if ret != null then
1576 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1577 end
1578 var res = new MSignature(params, ret)
1579 return res
1580 end
1581 end
1582
1583 # A parameter in a signature
1584 class MParameter
1585 super MEntity
1586
1587 # The name of the parameter
1588 redef var name: String
1589
1590 # The static type of the parameter
1591 var mtype: MType
1592
1593 # Is the parameter a vararg?
1594 var is_vararg: Bool
1595
1596 redef fun to_s
1597 do
1598 if is_vararg then
1599 return "{name}: {mtype}..."
1600 else
1601 return "{name}: {mtype}"
1602 end
1603 end
1604
1605 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
1606 do
1607 if not self.mtype.need_anchor then return self
1608 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1609 var res = new MParameter(self.name, newtype, self.is_vararg)
1610 return res
1611 end
1612
1613 redef fun model do return mtype.model
1614 end
1615
1616 # A service (global property) that generalize method, attribute, etc.
1617 #
1618 # `MProperty` are global to the model; it means that a `MProperty` is not bound
1619 # to a specific `MModule` nor a specific `MClass`.
1620 #
1621 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
1622 # and the other in subclasses and in refinements.
1623 #
1624 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
1625 # of any dynamic type).
1626 # For instance, a call site "x.foo" is associated to a `MProperty`.
1627 abstract class MProperty
1628 super MEntity
1629
1630 # The associated MPropDef subclass.
1631 # The two specialization hierarchy are symmetric.
1632 type MPROPDEF: MPropDef
1633
1634 # The classdef that introduce the property
1635 # While a property is not bound to a specific module, or class,
1636 # the introducing mclassdef is used for naming and visibility
1637 var intro_mclassdef: MClassDef
1638
1639 # The (short) name of the property
1640 redef var name: String
1641
1642 # The canonical name of the property
1643 # Example: "owner::my_module::MyClass::my_method"
1644 fun full_name: String
1645 do
1646 return "{self.intro_mclassdef.mmodule.full_name}::{self.intro_mclassdef.mclass.name}::{name}"
1647 end
1648
1649 # The visibility of the property
1650 var visibility: MVisibility
1651
1652 init
1653 do
1654 intro_mclassdef.intro_mproperties.add(self)
1655 var model = intro_mclassdef.mmodule.model
1656 model.mproperties_by_name.add_one(name, self)
1657 model.mproperties.add(self)
1658 end
1659
1660 # All definitions of the property.
1661 # The first is the introduction,
1662 # The other are redefinitions (in refinements and in subclasses)
1663 var mpropdefs = new Array[MPROPDEF]
1664
1665 # The definition that introduces the property.
1666 #
1667 # Warning: such a definition may not exist in the early life of the object.
1668 # In this case, the method will abort.
1669 var intro: MPROPDEF is noinit
1670
1671 redef fun model do return intro.model
1672
1673 # Alias for `name`
1674 redef fun to_s do return name
1675
1676 # Return the most specific property definitions defined or inherited by a type.
1677 # The selection knows that refinement is stronger than specialization;
1678 # however, in case of conflict more than one property are returned.
1679 # If mtype does not know mproperty then an empty array is returned.
1680 #
1681 # If you want the really most specific property, then look at `lookup_first_definition`
1682 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1683 do
1684 assert not mtype.need_anchor
1685 mtype = mtype.as_notnullable
1686
1687 var cache = self.lookup_definitions_cache[mmodule, mtype]
1688 if cache != null then return cache
1689
1690 #print "select prop {mproperty} for {mtype} in {self}"
1691 # First, select all candidates
1692 var candidates = new Array[MPROPDEF]
1693 for mpropdef in self.mpropdefs do
1694 # If the definition is not imported by the module, then skip
1695 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1696 # If the definition is not inherited by the type, then skip
1697 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1698 # Else, we keep it
1699 candidates.add(mpropdef)
1700 end
1701 # Fast track for only one candidate
1702 if candidates.length <= 1 then
1703 self.lookup_definitions_cache[mmodule, mtype] = candidates
1704 return candidates
1705 end
1706
1707 # Second, filter the most specific ones
1708 return select_most_specific(mmodule, candidates)
1709 end
1710
1711 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
1712
1713 # Return the most specific property definitions inherited by a type.
1714 # The selection knows that refinement is stronger than specialization;
1715 # however, in case of conflict more than one property are returned.
1716 # If mtype does not know mproperty then an empty array is returned.
1717 #
1718 # If you want the really most specific property, then look at `lookup_next_definition`
1719 #
1720 # FIXME: Move to `MPropDef`?
