src/model: generalize visibility to all MEntities
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class MEntity
34 # The visibility of the MEntity.
35 #
36 # MPackages, MGroups and MModules are always public.
37 # The visibility of `MClass` and `MProperty` is defined by the keyword used.
38 # `MClassDef` and `MPropDef` return the visibility of `MClass` and `MProperty`.
39 fun visibility: MVisibility do return public_visibility
40 end
41
42 redef class Model
43 # All known classes
44 var mclasses = new Array[MClass]
45
46 # All known properties
47 var mproperties = new Array[MProperty]
48
49 # Hierarchy of class definition.
50 #
51 # Each classdef is associated with its super-classdefs in regard to
52 # its module of definition.
53 var mclassdef_hierarchy = new POSet[MClassDef]
54
55 # Class-type hierarchy restricted to the introduction.
56 #
57 # The idea is that what is true on introduction is always true whatever
58 # the module considered.
59 # Therefore, this hierarchy is used for a fast positive subtype check.
60 #
61 # This poset will evolve in a monotonous way:
62 # * Two non connected nodes will remain unconnected
63 # * New nodes can appear with new edges
64 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
65
66 # Global overlapped class-type hierarchy.
67 # The hierarchy when all modules are combined.
68 # Therefore, this hierarchy is used for a fast negative subtype check.
69 #
70 # This poset will evolve in an anarchic way. Loops can even be created.
71 #
72 # FIXME decide what to do on loops
73 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
74
75 # Collections of classes grouped by their short name
76 private var mclasses_by_name = new MultiHashMap[String, MClass]
77
78 # Return all class named `name`.
79 #
80 # If such a class does not exist, null is returned
81 # (instead of an empty array)
82 #
83 # Visibility or modules are not considered
84 fun get_mclasses_by_name(name: String): nullable Array[MClass]
85 do
86 return mclasses_by_name.get_or_null(name)
87 end
88
89 # Collections of properties grouped by their short name
90 private var mproperties_by_name = new MultiHashMap[String, MProperty]
91
92 # Return all properties named `name`.
93 #
94 # If such a property does not exist, null is returned
95 # (instead of an empty array)
96 #
97 # Visibility or modules are not considered
98 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
99 do
100 return mproperties_by_name.get_or_null(name)
101 end
102
103 # The only null type
104 var null_type = new MNullType(self)
105
106 # Build an ordered tree with from `concerns`
107 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
108 var seen = new HashSet[MConcern]
109 var res = new ConcernsTree
110
111 var todo = new Array[MConcern]
112 todo.add_all mconcerns
113
114 while not todo.is_empty do
115 var c = todo.pop
116 if seen.has(c) then continue
117 var pc = c.parent_concern
118 if pc == null then
119 res.add(null, c)
120 else
121 res.add(pc, c)
122 todo.add(pc)
123 end
124 seen.add(c)
125 end
126
127 return res
128 end
129 end
130
131 # An OrderedTree bound to MEntity.
132 #
133 # We introduce a new class so it can be easily refined by tools working
134 # with a Model.
135 class MEntityTree
136 super OrderedTree[MEntity]
137 end
138
139 # A MEntityTree borned to MConcern.
140 #
141 # TODO remove when nitdoc is fully merged with model_collect
142 class ConcernsTree
143 super OrderedTree[MConcern]
144 end
145
146 redef class MModule
147 # All the classes introduced in the module
148 var intro_mclasses = new Array[MClass]
149
150 # All the class definitions of the module
151 # (introduction and refinement)
152 var mclassdefs = new Array[MClassDef]
153
154 # Does the current module has a given class `mclass`?
155 # Return true if the mmodule introduces, refines or imports a class.
156 # Visibility is not considered.
157 fun has_mclass(mclass: MClass): Bool
158 do
159 return self.in_importation <= mclass.intro_mmodule
160 end
161
162 # Full hierarchy of introduced ans imported classes.
163 #
164 # Create a new hierarchy got by flattening the classes for the module
165 # and its imported modules.
166 # Visibility is not considered.
167 #
168 # Note: this function is expensive and is usually used for the main
169 # module of a program only. Do not use it to do you own subtype
170 # functions.
171 fun flatten_mclass_hierarchy: POSet[MClass]
172 do
173 var res = self.flatten_mclass_hierarchy_cache
174 if res != null then return res
175 res = new POSet[MClass]
176 for m in self.in_importation.greaters do
177 for cd in m.mclassdefs do
178 var c = cd.mclass
179 res.add_node(c)
180 for s in cd.supertypes do
181 res.add_edge(c, s.mclass)
182 end
183 end
184 end
185 self.flatten_mclass_hierarchy_cache = res
186 return res
187 end
188
189 # Sort a given array of classes using the linearization order of the module
190 # The most general is first, the most specific is last
191 fun linearize_mclasses(mclasses: Array[MClass])
192 do
193 self.flatten_mclass_hierarchy.sort(mclasses)
194 end
195
196 # Sort a given array of class definitions using the linearization order of the module
197 # the refinement link is stronger than the specialisation link
198 # The most general is first, the most specific is last
199 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
200 do
201 var sorter = new MClassDefSorter(self)
202 sorter.sort(mclassdefs)
203 end
204
205 # Sort a given array of property definitions using the linearization order of the module
206 # the refinement link is stronger than the specialisation link
207 # The most general is first, the most specific is last
208 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
209 do
210 var sorter = new MPropDefSorter(self)
211 sorter.sort(mpropdefs)
212 end
213
214 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
215
216 # The primitive type `Object`, the root of the class hierarchy
217 var object_type: MClassType = self.get_primitive_class("Object").mclass_type is lazy
218
219 # The type `Pointer`, super class to all extern classes
220 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
221
222 # The primitive type `Bool`
223 var bool_type: MClassType = self.get_primitive_class("Bool").mclass_type is lazy
224
225 # The primitive type `Int`
226 var int_type: MClassType = self.get_primitive_class("Int").mclass_type is lazy
227
228 # The primitive type `Byte`
229 var byte_type: MClassType = self.get_primitive_class("Byte").mclass_type is lazy
230
231 # The primitive type `Int8`
232 var int8_type: MClassType = self.get_primitive_class("Int8").mclass_type is lazy
233
234 # The primitive type `Int16`
235 var int16_type: MClassType = self.get_primitive_class("Int16").mclass_type is lazy
236
237 # The primitive type `UInt16`
238 var uint16_type: MClassType = self.get_primitive_class("UInt16").mclass_type is lazy
239
240 # The primitive type `Int32`
241 var int32_type: MClassType = self.get_primitive_class("Int32").mclass_type is lazy
242
243 # The primitive type `UInt32`
244 var uint32_type: MClassType = self.get_primitive_class("UInt32").mclass_type is lazy
245
246 # The primitive type `Char`
247 var char_type: MClassType = self.get_primitive_class("Char").mclass_type is lazy
248
249 # The primitive type `Float`
250 var float_type: MClassType = self.get_primitive_class("Float").mclass_type is lazy
251
252 # The primitive type `String`
253 var string_type: MClassType = self.get_primitive_class("String").mclass_type is lazy
254
255 # The primitive type `NativeString`
256 var native_string_type: MClassType = self.get_primitive_class("NativeString").mclass_type is lazy
257
258 # A primitive type of `Array`
259 fun array_type(elt_type: MType): MClassType do return array_class.get_mtype([elt_type])
260
261 # The primitive class `Array`
262 var array_class: MClass = self.get_primitive_class("Array") is lazy
263
264 # A primitive type of `NativeArray`
265 fun native_array_type(elt_type: MType): MClassType do return native_array_class.get_mtype([elt_type])
266
267 # The primitive class `NativeArray`
268 var native_array_class: MClass = self.get_primitive_class("NativeArray") is lazy
269
270 # The primitive type `Sys`, the main type of the program, if any
271 fun sys_type: nullable MClassType
272 do
273 var clas = self.model.get_mclasses_by_name("Sys")
274 if clas == null then return null
275 return get_primitive_class("Sys").mclass_type
276 end
277
278 # The primitive type `Finalizable`
279 # Used to tag classes that need to be finalized.
280 fun finalizable_type: nullable MClassType
281 do
282 var clas = self.model.get_mclasses_by_name("Finalizable")
283 if clas == null then return null
284 return get_primitive_class("Finalizable").mclass_type
285 end
286
287 # Force to get the primitive class named `name` or abort
288 fun get_primitive_class(name: String): MClass
289 do
290 var cla = self.model.get_mclasses_by_name(name)
291 # Filter classes by introducing module
292 if cla != null then cla = [for c in cla do if self.in_importation <= c.intro_mmodule then c]
293 if cla == null or cla.is_empty then
294 if name == "Bool" and self.model.get_mclasses_by_name("Object") != null then
295 # Bool is injected because it is needed by engine to code the result
296 # of the implicit casts.
