rename `NativeString` to `CString`
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class MEntity
34 # The visibility of the MEntity.
35 #
36 # MPackages, MGroups and MModules are always public.
37 # The visibility of `MClass` and `MProperty` is defined by the keyword used.
38 # `MClassDef` and `MPropDef` return the visibility of `MClass` and `MProperty`.
39 fun visibility: MVisibility do return public_visibility
40 end
41
42 redef class Model
43 # All known classes
44 var mclasses = new Array[MClass]
45
46 # All known properties
47 var mproperties = new Array[MProperty]
48
49 # Hierarchy of class definition.
50 #
51 # Each classdef is associated with its super-classdefs in regard to
52 # its module of definition.
53 var mclassdef_hierarchy = new POSet[MClassDef]
54
55 # Class-type hierarchy restricted to the introduction.
56 #
57 # The idea is that what is true on introduction is always true whatever
58 # the module considered.
59 # Therefore, this hierarchy is used for a fast positive subtype check.
60 #
61 # This poset will evolve in a monotonous way:
62 # * Two non connected nodes will remain unconnected
63 # * New nodes can appear with new edges
64 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
65
66 # Global overlapped class-type hierarchy.
67 # The hierarchy when all modules are combined.
68 # Therefore, this hierarchy is used for a fast negative subtype check.
69 #
70 # This poset will evolve in an anarchic way. Loops can even be created.
71 #
72 # FIXME decide what to do on loops
73 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
74
75 # Collections of classes grouped by their short name
76 private var mclasses_by_name = new MultiHashMap[String, MClass]
77
78 # Return all classes named `name`.
79 #
80 # If such a class does not exist, null is returned
81 # (instead of an empty array)
82 #
83 # Visibility or modules are not considered
84 fun get_mclasses_by_name(name: String): nullable Array[MClass]
85 do
86 return mclasses_by_name.get_or_null(name)
87 end
88
89 # Collections of properties grouped by their short name
90 private var mproperties_by_name = new MultiHashMap[String, MProperty]
91
92 # Return all properties named `name`.
93 #
94 # If such a property does not exist, null is returned
95 # (instead of an empty array)
96 #
97 # Visibility or modules are not considered
98 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
99 do
100 return mproperties_by_name.get_or_null(name)
101 end
102
103 # The only null type
104 var null_type = new MNullType(self)
105
106 # Build an ordered tree with from `concerns`
107 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
108 var seen = new HashSet[MConcern]
109 var res = new ConcernsTree
110
111 var todo = new Array[MConcern]
112 todo.add_all mconcerns
113
114 while not todo.is_empty do
115 var c = todo.pop
116 if seen.has(c) then continue
117 var pc = c.parent_concern
118 if pc == null then
119 res.add(null, c)
120 else
121 res.add(pc, c)
122 todo.add(pc)
123 end
124 seen.add(c)
125 end
126
127 return res
128 end
129 end
130
131 # An OrderedTree bound to MEntity.
132 #
133 # We introduce a new class so it can be easily refined by tools working
134 # with a Model.
135 class MEntityTree
136 super OrderedTree[MEntity]
137 end
138
139 # A MEntityTree borned to MConcern.
140 #
141 # TODO remove when nitdoc is fully merged with model_collect
142 class ConcernsTree
143 super OrderedTree[MConcern]
144 end
145
146 redef class MModule
147 # All the classes introduced in the module
148 var intro_mclasses = new Array[MClass]
149
150 # All the class definitions of the module
151 # (introduction and refinement)
152 var mclassdefs = new Array[MClassDef]
153
154 # Does the current module has a given class `mclass`?
155 # Return true if the mmodule introduces, refines or imports a class.
156 # Visibility is not considered.
157 fun has_mclass(mclass: MClass): Bool
158 do
159 return self.in_importation <= mclass.intro_mmodule
160 end
161
162 # Full hierarchy of introduced and imported classes.