1721 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1722 do
1723 assert not mtype.need_anchor
1724 mtype = mtype.as_notnullable
1725
1726 # First, select all candidates
1727 var candidates = new Array[MPROPDEF]
1728 for mpropdef in self.mpropdefs do
1729 # If the definition is not imported by the module, then skip
1730 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1731 # If the definition is not inherited by the type, then skip
1732 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1733 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
1734 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
1735 # Else, we keep it
1736 candidates.add(mpropdef)
1737 end
1738 # Fast track for only one candidate
1739 if candidates.length <= 1 then return candidates
1740
1741 # Second, filter the most specific ones
1742 return select_most_specific(mmodule, candidates)
1743 end
1744
1745 # Return an array containing olny the most specific property definitions
1746 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
1747 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
1748 do
1749 var res = new Array[MPROPDEF]
1750 for pd1 in candidates do
1751 var cd1 = pd1.mclassdef
1752 var c1 = cd1.mclass
1753 var keep = true
1754 for pd2 in candidates do
1755 if pd2 == pd1 then continue # do not compare with self!
1756 var cd2 = pd2.mclassdef
1757 var c2 = cd2.mclass
1758 if c2.mclass_type == c1.mclass_type then
1759 if cd2.mmodule.in_importation < cd1.mmodule then
1760 # cd2 refines cd1; therefore we skip pd1
1761 keep = false
1762 break
1763 end
1764 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
1765 # cd2 < cd1; therefore we skip pd1
1766 keep = false
1767 break
1768 end
1769 end
1770 if keep then
1771 res.add(pd1)
1772 end
1773 end
1774 if res.is_empty then
1775 print "All lost! {candidates.join(", ")}"
1776 # FIXME: should be abort!
1777 end
1778 return res
1779 end
1780
1781 # Return the most specific definition in the linearization of `mtype`.
1782 #
1783 # If you want to know the next properties in the linearization,
1784 # look at `MPropDef::lookup_next_definition`.
1785 #
1786 # FIXME: the linearization is still unspecified
1787 #
1788 # REQUIRE: `not mtype.need_anchor`
1789 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
1790 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
1791 do
1792 assert mtype.has_mproperty(mmodule, self)
1793 return lookup_all_definitions(mmodule, mtype).first
1794 end
1795
1796 # Return all definitions in a linearization order
1797 # Most specific first, most general last
1798 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1799 do
1800 assert not mtype.need_anchor
1801 mtype = mtype.as_notnullable
1802
1803 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
1804 if cache != null then return cache
1805
1806 #print "select prop {mproperty} for {mtype} in {self}"
1807 # First, select all candidates
1808 var candidates = new Array[MPROPDEF]
1809 for mpropdef in self.mpropdefs do
1810 # If the definition is not imported by the module, then skip
1811 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1812 # If the definition is not inherited by the type, then skip
1813 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1814 # Else, we keep it
1815 candidates.add(mpropdef)
1816 end
1817 # Fast track for only one candidate
1818 if candidates.length <= 1 then
1819 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
1820 return candidates
1821 end
1822
1823 mmodule.linearize_mpropdefs(candidates)
1824 candidates = candidates.reversed
1825 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
1826 return candidates
1827 end
1828
1829 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
1830 end
1831
1832 # A global method
1833 class MMethod
1834 super MProperty
1835
1836 redef type MPROPDEF: MMethodDef
1837
1838 # Is the property defined at the top_level of the module?
1839 # Currently such a property are stored in `Object`
1840 var is_toplevel: Bool = false is writable
1841
1842 # Is the property a constructor?
1843 # Warning, this property can be inherited by subclasses with or without being a constructor
1844 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
1845 var is_init: Bool = false is writable
1846
1847 # The constructor is a (the) root init with empty signature but a set of initializers
1848 var is_root_init: Bool = false is writable
1849
1850 # Is the property a 'new' constructor?
1851 var is_new: Bool = false is writable
1852
1853 # Is the property a legal constructor for a given class?
1854 # As usual, visibility is not considered.
1855 # FIXME not implemented
1856 fun is_init_for(mclass: MClass): Bool
1857 do
1858 return self.is_init
1859 end
1860 end
1861
1862 # A global attribute
1863 class MAttribute
1864 super MProperty
1865
1866 redef type MPROPDEF: MAttributeDef
1867
1868 end
1869
1870 # A global virtual type
1871 class MVirtualTypeProp
1872 super MProperty
1873
1874 redef type MPROPDEF: MVirtualTypeDef
1875
1876 # The formal type associated to the virtual type property
1877 var mvirtualtype = new MVirtualType(self)
1878 end
1879
1880 # A definition of a property (local property)
1881 #
1882 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
1883 # specific class definition (which belong to a specific module)
1884 abstract class MPropDef
1885 super MEntity
1886
1887 # The associated `MProperty` subclass.