297 var loc = model.no_location
298 var c = new MClass(self, name, loc, null, enum_kind, public_visibility)
299 var cladef = new MClassDef(self, c.mclass_type, loc)
300 cladef.set_supertypes([object_type])
301 cladef.add_in_hierarchy
302 return c
303 end
304 print("Fatal Error: no primitive class {name} in {self}")
305 exit(1)
306 abort
307 end
308 if cla.length != 1 then
309 var msg = "Fatal Error: more than one primitive class {name} in {self}:"
310 for c in cla do msg += " {c.full_name}"
311 print msg
312 #exit(1)
313 end
314 return cla.first
315 end
316
317 # Try to get the primitive method named `name` on the type `recv`
318 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
319 do
320 var props = self.model.get_mproperties_by_name(name)
321 if props == null then return null
322 var res: nullable MMethod = null
323 var recvtype = recv.intro.bound_mtype
324 for mprop in props do
325 assert mprop isa MMethod
326 if not recvtype.has_mproperty(self, mprop) then continue
327 if res == null then
328 res = mprop
329 else if res != mprop then
330 print("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
331 abort
332 end
333 end
334 return res
335 end
336 end
337
338 private class MClassDefSorter
339 super Comparator
340 redef type COMPARED: MClassDef
341 var mmodule: MModule
342 redef fun compare(a, b)
343 do
344 var ca = a.mclass
345 var cb = b.mclass
346 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
347 return mmodule.model.mclassdef_hierarchy.compare(a, b)
348 end
349 end
350
351 private class MPropDefSorter
352 super Comparator
353 redef type COMPARED: MPropDef
354 var mmodule: MModule
355 redef fun compare(pa, pb)
356 do
357 var a = pa.mclassdef
358 var b = pb.mclassdef
359 var ca = a.mclass
360 var cb = b.mclass
361 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
362 return mmodule.model.mclassdef_hierarchy.compare(a, b)
363 end
364 end
365
366 # A named class
367 #
368 # `MClass` are global to the model; it means that a `MClass` is not bound to a
369 # specific `MModule`.
370 #
371 # This characteristic helps the reasoning about classes in a program since a
372 # single `MClass` object always denote the same class.
373 #
374 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
375 # These do not really have properties nor belong to a hierarchy since the property and the
376 # hierarchy of a class depends of the refinement in the modules.
377 #
378 # Most services on classes require the precision of a module, and no one can asks what are
379 # the super-classes of a class nor what are properties of a class without precising what is
380 # the module considered.
381 #
382 # For instance, during the typing of a source-file, the module considered is the module of the file.
383 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
384 # *is the method `foo` exists in the class `Bar` in the current module?*
385 #
386 # During some global analysis, the module considered may be the main module of the program.
387 class MClass
388 super MEntity
389
390 # The module that introduce the class
391 # While classes are not bound to a specific module,
392 # the introducing module is used for naming an visibility
393 var intro_mmodule: MModule
394
395 # The short name of the class
396 # In Nit, the name of a class cannot evolve in refinements
397 redef var name
398
399 redef var location
400
401 # The canonical name of the class
402 #
403 # It is the name of the class prefixed by the full_name of the `intro_mmodule`
404 # Example: `"owner::module::MyClass"`
405 redef var full_name is lazy do
406 return "{self.intro_mmodule.namespace_for(visibility)}::{name}"
407 end
408
409 redef var c_name is lazy do
410 return "{intro_mmodule.c_namespace_for(visibility)}__{name.to_cmangle}"
411 end
412
413 # The number of generic formal parameters
414 # 0 if the class is not generic
415 var arity: Int is noinit
416
417 # Each generic formal parameters in order.
418 # is empty if the class is not generic
419 var mparameters = new Array[MParameterType]
420
421 # A string version of the signature a generic class.
422 #
423 # eg. `Map[K: nullable Object, V: nullable Object]`
424 #
425 # If the class in non generic the name is just given.
426 #
427 # eg. `Object`
428 fun signature_to_s: String
429 do
430 if arity == 0 then return name
431 var res = new FlatBuffer
432 res.append name
433 res.append "["
434 for i in [0..arity[ do
435 if i > 0 then res.append ", "
436 res.append mparameters[i].name
437 res.append ": "
438 res.append intro.bound_mtype.arguments[i].to_s
439 end
440 res.append "]"
441 return res.to_s
442 end
443
444 # Initialize `mparameters` from their names.
445 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
446 autoinit
447 do
448 if parameter_names == null then
449 self.arity = 0
450 else
451 self.arity = parameter_names.length
452 end
453
454 # Create the formal parameter types
455 if arity > 0 then
456 assert parameter_names != null
457 var mparametertypes = new Array[MParameterType]
458 for i in [0..arity[ do
459 var mparametertype = new MParameterType(self, i, parameter_names[i])
460 mparametertypes.add(mparametertype)
461 end
462 self.mparameters = mparametertypes
463 var mclass_type = new MGenericType(self, mparametertypes)
464 self.mclass_type = mclass_type
465 self.get_mtype_cache[mparametertypes] = mclass_type
466 else
467 self.mclass_type = new MClassType(self)
468 end
469 end
470
471 # The kind of the class (interface, abstract class, etc.)
472 # In Nit, the kind of a class cannot evolve in refinements
473 var kind: MClassKind
474
475 # The visibility of the class
476 # In Nit, the visibility of a class cannot evolve in refinements
477 redef var visibility
478
479 init
480 do
481 intro_mmodule.intro_mclasses.add(self)
482 var model = intro_mmodule.model
483 model.mclasses_by_name.add_one(name, self)
484 model.mclasses.add(self)
485 end
486
487 redef fun model do return intro_mmodule.model
488
489 # All class definitions (introduction and refinements)
490 var mclassdefs = new Array[MClassDef]
491
492 # Alias for `name`
493 redef fun to_s do return self.name
494
495 # The definition that introduces the class.
496 #
497 # Warning: such a definition may not exist in the early life of the object.
498 # In this case, the method will abort.
499 #
500 # Use `try_intro` instead
501 var intro: MClassDef is noinit
502
503 # The definition that introduces the class or null if not yet known.
504 #
505 # See `intro`
506 fun try_intro: nullable MClassDef do
507 if isset _intro then return _intro else return null
508 end
509
510 # Return the class `self` in the class hierarchy of the module `mmodule`.
511 #
512 # SEE: `MModule::flatten_mclass_hierarchy`
513 # REQUIRE: `mmodule.has_mclass(self)`
514 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
515 do
516 return mmodule.flatten_mclass_hierarchy[self]
517 end
518
519 # The principal static type of the class.
520 #
521 # For non-generic class, mclass_type is the only `MClassType` based
522 # on self.
523 #
524 # For a generic class, the arguments are the formal parameters.
525 # i.e.: for the class Array[E:Object], the `mclass_type` is Array[E].
526 # If you want Array[Object] the see `MClassDef::bound_mtype`
527 #
528 # For generic classes, the mclass_type is also the way to get a formal
529 # generic parameter type.
530 #
531 # To get other types based on a generic class, see `get_mtype`.
532 #
533 # ENSURE: `mclass_type.mclass == self`
534 var mclass_type: MClassType is noinit
535
536 # Return a generic type based on the class
537 # Is the class is not generic, then the result is `mclass_type`
538 #
539 # REQUIRE: `mtype_arguments.length == self.arity`
540 fun get_mtype(mtype_arguments: Array[MType]): MClassType
541 do
542 assert mtype_arguments.length == self.arity
543 if self.arity == 0 then return self.mclass_type
544 var res = get_mtype_cache.get_or_null(mtype_arguments)
545 if res != null then return res
546 res = new MGenericType(self, mtype_arguments)
547 self.get_mtype_cache[mtype_arguments.to_a] = res
548 return res
549 end
550
551 private var get_mtype_cache = new HashMap[Array[MType], MGenericType]
552
553 # Is there a `new` factory to allow the pseudo instantiation?
554 var has_new_factory = false is writable
555
556 # Is `self` a standard or abstract class kind?
557 var is_class: Bool is lazy do return kind == concrete_kind or kind == abstract_kind
558
559 # Is `self` an interface kind?
560 var is_interface: Bool is lazy do return kind == interface_kind
561
562 # Is `self` an enum kind?
563 var is_enum: Bool is lazy do return kind == enum_kind
564
565 # Is `self` and abstract class?
566 var is_abstract: Bool is lazy do return kind == abstract_kind
567 end
568
569
570 # A definition (an introduction or a refinement) of a class in a module
571 #
572 # A `MClassDef` is associated with an explicit (or almost) definition of a
573 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
574 # a specific class and a specific module, and contains declarations like super-classes
575 # or properties.
576 #
577 # It is the class definitions that are the backbone of most things in the model:
578 # ClassDefs are defined with regard with other classdefs.
579 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
580 #
581 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
582 class MClassDef
583 super MEntity
584
585 # The module where the definition is
586 var mmodule: MModule
587
588 # The associated `MClass`
589 var mclass: MClass is noinit
590
591 # The bounded type associated to the mclassdef
592 #
593 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
594 # are the same type.
595 #
596 # Example:
597 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
598 # If you want Array[E], then see `mclass.mclass_type`
599 #
600 # ENSURE: `bound_mtype.mclass == self.mclass`
601 var bound_mtype: MClassType
602
603 redef var location: Location
604
605 redef fun visibility do return mclass.visibility
606
607 # Internal name combining the module and the class
608 # Example: "mymodule$MyClass"
609 redef var to_s is noinit
610
611 init
612 do
613 self.mclass = bound_mtype.mclass
614 mmodule.mclassdefs.add(self)
615 mclass.mclassdefs.add(self)
616 if mclass.intro_mmodule == mmodule then
617 assert not isset mclass._intro
618 mclass.intro = self
619 end
620 self.to_s = "{mmodule}${mclass}"
621 end
622
623 # Actually the name of the `mclass`
624 redef fun name do return mclass.name
625
626 # The module and class name separated by a '$'.
627 #
628 # The short-name of the class is used for introduction.
629 # Example: "my_module$MyClass"
630 #
631 # The full-name of the class is used for refinement.