163 #
164 # Create a new hierarchy got by flattening the classes for the module
165 # and its imported modules.
166 # Visibility is not considered.
167 #
168 # Note: this function is expensive and is usually used for the main
169 # module of a program only. Do not use it to do you own subtype
170 # functions.
171 fun flatten_mclass_hierarchy: POSet[MClass]
172 do
173 var res = self.flatten_mclass_hierarchy_cache
174 if res != null then return res
175 res = new POSet[MClass]
176 for m in self.in_importation.greaters do
177 for cd in m.mclassdefs do
178 var c = cd.mclass
179 res.add_node(c)
180 for s in cd.supertypes do
181 res.add_edge(c, s.mclass)
182 end
183 end
184 end
185 self.flatten_mclass_hierarchy_cache = res
186 return res
187 end
188
189 # Sort a given array of classes using the linearization order of the module
190 # The most general is first, the most specific is last
191 fun linearize_mclasses(mclasses: Array[MClass])
192 do
193 self.flatten_mclass_hierarchy.sort(mclasses)
194 end
195
196 # Sort a given array of class definitions using the linearization order of the module
197 # the refinement link is stronger than the specialisation link
198 # The most general is first, the most specific is last
199 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
200 do
201 var sorter = new MClassDefSorter(self)
202 sorter.sort(mclassdefs)
203 end
204
205 # Sort a given array of property definitions using the linearization order of the module
206 # the refinement link is stronger than the specialisation link
207 # The most general is first, the most specific is last
208 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
209 do
210 var sorter = new MPropDefSorter(self)
211 sorter.sort(mpropdefs)
212 end
213
214 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
215
216 # The primitive type `Object`, the root of the class hierarchy
217 var object_type: MClassType = self.get_primitive_class("Object").mclass_type is lazy
218
219 # The type `Pointer`, super class to all extern classes
220 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
221
222 # The primitive type `Bool`
223 var bool_type: MClassType = self.get_primitive_class("Bool").mclass_type is lazy
224
225 # The primitive type `Int`
226 var int_type: MClassType = self.get_primitive_class("Int").mclass_type is lazy
227
228 # The primitive type `Byte`
229 var byte_type: MClassType = self.get_primitive_class("Byte").mclass_type is lazy
230
231 # The primitive type `Int8`
232 var int8_type: MClassType = self.get_primitive_class("Int8").mclass_type is lazy
233
234 # The primitive type `Int16`
235 var int16_type: MClassType = self.get_primitive_class("Int16").mclass_type is lazy
236
237 # The primitive type `UInt16`
238 var uint16_type: MClassType = self.get_primitive_class("UInt16").mclass_type is lazy
239
240 # The primitive type `Int32`
241 var int32_type: MClassType = self.get_primitive_class("Int32").mclass_type is lazy
242
243 # The primitive type `UInt32`
244 var uint32_type: MClassType = self.get_primitive_class("UInt32").mclass_type is lazy
245
246 # The primitive type `Char`
247 var char_type: MClassType = self.get_primitive_class("Char").mclass_type is lazy
248
249 # The primitive type `Float`
250 var float_type: MClassType = self.get_primitive_class("Float").mclass_type is lazy
251
252 # The primitive type `String`
253 var string_type: MClassType = self.get_primitive_class("String").mclass_type is lazy
254
255 # The primitive type `CString`
256 var native_string_type: MClassType = self.get_primitive_class("CString").mclass_type is lazy
257
258 # A primitive type of `Array`
259 fun array_type(elt_type: MType): MClassType do return array_class.get_mtype([elt_type])
260
261 # The primitive class `Array`
262 var array_class: MClass = self.get_primitive_class("Array") is lazy
263
264 # A primitive type of `NativeArray`
265 fun native_array_type(elt_type: MType): MClassType do return native_array_class.get_mtype([elt_type])
266
267 # The primitive class `NativeArray`
268 var native_array_class: MClass = self.get_primitive_class("NativeArray") is lazy
269
270 # The primitive type `Sys`, the main type of the program, if any
271 fun sys_type: nullable MClassType
272 do
273 var clas = self.model.get_mclasses_by_name("Sys")
274 if clas == null then return null
275 return get_primitive_class("Sys").mclass_type
276 end
277
278 # The primitive type `Finalizable`
279 # Used to tag classes that need to be finalized.
