model: tag groups as tests
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class MEntity
34 # The visibility of the MEntity.
35 #
36 # MPackages, MGroups and MModules are always public.
37 # The visibility of `MClass` and `MProperty` is defined by the keyword used.
38 # `MClassDef` and `MPropDef` return the visibility of `MClass` and `MProperty`.
39 fun visibility: MVisibility do return public_visibility
40 end
41
42 redef class Model
43 # All known classes
44 var mclasses = new Array[MClass]
45
46 # All known properties
47 var mproperties = new Array[MProperty]
48
49 # Hierarchy of class definition.
50 #
51 # Each classdef is associated with its super-classdefs in regard to
52 # its module of definition.
53 #
54 # ~~~
55 # var m = new ModelDiamond
56 # assert m.mclassdef_hierarchy.has_edge(m.mclassdef_b, m.mclassdef_a)
57 # assert not m.mclassdef_hierarchy.has_edge(m.mclassdef_a, m.mclassdef_b)
58 # assert not m.mclassdef_hierarchy.has_edge(m.mclassdef_b, m.mclassdef_c)
59 # ~~~
60 var mclassdef_hierarchy = new POSet[MClassDef]
61
62 # Class-type hierarchy restricted to the introduction.
63 #
64 # The idea is that what is true on introduction is always true whatever
65 # the module considered.
66 # Therefore, this hierarchy is used for a fast positive subtype check.
67 #
68 # This poset will evolve in a monotonous way:
69 # * Two non connected nodes will remain unconnected
70 # * New nodes can appear with new edges
71 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
72
73 # Global overlapped class-type hierarchy.
74 # The hierarchy when all modules are combined.
75 # Therefore, this hierarchy is used for a fast negative subtype check.
76 #
77 # This poset will evolve in an anarchic way. Loops can even be created.
78 #
79 # FIXME decide what to do on loops
80 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
81
82 # Collections of classes grouped by their short name
83 private var mclasses_by_name = new MultiHashMap[String, MClass]
84
85 # Return all classes named `name`.
86 #
87 # If such a class does not exist, null is returned
88 # (instead of an empty array)
89 #
90 # Visibility or modules are not considered
91 #
92 # ~~~
93 # var m = new ModelStandalone
94 # assert m.get_mclasses_by_name("Object") == [m.mclass_o]
95 # assert m.get_mclasses_by_name("Fail") == null
96 # ~~~
97 fun get_mclasses_by_name(name: String): nullable Array[MClass]
98 do
99 return mclasses_by_name.get_or_null(name)
100 end
101
102 # Collections of properties grouped by their short name
103 private var mproperties_by_name = new MultiHashMap[String, MProperty]
104
105 # Return all properties named `name`.
106 #
107 # If such a property does not exist, null is returned
108 # (instead of an empty array)
109 #
110 # Visibility or modules are not considered
111 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
112 do
113 return mproperties_by_name.get_or_null(name)
114 end
115
116 # The only null type
117 var null_type = new MNullType(self)
118
119 # The only bottom type
120 var bottom_type: MBottomType = null_type.as_notnull
121
122 # Build an ordered tree with from `concerns`
123 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
124 var seen = new HashSet[MConcern]
125 var res = new ConcernsTree
126
127 var todo = new Array[MConcern]
128 todo.add_all mconcerns
129
130 while not todo.is_empty do
131 var c = todo.pop
132 if seen.has(c) then continue
133 var pc = c.parent_concern
134 if pc == null then
135 res.add(null, c)
136 else
137 res.add(pc, c)
138 todo.add(pc)
139 end
140 seen.add(c)
141 end
142
143 return res
144 end
145 end
146
147 # An OrderedTree bound to MEntity.
148 #
149 # We introduce a new class so it can be easily refined by tools working
150 # with a Model.
151 class MEntityTree
152 super OrderedTree[MEntity]
153 end
154
155 # A MEntityTree borned to MConcern.
156 #
157 # TODO remove when nitdoc is fully merged with model_collect
158 class ConcernsTree
159 super OrderedTree[MConcern]
160 end
161
162 redef class MGroup
163 redef var is_test is lazy do
164 var parent = self.parent
165 if parent != null and parent.is_test then return true
166 return name == "tests"
167 end
168 end
169
170 redef class MModule
171 # All the classes introduced in the module
172 var intro_mclasses = new Array[MClass]
173
174 # All the class definitions of the module
175 # (introduction and refinement)
176 var mclassdefs = new Array[MClassDef]
177
178 private var mclassdef_sorter: MClassDefSorter is lazy do
179 return new MClassDefSorter(self)
180 end
181
182 private var mpropdef_sorter: MPropDefSorter is lazy do
183 return new MPropDefSorter(self)
184 end
185
186 # Does the current module has a given class `mclass`?
187 # Return true if the mmodule introduces, refines or imports a class.
188 # Visibility is not considered.
189 fun has_mclass(mclass: MClass): Bool
190 do
191 return self.in_importation <= mclass.intro_mmodule
192 end
193
194 # Full hierarchy of introduced and imported classes.
195 #
196 # Create a new hierarchy got by flattening the classes for the module
197 # and its imported modules.
198 # Visibility is not considered.
199 #
200 # Note: this function is expensive and is usually used for the main
201 # module of a program only. Do not use it to do your own subtype
202 # functions.
203 fun flatten_mclass_hierarchy: POSet[MClass]
204 do
205 var res = self.flatten_mclass_hierarchy_cache
206 if res != null then return res
207 res = new POSet[MClass]
208 for m in self.in_importation.greaters do
209 for cd in m.mclassdefs do
210 var c = cd.mclass
211 res.add_node(c)
212 for s in cd.supertypes do
213 res.add_edge(c, s.mclass)
214 end
215 end
216 end
217 self.flatten_mclass_hierarchy_cache = res
218 return res
219 end
220
221 # Sort a given array of classes using the linearization order of the module
222 # The most general is first, the most specific is last
223 fun linearize_mclasses(mclasses: Array[MClass])
224 do
225 self.flatten_mclass_hierarchy.sort(mclasses)
226 end
227
228 # Sort a given array of class definitions using the linearization order of the module
229 # the refinement link is stronger than the specialisation link
230 # The most general is first, the most specific is last
231 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
232 do
233 mclassdef_sorter.sort(mclassdefs)
234 end
235
236 # Sort a given array of property definitions using the linearization order of the module
237 # the refinement link is stronger than the specialisation link
238 # The most general is first, the most specific is last
239 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
240 do
241 mpropdef_sorter.sort(mpropdefs)
242 end
243
244 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
245
246 # The primitive type `Object`, the root of the class hierarchy
247 var object_type: MClassType = self.get_primitive_class("Object").mclass_type is lazy
248
249 # The type `Pointer`, super class to all extern classes
250 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
251
252 # The primitive type `Bool`
253 var bool_type: MClassType = self.get_primitive_class("Bool").mclass_type is lazy
254
255 # The primitive type `Int`
256 var int_type: MClassType = self.get_primitive_class("Int").mclass_type is lazy
257
258 # The primitive type `Byte`
259 var byte_type: MClassType = self.get_primitive_class("Byte").mclass_type is lazy
260
261 # The primitive type `Int8`
262 var int8_type: MClassType = self.get_primitive_class("Int8").mclass_type is lazy
263
264 # The primitive type `Int16`
265 var int16_type: MClassType = self.get_primitive_class("Int16").mclass_type is lazy
266
267 # The primitive type `UInt16`
268 var uint16_type: MClassType = self.get_primitive_class("UInt16").mclass_type is lazy
269
270 # The primitive type `Int32`
271 var int32_type: MClassType = self.get_primitive_class("Int32").mclass_type is lazy
272
273 # The primitive type `UInt32`
274 var uint32_type: MClassType = self.get_primitive_class("UInt32").mclass_type is lazy
275
276 # The primitive type `Char`
277 var char_type: MClassType = self.get_primitive_class("Char").mclass_type is lazy
278
279 # The primitive type `Float`
280 var float_type: MClassType = self.get_primitive_class("Float").mclass_type is lazy
281
282 # The primitive type `String`
283 var string_type: MClassType = self.get_primitive_class("String").mclass_type is lazy
284
285 # The primitive type `CString`
286 var c_string_type: MClassType = self.get_primitive_class("CString").mclass_type is lazy
287
288 # A primitive type of `Array`
289 fun array_type(elt_type: MType): MClassType do return array_class.get_mtype([elt_type])
290
291 # The primitive class `Array`
292 var array_class: MClass = self.get_primitive_class("Array") is lazy
293
294 # A primitive type of `NativeArray`
295 fun native_array_type(elt_type: MType): MClassType do return native_array_class.get_mtype([elt_type])
296
297 # The primitive class `NativeArray`
298 var native_array_class: MClass = self.get_primitive_class("NativeArray") is lazy
299
300 # The primitive type `Sys`, the main type of the program, if any
301 fun sys_type: nullable MClassType
302 do
303 var clas = self.model.get_mclasses_by_name("Sys")
304 if clas == null then return null
305 return get_primitive_class("Sys").mclass_type
306 end
307
308 # The primitive type `Finalizable`
309 # Used to tag classes that need to be finalized.
310 fun finalizable_type: nullable MClassType
311 do
312 var clas = self.model.get_mclasses_by_name("Finalizable")
313 if clas == null then return null
314 return get_primitive_class("Finalizable").mclass_type
315 end
316
317 # Force to get the primitive class named `name` or abort
318 fun get_primitive_class(name: String): MClass
319 do
320 var cla = self.model.get_mclasses_by_name(name)
321 # Filter classes by introducing module
322 if cla != null then cla = [for c in cla do if self.in_importation <= c.intro_mmodule then c]
323 if cla == null or cla.is_empty then
324 if name == "Bool" and self.model.get_mclasses_by_name("Object") != null then
325 # Bool is injected because it is needed by engine to code the result
326 # of the implicit casts.
327 var loc = model.no_location
328 var c = new MClass(self, name, loc, null, enum_kind, public_visibility)
329 var cladef = new MClassDef(self, c.mclass_type, loc)
330 cladef.set_supertypes([object_type])
331 cladef.add_in_hierarchy
332 return c
333 end
334 print_error("Fatal Error: no primitive class {name} in {self}")
335 exit(1)
336 abort
337 end
338 if cla.length != 1 then
339 var msg = "Fatal Error: more than one primitive class {name} in {self}:"
340 for c in cla do msg += " {c.full_name}"
341 print_error msg
342 #exit(1)
343 end
344 return cla.first
345 end
346
347 # Try to get the primitive method named `name` on the type `recv`
348 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
349 do
350 var props = self.model.get_mproperties_by_name(name)
351 if props == null then return null
352 var res: nullable MMethod = null
353 var recvtype = recv.intro.bound_mtype
354 for mprop in props do
355 assert mprop isa MMethod
356 if not recvtype.has_mproperty(self, mprop) then continue
357 if res == null then
358 res = mprop
359 else if res != mprop then
360 print_error("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
361 abort
362 end
363 end
364 return res
365 end
366 end
367
368 private class MClassDefSorter
369 super Comparator
370 redef type COMPARED: MClassDef
371 var mmodule: MModule
372 redef fun compare(a, b)
373 do
374 var ca = a.mclass
375 var cb = b.mclass
376 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
377 return mmodule.model.mclassdef_hierarchy.compare(a, b)
378 end
379 end
380
381 private class MPropDefSorter
382 super Comparator
383 redef type COMPARED: MPropDef
384 var mmodule: MModule
385
386 redef fun compare(pa, pb)
387 do
388 var a = pa.mclassdef
389 var b = pb.mclassdef
390 return mmodule.mclassdef_sorter.compare(a, b)
391 end
392 end
393
394 # A named class
395 #
396 # `MClass`es are global to the model; it means that a `MClass` is not bound
397 # to a specific `MModule`.