632 # Example: "my_module$intro_module::MyClass"
633 redef var full_name is lazy do
634 if is_intro then
635 # public gives 'p$A'
636 # private gives 'p::m$A'
637 return "{mmodule.namespace_for(mclass.visibility)}${mclass.name}"
638 else if mclass.intro_mmodule.mpackage != mmodule.mpackage then
639 # public gives 'q::n$p::A'
640 # private gives 'q::n$p::m::A'
641 return "{mmodule.full_name}${mclass.full_name}"
642 else if mclass.visibility > private_visibility then
643 # public gives 'p::n$A'
644 return "{mmodule.full_name}${mclass.name}"
645 else
646 # private gives 'p::n$::m::A' (redundant p is omitted)
647 return "{mmodule.full_name}$::{mclass.intro_mmodule.name}::{mclass.name}"
648 end
649 end
650
651 redef var c_name is lazy do
652 if is_intro then
653 return "{mmodule.c_namespace_for(mclass.visibility)}___{mclass.c_name}"
654 else if mclass.intro_mmodule.mpackage == mmodule.mpackage and mclass.visibility > private_visibility then
655 return "{mmodule.c_name}___{mclass.name.to_cmangle}"
656 else
657 return "{mmodule.c_name}___{mclass.c_name}"
658 end
659 end
660
661 redef fun model do return mmodule.model
662
663 # All declared super-types
664 # FIXME: quite ugly but not better idea yet
665 var supertypes = new Array[MClassType]
666
667 # Register some super-types for the class (ie "super SomeType")
668 #
669 # The hierarchy must not already be set
670 # REQUIRE: `self.in_hierarchy == null`
671 fun set_supertypes(supertypes: Array[MClassType])
672 do
673 assert unique_invocation: self.in_hierarchy == null
674 var mmodule = self.mmodule
675 var model = mmodule.model
676 var mtype = self.bound_mtype
677
678 for supertype in supertypes do
679 self.supertypes.add(supertype)
680
681 # Register in full_type_specialization_hierarchy
682 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
683 # Register in intro_type_specialization_hierarchy
684 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
685 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
686 end
687 end
688
689 end
690
691 # Collect the super-types (set by set_supertypes) to build the hierarchy
692 #
693 # This function can only invoked once by class
694 # REQUIRE: `self.in_hierarchy == null`
695 # ENSURE: `self.in_hierarchy != null`
696 fun add_in_hierarchy
697 do
698 assert unique_invocation: self.in_hierarchy == null
699 var model = mmodule.model
700 var res = model.mclassdef_hierarchy.add_node(self)
701 self.in_hierarchy = res
702 var mtype = self.bound_mtype
703
704 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
705 # The simpliest way is to attach it to collect_mclassdefs
706 for mclassdef in mtype.collect_mclassdefs(mmodule) do
707 res.poset.add_edge(self, mclassdef)
708 end
709 end
710
711 # The view of the class definition in `mclassdef_hierarchy`
712 var in_hierarchy: nullable POSetElement[MClassDef] = null
713
714 # Is the definition the one that introduced `mclass`?
715 fun is_intro: Bool do return isset mclass._intro and mclass.intro == self
716
717 # All properties introduced by the classdef
718 var intro_mproperties = new Array[MProperty]
719
720 # All property definitions in the class (introductions and redefinitions)
721 var mpropdefs = new Array[MPropDef]
722 end
723
724 # A global static type
725 #
726 # MType are global to the model; it means that a `MType` is not bound to a
727 # specific `MModule`.
728 # This characteristic helps the reasoning about static types in a program
729 # since a single `MType` object always denote the same type.
730 #
731 # However, because a `MType` is global, it does not really have properties
732 # nor have subtypes to a hierarchy since the property and the class hierarchy
733 # depends of a module.
734 # Moreover, virtual types an formal generic parameter types also depends on
735 # a receiver to have sense.
736 #
737 # Therefore, most method of the types require a module and an anchor.
738 # The module is used to know what are the classes and the specialization
739 # links.
740 # The anchor is used to know what is the bound of the virtual types and formal
741 # generic parameter types.
742 #
743 # MType are not directly usable to get properties. See the `anchor_to` method
744 # and the `MClassType` class.
745 #
746 # FIXME: the order of the parameters is not the best. We mus pick on from:
747 # * foo(mmodule, anchor, othertype)
748 # * foo(othertype, anchor, mmodule)
749 # * foo(anchor, mmodule, othertype)
750 # * foo(othertype, mmodule, anchor)
751 abstract class MType
752 super MEntity
753
754 redef fun name do return to_s
755
756 # Return true if `self` is an subtype of `sup`.
757 # The typing is done using the standard typing policy of Nit.
758 #
759 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
760 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
761 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
762 do
763 var sub = self
764 if sub == sup then return true
765
766 #print "1.is {sub} a {sup}? ===="
767
768 if anchor == null then
769 assert not sub.need_anchor
770 assert not sup.need_anchor
771 else
772 # First, resolve the formal types to the simplest equivalent forms in the receiver
773 assert sub.can_resolve_for(anchor, null, mmodule)
774 sub = sub.lookup_fixed(mmodule, anchor)
775 assert sup.can_resolve_for(anchor, null, mmodule)
776 sup = sup.lookup_fixed(mmodule, anchor)
777 end
778
779 # Does `sup` accept null or not?
780 # Discard the nullable marker if it exists
781 var sup_accept_null = false
782 if sup isa MNullableType then
783 sup_accept_null = true
784 sup = sup.mtype
785 else if sup isa MNotNullType then
786 sup = sup.mtype
787 else if sup isa MNullType then
788 sup_accept_null = true
789 end
790
791 # Can `sub` provide null or not?
792 # Thus we can match with `sup_accept_null`
793 # Also discard the nullable marker if it exists
794 var sub_reject_null = false
795 if sub isa MNullableType then
796 if not sup_accept_null then return false
797 sub = sub.mtype
798 else if sub isa MNotNullType then
799 sub_reject_null = true
800 sub = sub.mtype
801 else if sub isa MNullType then
802 return sup_accept_null
803 end
804 # Now the case of direct null and nullable is over.
805
806 # If `sub` is a formal type, then it is accepted if its bound is accepted
807 while sub isa MFormalType do
808 #print "3.is {sub} a {sup}?"
809
810 # A unfixed formal type can only accept itself
811 if sub == sup then return true
812
813 assert anchor != null
814 sub = sub.lookup_bound(mmodule, anchor)
815 if sub_reject_null then sub = sub.as_notnull
816
817 #print "3.is {sub} a {sup}?"
818
819 # Manage the second layer of null/nullable
820 if sub isa MNullableType then
821 if not sup_accept_null and not sub_reject_null then return false
822 sub = sub.mtype
823 else if sub isa MNotNullType then
824 sub_reject_null = true
825 sub = sub.mtype
826 else if sub isa MNullType then
827 return sup_accept_null
828 end
829 end
830 #print "4.is {sub} a {sup}? <- no more resolution"
831
832 if sub isa MBottomType then
833 return true
834 end
835
836 assert sub isa MClassType else print "{sub} <? {sub}" # It is the only remaining type
837
838 # Handle sup-type when the sub-type is class-based (other cases must have be identified before).
839 if sup isa MFormalType or sup isa MNullType or sup isa MBottomType then
840 # These types are not super-types of Class-based types.
841 return false
842 end
843
844 assert sup isa MClassType else print "got {sup} {sub.inspect}" # It is the only remaining type
845
846 # Now both are MClassType, we need to dig
847
848 if sub == sup then return true
849
850 if anchor == null then anchor = sub # UGLY: any anchor will work
851 var resolved_sub = sub.anchor_to(mmodule, anchor)
852 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
853 if res == false then return false
854 if not sup isa MGenericType then return true
855 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
856 assert sub2.mclass == sup.mclass
857 for i in [0..sup.mclass.arity[ do
858 var sub_arg = sub2.arguments[i]
859 var sup_arg = sup.arguments[i]
860 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
861 if res == false then return false
862 end
863 return true
864 end
865
866 # The base class type on which self is based
867 #
868 # This base type is used to get property (an internally to perform
869 # unsafe type comparison).
870 #
871 # Beware: some types (like null) are not based on a class thus this
872 # method will crash
873 #
874 # Basically, this function transform the virtual types and parameter
875 # types to their bounds.
876 #
877 # Example
878 #
879 # class A end
880 # class B super A end
881 # class X end
882 # class Y super X end
883 # class G[T: A]
884 # type U: X
885 # end
886 # class H
887 # super G[B]
888 # redef type U: Y
889 # end
890 #
891 # Map[T,U] anchor_to H #-> Map[B,Y]
892 #
893 # Explanation of the example:
894 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
895 # because "redef type U: Y". Therefore, Map[T, U] is bound to
896 # Map[B, Y]
897 #
898 # ENSURE: `not self.need_anchor implies result == self`
899 # ENSURE: `not result.need_anchor`
900 fun anchor_to(mmodule: MModule, anchor: MClassType): MType
901 do
902 if not need_anchor then return self
903 assert not anchor.need_anchor
904 # Just resolve to the anchor and clear all the virtual types
905 var res = self.resolve_for(anchor, null, mmodule, true)
906 assert not res.need_anchor
907 return res
908 end
909
910 # Does `self` contain a virtual type or a formal generic parameter type?
911 # In order to remove those types, you usually want to use `anchor_to`.
912 fun need_anchor: Bool do return true
913
914 # Return the supertype when adapted to a class.
915 #
916 # In Nit, for each super-class of a type, there is a equivalent super-type.