280 fun finalizable_type: nullable MClassType
281 do
282 var clas = self.model.get_mclasses_by_name("Finalizable")
283 if clas == null then return null
284 return get_primitive_class("Finalizable").mclass_type
285 end
286
287 # Force to get the primitive class named `name` or abort
288 fun get_primitive_class(name: String): MClass
289 do
290 var cla = self.model.get_mclasses_by_name(name)
291 # Filter classes by introducing module
292 if cla != null then cla = [for c in cla do if self.in_importation <= c.intro_mmodule then c]
293 if cla == null or cla.is_empty then
294 if name == "Bool" and self.model.get_mclasses_by_name("Object") != null then
295 # Bool is injected because it is needed by engine to code the result
296 # of the implicit casts.
297 var loc = model.no_location
298 var c = new MClass(self, name, loc, null, enum_kind, public_visibility)
299 var cladef = new MClassDef(self, c.mclass_type, loc)
300 cladef.set_supertypes([object_type])
301 cladef.add_in_hierarchy
302 return c
303 end
304 print_error("Fatal Error: no primitive class {name} in {self}")
305 exit(1)
306 abort
307 end
308 if cla.length != 1 then
309 var msg = "Fatal Error: more than one primitive class {name} in {self}:"
310 for c in cla do msg += " {c.full_name}"
311 print_error msg
312 #exit(1)
313 end
314 return cla.first
315 end
316
317 # Try to get the primitive method named `name` on the type `recv`
318 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
319 do
320 var props = self.model.get_mproperties_by_name(name)
321 if props == null then return null
322 var res: nullable MMethod = null
323 var recvtype = recv.intro.bound_mtype
324 for mprop in props do
325 assert mprop isa MMethod
326 if not recvtype.has_mproperty(self, mprop) then continue
327 if res == null then
328 res = mprop
329 else if res != mprop then
330 print_error("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
331 abort
332 end
333 end
334 return res
335 end
336 end
337
338 private class MClassDefSorter
339 super Comparator
340 redef type COMPARED: MClassDef
341 var mmodule: MModule
342 redef fun compare(a, b)
343 do
344 var ca = a.mclass
345 var cb = b.mclass
346 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
347 return mmodule.model.mclassdef_hierarchy.compare(a, b)
348 end
349 end
350
351 private class MPropDefSorter
352 super Comparator
353 redef type COMPARED: MPropDef
354 var mmodule: MModule
355 redef fun compare(pa, pb)
356 do
357 var a = pa.mclassdef
358 var b = pb.mclassdef
359 var ca = a.mclass
360 var cb = b.mclass
361 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
362 return mmodule.model.mclassdef_hierarchy.compare(a, b)
363 end
364 end
365
366 # A named class
367 #
368 # `MClass` are global to the model; it means that a `MClass` is not bound to a
369 # specific `MModule`.
370 #
371 # This characteristic helps the reasoning about classes in a program since a
372 # single `MClass` object always denote the same class.
373 #
374 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
375 # These do not really have properties nor belong to a hierarchy since the property and the
376 # hierarchy of a class depends of the refinement in the modules.
377 #
378 # Most services on classes require the precision of a module, and no one can asks what are
379 # the super-classes of a class nor what are properties of a class without precising what is
380 # the module considered.
381 #
382 # For instance, during the typing of a source-file, the module considered is the module of the file.
383 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
384 # *is the method `foo` exists in the class `Bar` in the current module?*
385 #
386 # During some global analysis, the module considered may be the main module of the program.