398 #
399 # This characteristic helps the reasoning about classes in a program since a
400 # single `MClass` object always denote the same class.
401 #
402 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
403 # These do not really have properties nor belong to a hierarchy since the property and the
404 # hierarchy of a class depends of the refinement in the modules.
405 #
406 # Most services on classes require the precision of a module, and no one can asks what are
407 # the super-classes of a class nor what are properties of a class without precising what is
408 # the module considered.
409 #
410 # For instance, during the typing of a source-file, the module considered is the module of the file.
411 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
412 # *is the method `foo` exists in the class `Bar` in the current module?*
413 #
414 # During some global analysis, the module considered may be the main module of the program.
415 class MClass
416 super MEntity
417
418 # The module that introduce the class
419 #
420 # While classes are not bound to a specific module,
421 # the introducing module is used for naming and visibility.
422 var intro_mmodule: MModule
423
424 # The short name of the class
425 # In Nit, the name of a class cannot evolve in refinements
426 redef var name
427
428 redef var location
429
430 # The canonical name of the class
431 #
432 # It is the name of the class prefixed by the full_name of the `intro_mmodule`
433 # Example: `"owner::module::MyClass"`
434 redef var full_name is lazy do
435 return "{self.intro_mmodule.namespace_for(visibility)}::{name}"
436 end
437
438 redef var c_name is lazy do
439 return "{intro_mmodule.c_namespace_for(visibility)}__{name.to_cmangle}"
440 end
441
442 # The number of generic formal parameters
443 # 0 if the class is not generic
444 var arity: Int is noinit
445
446 # Each generic formal parameters in order.
447 # is empty if the class is not generic
448 var mparameters = new Array[MParameterType]
449
450 # A string version of the signature a generic class.
451 #
452 # eg. `Map[K: nullable Object, V: nullable Object]`
453 #
454 # If the class in non generic the name is just given.
455 #
456 # eg. `Object`
457 fun signature_to_s: String
458 do
459 if arity == 0 then return name
460 var res = new FlatBuffer
461 res.append name
462 res.append "["
463 for i in [0..arity[ do
464 if i > 0 then res.append ", "
465 res.append mparameters[i].name
466 res.append ": "
467 res.append intro.bound_mtype.arguments[i].to_s
468 end
469 res.append "]"
470 return res.to_s
471 end
472
473 # Initialize `mparameters` from their names.
474 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
475 autoinit
476 do
477 if parameter_names == null then
478 self.arity = 0
479 else
480 self.arity = parameter_names.length
481 end
482
483 # Create the formal parameter types
484 if arity > 0 then
485 assert parameter_names != null
486 var mparametertypes = new Array[MParameterType]
487 for i in [0..arity[ do
488 var mparametertype = new MParameterType(self, i, parameter_names[i])
489 mparametertypes.add(mparametertype)
490 end
491 self.mparameters = mparametertypes
492 var mclass_type = new MGenericType(self, mparametertypes)
493 self.mclass_type = mclass_type
494 self.get_mtype_cache[mparametertypes] = mclass_type
495 else
496 self.mclass_type = new MClassType(self)
497 end
498 end
499
500 # The kind of the class (interface, abstract class, etc.)
501 #
502 # In Nit, the kind of a class cannot evolve in refinements.
503 var kind: MClassKind
504
505 # The visibility of the class
506 #
507 # In Nit, the visibility of a class cannot evolve in refinements.
508 redef var visibility
509
510 init
511 do
512 intro_mmodule.intro_mclasses.add(self)
513 var model = intro_mmodule.model
514 model.mclasses_by_name.add_one(name, self)
515 model.mclasses.add(self)
516 end
517
518 redef fun model do return intro_mmodule.model
519
520 # All class definitions (introduction and refinements)
521 var mclassdefs = new Array[MClassDef]
522
523 # Alias for `name`
524 redef fun to_s do return self.name
525
526 # The definition that introduces the class.
527 #
528 # Warning: such a definition may not exist in the early life of the object.
529 # In this case, the method will abort.
530 #
531 # Use `try_intro` instead.
532 var intro: MClassDef is noinit
533
534 # The definition that introduces the class or `null` if not yet known.
535 #
536 # SEE: `intro`
537 fun try_intro: nullable MClassDef do
538 if isset _intro then return _intro else return null
539 end
540
541 # Return the class `self` in the class hierarchy of the module `mmodule`.
542 #
543 # SEE: `MModule::flatten_mclass_hierarchy`
544 # REQUIRE: `mmodule.has_mclass(self)`
545 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
546 do
547 return mmodule.flatten_mclass_hierarchy[self]
548 end
549
550 # The principal static type of the class.
551 #
552 # For non-generic class, `mclass_type` is the only `MClassType` based
553 # on self.
554 #
555 # For a generic class, the arguments are the formal parameters.
556 # i.e.: for the class `Array[E:Object]`, the `mclass_type` is `Array[E]`.
557 # If you want `Array[Object]`, see `MClassDef::bound_mtype`.
558 #
559 # For generic classes, the mclass_type is also the way to get a formal
560 # generic parameter type.
561 #
562 # To get other types based on a generic class, see `get_mtype`.
563 #
564 # ENSURE: `mclass_type.mclass == self`
565 var mclass_type: MClassType is noinit
566
567 # Return a generic type based on the class
568 # Is the class is not generic, then the result is `mclass_type`
569 #
570 # REQUIRE: `mtype_arguments.length == self.arity`
571 fun get_mtype(mtype_arguments: Array[MType]): MClassType
572 do
573 assert mtype_arguments.length == self.arity
574 if self.arity == 0 then return self.mclass_type
575 var res = get_mtype_cache.get_or_null(mtype_arguments)
576 if res != null then return res
577 res = new MGenericType(self, mtype_arguments)
578 self.get_mtype_cache[mtype_arguments.to_a] = res
579 return res
580 end
581
582 private var get_mtype_cache = new HashMap[Array[MType], MGenericType]
583
584 # Is there a `new` factory to allow the pseudo instantiation?
585 var has_new_factory = false is writable
586
587 # Is `self` a standard or abstract class kind?
588 var is_class: Bool is lazy do return kind == concrete_kind or kind == abstract_kind
589
590 # Is `self` an interface kind?
591 var is_interface: Bool is lazy do return kind == interface_kind
592
593 # Is `self` an enum kind?
594 var is_enum: Bool is lazy do return kind == enum_kind
595
596 # Is `self` and abstract class?
597 var is_abstract: Bool is lazy do return kind == abstract_kind
598
599 redef var is_test is lazy do return intro.is_test
600
601 redef fun mdoc_or_fallback
602 do
603 # Don’t use `intro.mdoc_or_fallback` because it would create an infinite
604 # recursion.
605 return intro.mdoc
606 end
607 end
608
609
610 # A definition (an introduction or a refinement) of a class in a module
611 #
612 # A `MClassDef` is associated with an explicit (or almost) definition of a
613 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
614 # a specific class and a specific module, and contains declarations like super-classes
615 # or properties.
616 #
617 # It is the class definitions that are the backbone of most things in the model:
618 # ClassDefs are defined with regard with other classdefs.
619 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
620 #
621 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
622 class MClassDef
623 super MEntity
624
625 # The module where the definition is
626 var mmodule: MModule
627
628 # The associated `MClass`
629 var mclass: MClass is noinit
630
631 # The bounded type associated to the mclassdef
632 #
633 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
634 # are the same type.
635 #
636 # Example:
637 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
638 # If you want Array[E], then see `mclass.mclass_type`
639 #
640 # ENSURE: `bound_mtype.mclass == self.mclass`
641 var bound_mtype: MClassType
642
643 redef var location
644
645 redef fun visibility do return mclass.visibility
646
647 # Internal name combining the module and the class
648 # Example: "mymodule$MyClass"
649 redef var to_s is noinit
650
651 init
652 do
653 self.mclass = bound_mtype.mclass
654 mmodule.mclassdefs.add(self)
655 mclass.mclassdefs.add(self)
656 if mclass.intro_mmodule == mmodule then
657 assert not isset mclass._intro
658 mclass.intro = self
659 end
660 self.to_s = "{mmodule}${mclass}"
661 end
662
663 # Actually the name of the `mclass`
664 redef fun name do return mclass.name
665
666 # The module and class name separated by a '$'.
667 #
668 # The short-name of the class is used for introduction.
669 # Example: "my_module$MyClass"
670 #
671 # The full-name of the class is used for refinement.