917 #
918 # Example:
919 #
920 # ~~~nitish
921 # class G[T, U] end
922 # class H[V] super G[V, Bool] end
923 #
924 # H[Int] supertype_to G #-> G[Int, Bool]
925 # ~~~
926 #
927 # REQUIRE: `super_mclass` is a super-class of `self`
928 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
929 # ENSURE: `result.mclass = super_mclass`
930 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
931 do
932 if super_mclass.arity == 0 then return super_mclass.mclass_type
933 if self isa MClassType and self.mclass == super_mclass then return self
934 var resolved_self
935 if self.need_anchor then
936 assert anchor != null
937 resolved_self = self.anchor_to(mmodule, anchor)
938 else
939 resolved_self = self
940 end
941 var supertypes = resolved_self.collect_mtypes(mmodule)
942 for supertype in supertypes do
943 if supertype.mclass == super_mclass then
944 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
945 return supertype.resolve_for(self, anchor, mmodule, false)
946 end
947 end
948 abort
949 end
950
951 # Replace formals generic types in self with resolved values in `mtype`
952 # If `cleanup_virtual` is true, then virtual types are also replaced
953 # with their bounds.
954 #
955 # This function returns self if `need_anchor` is false.
956 #
957 # ## Example 1
958 #
959 # ~~~
960 # class G[E] end
961 # class H[F] super G[F] end
962 # class X[Z] end
963 # ~~~
964 #
965 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
966 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
967 #
968 # Explanation of the example:
969 # * Array[E].need_anchor is true because there is a formal generic parameter type E
970 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
971 # * Since "H[F] super G[F]", E is in fact F for H
972 # * More specifically, in H[Int], E is Int
973 # * So, in H[Int], Array[E] is Array[Int]
974 #
975 # This function is mainly used to inherit a signature.
976 # Because, unlike `anchor_to`, we do not want a full resolution of
977 # a type but only an adapted version of it.
978 #
979 # ## Example 2
980 #
981 # ~~~
982 # class A[E]
983 # fun foo(e:E):E is abstract
984 # end
985 # class B super A[Int] end
986 # ~~~
987 #
988 # The signature on foo is (e: E): E
989 # If we resolve the signature for B, we get (e:Int):Int
990 #
991 # ## Example 3
992 #
993 # ~~~nitish
994 # class A[E]
995 # fun foo(e:E):E is abstract
996 # end
997 # class C[F]
998 # var a: A[Array[F]]
999 # fun bar do a.foo(x) # <- x is here
1000 # end
1001 # ~~~
1002 #
1003 # The first question is: is foo available on `a`?
1004 #
1005 # The static type of a is `A[Array[F]]`, that is an open type.
1006 # in order to find a method `foo`, whe must look at a resolved type.
1007 #
1008 # A[Array[F]].anchor_to(C[nullable Object]) #-> A[Array[nullable Object]]
1009 #
1010 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
1011 #
1012 # The next question is: what is the accepted types for `x`?
1013 #
1014 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
1015 #
1016 # E.resolve_for(A[Array[F]],C[nullable Object]) #-> Array[F]
1017 #
1018 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
1019 #
1020 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
1021 # two function instead of one seems also to be a bad idea.
1022 #
1023 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
1024 # ENSURE: `not self.need_anchor implies result == self`
1025 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
1026
1027 # Resolve formal type to its verbatim bound.
1028 # If the type is not formal, just return self
1029 #
1030 # The result is returned exactly as declared in the "type" property (verbatim).
1031 # So it could be another formal type.
1032 #
1033 # In case of conflicts or inconsistencies in the model, the method returns a `MBottomType`.
1034 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self
1035
1036 # Resolve the formal type to its simplest equivalent form.
1037 #
1038 # Formal types are either free or fixed.
1039 # When it is fixed, it means that it is equivalent with a simpler type.
1040 # When a formal type is free, it means that it is only equivalent with itself.
1041 # This method return the most simple equivalent type of `self`.
1042 #
1043 # This method is mainly used for subtype test in order to sanely compare fixed.
1044 #
1045 # By default, return self.
1046 # See the redefinitions for specific behavior in each kind of type.
1047 #
1048 # In case of conflicts or inconsistencies in the model, the method returns a `MBottomType`.
1049 fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self
1050
1051 # Can the type be resolved?
1052 #
1053 # In order to resolve open types, the formal types must make sence.
1054 #
1055 # ## Example
1056 #
1057 # class A[E]
1058 # end
1059 # class B[F]
1060 # end
1061 #
1062 # ~~~nitish
1063 # E.can_resolve_for(A[Int]) #-> true, E make sense in A
1064 #
1065 # E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
1066 #
1067 # B[E].can_resolve_for(A[F], B[Object]) #-> true,
1068 # # B[E] is a red hearing only the E is important,
1069 # # E make sense in A
1070 # ~~~
1071 #
1072 # REQUIRE: `anchor != null implies not anchor.need_anchor`
1073 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
1074 # ENSURE: `not self.need_anchor implies result == true`
1075 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
1076
1077 # Return the nullable version of the type
1078 # If the type is already nullable then self is returned
1079 fun as_nullable: MType
1080 do
1081 var res = self.as_nullable_cache
1082 if res != null then return res
1083 res = new MNullableType(self)
1084 self.as_nullable_cache = res
1085 return res
1086 end
1087
1088 # Remove the base type of a decorated (proxy) type.
1089 # Is the type is not decorated, then self is returned.
1090 #
1091 # Most of the time it is used to return the not nullable version of a nullable type.
1092 # In this case, this just remove the `nullable` notation, but the result can still contains null.
1093 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
1094 # If you really want to exclude the `null` value, then use `as_notnull`
1095 fun undecorate: MType
1096 do
1097 return self
1098 end
1099
1100 # Returns the not null version of the type.
1101 # That is `self` minus the `null` value.
1102 #
1103 # For most types, this return `self`.
1104 # For formal types, this returns a special `MNotNullType`
1105 fun as_notnull: MType do return self
1106
1107 private var as_nullable_cache: nullable MType = null
1108
1109
1110 # The depth of the type seen as a tree.
1111 #
1112 # * A -> 1
1113 # * G[A] -> 2
1114 # * H[A, B] -> 2
1115 # * H[G[A], B] -> 3
1116 #
1117 # Formal types have a depth of 1.
1118 fun depth: Int
1119 do
1120 return 1
1121 end
1122
1123 # The length of the type seen as a tree.
1124 #
1125 # * A -> 1
1126 # * G[A] -> 2
1127 # * H[A, B] -> 3
1128 # * H[G[A], B] -> 4
1129 #
1130 # Formal types have a length of 1.
1131 fun length: Int
1132 do
1133 return 1
1134 end
1135
1136 # Compute all the classdefs inherited/imported.
1137 # The returned set contains:
1138 # * the class definitions from `mmodule` and its imported modules
1139 # * the class definitions of this type and its super-types
1140 #
1141 # This function is used mainly internally.
1142 #
1143 # REQUIRE: `not self.need_anchor`
1144 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
1145
1146 # Compute all the super-classes.
1147 # This function is used mainly internally.
1148 #
1149 # REQUIRE: `not self.need_anchor`
1150 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
1151
1152 # Compute all the declared super-types.
1153 # Super-types are returned as declared in the classdefs (verbatim).
1154 # This function is used mainly internally.
1155 #
1156 # REQUIRE: `not self.need_anchor`
1157 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
1158
1159 # Is the property in self for a given module
1160 # This method does not filter visibility or whatever
1161 #
1162 # REQUIRE: `not self.need_anchor`
1163 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
1164 do
1165 assert not self.need_anchor
1166 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
1167 end
1168 end
1169
1170 # A type based on a class.
1171 #
1172 # `MClassType` have properties (see `has_mproperty`).
1173 class MClassType
1174 super MType
1175
1176 # The associated class
1177 var mclass: MClass
1178
1179 redef fun model do return self.mclass.intro_mmodule.model
1180
1181 redef fun location do return mclass.location
1182
1183 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1184
1185 # The formal arguments of the type
1186 # ENSURE: `result.length == self.mclass.arity`
1187 var arguments = new Array[MType]
1188
1189 redef fun to_s do return mclass.to_s
1190
1191 redef fun full_name do return mclass.full_name
1192
1193 redef fun c_name do return mclass.c_name
1194
1195 redef fun need_anchor do return false
1196
1197 redef fun anchor_to(mmodule: MModule, anchor: MClassType): MClassType
1198 do
1199 return super.as(MClassType)
1200 end
1201
1202 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1203
1204 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1205
1206 redef fun collect_mclassdefs(mmodule)
1207 do
1208 assert not self.need_anchor
1209 var cache = self.collect_mclassdefs_cache
1210 if not cache.has_key(mmodule) then
1211 self.collect_things(mmodule)
1212 end
1213 return cache[mmodule]
1214 end
1215
1216 redef fun collect_mclasses(mmodule)
1217 do
1218 if collect_mclasses_last_module == mmodule then return collect_mclasses_last_module_cache
1219 assert not self.need_anchor
1220 var cache = self.collect_mclasses_cache
1221 if not cache.has_key(mmodule) then
1222 self.collect_things(mmodule)
1223 end
1224 var res = cache[mmodule]
1225 collect_mclasses_last_module = mmodule
1226 collect_mclasses_last_module_cache = res
1227 return res
1228 end
1229
1230 private var collect_mclasses_last_module: nullable MModule = null
1231 private var collect_mclasses_last_module_cache: Set[MClass] is noinit
1232
1233 redef fun collect_mtypes(mmodule)
1234 do
1235 assert not self.need_anchor
1236 var cache = self.collect_mtypes_cache
1237 if not cache.has_key(mmodule) then
1238 self.collect_things(mmodule)
1239 end
1240 return cache[mmodule]
1241 end
1242
1243 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1244 private fun collect_things(mmodule: MModule)
1245 do
1246 var res = new HashSet[MClassDef]
1247 var seen = new HashSet[MClass]
1248 var types = new HashSet[MClassType]
1249 seen.add(self.mclass)
1250 var todo = [self.mclass]
1251 while not todo.is_empty do
1252 var mclass = todo.pop
1253 #print "process {mclass}"
1254 for mclassdef in mclass.mclassdefs do
1255 if not mmodule.in_importation <= mclassdef.mmodule then continue
1256 #print " process {mclassdef}"
1257 res.add(mclassdef)
1258 for supertype in mclassdef.supertypes do
1259 types.add(supertype)
1260 var superclass = supertype.mclass
1261 if seen.has(superclass) then continue
1262 #print " add {superclass}"
1263 seen.add(superclass)
1264 todo.add(superclass)
1265 end
1266 end
1267 end
1268 collect_mclassdefs_cache[mmodule] = res
1269 collect_mclasses_cache[mmodule] = seen
1270 collect_mtypes_cache[mmodule] = types
1271 end
1272
1273 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1274 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1275 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1276
1277 end
1278
1279 # A type based on a generic class.