387 class MClass
388 super MEntity
389
390 # The module that introduce the class
391 #
392 # While classes are not bound to a specific module,
393 # the introducing module is used for naming and visibility.
394 var intro_mmodule: MModule
395
396 # The short name of the class
397 # In Nit, the name of a class cannot evolve in refinements
398 redef var name
399
400 redef var location
401
402 # The canonical name of the class
403 #
404 # It is the name of the class prefixed by the full_name of the `intro_mmodule`
405 # Example: `"owner::module::MyClass"`
406 redef var full_name is lazy do
407 return "{self.intro_mmodule.namespace_for(visibility)}::{name}"
408 end
409
410 redef var c_name is lazy do
411 return "{intro_mmodule.c_namespace_for(visibility)}__{name.to_cmangle}"
412 end
413
414 # The number of generic formal parameters
415 # 0 if the class is not generic
416 var arity: Int is noinit
417
418 # Each generic formal parameters in order.
419 # is empty if the class is not generic
420 var mparameters = new Array[MParameterType]
421
422 # A string version of the signature a generic class.
423 #
424 # eg. `Map[K: nullable Object, V: nullable Object]`
425 #
426 # If the class in non generic the name is just given.
427 #
428 # eg. `Object`
429 fun signature_to_s: String
430 do
431 if arity == 0 then return name
432 var res = new FlatBuffer
433 res.append name
434 res.append "["
435 for i in [0..arity[ do
436 if i > 0 then res.append ", "
437 res.append mparameters[i].name
438 res.append ": "
439 res.append intro.bound_mtype.arguments[i].to_s
440 end
441 res.append "]"
442 return res.to_s
443 end
444
445 # Initialize `mparameters` from their names.
446 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
447 autoinit
448 do
449 if parameter_names == null then
450 self.arity = 0
451 else
452 self.arity = parameter_names.length
453 end
454
455 # Create the formal parameter types
456 if arity > 0 then
457 assert parameter_names != null
458 var mparametertypes = new Array[MParameterType]
459 for i in [0..arity[ do
460 var mparametertype = new MParameterType(self, i, parameter_names[i])
461 mparametertypes.add(mparametertype)
462 end
463 self.mparameters = mparametertypes
464 var mclass_type = new MGenericType(self, mparametertypes)
465 self.mclass_type = mclass_type
466 self.get_mtype_cache[mparametertypes] = mclass_type
467 else
468 self.mclass_type = new MClassType(self)
469 end
470 end
471
472 # The kind of the class (interface, abstract class, etc.)
473 # In Nit, the kind of a class cannot evolve in refinements
474 var kind: MClassKind
475
476 # The visibility of the class
477 # In Nit, the visibility of a class cannot evolve in refinements
478 redef var visibility
479
480 init
481 do
482 intro_mmodule.intro_mclasses.add(self)
483 var model = intro_mmodule.model
484 model.mclasses_by_name.add_one(name, self)
485 model.mclasses.add(self)
486 end
487
488 redef fun model do return intro_mmodule.model
489
490 # All class definitions (introduction and refinements)
491 var mclassdefs = new Array[MClassDef]
492
493 # Alias for `name`
494 redef fun to_s do return self.name
495
496 # The definition that introduces the class.
497 #
498 # Warning: such a definition may not exist in the early life of the object.
499 # In this case, the method will abort.
500 #
501 # Use `try_intro` instead
502 var intro: MClassDef is noinit
503
504 # The definition that introduces the class or null if not yet known.
505 #
506 # See `intro`
507 fun try_intro: nullable MClassDef do
508 if isset _intro then return _intro else return null
509 end
510
511 # Return the class `self` in the class hierarchy of the module `mmodule`.
512 #
513 # SEE: `MModule::flatten_mclass_hierarchy`
514 # REQUIRE: `mmodule.has_mclass(self)`
515 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
516 do
517 return mmodule.flatten_mclass_hierarchy[self]
518 end
519
520 # The principal static type of the class.