672 # Example: "my_module$intro_module::MyClass"
673 redef var full_name is lazy do
674 if is_intro then
675 # public gives 'p$A'
676 # private gives 'p::m$A'
677 return "{mmodule.namespace_for(mclass.visibility)}${mclass.name}"
678 else if mclass.intro_mmodule.mpackage != mmodule.mpackage then
679 # public gives 'q::n$p::A'
680 # private gives 'q::n$p::m::A'
681 return "{mmodule.full_name}${mclass.full_name}"
682 else if mclass.visibility > private_visibility then
683 # public gives 'p::n$A'
684 return "{mmodule.full_name}${mclass.name}"
685 else
686 # private gives 'p::n$::m::A' (redundant p is omitted)
687 return "{mmodule.full_name}$::{mclass.intro_mmodule.name}::{mclass.name}"
688 end
689 end
690
691 redef var c_name is lazy do
692 if is_intro then
693 return "{mmodule.c_namespace_for(mclass.visibility)}___{mclass.c_name}"
694 else if mclass.intro_mmodule.mpackage == mmodule.mpackage and mclass.visibility > private_visibility then
695 return "{mmodule.c_name}___{mclass.name.to_cmangle}"
696 else
697 return "{mmodule.c_name}___{mclass.c_name}"
698 end
699 end
700
701 redef fun model do return mmodule.model
702
703 # All declared super-types
704 # FIXME: quite ugly but not better idea yet
705 var supertypes = new Array[MClassType]
706
707 # Register some super-types for the class (ie "super SomeType")
708 #
709 # The hierarchy must not already be set
710 # REQUIRE: `self.in_hierarchy == null`
711 fun set_supertypes(supertypes: Array[MClassType])
712 do
713 assert unique_invocation: self.in_hierarchy == null
714 var mmodule = self.mmodule
715 var model = mmodule.model
716 var mtype = self.bound_mtype
717
718 for supertype in supertypes do
719 self.supertypes.add(supertype)
720
721 # Register in full_type_specialization_hierarchy
722 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
723 # Register in intro_type_specialization_hierarchy
724 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
725 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
726 end
727 end
728
729 end
730
731 # Collect the super-types (set by set_supertypes) to build the hierarchy
732 #
733 # This function can only invoked once by class
734 # REQUIRE: `self.in_hierarchy == null`
735 # ENSURE: `self.in_hierarchy != null`
736 fun add_in_hierarchy
737 do
738 assert unique_invocation: self.in_hierarchy == null
739 var model = mmodule.model
740 var res = model.mclassdef_hierarchy.add_node(self)
741 self.in_hierarchy = res
742 var mtype = self.bound_mtype
743
744 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
745 # The simpliest way is to attach it to collect_mclassdefs
746 for mclassdef in mtype.collect_mclassdefs(mmodule) do
747 res.poset.add_edge(self, mclassdef)
748 end
749 end
750
751 # The view of the class definition in `mclassdef_hierarchy`
752 var in_hierarchy: nullable POSetElement[MClassDef] = null
753
754 # Is the definition the one that introduced `mclass`?
755 fun is_intro: Bool do return isset mclass._intro and mclass.intro == self
756
757 # All properties introduced by the classdef
758 var intro_mproperties = new Array[MProperty]
759
760 # All property introductions and redefinitions in `self` (not inheritance).
761 var mpropdefs = new Array[MPropDef]
762
763 # All property introductions and redefinitions (not inheritance) in `self` by its associated property.
764 var mpropdefs_by_property = new HashMap[MProperty, MPropDef]
765
766 redef fun mdoc_or_fallback do return mdoc or else mclass.mdoc_or_fallback
767 end
768
769 # A global static type
770 #
771 # MType are global to the model; it means that a `MType` is not bound to a
772 # specific `MModule`.
773 # This characteristic helps the reasoning about static types in a program
774 # since a single `MType` object always denote the same type.
775 #
776 # However, because a `MType` is global, it does not really have properties
777 # nor have subtypes to a hierarchy since the property and the class hierarchy
778 # depends of a module.
779 # Moreover, virtual types an formal generic parameter types also depends on
780 # a receiver to have sense.
781 #
782 # Therefore, most method of the types require a module and an anchor.
783 # The module is used to know what are the classes and the specialization
784 # links.
785 # The anchor is used to know what is the bound of the virtual types and formal
786 # generic parameter types.
787 #
788 # MType are not directly usable to get properties. See the `anchor_to` method
789 # and the `MClassType` class.
790 #
791 # FIXME: the order of the parameters is not the best. We mus pick on from:
792 # * foo(mmodule, anchor, othertype)
793 # * foo(othertype, anchor, mmodule)
794 # * foo(anchor, mmodule, othertype)
795 # * foo(othertype, mmodule, anchor)
796 abstract class MType
797 super MEntity
798
799 redef fun name do return to_s
800
801 # Return true if `self` is an subtype of `sup`.
802 # The typing is done using the standard typing policy of Nit.
803 #
804 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
805 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
806 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
807 do
808 var sub = self
809 if sub == sup then return true
810
811 #print "1.is {sub} a {sup}? ===="
812
813 if anchor == null then
814 assert not sub.need_anchor
815 assert not sup.need_anchor
816 else
817 # First, resolve the formal types to the simplest equivalent forms in the receiver
818 assert sub.can_resolve_for(anchor, null, mmodule)
819 sub = sub.lookup_fixed(mmodule, anchor)
820 assert sup.can_resolve_for(anchor, null, mmodule)
821 sup = sup.lookup_fixed(mmodule, anchor)
822 end
823
824 # Does `sup` accept null or not?
825 # Discard the nullable marker if it exists
826 var sup_accept_null = false
827 if sup isa MNullableType then
828 sup_accept_null = true
829 sup = sup.mtype
830 else if sup isa MNotNullType then
831 sup = sup.mtype
832 else if sup isa MNullType then
833 sup_accept_null = true
834 end
835
836 # Can `sub` provide null or not?
837 # Thus we can match with `sup_accept_null`
838 # Also discard the nullable marker if it exists
839 var sub_reject_null = false
840 if sub isa MNullableType then
841 if not sup_accept_null then return false
842 sub = sub.mtype
843 else if sub isa MNotNullType then
844 sub_reject_null = true
845 sub = sub.mtype
846 else if sub isa MNullType then
847 return sup_accept_null
848 end
849 # Now the case of direct null and nullable is over.
850
851 # If `sub` is a formal type, then it is accepted if its bound is accepted
852 while sub isa MFormalType do
853 #print "3.is {sub} a {sup}?"
854
855 # A unfixed formal type can only accept itself
856 if sub == sup then return true
857
858 assert anchor != null
859 sub = sub.lookup_bound(mmodule, anchor)
860 if sub_reject_null then sub = sub.as_notnull
861
862 #print "3.is {sub} a {sup}?"
863
864 # Manage the second layer of null/nullable
865 if sub isa MNullableType then
866 if not sup_accept_null and not sub_reject_null then return false
867 sub = sub.mtype
868 else if sub isa MNotNullType then
869 sub_reject_null = true
870 sub = sub.mtype
871 else if sub isa MNullType then
872 return sup_accept_null
873 end
874 end
875 #print "4.is {sub} a {sup}? <- no more resolution"
876
877 if sub isa MBottomType or sub isa MErrorType then
878 return true
879 end
880
881 assert sub isa MClassType else print_error "{sub} <? {sup}" # It is the only remaining type
882
883 # Handle sup-type when the sub-type is class-based (other cases must have be identified before).
884 if sup isa MFormalType or sup isa MNullType or sup isa MBottomType or sup isa MErrorType then
885 # These types are not super-types of Class-based types.
886 return false
887 end
888
889 assert sup isa MClassType else print_error "got {sup} {sub.inspect}" # It is the only remaining type
890
891 # Now both are MClassType, we need to dig
892
893 if sub == sup then return true
894
895 if anchor == null then anchor = sub # UGLY: any anchor will work
896 var resolved_sub = sub.anchor_to(mmodule, anchor)
897 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
898 if not res then return false
899 if not sup isa MGenericType then return true
900 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
901 assert sub2.mclass == sup.mclass
902 for i in [0..sup.mclass.arity[ do
903 var sub_arg = sub2.arguments[i]
904 var sup_arg = sup.arguments[i]
905 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
906 if not res then return false
907 end
908 return true
909 end
910
911 # The base class type on which self is based
912 #
913 # This base type is used to get property (an internally to perform
914 # unsafe type comparison).
915 #
916 # Beware: some types (like null) are not based on a class thus this
917 # method will crash
918 #
919 # Basically, this function transform the virtual types and parameter
920 # types to their bounds.
921 #
922 # Example
923 #
924 # class A end
925 # class B super A end
926 # class X end
927 # class Y super X end
928 # class G[T: A]
929 # type U: X
930 # end
931 # class H
932 # super G[B]
933 # redef type U: Y
934 # end
935 #
936 # Map[T,U] anchor_to H #-> Map[B,Y]
937 #
938 # Explanation of the example:
939 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
940 # because "redef type U: Y". Therefore, Map[T, U] is bound to
941 # Map[B, Y]
942 #
943 # REQUIRE: `self.need_anchor implies anchor != null`
944 # ENSURE: `not self.need_anchor implies result == self`
945 # ENSURE: `not result.need_anchor`
946 fun anchor_to(mmodule: MModule, anchor: nullable MClassType): MType
947 do
948 if not need_anchor then return self
949 assert anchor != null and not anchor.need_anchor
950 # Just resolve to the anchor and clear all the virtual types
951 var res = self.resolve_for(anchor, null, mmodule, true)
952 assert not res.need_anchor
953 return res
954 end
955
956 # Does `self` contain a virtual type or a formal generic parameter type?
957 # In order to remove those types, you usually want to use `anchor_to`.
958 fun need_anchor: Bool do return true
959
960 # Return the supertype when adapted to a class.
961 #
962 # In Nit, for each super-class of a type, there is a equivalent super-type.
963 #
964 # Example:
965 #
966 # ~~~nitish
967 # class G[T, U] end
968 # class H[V] super G[V, Bool] end
969 #
970 # H[Int] supertype_to G #-> G[Int, Bool]
971 # ~~~
972 #
973 # REQUIRE: `super_mclass` is a super-class of `self`
974 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
975 # ENSURE: `result.mclass = super_mclass`
976 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
977 do
978 if super_mclass.arity == 0 then return super_mclass.mclass_type
979 if self isa MClassType and self.mclass == super_mclass then return self
980 var resolved_self
981 if self.need_anchor then
982 assert anchor != null
983 resolved_self = self.anchor_to(mmodule, anchor)
984 else
985 resolved_self = self
986 end
987 var supertypes = resolved_self.collect_mtypes(mmodule)
988 for supertype in supertypes do
989 if supertype.mclass == super_mclass then
990 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
991 return supertype.resolve_for(self, anchor, mmodule, false)
992 end
993 end
994 abort
995 end
996
997 # Replace formals generic types in self with resolved values in `mtype`
998 # If `cleanup_virtual` is true, then virtual types are also replaced
999 # with their bounds.
1000 #
1001 # This function returns self if `need_anchor` is false.
1002 #
1003 # ## Example 1
1004 #
1005 # ~~~
1006 # class G[E] end
1007 # class H[F] super G[F] end
1008 # class X[Z] end
1009 # ~~~
1010 #
1011 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
1012 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
1013 #
1014 # Explanation of the example:
1015 # * Array[E].need_anchor is true because there is a formal generic parameter type E
1016 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
1017 # * Since "H[F] super G[F]", E is in fact F for H
1018 # * More specifically, in H[Int], E is Int
1019 # * So, in H[Int], Array[E] is Array[Int]
1020 #
1021 # This function is mainly used to inherit a signature.
1022 # Because, unlike `anchor_to`, we do not want a full resolution of
1023 # a type but only an adapted version of it.
1024 #
1025 # ## Example 2
1026 #
1027 # ~~~
1028 # class A[E]
1029 # fun foo(e:E):E is abstract
1030 # end
1031 # class B super A[Int] end
1032 # ~~~
1033 #
1034 # The signature on foo is (e: E): E
1035 # If we resolve the signature for B, we get (e:Int):Int
1036 #
1037 # ## Example 3
1038 #
1039 # ~~~nitish
1040 # class A[E]
1041 # fun foo(e:E):E is abstract
1042 # end
1043 # class C[F]
1044 # var a: A[Array[F]]
1045 # fun bar do a.foo(x) # <- x is here
1046 # end
1047 # ~~~
1048 #
1049 # The first question is: is foo available on `a`?