1280 # A generic type a just a class with additional formal generic arguments.
1281 class MGenericType
1282 super MClassType
1283
1284 redef var arguments
1285
1286 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1287
1288 init
1289 do
1290 assert self.mclass.arity == arguments.length
1291
1292 self.need_anchor = false
1293 for t in arguments do
1294 if t.need_anchor then
1295 self.need_anchor = true
1296 break
1297 end
1298 end
1299
1300 self.to_s = "{mclass}[{arguments.join(", ")}]"
1301 end
1302
1303 # The short-name of the class, then the full-name of each type arguments within brackets.
1304 # Example: `"Map[String, List[Int]]"`
1305 redef var to_s is noinit
1306
1307 # The full-name of the class, then the full-name of each type arguments within brackets.
1308 # Example: `"core::Map[core::String, core::List[core::Int]]"`
1309 redef var full_name is lazy do
1310 var args = new Array[String]
1311 for t in arguments do
1312 args.add t.full_name
1313 end
1314 return "{mclass.full_name}[{args.join(", ")}]"
1315 end
1316
1317 redef var c_name is lazy do
1318 var res = mclass.c_name
1319 # Note: because the arity is known, a prefix notation is enough
1320 for t in arguments do
1321 res += "__"
1322 res += t.c_name
1323 end
1324 return res.to_s
1325 end
1326
1327 redef var need_anchor is noinit
1328
1329 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1330 do
1331 if not need_anchor then return self
1332 assert can_resolve_for(mtype, anchor, mmodule)
1333 var types = new Array[MType]
1334 for t in arguments do
1335 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1336 end
1337 return mclass.get_mtype(types)
1338 end
1339
1340 redef fun can_resolve_for(mtype, anchor, mmodule)
1341 do
1342 if not need_anchor then return true
1343 for t in arguments do
1344 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1345 end
1346 return true
1347 end
1348
1349
1350 redef fun depth
1351 do
1352 var dmax = 0
1353 for a in self.arguments do
1354 var d = a.depth
1355 if d > dmax then dmax = d
1356 end
1357 return dmax + 1
1358 end
1359
1360 redef fun length
1361 do
1362 var res = 1
1363 for a in self.arguments do
1364 res += a.length
1365 end
1366 return res
1367 end
1368 end
1369
1370 # A formal type (either virtual of parametric).
1371 #
1372 # The main issue with formal types is that they offer very little information on their own
1373 # and need a context (anchor and mmodule) to be useful.
1374 abstract class MFormalType
1375 super MType
1376
1377 redef var as_notnull = new MNotNullType(self) is lazy
1378 end
1379
1380 # A virtual formal type.
1381 class MVirtualType
1382 super MFormalType
1383
1384 # The property associated with the type.
1385 # Its the definitions of this property that determine the bound or the virtual type.
1386 var mproperty: MVirtualTypeProp
1387
1388 redef fun location do return mproperty.location
1389
1390 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1391
1392 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1393 do
1394 return lookup_single_definition(mmodule, resolved_receiver).bound or else new MBottomType(model)
1395 end
1396
1397 private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef
1398 do
1399 assert not resolved_receiver.need_anchor
1400 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1401 if props.is_empty then
1402 abort
1403 else if props.length == 1 then
1404 return props.first
1405 end
1406 var types = new ArraySet[MType]
1407 var res = props.first
1408 for p in props do
1409 types.add(p.bound.as(not null))
1410 if not res.is_fixed then res = p
1411 end
1412 if types.length == 1 then
1413 return res
1414 end
1415 abort
1416 end
1417
1418 # A VT is fixed when:
1419 # * the VT is (re-)defined with the annotation `is fixed`
1420 # * the VT is (indirectly) bound to an enum class (see `enum_kind`) since there is no subtype possible
1421 # * the receiver is an enum class since there is no subtype possible
1422 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1423 do
1424 assert not resolved_receiver.need_anchor
1425 resolved_receiver = resolved_receiver.undecorate
1426 assert resolved_receiver isa MClassType # It is the only remaining type
1427
1428 var prop = lookup_single_definition(mmodule, resolved_receiver)
1429 var res = prop.bound
1430 if res == null then return new MBottomType(model)
1431
1432 # Recursively lookup the fixed result
1433 res = res.lookup_fixed(mmodule, resolved_receiver)
1434
1435 # 1. For a fixed VT, return the resolved bound
1436 if prop.is_fixed then return res
1437
1438 # 2. For a enum boud, return the bound
1439 if res isa MClassType and res.mclass.kind == enum_kind then return res
1440
1441 # 3. for a enum receiver return the bound
1442 if resolved_receiver.mclass.kind == enum_kind then return res
1443
1444 return self
1445 end
1446
1447 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1448 do
1449 if not cleanup_virtual then return self
1450 assert can_resolve_for(mtype, anchor, mmodule)
1451 # self is a virtual type declared (or inherited) in mtype
1452 # The point of the function it to get the bound of the virtual type that make sense for mtype
1453 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1454 #print "{class_name}: {self}/{mtype}/{anchor}?"
1455 var resolved_receiver
1456 if mtype.need_anchor then
1457 assert anchor != null
1458 resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true)
1459 else
1460 resolved_receiver = mtype
1461 end
1462 # Now, we can get the bound
1463 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1464 # The bound is exactly as declared in the "type" property, so we must resolve it again
1465 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1466
1467 return res
1468 end
1469
1470 redef fun can_resolve_for(mtype, anchor, mmodule)
1471 do
1472 if mtype.need_anchor then
1473 assert anchor != null
1474 mtype = mtype.anchor_to(mmodule, anchor)
1475 end
1476 return mtype.has_mproperty(mmodule, mproperty)
1477 end
1478
1479 redef fun to_s do return self.mproperty.to_s
1480
1481 redef fun full_name do return self.mproperty.full_name
1482
1483 redef fun c_name do return self.mproperty.c_name
1484 end
1485
1486 # The type associated to a formal parameter generic type of a class
1487 #
1488 # Each parameter type is associated to a specific class.
1489 # It means that all refinements of a same class "share" the parameter type,
1490 # but that a generic subclass has its own parameter types.
1491 #
1492 # However, in the sense of the meta-model, a parameter type of a class is
1493 # a valid type in a subclass. The "in the sense of the meta-model" is
1494 # important because, in the Nit language, the programmer cannot refers
1495 # directly to the parameter types of the super-classes.
1496 #
1497 # Example:
1498 #
1499 # class A[E]
1500 # fun e: E is abstract
1501 # end
1502 # class B[F]
1503 # super A[Array[F]]
1504 # end
1505 #
1506 # In the class definition B[F], `F` is a valid type but `E` is not.
1507 # However, `self.e` is a valid method call, and the signature of `e` is
1508 # declared `e: E`.
1509 #
1510 # Note that parameter types are shared among class refinements.
1511 # Therefore parameter only have an internal name (see `to_s` for details).
1512 class MParameterType
1513 super MFormalType
1514
1515 # The generic class where the parameter belong
1516 var mclass: MClass
1517
1518 redef fun model do return self.mclass.intro_mmodule.model
1519
1520 redef fun location do return mclass.location
1521
1522 # The position of the parameter (0 for the first parameter)
1523 # FIXME: is `position` a better name?
1524 var rank: Int
1525
1526 redef var name
1527
1528 redef fun to_s do return name
1529
1530 redef var full_name is lazy do return "{mclass.full_name}::{name}"
1531
1532 redef var c_name is lazy do return mclass.c_name + "__" + "#{name}".to_cmangle
1533
1534 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1535 do
1536 assert not resolved_receiver.need_anchor
1537 resolved_receiver = resolved_receiver.undecorate
1538 assert resolved_receiver isa MClassType # It is the only remaining type
1539 var goalclass = self.mclass
1540 if resolved_receiver.mclass == goalclass then
1541 return resolved_receiver.arguments[self.rank]
1542 end
1543 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1544 for t in supertypes do
1545 if t.mclass == goalclass then
1546 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1547 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1548 var res = t.arguments[self.rank]
1549 return res
1550 end
1551 end
1552 abort
1553 end
1554
1555 # A PT is fixed when:
1556 # * Its bound is a enum class (see `enum_kind`).