521 #
522 # For non-generic class, `mclass_type` is the only `MClassType` based
523 # on self.
524 #
525 # For a generic class, the arguments are the formal parameters.
526 # i.e.: for the class `Array[E:Object]`, the `mclass_type` is `Array[E]`.
527 # If you want `Array[Object]`, see `MClassDef::bound_mtype`.
528 #
529 # For generic classes, the mclass_type is also the way to get a formal
530 # generic parameter type.
531 #
532 # To get other types based on a generic class, see `get_mtype`.
533 #
534 # ENSURE: `mclass_type.mclass == self`
535 var mclass_type: MClassType is noinit
536
537 # Return a generic type based on the class
538 # Is the class is not generic, then the result is `mclass_type`
539 #
540 # REQUIRE: `mtype_arguments.length == self.arity`
541 fun get_mtype(mtype_arguments: Array[MType]): MClassType
542 do
543 assert mtype_arguments.length == self.arity
544 if self.arity == 0 then return self.mclass_type
545 var res = get_mtype_cache.get_or_null(mtype_arguments)
546 if res != null then return res
547 res = new MGenericType(self, mtype_arguments)
548 self.get_mtype_cache[mtype_arguments.to_a] = res
549 return res
550 end
551
552 private var get_mtype_cache = new HashMap[Array[MType], MGenericType]
553
554 # Is there a `new` factory to allow the pseudo instantiation?
555 var has_new_factory = false is writable
556
557 # Is `self` a standard or abstract class kind?
558 var is_class: Bool is lazy do return kind == concrete_kind or kind == abstract_kind
559
560 # Is `self` an interface kind?
561 var is_interface: Bool is lazy do return kind == interface_kind
562
563 # Is `self` an enum kind?
564 var is_enum: Bool is lazy do return kind == enum_kind
565
566 # Is `self` and abstract class?
567 var is_abstract: Bool is lazy do return kind == abstract_kind
568
569 redef fun mdoc_or_fallback do return intro.mdoc_or_fallback
570 end
571
572
573 # A definition (an introduction or a refinement) of a class in a module
574 #
575 # A `MClassDef` is associated with an explicit (or almost) definition of a
576 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
577 # a specific class and a specific module, and contains declarations like super-classes
578 # or properties.
579 #
580 # It is the class definitions that are the backbone of most things in the model:
581 # ClassDefs are defined with regard with other classdefs.
582 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
583 #
584 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
585 class MClassDef
586 super MEntity
587
588 # The module where the definition is
589 var mmodule: MModule
590
591 # The associated `MClass`
592 var mclass: MClass is noinit
593
594 # The bounded type associated to the mclassdef
595 #
596 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
597 # are the same type.
598 #
599 # Example:
600 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
601 # If you want Array[E], then see `mclass.mclass_type`
602 #
603 # ENSURE: `bound_mtype.mclass == self.mclass`
604 var bound_mtype: MClassType
605
606 redef var location
607
608 redef fun visibility do return mclass.visibility
609
610 # Internal name combining the module and the class
611 # Example: "mymodule$MyClass"
612 redef var to_s is noinit
613
614 init
615 do
616 self.mclass = bound_mtype.mclass
617 mmodule.mclassdefs.add(self)
618 mclass.mclassdefs.add(self)
619 if mclass.intro_mmodule == mmodule then
620 assert not isset mclass._intro
621 mclass.intro = self
622 end
623 self.to_s = "{mmodule}${mclass}"
624 end
625
626 # Actually the name of the `mclass`
627 redef fun name do return mclass.name
628
629 # The module and class name separated by a '$'.
630 #
631 # The short-name of the class is used for introduction.
632 # Example: "my_module$MyClass"
633 #
634 # The full-name of the class is used for refinement.