1050 #
1051 # The static type of a is `A[Array[F]]`, that is an open type.
1052 # in order to find a method `foo`, whe must look at a resolved type.
1053 #
1054 # A[Array[F]].anchor_to(C[nullable Object]) #-> A[Array[nullable Object]]
1055 #
1056 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
1057 #
1058 # The next question is: what is the accepted types for `x`?
1059 #
1060 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
1061 #
1062 # E.resolve_for(A[Array[F]],C[nullable Object]) #-> Array[F]
1063 #
1064 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
1065 #
1066 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
1067 # two function instead of one seems also to be a bad idea.
1068 #
1069 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
1070 # ENSURE: `not self.need_anchor implies result == self`
1071 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
1072
1073 # Resolve formal type to its verbatim bound.
1074 # If the type is not formal, just return self
1075 #
1076 # The result is returned exactly as declared in the "type" property (verbatim).
1077 # So it could be another formal type.
1078 #
1079 # In case of conflicts or inconsistencies in the model, the method returns a `MErrorType`.
1080 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self
1081
1082 # Resolve the formal type to its simplest equivalent form.
1083 #
1084 # Formal types are either free or fixed.
1085 # When it is fixed, it means that it is equivalent with a simpler type.
1086 # When a formal type is free, it means that it is only equivalent with itself.
1087 # This method return the most simple equivalent type of `self`.
1088 #
1089 # This method is mainly used for subtype test in order to sanely compare fixed.
1090 #
1091 # By default, return self.
1092 # See the redefinitions for specific behavior in each kind of type.
1093 #
1094 # In case of conflicts or inconsistencies in the model, the method returns a `MErrorType`.
1095 fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self
1096
1097 # Is the type a `MErrorType` or contains an `MErrorType`?
1098 #
1099 # `MErrorType` are used in result with conflict or inconsistencies.
1100 #
1101 # See `is_legal_in` to check conformity with generic bounds.
1102 fun is_ok: Bool do return true
1103
1104 # Is the type legal in a given `mmodule` (with an optional `anchor`)?
1105 #
1106 # A type is valid if:
1107 #
1108 # * it does not contain a `MErrorType` (see `is_ok`).
1109 # * its generic formal arguments are within their bounds.
1110 fun is_legal_in(mmodule: MModule, anchor: nullable MClassType): Bool do return is_ok
1111
1112 # Can the type be resolved?
1113 #
1114 # In order to resolve open types, the formal types must make sence.
1115 #
1116 # ## Example
1117 #
1118 # class A[E]
1119 # end
1120 # class B[F]
1121 # end
1122 #
1123 # ~~~nitish
1124 # E.can_resolve_for(A[Int]) #-> true, E make sense in A
1125 #
1126 # E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
1127 #
1128 # B[E].can_resolve_for(A[F], B[Object]) #-> true,
1129 # # B[E] is a red hearing only the E is important,
1130 # # E make sense in A
1131 # ~~~
1132 #
1133 # REQUIRE: `anchor != null implies not anchor.need_anchor`
1134 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
1135 # ENSURE: `not self.need_anchor implies result == true`
1136 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
1137
1138 # Return the nullable version of the type
1139 # If the type is already nullable then self is returned
1140 fun as_nullable: MType
1141 do
1142 var res = self.as_nullable_cache
1143 if res != null then return res
1144 res = new MNullableType(self)
1145 self.as_nullable_cache = res
1146 return res
1147 end
1148
1149 # Remove the base type of a decorated (proxy) type.
1150 # Is the type is not decorated, then self is returned.
1151 #
1152 # Most of the time it is used to return the not nullable version of a nullable type.
1153 # In this case, this just remove the `nullable` notation, but the result can still contains null.
1154 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
1155 # If you really want to exclude the `null` value, then use `as_notnull`
1156 fun undecorate: MType
1157 do
1158 return self
1159 end
1160
1161 # Returns the not null version of the type.
1162 # That is `self` minus the `null` value.
1163 #
1164 # For most types, this return `self`.
1165 # For formal types, this returns a special `MNotNullType`
1166 fun as_notnull: MType do return self
1167
1168 private var as_nullable_cache: nullable MType = null
1169
1170
1171 # The depth of the type seen as a tree.
1172 #
1173 # * A -> 1
1174 # * G[A] -> 2
1175 # * H[A, B] -> 2
1176 # * H[G[A], B] -> 3
1177 #
1178 # Formal types have a depth of 1.
1179 # Only `MClassType` and `MFormalType` nodes are counted.
1180 fun depth: Int
1181 do
1182 return 1
1183 end
1184
1185 # The length of the type seen as a tree.
1186 #
1187 # * A -> 1
1188 # * G[A] -> 2
1189 # * H[A, B] -> 3
1190 # * H[G[A], B] -> 4
1191 #
1192 # Formal types have a length of 1.
1193 # Only `MClassType` and `MFormalType` nodes are counted.
1194 fun length: Int
1195 do
1196 return 1
1197 end
1198
1199 # Compute all the classdefs inherited/imported.
1200 # The returned set contains:
1201 # * the class definitions from `mmodule` and its imported modules
1202 # * the class definitions of this type and its super-types
1203 #
1204 # This function is used mainly internally.
1205 #
1206 # REQUIRE: `not self.need_anchor`
1207 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
1208
1209 # Compute all the super-classes.
1210 # This function is used mainly internally.
1211 #
1212 # REQUIRE: `not self.need_anchor`
1213 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
1214
1215 # Compute all the declared super-types.
1216 # Super-types are returned as declared in the classdefs (verbatim).
1217 # This function is used mainly internally.
1218 #
1219 # REQUIRE: `not self.need_anchor`
1220 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
1221
1222 # Is the property in self for a given module
1223 # This method does not filter visibility or whatever
1224 #
1225 # REQUIRE: `not self.need_anchor`
1226 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
1227 do
1228 assert not self.need_anchor
1229 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
1230 end
1231 end
1232
1233 # A type based on a class.
1234 #
1235 # `MClassType` have properties (see `has_mproperty`).
1236 class MClassType
1237 super MType
1238
1239 # The associated class
1240 var mclass: MClass
1241
1242 redef fun model do return self.mclass.intro_mmodule.model
1243
1244 redef fun location do return mclass.location
1245
1246 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1247
1248 # The formal arguments of the type
1249 # ENSURE: `result.length == self.mclass.arity`
1250 var arguments = new Array[MType]
1251
1252 redef fun to_s do return mclass.to_s
1253
1254 redef fun full_name do return mclass.full_name
1255
1256 redef fun c_name do return mclass.c_name
1257
1258 redef fun need_anchor do return false
1259
1260 redef fun anchor_to(mmodule, anchor): MClassType
1261 do
1262 return super.as(MClassType)
1263 end
1264
1265 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1266
1267 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1268
1269 redef fun collect_mclassdefs(mmodule)
1270 do
1271 assert not self.need_anchor
1272 var cache = self.collect_mclassdefs_cache
1273 if not cache.has_key(mmodule) then
1274 self.collect_things(mmodule)
1275 end
1276 return cache[mmodule]
1277 end
1278
1279 redef fun collect_mclasses(mmodule)
1280 do
1281 if collect_mclasses_last_module == mmodule then return collect_mclasses_last_module_cache
1282 assert not self.need_anchor
1283 var cache = self.collect_mclasses_cache
1284 if not cache.has_key(mmodule) then
1285 self.collect_things(mmodule)
1286 end
1287 var res = cache[mmodule]
1288 collect_mclasses_last_module = mmodule
1289 collect_mclasses_last_module_cache = res
1290 return res
1291 end
1292
1293 private var collect_mclasses_last_module: nullable MModule = null
1294 private var collect_mclasses_last_module_cache: Set[MClass] is noinit
1295
1296 redef fun collect_mtypes(mmodule)
1297 do
1298 assert not self.need_anchor
1299 var cache = self.collect_mtypes_cache
1300 if not cache.has_key(mmodule) then
1301 self.collect_things(mmodule)
1302 end
1303 return cache[mmodule]
1304 end
1305
1306 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1307 private fun collect_things(mmodule: MModule)
1308 do
1309 var res = new HashSet[MClassDef]
1310 var seen = new HashSet[MClass]
1311 var types = new HashSet[MClassType]
1312 seen.add(self.mclass)
1313 var todo = [self.mclass]
1314 while not todo.is_empty do
1315 var mclass = todo.pop
1316 #print "process {mclass}"
1317 for mclassdef in mclass.mclassdefs do
1318 if not mmodule.in_importation <= mclassdef.mmodule then continue
1319 #print " process {mclassdef}"
1320 res.add(mclassdef)
1321 for supertype in mclassdef.supertypes do
1322 types.add(supertype)
1323 var superclass = supertype.mclass
1324 if seen.has(superclass) then continue
1325 #print " add {superclass}"
1326 seen.add(superclass)
1327 todo.add(superclass)
1328 end
1329 end
1330 end
1331 collect_mclassdefs_cache[mmodule] = res
1332 collect_mclasses_cache[mmodule] = seen
1333 collect_mtypes_cache[mmodule] = types
1334 end
1335
1336 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1337 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1338 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1339
1340 redef fun mdoc_or_fallback do return mclass.mdoc_or_fallback
1341 end
1342
1343 # A type based on a generic class.
1344 # A generic type a just a class with additional formal generic arguments.
1345 class MGenericType
1346 super MClassType
1347
1348 redef var arguments
1349
1350 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1351
1352 init
1353 do
1354 assert self.mclass.arity == arguments.length
1355
1356 self.need_anchor = false
1357 for t in arguments do
1358 if t.need_anchor then
1359 self.need_anchor = true
1360 break
1361 end
1362 end
1363
1364 self.to_s = "{mclass}[{arguments.join(", ")}]"
1365 end
1366
1367 # The short-name of the class, then the full-name of each type arguments within brackets.
1368 # Example: `"Map[String, List[Int]]"`
1369 redef var to_s is noinit
1370
1371 # The full-name of the class, then the full-name of each type arguments within brackets.