1557 # The PT is just useless, but it is still a case.
1558 # * More usually, the `resolved_receiver` is a subclass of `self.mclass`,
1559 # so it is necessarily fixed in a `super` clause, either with a normal type
1560 # or with another PT.
1561 # See `resolve_for` for examples about related issues.
1562 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1563 do
1564 assert not resolved_receiver.need_anchor
1565 resolved_receiver = resolved_receiver.undecorate
1566 assert resolved_receiver isa MClassType # It is the only remaining type
1567 var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false)
1568 return res
1569 end
1570
1571 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1572 do
1573 assert can_resolve_for(mtype, anchor, mmodule)
1574 #print "{class_name}: {self}/{mtype}/{anchor}?"
1575
1576 if mtype isa MGenericType and mtype.mclass == self.mclass then
1577 var res = mtype.arguments[self.rank]
1578 if anchor != null and res.need_anchor then
1579 # Maybe the result can be resolved more if are bound to a final class
1580 var r2 = res.anchor_to(mmodule, anchor)
1581 if r2 isa MClassType and r2.mclass.kind == enum_kind then return r2
1582 end
1583 return res
1584 end
1585
1586 # self is a parameter type of mtype (or of a super-class of mtype)
1587 # The point of the function it to get the bound of the virtual type that make sense for mtype
1588 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1589 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1590 var resolved_receiver
1591 if mtype.need_anchor then
1592 assert anchor != null
1593 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1594 else
1595 resolved_receiver = mtype
1596 end
1597 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1598 if resolved_receiver isa MParameterType then
1599 assert anchor != null
1600 assert resolved_receiver.mclass == anchor.mclass
1601 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1602 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1603 end
1604 assert resolved_receiver isa MClassType # It is the only remaining type
1605
1606 # Eh! The parameter is in the current class.
1607 # So we return the corresponding argument, no mater what!
1608 if resolved_receiver.mclass == self.mclass then
1609 var res = resolved_receiver.arguments[self.rank]
1610 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1611 return res
1612 end
1613
1614 if resolved_receiver.need_anchor then
1615 assert anchor != null
1616 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1617 end
1618 # Now, we can get the bound
1619 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1620 # The bound is exactly as declared in the "type" property, so we must resolve it again
1621 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1622
1623 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1624
1625 return res
1626 end
1627
1628 redef fun can_resolve_for(mtype, anchor, mmodule)
1629 do
1630 if mtype.need_anchor then
1631 assert anchor != null
1632 mtype = mtype.anchor_to(mmodule, anchor)
1633 end
1634 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1635 end
1636 end
1637
1638 # A type that decorates another type.
1639 #
1640 # The point of this class is to provide a common implementation of sevices that just forward to the original type.
1641 # Specific decorator are expected to redefine (or to extend) the default implementation as this suit them.
1642 abstract class MProxyType
1643 super MType
1644 # The base type
1645 var mtype: MType
1646
1647 redef fun location do return mtype.location
1648
1649 redef fun model do return self.mtype.model
1650 redef fun need_anchor do return mtype.need_anchor
1651 redef fun as_nullable do return mtype.as_nullable
1652 redef fun as_notnull do return mtype.as_notnull
1653 redef fun undecorate do return mtype.undecorate
1654 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1655 do
1656 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1657 return res
1658 end
1659
1660 redef fun can_resolve_for(mtype, anchor, mmodule)
1661 do
1662 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1663 end
1664
1665 redef fun lookup_fixed(mmodule, resolved_receiver)
1666 do
1667 var t = mtype.lookup_fixed(mmodule, resolved_receiver)
1668 return t
1669 end
1670
1671 redef fun depth do return self.mtype.depth
1672
1673 redef fun length do return self.mtype.length
1674
1675 redef fun collect_mclassdefs(mmodule)
1676 do
1677 assert not self.need_anchor
1678 return self.mtype.collect_mclassdefs(mmodule)
1679 end
1680
1681 redef fun collect_mclasses(mmodule)
1682 do
1683 assert not self.need_anchor
1684 return self.mtype.collect_mclasses(mmodule)
1685 end
1686
1687 redef fun collect_mtypes(mmodule)
1688 do
1689 assert not self.need_anchor
1690 return self.mtype.collect_mtypes(mmodule)
1691 end
1692 end
1693
1694 # A type prefixed with "nullable"
1695 class MNullableType
1696 super MProxyType
1697
1698 init
1699 do
1700 self.to_s = "nullable {mtype}"
1701 end
1702
1703 redef var to_s is noinit
1704
1705 redef var full_name is lazy do return "nullable {mtype.full_name}"
1706
1707 redef var c_name is lazy do return "nullable__{mtype.c_name}"
1708
1709 redef fun as_nullable do return self
1710 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1711 do
1712 var res = super
1713 return res.as_nullable
1714 end
1715
1716 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable`
1717 redef fun lookup_fixed(mmodule, resolved_receiver)
1718 do
1719 var t = super
1720 if t == mtype then return self
1721 return t.as_nullable
1722 end
1723 end
1724
1725 # A non-null version of a formal type.
1726 #
1727 # When a formal type in bounded to a nullable type, this is the type of the not null version of it.
1728 class MNotNullType
1729 super MProxyType
1730
1731 redef fun to_s do return "not null {mtype}"
1732 redef var full_name is lazy do return "not null {mtype.full_name}"
1733 redef var c_name is lazy do return "notnull__{mtype.c_name}"
1734
1735 redef fun as_notnull do return self
1736
1737 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1738 do
1739 var res = super
1740 return res.as_notnull
1741 end
1742
1743 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_notnull`
1744 redef fun lookup_fixed(mmodule, resolved_receiver)
1745 do
1746 var t = super
1747 if t == mtype then return self
1748 return t.as_notnull
1749 end
1750 end
1751
1752 # The type of the only value null
1753 #
1754 # The is only one null type per model, see `MModel::null_type`.
1755 class MNullType
1756 super MType
1757 redef var model
1758 redef fun to_s do return "null"
1759 redef fun full_name do return "null"
1760 redef fun c_name do return "null"
1761 redef fun as_nullable do return self
1762
1763 redef var as_notnull = new MBottomType(model) is lazy
1764 redef fun need_anchor do return false
1765 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1766 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1767
1768 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1769
1770 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1771
1772 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1773 end
1774
1775 # The special universal most specific type.
1776 #
1777 # This type is intended to be only used internally for type computation or analysis and should not be exposed to the user.
1778 # The bottom type can de used to denote things that are absurd, dead, or the absence of knowledge.
1779 #
1780 # Semantically it is the singleton `null.as_notnull`.
1781 class MBottomType
1782 super MType
1783 redef var model
1784 redef fun to_s do return "bottom"
1785 redef fun full_name do return "bottom"
1786 redef fun c_name do return "bottom"
1787 redef fun as_nullable do return model.null_type
1788 redef fun as_notnull do return self
1789 redef fun need_anchor do return false
1790 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1791 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1792
1793 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1794
1795 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1796
1797 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1798 end
1799
1800 # A signature of a method
1801 class MSignature
1802 super MType
1803
1804 # The each parameter (in order)
1805 var mparameters: Array[MParameter]
1806
1807 # Returns a parameter named `name`, if any.
1808 fun mparameter_by_name(name: String): nullable MParameter
1809 do
1810 for p in mparameters do
1811 if p.name == name then return p
1812 end
1813 return null
1814 end
1815
1816 # The return type (null for a procedure)
1817 var return_mtype: nullable MType
1818
1819 redef fun depth
1820 do
1821 var dmax = 0
1822 var t = self.return_mtype
1823 if t != null then dmax = t.depth
1824 for p in mparameters do
1825 var d = p.mtype.depth
1826 if d > dmax then dmax = d
1827 end
1828 return dmax + 1
1829 end
1830
1831 redef fun length
1832 do
1833 var res = 1
1834 var t = self.return_mtype
1835 if t != null then res += t.length
1836 for p in mparameters do
1837 res += p.mtype.length
1838 end
1839 return res
1840 end
1841
1842 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1843 init
1844 do
1845 var vararg_rank = -1
1846 for i in [0..mparameters.length[ do
1847 var parameter = mparameters[i]
1848 if parameter.is_vararg then
1849 if vararg_rank >= 0 then
1850 # If there is more than one vararg,
1851 # consider that additional arguments cannot be mapped.
1852 vararg_rank = -1
1853 break
1854 end
1855 vararg_rank = i
1856 end
1857 end
1858 self.vararg_rank = vararg_rank
1859 end
1860
1861 # The rank of the main ellipsis (`...`) for vararg (starting from 0).
1862 # value is -1 if there is no vararg.
1863 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1864 #
1865 # From a model POV, a signature can contain more than one vararg parameter,
1866 # the `vararg_rank` just indicates the one that will receive the additional arguments.
1867 # However, currently, if there is more that one vararg parameter, no one will be the main one,
1868 # and additional arguments will be refused.
1869 var vararg_rank: Int is noinit
1870
1871 # The number of parameters
1872 fun arity: Int do return mparameters.length
1873
1874 redef fun to_s
1875 do
1876 var b = new FlatBuffer
1877 if not mparameters.is_empty then
1878 b.append("(")
1879 for i in [0..mparameters.length[ do
1880 var mparameter = mparameters[i]
1881 if i > 0 then b.append(", ")
1882 b.append(mparameter.name)
1883 b.append(": ")
1884 b.append(mparameter.mtype.to_s)
1885 if mparameter.is_vararg then
1886 b.append("...")