635 # Example: "my_module$intro_module::MyClass"
636 redef var full_name is lazy do
637 if is_intro then
638 # public gives 'p$A'
639 # private gives 'p::m$A'
640 return "{mmodule.namespace_for(mclass.visibility)}${mclass.name}"
641 else if mclass.intro_mmodule.mpackage != mmodule.mpackage then
642 # public gives 'q::n$p::A'
643 # private gives 'q::n$p::m::A'
644 return "{mmodule.full_name}${mclass.full_name}"
645 else if mclass.visibility > private_visibility then
646 # public gives 'p::n$A'
647 return "{mmodule.full_name}${mclass.name}"
648 else
649 # private gives 'p::n$::m::A' (redundant p is omitted)
650 return "{mmodule.full_name}$::{mclass.intro_mmodule.name}::{mclass.name}"
651 end
652 end
653
654 redef var c_name is lazy do
655 if is_intro then
656 return "{mmodule.c_namespace_for(mclass.visibility)}___{mclass.c_name}"
657 else if mclass.intro_mmodule.mpackage == mmodule.mpackage and mclass.visibility > private_visibility then
658 return "{mmodule.c_name}___{mclass.name.to_cmangle}"
659 else
660 return "{mmodule.c_name}___{mclass.c_name}"
661 end
662 end
663
664 redef fun model do return mmodule.model
665
666 # All declared super-types
667 # FIXME: quite ugly but not better idea yet
668 var supertypes = new Array[MClassType]
669
670 # Register some super-types for the class (ie "super SomeType")
671 #
672 # The hierarchy must not already be set
673 # REQUIRE: `self.in_hierarchy == null`
674 fun set_supertypes(supertypes: Array[MClassType])
675 do
676 assert unique_invocation: self.in_hierarchy == null
677 var mmodule = self.mmodule
678 var model = mmodule.model
679 var mtype = self.bound_mtype
680
681 for supertype in supertypes do
682 self.supertypes.add(supertype)
683
684 # Register in full_type_specialization_hierarchy
685 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
686 # Register in intro_type_specialization_hierarchy
687 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
688 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
689 end
690 end
691
692 end
693
694 # Collect the super-types (set by set_supertypes) to build the hierarchy
695 #
696 # This function can only invoked once by class
697 # REQUIRE: `self.in_hierarchy == null`
698 # ENSURE: `self.in_hierarchy != null`
699 fun add_in_hierarchy
700 do
701 assert unique_invocation: self.in_hierarchy == null
702 var model = mmodule.model
703 var res = model.mclassdef_hierarchy.add_node(self)
704 self.in_hierarchy = res
705 var mtype = self.bound_mtype
706
707 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
708 # The simpliest way is to attach it to collect_mclassdefs
709 for mclassdef in mtype.collect_mclassdefs(mmodule) do
710 res.poset.add_edge(self, mclassdef)
711 end
712 end
713
714 # The view of the class definition in `mclassdef_hierarchy`
715 var in_hierarchy: nullable POSetElement[MClassDef] = null
716
717 # Is the definition the one that introduced `mclass`?
718 fun is_intro: Bool do return isset mclass._intro and mclass.intro == self
719
720 # All properties introduced by the classdef
721 var intro_mproperties = new Array[MProperty]
722
723 # All property introductions and redefinitions in `self` (not inheritance).
724 var mpropdefs = new Array[MPropDef]
725
726 # All property introductions and redefinitions (not inheritance) in `self` by its associated property.
727 var mpropdefs_by_property = new HashMap[MProperty, MPropDef]
728 end
729
730 # A global static type
731 #
732 # MType are global to the model; it means that a `MType` is not bound to a
733 # specific `MModule`.
734 # This characteristic helps the reasoning about static types in a program
735 # since a single `MType` object always denote the same type.
736 #
737 # However, because a `MType` is global, it does not really have properties
738 # nor have subtypes to a hierarchy since the property and the class hierarchy
739 # depends of a module.