1372 # Example: `"core::Map[core::String, core::List[core::Int]]"`
1373 redef var full_name is lazy do
1374 var args = new Array[String]
1375 for t in arguments do
1376 args.add t.full_name
1377 end
1378 return "{mclass.full_name}[{args.join(", ")}]"
1379 end
1380
1381 redef var c_name is lazy do
1382 var res = mclass.c_name
1383 # Note: because the arity is known, a prefix notation is enough
1384 for t in arguments do
1385 res += "__"
1386 res += t.c_name
1387 end
1388 return res.to_s
1389 end
1390
1391 redef var need_anchor is noinit
1392
1393 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1394 do
1395 if not need_anchor then return self
1396 assert can_resolve_for(mtype, anchor, mmodule)
1397 var types = new Array[MType]
1398 for t in arguments do
1399 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1400 end
1401 return mclass.get_mtype(types)
1402 end
1403
1404 redef fun can_resolve_for(mtype, anchor, mmodule)
1405 do
1406 if not need_anchor then return true
1407 for t in arguments do
1408 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1409 end
1410 return true
1411 end
1412
1413 redef fun is_ok
1414 do
1415 for t in arguments do if not t.is_ok then return false
1416 return super
1417 end
1418
1419 redef fun is_legal_in(mmodule, anchor)
1420 do
1421 var mtype
1422 if need_anchor then
1423 assert anchor != null
1424 mtype = anchor_to(mmodule, anchor)
1425 else
1426 mtype = self
1427 end
1428 if not mtype.is_ok then return false
1429 return mtype.is_subtype(mmodule, null, mtype.mclass.intro.bound_mtype)
1430 end
1431
1432 redef fun depth
1433 do
1434 var dmax = 0
1435 for a in self.arguments do
1436 var d = a.depth
1437 if d > dmax then dmax = d
1438 end
1439 return dmax + 1
1440 end
1441
1442 redef fun length
1443 do
1444 var res = 1
1445 for a in self.arguments do
1446 res += a.length
1447 end
1448 return res
1449 end
1450 end
1451
1452 # A formal type (either virtual of parametric).
1453 #
1454 # The main issue with formal types is that they offer very little information on their own
1455 # and need a context (anchor and mmodule) to be useful.
1456 abstract class MFormalType
1457 super MType
1458
1459 redef var as_notnull = new MNotNullType(self) is lazy
1460 end
1461
1462 # A virtual formal type.
1463 class MVirtualType
1464 super MFormalType
1465
1466 # The property associated with the type.
1467 # Its the definitions of this property that determine the bound or the virtual type.
1468 var mproperty: MVirtualTypeProp
1469
1470 redef fun location do return mproperty.location
1471
1472 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1473
1474 redef fun lookup_bound(mmodule, resolved_receiver)
1475 do
1476 # There is two possible invalid cases: the vt does not exists in resolved_receiver or the bound is broken
1477 if not resolved_receiver.has_mproperty(mmodule, mproperty) then return new MErrorType(model)
1478 return lookup_single_definition(mmodule, resolved_receiver).bound or else new MErrorType(model)
1479 end
1480
1481 private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef
1482 do
1483 assert not resolved_receiver.need_anchor
1484 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1485 if props.is_empty then
1486 abort
1487 else if props.length == 1 then
1488 return props.first
1489 end
1490 var types = new ArraySet[MType]
1491 var res = props.first
1492 for p in props do
1493 types.add(p.bound.as(not null))
1494 if not res.is_fixed then res = p
1495 end
1496 if types.length == 1 then
1497 return res
1498 end
1499 abort
1500 end
1501
1502 # A VT is fixed when:
1503 # * the VT is (re-)defined with the annotation `is fixed`
1504 # * the receiver is an enum class since there is no subtype that can
1505 # redefine this virtual type
1506 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1507 do
1508 assert not resolved_receiver.need_anchor
1509 resolved_receiver = resolved_receiver.undecorate
1510 assert resolved_receiver isa MClassType # It is the only remaining type
1511
1512 var prop = lookup_single_definition(mmodule, resolved_receiver)
1513 var res = prop.bound
1514 if res == null then return new MErrorType(model)
1515
1516 # Recursively lookup the fixed result
1517 res = res.lookup_fixed(mmodule, resolved_receiver)
1518
1519 # For a fixed VT, return the resolved bound
1520 if prop.is_fixed then return res
1521
1522 # For a enum receiver return the bound
1523 if resolved_receiver.mclass.kind == enum_kind then return res
1524
1525 return self
1526 end
1527
1528 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1529 do
1530 if not cleanup_virtual then return self
1531 assert can_resolve_for(mtype, anchor, mmodule)
1532
1533 if mproperty.is_selftype then return mtype
1534
1535 # self is a virtual type declared (or inherited) in mtype
1536 # The point of the function it to get the bound of the virtual type that make sense for mtype
1537 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1538 #print "{class_name}: {self}/{mtype}/{anchor}?"
1539 var resolved_receiver
1540 if mtype.need_anchor then
1541 assert anchor != null
1542 resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true)
1543 else
1544 resolved_receiver = mtype
1545 end
1546 # Now, we can get the bound
1547 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1548 # The bound is exactly as declared in the "type" property, so we must resolve it again
1549 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1550
1551 return res
1552 end
1553
1554 redef fun can_resolve_for(mtype, anchor, mmodule)
1555 do
1556 if mtype.need_anchor then
1557 assert anchor != null
1558 mtype = mtype.anchor_to(mmodule, anchor)
1559 end
1560 return mtype.has_mproperty(mmodule, mproperty)
1561 end
1562
1563 redef fun to_s do return self.mproperty.to_s
1564
1565 redef fun full_name do return self.mproperty.full_name
1566
1567 redef fun c_name do return self.mproperty.c_name
1568
1569 redef fun mdoc_or_fallback do return mproperty.mdoc_or_fallback
1570 end
1571
1572 # The type associated to a formal parameter generic type of a class
1573 #
1574 # Each parameter type is associated to a specific class.
1575 # It means that all refinements of a same class "share" the parameter type,
1576 # but that a generic subclass has its own parameter types.
1577 #
1578 # However, in the sense of the meta-model, a parameter type of a class is
1579 # a valid type in a subclass. The "in the sense of the meta-model" is
1580 # important because, in the Nit language, the programmer cannot refers
1581 # directly to the parameter types of the super-classes.
1582 #
1583 # Example:
1584 #
1585 # class A[E]
1586 # fun e: E is abstract
1587 # end
1588 # class B[F]
1589 # super A[Array[F]]
1590 # end
1591 #
1592 # In the class definition B[F], `F` is a valid type but `E` is not.
1593 # However, `self.e` is a valid method call, and the signature of `e` is
1594 # declared `e: E`.
1595 #
1596 # Note that parameter types are shared among class refinements.
1597 # Therefore parameter only have an internal name (see `to_s` for details).
1598 class MParameterType
1599 super MFormalType
1600
1601 # The generic class where the parameter belong
1602 var mclass: MClass
1603
1604 redef fun model do return self.mclass.intro_mmodule.model
1605
1606 redef fun location do return mclass.location
1607
1608 # The position of the parameter (0 for the first parameter)
1609 # FIXME: is `position` a better name?
1610 var rank: Int
1611
1612 redef var name
1613
1614 redef fun to_s do return name
1615
1616 redef var full_name is lazy do return "{mclass.full_name}::{name}"
1617
1618 redef var c_name is lazy do return mclass.c_name + "__" + "#{name}".to_cmangle
1619
1620 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1621 do
1622 assert not resolved_receiver.need_anchor
1623 resolved_receiver = resolved_receiver.undecorate
1624 assert resolved_receiver isa MClassType # It is the only remaining type
1625 var goalclass = self.mclass
1626 if resolved_receiver.mclass == goalclass then
1627 return resolved_receiver.arguments[self.rank]
1628 end
1629 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1630 for t in supertypes do
1631 if t.mclass == goalclass then
1632 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1633 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1634 var res = t.arguments[self.rank]
1635 return res
1636 end
1637 end
1638 # Cannot found `self` in `resolved_receiver`
1639 return new MErrorType(model)
1640 end
1641
1642 # A PT is fixed when:
1643 # * The `resolved_receiver` is a subclass of `self.mclass`,
1644 # so it is necessarily fixed in a `super` clause, either with a normal type
1645 # or with another PT.
1646 # See `resolve_for` for examples about related issues.
1647 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1648 do
1649 assert not resolved_receiver.need_anchor
1650 resolved_receiver = resolved_receiver.undecorate
1651 assert resolved_receiver isa MClassType # It is the only remaining type
1652 var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false)
1653 return res
1654 end
1655
1656 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1657 do
1658 assert can_resolve_for(mtype, anchor, mmodule)
1659 #print "{class_name}: {self}/{mtype}/{anchor}?"
1660
1661 if mtype isa MGenericType and mtype.mclass == self.mclass then
1662 return mtype.arguments[self.rank]
1663 end
1664
1665 # self is a parameter type of mtype (or of a super-class of mtype)
1666 # The point of the function it to get the bound of the virtual type that make sense for mtype
1667 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1668 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1669 var resolved_receiver
1670 if mtype.need_anchor then
1671 assert anchor != null
1672 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1673 else
1674 resolved_receiver = mtype
1675 end
1676 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1677 if resolved_receiver isa MParameterType then
1678 assert anchor != null
1679 assert resolved_receiver.mclass == anchor.mclass
1680 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1681 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1682 end
1683 assert resolved_receiver isa MClassType # It is the only remaining type
1684
1685 # Eh! The parameter is in the current class.
1686 # So we return the corresponding argument, no mater what!
1687 if resolved_receiver.mclass == self.mclass then
1688 var res = resolved_receiver.arguments[self.rank]
1689 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1690 return res
1691 end
1692
1693 if resolved_receiver.need_anchor then
1694 assert anchor != null
1695 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1696 end
1697 # Now, we can get the bound
1698 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1699 # The bound is exactly as declared in the "type" property, so we must resolve it again
1700 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1701
1702 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1703
1704 return res
1705 end
1706
1707 redef fun can_resolve_for(mtype, anchor, mmodule)
1708 do
1709 if mtype.need_anchor then
1710 assert anchor != null
1711 mtype = mtype.anchor_to(mmodule, anchor)
1712 end
1713 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1714 end
1715 end
1716
1717 # A type that decorates another type.
1718 #
1719 # The point of this class is to provide a common implementation of sevices that just forward to the original type.
1720 # Specific decorator are expected to redefine (or to extend) the default implementation as this suit them.