1887 end
1888 end
1889 b.append(")")
1890 end
1891 var ret = self.return_mtype
1892 if ret != null then
1893 b.append(": ")
1894 b.append(ret.to_s)
1895 end
1896 return b.to_s
1897 end
1898
1899 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
1900 do
1901 var params = new Array[MParameter]
1902 for p in self.mparameters do
1903 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1904 end
1905 var ret = self.return_mtype
1906 if ret != null then
1907 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1908 end
1909 var res = new MSignature(params, ret)
1910 return res
1911 end
1912 end
1913
1914 # A parameter in a signature
1915 class MParameter
1916 super MEntity
1917
1918 # The name of the parameter
1919 redef var name
1920
1921 # The static type of the parameter
1922 var mtype: MType
1923
1924 # Is the parameter a vararg?
1925 var is_vararg: Bool
1926
1927 redef fun to_s
1928 do
1929 if is_vararg then
1930 return "{name}: {mtype}..."
1931 else
1932 return "{name}: {mtype}"
1933 end
1934 end
1935
1936 # Returns a new parameter with the `mtype` resolved.
1937 # See `MType::resolve_for` for details.
1938 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
1939 do
1940 if not self.mtype.need_anchor then return self
1941 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1942 var res = new MParameter(self.name, newtype, self.is_vararg)
1943 return res
1944 end
1945
1946 redef fun model do return mtype.model
1947 end
1948
1949 # A service (global property) that generalize method, attribute, etc.
1950 #
1951 # `MProperty` are global to the model; it means that a `MProperty` is not bound
1952 # to a specific `MModule` nor a specific `MClass`.
1953 #
1954 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
1955 # and the other in subclasses and in refinements.
1956 #
1957 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
1958 # of any dynamic type).
1959 # For instance, a call site "x.foo" is associated to a `MProperty`.
1960 abstract class MProperty
1961 super MEntity
1962
1963 # The associated MPropDef subclass.
1964 # The two specialization hierarchy are symmetric.
1965 type MPROPDEF: MPropDef
1966
1967 # The classdef that introduce the property
1968 # While a property is not bound to a specific module, or class,
1969 # the introducing mclassdef is used for naming and visibility
1970 var intro_mclassdef: MClassDef
1971
1972 # The (short) name of the property
1973 redef var name
1974
1975 redef var location
1976
1977 # The canonical name of the property.
1978 #
1979 # It is currently the short-`name` prefixed by the short-name of the class and the full-name of the module.
1980 # Example: "my_package::my_module::MyClass::my_method"
1981 #
1982 # The full-name of the module is needed because two distinct modules of the same package can
1983 # still refine the same class and introduce homonym properties.
1984 #
1985 # For public properties not introduced by refinement, the module name is not used.
1986 #
1987 # Example: `my_package::MyClass::My_method`
1988 redef var full_name is lazy do
1989 if intro_mclassdef.is_intro then
1990 return "{intro_mclassdef.mmodule.namespace_for(visibility)}::{intro_mclassdef.mclass.name}::{name}"
1991 else
1992 return "{intro_mclassdef.mmodule.full_name}::{intro_mclassdef.mclass.name}::{name}"
1993 end
1994 end
1995
1996 redef var c_name is lazy do
1997 # FIXME use `namespace_for`
1998 return "{intro_mclassdef.mmodule.c_name}__{intro_mclassdef.mclass.name.to_cmangle}__{name.to_cmangle}"
1999 end
2000
2001 # The visibility of the property
2002 redef var visibility
2003
2004 # Is the property usable as an initializer?
2005 var is_autoinit = false is writable
2006
2007 init
2008 do
2009 intro_mclassdef.intro_mproperties.add(self)
2010 var model = intro_mclassdef.mmodule.model
2011 model.mproperties_by_name.add_one(name, self)
2012 model.mproperties.add(self)
2013 end
2014
2015 # All definitions of the property.
2016 # The first is the introduction,
2017 # The other are redefinitions (in refinements and in subclasses)
2018 var mpropdefs = new Array[MPROPDEF]
2019
2020 # The definition that introduces the property.
2021 #
2022 # Warning: such a definition may not exist in the early life of the object.
2023 # In this case, the method will abort.
2024 var intro: MPROPDEF is noinit
2025
2026 redef fun model do return intro.model
2027
2028 # Alias for `name`
2029 redef fun to_s do return name
2030
2031 # Return the most specific property definitions defined or inherited by a type.
2032 # The selection knows that refinement is stronger than specialization;
2033 # however, in case of conflict more than one property are returned.
2034 # If mtype does not know mproperty then an empty array is returned.
2035 #
2036 # If you want the really most specific property, then look at `lookup_first_definition`
2037 #
2038 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2039 # ENSURE: `not mtype.has_mproperty(mmodule, self) == result.is_empty`
2040 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2041 do
2042 assert not mtype.need_anchor
2043 mtype = mtype.undecorate
2044
2045 var cache = self.lookup_definitions_cache[mmodule, mtype]
2046 if cache != null then return cache
2047
2048 #print "select prop {mproperty} for {mtype} in {self}"
2049 # First, select all candidates
2050 var candidates = new Array[MPROPDEF]
2051 for mpropdef in self.mpropdefs do
2052 # If the definition is not imported by the module, then skip
2053 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2054 # If the definition is not inherited by the type, then skip
2055 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2056 # Else, we keep it
2057 candidates.add(mpropdef)
2058 end
2059 # Fast track for only one candidate
2060 if candidates.length <= 1 then
2061 self.lookup_definitions_cache[mmodule, mtype] = candidates
2062 return candidates
2063 end
2064
2065 # Second, filter the most specific ones
2066 return select_most_specific(mmodule, candidates)
2067 end
2068
2069 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2070
2071 # Return the most specific property definitions inherited by a type.
2072 # The selection knows that refinement is stronger than specialization;
2073 # however, in case of conflict more than one property are returned.
2074 # If mtype does not know mproperty then an empty array is returned.
2075 #
2076 # If you want the really most specific property, then look at `lookup_next_definition`
2077 #
2078 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2079 # ENSURE: `not mtype.has_mproperty(mmodule, self) implies result.is_empty`
2080 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2081 do
2082 assert not mtype.need_anchor
2083 mtype = mtype.undecorate
2084
2085 # First, select all candidates
2086 var candidates = new Array[MPROPDEF]
2087 for mpropdef in self.mpropdefs do
2088 # If the definition is not imported by the module, then skip
2089 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2090 # If the definition is not inherited by the type, then skip
2091 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2092 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
2093 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
2094 # Else, we keep it
2095 candidates.add(mpropdef)
2096 end
2097 # Fast track for only one candidate
2098 if candidates.length <= 1 then return candidates
2099
2100 # Second, filter the most specific ones
2101 return select_most_specific(mmodule, candidates)
2102 end
2103
2104 # Return an array containing olny the most specific property definitions
2105 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
2106 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
2107 do
2108 var res = new Array[MPROPDEF]
2109 for pd1 in candidates do
2110 var cd1 = pd1.mclassdef
2111 var c1 = cd1.mclass
2112 var keep = true
2113 for pd2 in candidates do
2114 if pd2 == pd1 then continue # do not compare with self!
2115 var cd2 = pd2.mclassdef
2116 var c2 = cd2.mclass
2117 if c2.mclass_type == c1.mclass_type then
2118 if cd2.mmodule.in_importation < cd1.mmodule then
2119 # cd2 refines cd1; therefore we skip pd1
2120 keep = false
2121 break
2122 end
2123 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
2124 # cd2 < cd1; therefore we skip pd1
2125 keep = false
2126 break
2127 end
2128 end
2129 if keep then
2130 res.add(pd1)
2131 end
2132 end
2133 if res.is_empty then
2134 print "All lost! {candidates.join(", ")}"
2135 # FIXME: should be abort!
2136 end
2137 return res
2138 end
2139
2140 # Return the most specific definition in the linearization of `mtype`.
2141 #
2142 # If you want to know the next properties in the linearization,
2143 # look at `MPropDef::lookup_next_definition`.
2144 #
2145 # FIXME: the linearization is still unspecified
2146 #
2147 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2148 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2149 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
2150 do
2151 return lookup_all_definitions(mmodule, mtype).first
2152 end
2153
2154 # Return all definitions in a linearization order
2155 # Most specific first, most general last
2156 #
2157 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2158 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2159 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2160 do
2161 mtype = mtype.undecorate
2162
2163 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
2164 if cache != null then return cache
2165
2166 assert not mtype.need_anchor
2167 assert mtype.has_mproperty(mmodule, self)
2168
2169 #print "select prop {mproperty} for {mtype} in {self}"
2170 # First, select all candidates
2171 var candidates = new Array[MPROPDEF]
2172 for mpropdef in self.mpropdefs do
2173 # If the definition is not imported by the module, then skip
2174 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2175 # If the definition is not inherited by the type, then skip
2176 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2177 # Else, we keep it
2178 candidates.add(mpropdef)
2179 end
2180 # Fast track for only one candidate
2181 if candidates.length <= 1 then
2182 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2183 return candidates
2184 end
2185
2186 mmodule.linearize_mpropdefs(candidates)
2187 candidates = candidates.reversed
2188 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2189 return candidates
2190 end
2191
2192 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2193 end
2194
2195 # A global method
2196 class MMethod
2197 super MProperty
2198
2199 redef type MPROPDEF: MMethodDef
2200
2201 # Is the property defined at the top_level of the module?