1888 # the two specialization hierarchy are symmetric
1889 type MPROPERTY: MProperty
1890
1891 # Self class
1892 type MPROPDEF: MPropDef
1893
1894 # The class definition where the property definition is
1895 var mclassdef: MClassDef
1896
1897 # The associated global property
1898 var mproperty: MPROPERTY
1899
1900 # The origin of the definition
1901 var location: Location
1902
1903 init
1904 do
1905 mclassdef.mpropdefs.add(self)
1906 mproperty.mpropdefs.add(self)
1907 if mproperty.intro_mclassdef == mclassdef then
1908 assert not isset mproperty._intro
1909 mproperty.intro = self
1910 end
1911 self.to_s = "{mclassdef}#{mproperty}"
1912 end
1913
1914 # Actually the name of the `mproperty`
1915 redef fun name do return mproperty.name
1916
1917 redef fun model do return mclassdef.model
1918
1919 # Internal name combining the module, the class and the property
1920 # Example: "mymodule#MyClass#mymethod"
1921 redef var to_s: String is noinit
1922
1923 # Is self the definition that introduce the property?
1924 fun is_intro: Bool do return mproperty.intro == self
1925
1926 # Return the next definition in linearization of `mtype`.
1927 #
1928 # This method is used to determine what method is called by a super.
1929 #
1930 # REQUIRE: `not mtype.need_anchor`
1931 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
1932 do
1933 assert not mtype.need_anchor
1934
1935 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
1936 var i = mpropdefs.iterator
1937 while i.is_ok and i.item != self do i.next
1938 assert has_property: i.is_ok
1939 i.next
1940 assert has_next_property: i.is_ok
1941 return i.item
1942 end
1943 end
1944
1945 # A local definition of a method
1946 class MMethodDef
1947 super MPropDef
1948
1949 redef type MPROPERTY: MMethod
1950 redef type MPROPDEF: MMethodDef
1951
1952 # The signature attached to the property definition
1953 var msignature: nullable MSignature = null is writable
1954
1955 # The signature attached to the `new` call on a root-init
1956 # This is a concatenation of the signatures of the initializers
1957 #
1958 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
1959 var new_msignature: nullable MSignature = null is writable
1960
1961 # List of initialisers to call in root-inits
1962 #
1963 # They could be setters or attributes
1964 #
1965 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
1966 var initializers = new Array[MProperty]
1967
1968 # Is the method definition abstract?
1969 var is_abstract: Bool = false is writable
1970
1971 # Is the method definition intern?
1972 var is_intern = false is writable
1973
1974 # Is the method definition extern?
1975 var is_extern = false is writable
1976
1977 # An optional constant value returned in functions.
1978 #
1979 # Only some specific primitife value are accepted by engines.
1980 # Is used when there is no better implementation available.
1981 #
1982 # Currently used only for the implementation of the `--define`
1983 # command-line option.
1984 # SEE: module `mixin`.
1985 var constant_value: nullable Object = null is writable
1986 end
1987
1988 # A local definition of an attribute
1989 class MAttributeDef
1990 super MPropDef
1991
1992 redef type MPROPERTY: MAttribute
1993 redef type MPROPDEF: MAttributeDef
1994
1995 # The static type of the attribute
1996 var static_mtype: nullable MType = null is writable
1997 end
1998
1999 # A local definition of a virtual type
2000 class MVirtualTypeDef
2001 super MPropDef
2002
2003 redef type MPROPERTY: MVirtualTypeProp
2004 redef type MPROPDEF: MVirtualTypeDef
2005
2006 # The bound of the virtual type
2007 var bound: nullable MType = null is writable
2008
2009 # Is the bound fixed?
2010 var is_fixed = false is writable
2011 end
2012
2013 # A kind of class.
2014 #
2015 # * `abstract_kind`
2016 # * `concrete_kind`
2017 # * `interface_kind`
2018 # * `enum_kind`
2019 # * `extern_kind`
2020 #
2021 # Note this class is basically an enum.
2022 # FIXME: use a real enum once user-defined enums are available
2023 class MClassKind
2024 redef var to_s: String
2025
2026 # Is a constructor required?
2027 var need_init: Bool
2028
2029 # TODO: private init because enumeration.
2030
2031 # Can a class of kind `self` specializes a class of kine `other`?
2032 fun can_specialize(other: MClassKind): Bool
2033 do
2034 if other == interface_kind then return true # everybody can specialize interfaces
2035 if self == interface_kind or self == enum_kind then
2036 # no other case for interfaces
2037 return false
2038 else if self == extern_kind then
2039 # only compatible with themselves
2040 return self == other
2041 else if other == enum_kind or other == extern_kind then
2042 # abstract_kind and concrete_kind are incompatible
2043 return false
2044 end
2045 # remain only abstract_kind and concrete_kind
2046 return true
2047 end
2048 end
2049
2050 # The class kind `abstract`
2051 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", true)
2052 # The class kind `concrete`
2053 fun concrete_kind: MClassKind do return once new MClassKind("class", true)
2054 # The class kind `interface`
2055 fun interface_kind: MClassKind do return once new MClassKind("interface", false)
2056 # The class kind `enum`
2057 fun enum_kind: MClassKind do return once new MClassKind("enum", false)
2058 # The class kind `extern`
2059 fun extern_kind: MClassKind do return once new MClassKind("extern class", false)