1721 abstract class MProxyType
1722 super MType
1723 # The base type
1724 var mtype: MType
1725
1726 redef fun location do return mtype.location
1727
1728 redef fun model do return self.mtype.model
1729 redef fun need_anchor do return mtype.need_anchor
1730 redef fun as_nullable do return mtype.as_nullable
1731 redef fun as_notnull do return mtype.as_notnull
1732 redef fun undecorate do return mtype.undecorate
1733 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1734 do
1735 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1736 return res
1737 end
1738
1739 redef fun can_resolve_for(mtype, anchor, mmodule)
1740 do
1741 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1742 end
1743
1744 redef fun is_ok do return mtype.is_ok
1745
1746 redef fun is_legal_in(mmodule, anchor) do return mtype.is_legal_in(mmodule, anchor)
1747
1748 redef fun lookup_fixed(mmodule, resolved_receiver)
1749 do
1750 var t = mtype.lookup_fixed(mmodule, resolved_receiver)
1751 return t
1752 end
1753
1754 redef fun depth do return self.mtype.depth
1755
1756 redef fun length do return self.mtype.length
1757
1758 redef fun collect_mclassdefs(mmodule)
1759 do
1760 assert not self.need_anchor
1761 return self.mtype.collect_mclassdefs(mmodule)
1762 end
1763
1764 redef fun collect_mclasses(mmodule)
1765 do
1766 assert not self.need_anchor
1767 return self.mtype.collect_mclasses(mmodule)
1768 end
1769
1770 redef fun collect_mtypes(mmodule)
1771 do
1772 assert not self.need_anchor
1773 return self.mtype.collect_mtypes(mmodule)
1774 end
1775 end
1776
1777 # A type prefixed with "nullable"
1778 class MNullableType
1779 super MProxyType
1780
1781 init
1782 do
1783 self.to_s = "nullable {mtype}"
1784 end
1785
1786 redef var to_s is noinit
1787
1788 redef var full_name is lazy do return "nullable {mtype.full_name}"
1789
1790 redef var c_name is lazy do return "nullable__{mtype.c_name}"
1791
1792 redef fun as_nullable do return self
1793 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1794 do
1795 var res = super
1796 return res.as_nullable
1797 end
1798
1799 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable`
1800 redef fun lookup_fixed(mmodule, resolved_receiver)
1801 do
1802 var t = super
1803 if t == mtype then return self
1804 return t.as_nullable
1805 end
1806 end
1807
1808 # A non-null version of a formal type.
1809 #
1810 # When a formal type in bounded to a nullable type, this is the type of the not null version of it.
1811 class MNotNullType
1812 super MProxyType
1813
1814 redef fun to_s do return "not null {mtype}"
1815 redef var full_name is lazy do return "not null {mtype.full_name}"
1816 redef var c_name is lazy do return "notnull__{mtype.c_name}"
1817
1818 redef fun as_notnull do return self
1819
1820 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1821 do
1822 var res = super
1823 return res.as_notnull
1824 end
1825
1826 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_notnull`
1827 redef fun lookup_fixed(mmodule, resolved_receiver)
1828 do
1829 var t = super
1830 if t == mtype then return self
1831 return t.as_notnull
1832 end
1833 end
1834
1835 # The type of the only value null
1836 #
1837 # The is only one null type per model, see `MModel::null_type`.
1838 class MNullType
1839 super MType
1840 redef var model
1841 redef fun to_s do return "null"
1842 redef fun full_name do return "null"
1843 redef fun c_name do return "null"
1844 redef fun as_nullable do return self
1845
1846 redef var as_notnull: MBottomType = new MBottomType(model) is lazy
1847 redef fun need_anchor do return false
1848 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1849 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1850
1851 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1852
1853 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1854
1855 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1856 end
1857
1858 # The special universal most specific type.
1859 #
1860 # This type is intended to be only used internally for type computation or analysis and should not be exposed to the user.
1861 # The bottom type can de used to denote things that are dead (no instance).
1862 #
1863 # Semantically it is the singleton `null.as_notnull`.
1864 # Is also means that `self.as_nullable == null`.
1865 class MBottomType
1866 super MType
1867 redef var model
1868 redef fun to_s do return "bottom"
1869 redef fun full_name do return "bottom"
1870 redef fun c_name do return "bottom"
1871 redef fun as_nullable do return model.null_type
1872 redef fun as_notnull do return self
1873 redef fun need_anchor do return false
1874 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1875 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1876
1877 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1878
1879 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1880
1881 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1882 end
1883
1884 # A special type used as a silent error marker when building types.
1885 #
1886 # This type is intended to be only used internally for type operation and should not be exposed to the user.
1887 # The error type can de used to denote things that are conflicting or inconsistent.
1888 #
1889 # Some methods on types can return a `MErrorType` to denote a broken or a conflicting result.
1890 # Use `is_ok` to check if a type is (or contains) a `MErrorType` .
1891 class MErrorType
1892 super MType
1893 redef var model
1894 redef fun to_s do return "error"
1895 redef fun full_name do return "error"
1896 redef fun c_name do return "error"
1897 redef fun need_anchor do return false
1898 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1899 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1900 redef fun is_ok do return false
1901
1902 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1903
1904 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1905
1906 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1907 end
1908
1909 # A signature of a method
1910 class MSignature
1911 super MType
1912
1913 # The each parameter (in order)
1914 var mparameters: Array[MParameter]
1915
1916 # Returns a parameter named `name`, if any.
1917 fun mparameter_by_name(name: String): nullable MParameter
1918 do
1919 for p in mparameters do
1920 if p.name == name then return p
1921 end
1922 return null
1923 end
1924
1925 # The return type (null for a procedure)
1926 var return_mtype: nullable MType
1927
1928 redef fun depth
1929 do
1930 var dmax = 0
1931 var t = self.return_mtype
1932 if t != null then dmax = t.depth
1933 for p in mparameters do
1934 var d = p.mtype.depth
1935 if d > dmax then dmax = d
1936 end
1937 return dmax + 1
1938 end
1939
1940 redef fun length
1941 do
1942 var res = 1
1943 var t = self.return_mtype
1944 if t != null then res += t.length
1945 for p in mparameters do
1946 res += p.mtype.length
1947 end
1948 return res
1949 end
1950
1951 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1952 init
1953 do
1954 var vararg_rank = -1
1955 for i in [0..mparameters.length[ do
1956 var parameter = mparameters[i]
1957 if parameter.is_vararg then
1958 if vararg_rank >= 0 then
1959 # If there is more than one vararg,
1960 # consider that additional arguments cannot be mapped.
1961 vararg_rank = -1
1962 break
1963 end
1964 vararg_rank = i
1965 end
1966 end
1967 self.vararg_rank = vararg_rank
1968 end
1969
1970 # The rank of the main ellipsis (`...`) for vararg (starting from 0).
1971 # value is -1 if there is no vararg.
1972 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1973 #
1974 # From a model POV, a signature can contain more than one vararg parameter,
1975 # the `vararg_rank` just indicates the one that will receive the additional arguments.
1976 # However, currently, if there is more that one vararg parameter, no one will be the main one,
1977 # and additional arguments will be refused.
1978 var vararg_rank: Int is noinit
1979
1980 # The number of parameters
1981 fun arity: Int do return mparameters.length
1982
1983 redef fun to_s
1984 do
1985 var b = new FlatBuffer
1986 if not mparameters.is_empty then
1987 b.append("(")
1988 var last_mtype = null
1989 for i in [0..mparameters.length[ do
1990 var mparameter = mparameters[i]
1991
1992 # Group types that are common to contiguous parameters
1993 if mparameter.mtype != last_mtype and last_mtype != null then
1994 b.append(": ")
1995 b.append(last_mtype.to_s)
1996 end
1997
1998 if i > 0 then b.append(", ")
1999 b.append(mparameter.name)
2000
2001 if mparameter.is_vararg then
2002 b.append(": ")
2003 b.append(mparameter.mtype.to_s)
2004 b.append("...")
2005 last_mtype = null
2006 else
2007 last_mtype = mparameter.mtype
2008 end
2009 end
2010
2011 if last_mtype != null then
2012 b.append(": ")
2013 b.append(last_mtype.to_s)
2014 end
2015
2016 b.append(")")
2017 end
2018 var ret = self.return_mtype
2019 if ret != null then
2020 b.append(": ")
2021 b.append(ret.to_s)
2022 end
2023 return b.to_s
2024 end
2025
2026 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
2027 do
2028 var params = new Array[MParameter]
2029 for p in self.mparameters do
2030 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
2031 end
2032 var ret = self.return_mtype
2033 if ret != null then
2034 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
2035 end
2036 var res = new MSignature(params, ret)
2037 return res
2038 end
2039 end
2040
2041 # A parameter in a signature
2042 class MParameter
2043 super MEntity
2044
2045 # The name of the parameter
2046 redef var name
2047
2048 # The static type of the parameter
2049 var mtype: MType
2050
2051 # Is the parameter a vararg?
2052 var is_vararg: Bool
2053
2054 redef fun to_s
2055 do
2056 if is_vararg then
2057 return "{name}: {mtype}..."
2058 else
2059 return "{name}: {mtype}"
2060 end
2061 end
2062
2063 # Returns a new parameter with the `mtype` resolved.
2064 # See `MType::resolve_for` for details.
2065 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
2066 do
2067 if not self.mtype.need_anchor then return self
2068 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
2069 var res = new MParameter(self.name, newtype, self.is_vararg)
2070 return res
2071 end
2072
2073 redef fun model do return mtype.model
2074 end
2075
2076 # A service (global property) that generalize method, attribute, etc.
2077 #
2078 # `MProperty` are global to the model; it means that a `MProperty` is not bound
2079 # to a specific `MModule` nor a specific `MClass`.
2080 #
2081 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
2082 # and the other in subclasses and in refinements.
2083 #
2084 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
2085 # of any dynamic type).
2086 # For instance, a call site "x.foo" is associated to a `MProperty`.
2087 abstract class MProperty
2088 super MEntity
2089
2090 # The associated MPropDef subclass.
2091 # The two specialization hierarchy are symmetric.
2092 type MPROPDEF: MPropDef
2093
2094 # The classdef that introduce the property
2095 # While a property is not bound to a specific module, or class,
2096 # the introducing mclassdef is used for naming and visibility
2097 var intro_mclassdef: MClassDef
2098
2099 # The (short) name of the property
2100 redef var name
2101
2102 redef var location
2103
2104 redef fun mdoc_or_fallback
2105 do
2106 # Don’t use `intro.mdoc_or_fallback` because it would create an infinite
2107 # recursion.
2108 return intro.mdoc
2109 end
2110
2111 # The canonical name of the property.
2112 #
2113 # It is currently the short-`name` prefixed by the short-name of the class and the full-name of the module.
2114 # Example: "my_package::my_module::MyClass::my_method"
2115 #
2116 # The full-name of the module is needed because two distinct modules of the same package can
2117 # still refine the same class and introduce homonym properties.
2118 #
2119 # For public properties not introduced by refinement, the module name is not used.
2120 #
2121 # Example: `my_package::MyClass::My_method`
2122 redef var full_name is lazy do
2123 if intro_mclassdef.is_intro then
2124 return "{intro_mclassdef.mmodule.namespace_for(visibility)}::{intro_mclassdef.mclass.name}::{name}"
2125 else
2126 return "{intro_mclassdef.mmodule.full_name}::{intro_mclassdef.mclass.name}::{name}"
2127 end
2128 end
2129
2130 redef var c_name is lazy do
2131 # FIXME use `namespace_for`
2132 return "{intro_mclassdef.mmodule.c_name}__{intro_mclassdef.mclass.name.to_cmangle}__{name.to_cmangle}"
2133 end
2134
2135 # The visibility of the property
2136 redef var visibility
2137
2138 # Is the property usable as an initializer?