2202 # Currently such a property are stored in `Object`
2203 var is_toplevel: Bool = false is writable
2204
2205 # Is the property a constructor?
2206 # Warning, this property can be inherited by subclasses with or without being a constructor
2207 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
2208 var is_init: Bool = false is writable
2209
2210 # The constructor is a (the) root init with empty signature but a set of initializers
2211 var is_root_init: Bool = false is writable
2212
2213 # Is the property a 'new' constructor?
2214 var is_new: Bool = false is writable
2215
2216 # Is the property a legal constructor for a given class?
2217 # As usual, visibility is not considered.
2218 # FIXME not implemented
2219 fun is_init_for(mclass: MClass): Bool
2220 do
2221 return self.is_init
2222 end
2223
2224 # A specific method that is safe to call on null.
2225 # Currently, only `==`, `!=` and `is_same_instance` are safe
2226 fun is_null_safe: Bool do return name == "==" or name == "!=" or name == "is_same_instance"
2227 end
2228
2229 # A global attribute
2230 class MAttribute
2231 super MProperty
2232
2233 redef type MPROPDEF: MAttributeDef
2234
2235 end
2236
2237 # A global virtual type
2238 class MVirtualTypeProp
2239 super MProperty
2240
2241 redef type MPROPDEF: MVirtualTypeDef
2242
2243 # The formal type associated to the virtual type property
2244 var mvirtualtype = new MVirtualType(self)
2245 end
2246
2247 # A definition of a property (local property)
2248 #
2249 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
2250 # specific class definition (which belong to a specific module)
2251 abstract class MPropDef
2252 super MEntity
2253
2254 # The associated `MProperty` subclass.
2255 # the two specialization hierarchy are symmetric
2256 type MPROPERTY: MProperty
2257
2258 # Self class
2259 type MPROPDEF: MPropDef
2260
2261 # The class definition where the property definition is
2262 var mclassdef: MClassDef
2263
2264 # The associated global property
2265 var mproperty: MPROPERTY
2266
2267 redef var location: Location
2268
2269 redef fun visibility do return mproperty.visibility
2270
2271 init
2272 do
2273 mclassdef.mpropdefs.add(self)
2274 mproperty.mpropdefs.add(self)
2275 if mproperty.intro_mclassdef == mclassdef then
2276 assert not isset mproperty._intro
2277 mproperty.intro = self
2278 end
2279 self.to_s = "{mclassdef}${mproperty}"
2280 end
2281
2282 # Actually the name of the `mproperty`
2283 redef fun name do return mproperty.name
2284
2285 # The full-name of mpropdefs combine the information about the `classdef` and the `mproperty`.
2286 #
2287 # Therefore the combination of identifiers is awful,
2288 # the worst case being
2289 #
2290 # * a property "p::m::A::x"
2291 # * redefined in a refinement of a class "q::n::B"
2292 # * in a module "r::o"
2293 # * so "r::o$q::n::B$p::m::A::x"
2294 #
2295 # Fortunately, the full-name is simplified when entities are repeated.
2296 # For the previous case, the simplest form is "p$A$x".
2297 redef var full_name is lazy do
2298 var res = new FlatBuffer
2299
2300 # The first part is the mclassdef. Worst case is "r::o$q::n::B"
2301 res.append mclassdef.full_name
2302
2303 res.append "$"
2304
2305 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2306 # intro are unambiguous in a class
2307 res.append name
2308 else
2309 # Just try to simplify each part
2310 if mclassdef.mmodule.mpackage != mproperty.intro_mclassdef.mmodule.mpackage then
2311 # precise "p::m" only if "p" != "r"
2312 res.append mproperty.intro_mclassdef.mmodule.namespace_for(mproperty.visibility)
2313 res.append "::"
2314 else if mproperty.visibility <= private_visibility then
2315 # Same package ("p"=="q"), but private visibility,
2316 # does the module part ("::m") need to be displayed
2317 if mclassdef.mmodule.namespace_for(mclassdef.mclass.visibility) != mproperty.intro_mclassdef.mmodule.mpackage then
2318 res.append "::"
2319 res.append mproperty.intro_mclassdef.mmodule.name
2320 res.append "::"
2321 end
2322 end
2323 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2324 # precise "B" only if not the same class than "A"
2325 res.append mproperty.intro_mclassdef.name
2326 res.append "::"
2327 end
2328 # Always use the property name "x"
2329 res.append mproperty.name
2330 end
2331 return res.to_s
2332 end
2333
2334 redef var c_name is lazy do
2335 var res = new FlatBuffer
2336 res.append mclassdef.c_name
2337 res.append "___"
2338 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2339 res.append name.to_cmangle
2340 else
2341 if mclassdef.mmodule != mproperty.intro_mclassdef.mmodule then
2342 res.append mproperty.intro_mclassdef.mmodule.c_name
2343 res.append "__"
2344 end
2345 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2346 res.append mproperty.intro_mclassdef.name.to_cmangle
2347 res.append "__"
2348 end
2349 res.append mproperty.name.to_cmangle
2350 end
2351 return res.to_s
2352 end
2353
2354 redef fun model do return mclassdef.model
2355
2356 # Internal name combining the module, the class and the property
2357 # Example: "mymodule$MyClass$mymethod"
2358 redef var to_s is noinit
2359
2360 # Is self the definition that introduce the property?
2361 fun is_intro: Bool do return isset mproperty._intro and mproperty.intro == self
2362
2363 # Return the next definition in linearization of `mtype`.
2364 #
2365 # This method is used to determine what method is called by a super.
2366 #
2367 # REQUIRE: `not mtype.need_anchor`
2368 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
2369 do
2370 assert not mtype.need_anchor
2371
2372 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
2373 var i = mpropdefs.iterator
2374 while i.is_ok and i.item != self do i.next
2375 assert has_property: i.is_ok
2376 i.next
2377 assert has_next_property: i.is_ok
2378 return i.item
2379 end
2380 end
2381
2382 # A local definition of a method
2383 class MMethodDef
2384 super MPropDef
2385
2386 redef type MPROPERTY: MMethod
2387 redef type MPROPDEF: MMethodDef
2388
2389 # The signature attached to the property definition
2390 var msignature: nullable MSignature = null is writable
2391
2392 # The signature attached to the `new` call on a root-init
2393 # This is a concatenation of the signatures of the initializers
2394 #
2395 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2396 var new_msignature: nullable MSignature = null is writable
2397
2398 # List of initialisers to call in root-inits
2399 #
2400 # They could be setters or attributes
2401 #
2402 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2403 var initializers = new Array[MProperty]
2404
2405 # Is the method definition abstract?
2406 var is_abstract: Bool = false is writable
2407
2408 # Is the method definition intern?
2409 var is_intern = false is writable
2410
2411 # Is the method definition extern?
2412 var is_extern = false is writable
2413
2414 # An optional constant value returned in functions.
2415 #
2416 # Only some specific primitife value are accepted by engines.
2417 # Is used when there is no better implementation available.
2418 #
2419 # Currently used only for the implementation of the `--define`
2420 # command-line option.
2421 # SEE: module `mixin`.
2422 var constant_value: nullable Object = null is writable
2423 end
2424
2425 # A local definition of an attribute
2426 class MAttributeDef
2427 super MPropDef
2428
2429 redef type MPROPERTY: MAttribute
2430 redef type MPROPDEF: MAttributeDef
2431
2432 # The static type of the attribute
2433 var static_mtype: nullable MType = null is writable
2434 end
2435
2436 # A local definition of a virtual type
2437 class MVirtualTypeDef
2438 super MPropDef
2439
2440 redef type MPROPERTY: MVirtualTypeProp
2441 redef type MPROPDEF: MVirtualTypeDef
2442
2443 # The bound of the virtual type
2444 var bound: nullable MType = null is writable
2445
2446 # Is the bound fixed?
2447 var is_fixed = false is writable
2448 end
2449
2450 # A kind of class.
2451 #
2452 # * `abstract_kind`
2453 # * `concrete_kind`
2454 # * `interface_kind`
2455 # * `enum_kind`
2456 # * `extern_kind`
2457 #
2458 # Note this class is basically an enum.
2459 # FIXME: use a real enum once user-defined enums are available
2460 class MClassKind
2461 redef var to_s
2462
2463 # Is a constructor required?
2464 var need_init: Bool
2465
2466 # TODO: private init because enumeration.
2467
2468 # Can a class of kind `self` specializes a class of kine `other`?
2469 fun can_specialize(other: MClassKind): Bool
2470 do
2471 if other == interface_kind then return true # everybody can specialize interfaces
2472 if self == interface_kind or self == enum_kind then
2473 # no other case for interfaces
2474 return false
2475 else if self == extern_kind then
2476 # only compatible with themselves
2477 return self == other
2478 else if other == enum_kind or other == extern_kind then
2479 # abstract_kind and concrete_kind are incompatible
2480 return false
2481 end
2482 # remain only abstract_kind and concrete_kind
2483 return true
2484 end
2485 end
2486
2487 # The class kind `abstract`
2488 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", true)
2489 # The class kind `concrete`
2490 fun concrete_kind: MClassKind do return once new MClassKind("class", true)
2491 # The class kind `interface`
2492 fun interface_kind: MClassKind do return once new MClassKind("interface", false)
2493 # The class kind `enum`
2494 fun enum_kind: MClassKind do return once new MClassKind("enum", false)
2495 # The class kind `extern`
2496 fun extern_kind: MClassKind do return once new MClassKind("extern class", false)