740 # Moreover, virtual types an formal generic parameter types also depends on
741 # a receiver to have sense.
742 #
743 # Therefore, most method of the types require a module and an anchor.
744 # The module is used to know what are the classes and the specialization
745 # links.
746 # The anchor is used to know what is the bound of the virtual types and formal
747 # generic parameter types.
748 #
749 # MType are not directly usable to get properties. See the `anchor_to` method
750 # and the `MClassType` class.
751 #
752 # FIXME: the order of the parameters is not the best. We mus pick on from:
753 # * foo(mmodule, anchor, othertype)
754 # * foo(othertype, anchor, mmodule)
755 # * foo(anchor, mmodule, othertype)
756 # * foo(othertype, mmodule, anchor)
757 abstract class MType
758 super MEntity
759
760 redef fun name do return to_s
761
762 # Return true if `self` is an subtype of `sup`.
763 # The typing is done using the standard typing policy of Nit.
764 #
765 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
766 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
767 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
768 do
769 var sub = self
770 if sub == sup then return true
771
772 #print "1.is {sub} a {sup}? ===="
773
774 if anchor == null then
775 assert not sub.need_anchor
776 assert not sup.need_anchor
777 else
778 # First, resolve the formal types to the simplest equivalent forms in the receiver
779 assert sub.can_resolve_for(anchor, null, mmodule)
780 sub = sub.lookup_fixed(mmodule, anchor)
781 assert sup.can_resolve_for(anchor, null, mmodule)
782 sup = sup.lookup_fixed(mmodule, anchor)
783 end
784
785 # Does `sup` accept null or not?
786 # Discard the nullable marker if it exists
787 var sup_accept_null = false
788 if sup isa MNullableType then
789 sup_accept_null = true
790 sup = sup.mtype
791 else if sup isa MNotNullType then
792 sup = sup.mtype
793 else if sup isa MNullType then
794 sup_accept_null = true
795 end
796
797 # Can `sub` provide null or not?
798 # Thus we can match with `sup_accept_null`
799 # Also discard the nullable marker if it exists
800 var sub_reject_null = false
801 if sub isa MNullableType then
802 if not sup_accept_null then return false
803 sub = sub.mtype
804 else if sub isa MNotNullType then
805 sub_reject_null = true
806 sub = sub.mtype
807 else if sub isa MNullType then
808 return sup_accept_null
809 end
810 # Now the case of direct null and nullable is over.
811
812 # If `sub` is a formal type, then it is accepted if its bound is accepted
813 while sub isa MFormalType do
814 #print "3.is {sub} a {sup}?"
815
816 # A unfixed formal type can only accept itself
817 if sub == sup then return true
818
819 assert anchor != null
820 sub = sub.lookup_bound(mmodule, anchor)
821 if sub_reject_null then sub = sub.as_notnull
822
823 #print "3.is {sub} a {sup}?"
824
825 # Manage the second layer of null/nullable
826 if sub isa MNullableType then
827 if not sup_accept_null and not sub_reject_null then return false
828 sub = sub.mtype
829 else if sub isa MNotNullType then
830 sub_reject_null = true
831 sub = sub.mtype
832 else if sub isa MNullType then
833 return sup_accept_null
834 end
835 end
836 #print "4.is {sub} a {sup}? <- no more resolution"
837
838 if sub isa MBottomType or sub isa MErrorType then
839 return true
840 end
841
842 assert sub isa MClassType else print_error "{sub} <? {sup}" # It is the only remaining type
843
844 # Handle sup-type when the sub-type is class-based (other cases must have be identified before).
845 if sup isa MFormalType or sup isa MNullType or sup isa MBottomType or sup isa MErrorType then
846 # These types are not super-types of Class-based types.