2139 var is_autoinit = false is writable
2140
2141 init
2142 do
2143 intro_mclassdef.intro_mproperties.add(self)
2144 var model = intro_mclassdef.mmodule.model
2145 model.mproperties_by_name.add_one(name, self)
2146 model.mproperties.add(self)
2147 end
2148
2149 # All definitions of the property.
2150 # The first is the introduction,
2151 # The other are redefinitions (in refinements and in subclasses)
2152 var mpropdefs = new Array[MPROPDEF]
2153
2154 # The definition that introduces the property.
2155 #
2156 # Warning: such a definition may not exist in the early life of the object.
2157 # In this case, the method will abort.
2158 var intro: MPROPDEF is noinit
2159
2160 redef fun model do return intro.model
2161
2162 # Alias for `name`
2163 redef fun to_s do return name
2164
2165 # Return the most specific property definitions defined or inherited by a type.
2166 # The selection knows that refinement is stronger than specialization;
2167 # however, in case of conflict more than one property are returned.
2168 # If mtype does not know mproperty then an empty array is returned.
2169 #
2170 # If you want the really most specific property, then look at `lookup_first_definition`
2171 #
2172 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2173 # ENSURE: `not mtype.has_mproperty(mmodule, self) == result.is_empty`
2174 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2175 do
2176 assert not mtype.need_anchor
2177 mtype = mtype.undecorate
2178
2179 var cache = self.lookup_definitions_cache[mmodule, mtype]
2180 if cache != null then return cache
2181
2182 #print "select prop {mproperty} for {mtype} in {self}"
2183 # First, select all candidates
2184 var candidates = new Array[MPROPDEF]
2185
2186 # Here we have two strategies: iterate propdefs or iterate classdefs.
2187 var mpropdefs = self.mpropdefs
2188 if mpropdefs.length <= 1 or mpropdefs.length < mtype.collect_mclassdefs(mmodule).length then
2189 # Iterate on all definitions of `self`, keep only those inherited by `mtype` in `mmodule`
2190 for mpropdef in mpropdefs do
2191 # If the definition is not imported by the module, then skip
2192 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2193 # If the definition is not inherited by the type, then skip
2194 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2195 # Else, we keep it
2196 candidates.add(mpropdef)
2197 end
2198 else
2199 # Iterate on all super-classdefs of `mtype`, keep only the definitions of `self`, if any.
2200 for mclassdef in mtype.collect_mclassdefs(mmodule) do
2201 var p = mclassdef.mpropdefs_by_property.get_or_null(self)
2202 if p != null then candidates.add p
2203 end
2204 end
2205
2206 # Fast track for only one candidate
2207 if candidates.length <= 1 then
2208 self.lookup_definitions_cache[mmodule, mtype] = candidates
2209 return candidates
2210 end
2211
2212 # Second, filter the most specific ones
2213 return select_most_specific(mmodule, candidates)
2214 end
2215
2216 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2217
2218 # Return the most specific property definitions inherited by a type.
2219 # The selection knows that refinement is stronger than specialization;
2220 # however, in case of conflict more than one property are returned.
2221 # If mtype does not know mproperty then an empty array is returned.
2222 #
2223 # If you want the really most specific property, then look at `lookup_next_definition`
2224 #
2225 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2226 # ENSURE: `not mtype.has_mproperty(mmodule, self) implies result.is_empty`
2227 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2228 do
2229 assert not mtype.need_anchor
2230 mtype = mtype.undecorate
2231
2232 # First, select all candidates
2233 var candidates = new Array[MPROPDEF]
2234 for mpropdef in self.mpropdefs do
2235 # If the definition is not imported by the module, then skip
2236 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2237 # If the definition is not inherited by the type, then skip
2238 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2239 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
2240 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
2241 # Else, we keep it
2242 candidates.add(mpropdef)
2243 end
2244 # Fast track for only one candidate
2245 if candidates.length <= 1 then return candidates
2246
2247 # Second, filter the most specific ones
2248 return select_most_specific(mmodule, candidates)
2249 end
2250
2251 # Return an array containing olny the most specific property definitions
2252 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
2253 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
2254 do
2255 var res = new Array[MPROPDEF]
2256 for pd1 in candidates do
2257 var cd1 = pd1.mclassdef
2258 var c1 = cd1.mclass
2259 var keep = true
2260 for pd2 in candidates do
2261 if pd2 == pd1 then continue # do not compare with self!
2262 var cd2 = pd2.mclassdef
2263 var c2 = cd2.mclass
2264 if c2.mclass_type == c1.mclass_type then
2265 if cd2.mmodule.in_importation < cd1.mmodule then
2266 # cd2 refines cd1; therefore we skip pd1
2267 keep = false
2268 break
2269 end
2270 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
2271 # cd2 < cd1; therefore we skip pd1
2272 keep = false
2273 break
2274 end
2275 end
2276 if keep then
2277 res.add(pd1)
2278 end
2279 end
2280 if res.is_empty then
2281 print_error "All lost! {candidates.join(", ")}"
2282 # FIXME: should be abort!
2283 end
2284 return res
2285 end
2286
2287 # Return the most specific definition in the linearization of `mtype`.
2288 #
2289 # If you want to know the next properties in the linearization,
2290 # look at `MPropDef::lookup_next_definition`.
2291 #
2292 # FIXME: the linearization is still unspecified
2293 #
2294 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2295 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2296 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
2297 do
2298 return lookup_all_definitions(mmodule, mtype).first
2299 end
2300
2301 # Return all definitions in a linearization order
2302 # Most specific first, most general last
2303 #
2304 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2305 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2306 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2307 do
2308 mtype = mtype.undecorate
2309
2310 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
2311 if cache != null then return cache
2312
2313 assert not mtype.need_anchor
2314 assert mtype.has_mproperty(mmodule, self)
2315
2316 #print "select prop {mproperty} for {mtype} in {self}"
2317 # First, select all candidates
2318 var candidates = new Array[MPROPDEF]
2319 for mpropdef in self.mpropdefs do
2320 # If the definition is not imported by the module, then skip
2321 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2322 # If the definition is not inherited by the type, then skip
2323 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2324 # Else, we keep it
2325 candidates.add(mpropdef)
2326 end
2327 # Fast track for only one candidate
2328 if candidates.length <= 1 then
2329 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2330 return candidates
2331 end
2332
2333 mmodule.linearize_mpropdefs(candidates)
2334 candidates = candidates.reversed
2335 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2336 return candidates
2337 end
2338
2339 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2340
2341 redef var is_test is lazy do return intro.is_test
2342
2343 # Does self have the `before` annotation?
2344 var is_before: Bool is lazy do return intro.is_before
2345
2346 # Does self have the `before_all` annotation?
2347 var is_before_all: Bool is lazy do return intro.is_before_all
2348
2349 # Does self have the `after` annotation?
2350 var is_after: Bool is lazy do return intro.is_after
2351
2352 # Does self have the `after_all` annotation?
2353 var is_after_all: Bool is lazy do return intro.is_after_all
2354 end
2355
2356 # A global method
2357 class MMethod
2358 super MProperty
2359
2360 redef type MPROPDEF: MMethodDef
2361
2362 # Is the property defined at the top_level of the module?
2363 # Currently such a property are stored in `Object`
2364 var is_toplevel: Bool = false is writable
2365
2366 # Is the property a constructor?
2367 # Warning, this property can be inherited by subclasses with or without being a constructor
2368 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
2369 var is_init: Bool = false is writable
2370
2371 # The constructor is a (the) root init with empty signature but a set of initializers
2372 var is_root_init: Bool = false is writable
2373
2374 # Is the property a 'new' constructor?
2375 var is_new: Bool = false is writable
2376
2377 # Is the property a legal constructor for a given class?
2378 # As usual, visibility is not considered.
2379 # FIXME not implemented
2380 fun is_init_for(mclass: MClass): Bool
2381 do
2382 return self.is_init
2383 end
2384
2385 # A specific method that is safe to call on null.
2386 # Currently, only `==`, `!=` and `is_same_instance` are safe
2387 fun is_null_safe: Bool do return name == "==" or name == "!=" or name == "is_same_instance"
2388
2389 # Is this method a getter (auto or not)?
2390 #
2391 # See `getter_for`.
2392 fun is_getter: Bool do return getter_for != null
2393
2394 # The attribute this getter is for
2395 #
2396 # Return `null` is this method is not a getter.
2397 var getter_for: nullable MAttribute = null is writable
2398
2399 # Is this method a setter (auto or not)?
2400 #
2401 # See `setter_for`.
2402 fun is_setter: Bool do return setter_for != null
2403
2404 # The attribute this setter is for
2405 #
2406 # Return `null` is this method is not a setter.
2407 var setter_for: nullable MAttribute = null is writable
2408
2409 # Is this method a getter or a setter?
2410 fun is_accessor: Bool do return is_getter or is_setter
2411 end
2412
2413 # A global attribute
2414 class MAttribute
2415 super MProperty
2416
2417 redef type MPROPDEF: MAttributeDef
2418
2419 # Does this attribute have a getter (auto or not)?
2420 #
2421 # See `getter`.
2422 fun has_getter: Bool do return getter != null
2423
2424 # The getter of this attribute (if any)
2425 var getter: nullable MProperty = null is writable
2426
2427 # Does this attribute have a setter (auto or not)?
2428 #
2429 # See `setter`.
2430 fun has_setter: Bool do return setter != null
2431
2432 # The setter of this attribute (if any)
2433 var setter: nullable MProperty = null is writable
2434 end
2435
2436 # A global virtual type
2437 class MVirtualTypeProp
2438 super MProperty
2439
2440 redef type MPROPDEF: MVirtualTypeDef
2441
2442 # The formal type associated to the virtual type property
2443 var mvirtualtype = new MVirtualType(self)
2444
2445 # Is `self` the special virtual type `SELF`?
2446 var is_selftype: Bool is lazy do return name == "SELF"
2447 end
2448
2449 # A definition of a property (local property)
2450 #
2451 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
2452 # specific class definition (which belong to a specific module)
2453 abstract class MPropDef
2454 super MEntity
2455
2456 # The associated `MProperty` subclass.
2457 # the two specialization hierarchy are symmetric
2458 type MPROPERTY: MProperty
2459
2460 # Self class
2461 type MPROPDEF: MPropDef
2462
2463 # The class definition where the property definition is
2464 var mclassdef: MClassDef
2465
2466 # The associated global property
2467 var mproperty: MPROPERTY
2468
2469 redef var location
2470
2471 redef fun visibility do return mproperty.visibility
2472
2473 init
2474 do
2475 mclassdef.mpropdefs.add(self)
2476 mproperty.mpropdefs.add(self)
2477 mclassdef.mpropdefs_by_property[mproperty] = self
2478 if mproperty.intro_mclassdef == mclassdef then
2479 assert not isset mproperty._intro
2480 mproperty.intro = self
2481 end
2482 self.to_s = "{mclassdef}${mproperty}"
2483 end
2484
2485 # Actually the name of the `mproperty`
2486 redef fun name do return mproperty.name
2487
2488 # The full-name of mpropdefs combine the information about the `classdef` and the `mproperty`.
2489 #
2490 # Therefore the combination of identifiers is awful,
2491 # the worst case being
2492 #
2493 # * a property "p::m::A::x"
2494 # * redefined in a refinement of a class "q::n::B"
2495 # * in a module "r::o"
2496 # * so "r::o$q::n::B$p::m::A::x"
2497 #
2498 # Fortunately, the full-name is simplified when entities are repeated.
2499 # For the previous case, the simplest form is "p$A$x".
2500 redef var full_name is lazy do
2501 var res = new FlatBuffer
2502
2503 # The first part is the mclassdef. Worst case is "r::o$q::n::B"
2504 res.append mclassdef.full_name
2505
2506 res.append "$"
2507
2508 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2509 # intro are unambiguous in a class
2510 res.append name
2511 else
2512 # Just try to simplify each part
2513 if mclassdef.mmodule.mpackage != mproperty.intro_mclassdef.mmodule.mpackage then
2514 # precise "p::m" only if "p" != "r"
2515 res.append mproperty.intro_mclassdef.mmodule.namespace_for(mproperty.visibility)
2516 res.append "::"
2517 else if mproperty.visibility <= private_visibility then
2518 # Same package ("p"=="q"), but private visibility,
2519 # does the module part ("::m") need to be displayed
2520 if mclassdef.mmodule.namespace_for(mclassdef.mclass.visibility) != mproperty.intro_mclassdef.mmodule.mpackage then
2521 res.append "::"
2522 res.append mproperty.intro_mclassdef.mmodule.name
2523 res.append "::"
2524 end
2525 end
2526 # precise "B" because it is not the same class than "A"
2527 res.append mproperty.intro_mclassdef.name
2528 res.append "::"
2529 # Always use the property name "x"
2530 res.append mproperty.name
2531 end
2532 return res.to_s
2533 end
2534
2535 redef var c_name is lazy do
2536 var res = new FlatBuffer
2537 res.append mclassdef.c_name
2538 res.append "___"
2539 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2540 res.append name.to_cmangle
2541 else
2542 if mclassdef.mmodule != mproperty.intro_mclassdef.mmodule then
2543 res.append mproperty.intro_mclassdef.mmodule.c_name
2544 res.append "__"
2545 end
2546 res.append mproperty.intro_mclassdef.name.to_cmangle
2547 res.append "__"
2548 res.append mproperty.name.to_cmangle
2549 end
2550 return res.to_s
2551 end
2552
2553 redef fun model do return mclassdef.model
2554
2555 # Internal name combining the module, the class and the property
2556 # Example: "mymodule$MyClass$mymethod"
2557 redef var to_s is noinit
2558
2559 # Is self the definition that introduce the property?
2560 fun is_intro: Bool do return isset mproperty._intro and mproperty.intro == self
2561
2562 # Return the next definition in linearization of `mtype`.
2563 #
2564 # This method is used to determine what method is called by a super.
2565 #
2566 # REQUIRE: `not mtype.need_anchor`
2567 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
2568 do
2569 assert not mtype.need_anchor
2570
2571 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
2572 var i = mpropdefs.iterator
2573 while i.is_ok and i.item != self do i.next
2574 assert has_property: i.is_ok
2575 i.next
2576 assert has_next_property: i.is_ok
2577 return i.item
2578 end
2579
2580 redef fun mdoc_or_fallback do return mdoc or else mproperty.mdoc_or_fallback
2581
2582 # Does self have the `before` annotation?
2583 var is_before = false is writable
2584
2585 # Does self have the `before_all` annotation?
2586 var is_before_all = false is writable
2587
2588 # Does self have the `after` annotation?
2589 var is_after = false is writable
2590
2591 # Does self have the `after_all` annotation?
2592 var is_after_all = false is writable
2593 end
2594
2595 # A local definition of a method
2596 class MMethodDef
2597 super MPropDef
2598
2599 redef type MPROPERTY: MMethod
2600 redef type MPROPDEF: MMethodDef
2601
2602 # The signature attached to the property definition
2603 var msignature: nullable MSignature = null is writable
2604
2605 # The signature attached to the `new` call on a root-init
2606 # This is a concatenation of the signatures of the initializers
2607 #
2608 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2609 var new_msignature: nullable MSignature = null is writable
2610
2611 # List of initialisers to call in root-inits
2612 #
2613 # They could be setters or attributes
2614 #
2615 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2616 var initializers = new Array[MProperty]
2617
2618 # Is the method definition abstract?
2619 var is_abstract: Bool = false is writable
2620
2621 # Is the method definition intern?
2622 var is_intern = false is writable
2623
2624 # Is the method definition extern?
2625 var is_extern = false is writable
2626
2627 # An optional constant value returned in functions.
2628 #
2629 # Only some specific primitife value are accepted by engines.
2630 # Is used when there is no better implementation available.
2631 #
2632 # Currently used only for the implementation of the `--define`
2633 # command-line option.
2634 # SEE: module `mixin`.
2635 var constant_value: nullable Object = null is writable
2636 end
2637
2638 # A local definition of an attribute
2639 class MAttributeDef
2640 super MPropDef
2641
2642 redef type MPROPERTY: MAttribute
2643 redef type MPROPDEF: MAttributeDef
2644
2645 # The static type of the attribute
2646 var static_mtype: nullable MType = null is writable
2647 end
2648
2649 # A local definition of a virtual type
2650 class MVirtualTypeDef
2651 super MPropDef
2652
2653 redef type MPROPERTY: MVirtualTypeProp
2654 redef type MPROPDEF: MVirtualTypeDef
2655
2656 # The bound of the virtual type
2657 var bound: nullable MType = null is writable
2658
2659 # Is the bound fixed?
2660 var is_fixed = false is writable
2661 end
2662
2663 # A kind of class.
2664 #
2665 # * `abstract_kind`
2666 # * `concrete_kind`
2667 # * `interface_kind`
2668 # * `enum_kind`
2669 # * `extern_kind`
2670 #
2671 # Note this class is basically an enum.
2672 # FIXME: use a real enum once user-defined enums are available
2673 class MClassKind
2674 redef var to_s
2675
2676 # Can a class of kind `self` define a membership predicate?
2677 var can_customize_isa: Bool
2678
2679 # Can a class of kind `self` define a constructor?
2680 var can_init: Bool
2681
2682 # Is a constructor required?
2683 var need_init: Bool
2684
2685 # TODO: private init because enumeration.
2686
2687 # Can a class of kind `self` specializes a class of kind `other`?
2688 fun can_specialize(other: MClassKind): Bool
2689 do
2690 if other == interface_kind then
2691 # everybody can specialize interfaces
2692 return true
2693 else if self == interface_kind or self == enum_kind then
2694 # no other case for interfaces and enums
2695 return false
2696 else if self == subset_kind then
2697 # A subset may specialize anything, except another subset.
2698 # TODO: Allow sub-subsets once we can handle them.
2699 return other != subset_kind
2700 else if self == extern_kind then
2701 # only compatible with themselves
2702 return self == other
2703 else
2704 # assert self == abstract_kind or self == concrete_kind
2705 return other == abstract_kind or other == concrete_kind
2706 end
2707 end
2708 end
2709
2710 # The class kind `abstract`
2711 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", false, true, true)
2712 # The class kind `concrete`
2713 fun concrete_kind: MClassKind do return once new MClassKind("class", false, true, true)
2714 # The class kind `interface`
2715 fun interface_kind: MClassKind do return once new MClassKind("interface", false, true, false)
2716 # The class kind `enum`
2717 fun enum_kind: MClassKind do return once new MClassKind("enum", false, true, false)
2718 # The class kind `extern`
2719 fun extern_kind: MClassKind do return once new MClassKind("extern class", false, true, false)
2720 # The class kind `subset`
2721 fun subset_kind: MClassKind do return once new MClassKind("subset", true, false, false)
2722
2723 # A standalone pre-constructed model used to test various model-related methods.
2724 #
2725 # When instantiated, a standalone model is already filled with entities that are exposed as attributes.
2726 class ModelStandalone
2727 super Model
2728
2729 redef var location = new Location.opaque_file("ModelStandalone")
2730
2731 # The first module
2732 var mmodule0 = new MModule(self, null, "module0", location)
2733
2734 # The root Object class
2735 var mclass_o = new MClass(mmodule0, "Object", location, null, interface_kind, public_visibility)
2736
2737 # The introduction of `mclass_o`
2738 var mclassdef_o = new MClassDef(mmodule0, mclass_o.mclass_type, location)
2739 end
2740
2741 # A standalone model with the common class diamond-hierarchy ABCD
2742 class ModelDiamond
2743 super ModelStandalone
2744
2745 # A, a simple subclass of Object
2746 var mclass_a = new MClass(mmodule0, "A", location, null, concrete_kind, public_visibility)
2747
2748 # The introduction of `mclass_a`
2749 var mclassdef_a: MClassDef do
2750 var res = new MClassDef(mmodule0, mclass_a.mclass_type, location)
2751 res.set_supertypes([mclass_o.mclass_type])
2752 res.add_in_hierarchy
2753 return res
2754 end
2755
2756 # B, a subclass of A (`mclass_a`)
2757 var mclass_b = new MClass(mmodule0, "B", location, null, concrete_kind, public_visibility)
2758
2759 # The introduction of `mclass_b`
2760 var mclassdef_b: MClassDef do
2761 var res = new MClassDef(mmodule0, mclass_b.mclass_type, location)
2762 res.set_supertypes([mclass_a.mclass_type])
2763 res.add_in_hierarchy
2764 return res
2765 end
2766
2767 # C, another subclass of A (`mclass_a`)
2768 var mclass_c = new MClass(mmodule0, "C", location, null, concrete_kind, public_visibility)
2769
2770 # The introduction of `mclass_c`
2771 var mclassdef_c: MClassDef do
2772 var res = new MClassDef(mmodule0, mclass_c.mclass_type, location)
2773 res.set_supertypes([mclass_a.mclass_type])
2774 res.add_in_hierarchy
2775 return res
2776 end
2777
2778 # D, a multiple subclass of B (`mclass_b`) and C (`mclass_c`)
2779 var mclass_d = new MClass(mmodule0, "D", location, null, concrete_kind, public_visibility)
2780
2781 # The introduction of `mclass_d`
2782 var mclassdef_d: MClassDef do
2783 var res = new MClassDef(mmodule0, mclass_d.mclass_type, location)
2784 res.set_supertypes([mclass_b.mclass_type, mclass_c.mclass_type])
2785 res.add_in_hierarchy
2786 return res
2787 end
2788 end