847 return false
848 end
849
850 assert sup isa MClassType else print_error "got {sup} {sub.inspect}" # It is the only remaining type
851
852 # Now both are MClassType, we need to dig
853
854 if sub == sup then return true
855
856 if anchor == null then anchor = sub # UGLY: any anchor will work
857 var resolved_sub = sub.anchor_to(mmodule, anchor)
858 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
859 if res == false then return false
860 if not sup isa MGenericType then return true
861 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
862 assert sub2.mclass == sup.mclass
863 for i in [0..sup.mclass.arity[ do
864 var sub_arg = sub2.arguments[i]
865 var sup_arg = sup.arguments[i]
866 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
867 if res == false then return false
868 end
869 return true
870 end
871
872 # The base class type on which self is based
873 #
874 # This base type is used to get property (an internally to perform
875 # unsafe type comparison).
876 #
877 # Beware: some types (like null) are not based on a class thus this
878 # method will crash
879 #
880 # Basically, this function transform the virtual types and parameter
881 # types to their bounds.
882 #
883 # Example
884 #
885 # class A end
886 # class B super A end
887 # class X end
888 # class Y super X end
889 # class G[T: A]
890 # type U: X
891 # end
892 # class H
893 # super G[B]
894 # redef type U: Y
895 # end
896 #
897 # Map[T,U] anchor_to H #-> Map[B,Y]
898 #
899 # Explanation of the example:
900 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
901 # because "redef type U: Y". Therefore, Map[T, U] is bound to
902 # Map[B, Y]
903 #
904 # ENSURE: `not self.need_anchor implies result == self`
905 # ENSURE: `not result.need_anchor`
906 fun anchor_to(mmodule: MModule, anchor: MClassType): MType
907 do
908 if not need_anchor then return self
909 assert not anchor.need_anchor
910 # Just resolve to the anchor and clear all the virtual types
911 var res = self.resolve_for(anchor, null, mmodule, true)
912 assert not res.need_anchor
913 return res
914 end
915
916 # Does `self` contain a virtual type or a formal generic parameter type?
917 # In order to remove those types, you usually want to use `anchor_to`.
918 fun need_anchor: Bool do return true
919
920 # Return the supertype when adapted to a class.
921 #
922 # In Nit, for each super-class of a type, there is a equivalent super-type.
923 #
924 # Example:
925 #
926 # ~~~nitish
927 # class G[T, U] end
928 # class H[V] super G[V, Bool] end
929 #
930 # H[Int] supertype_to G #-> G[Int, Bool]
931 # ~~~
932 #
933 # REQUIRE: `super_mclass` is a super-class of `self`
934 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
935 # ENSURE: `result.mclass = super_mclass`
936 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
937 do
938 if super_mclass.arity == 0 then return super_mclass.mclass_type
939 if self isa MClassType and self.mclass == super_mclass then return self
940 var resolved_self
941 if self.need_anchor then
942 assert anchor != null
943 resolved_self = self.anchor_to(mmodule, anchor)
944 else
945 resolved_self = self
946 end
947 var supertypes = resolved_self.collect_mtypes(mmodule)
948 for supertype in supertypes do
949 if supertype.mclass == super_mclass then
950 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
951 return supertype.resolve_for(self, anchor, mmodule, false)
952 end
953 end
954 abort
955 end
956
957 # Replace formals generic types in self with resolved values in `mtype`
958 # If `cleanup_virtual` is true, then virtual types are also replaced
959 # with their bounds.
960 #
961 # This function returns self if `need_anchor` is false.
962 #
963 # ## Example 1
964 #
965 # ~~~
966 # class G[E] end
967 # class H[F] super G[F] end
968 # class X[Z] end
969 # ~~~
970 #
971 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
972 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
973 #
974 # Explanation of the example:
975 # * Array[E].need_anchor is true because there is a formal generic parameter type E
976 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
977 # * Since "H[F] super G[F]", E is in fact F for H
978 # * More specifically, in H[Int], E is Int
979 # * So, in H[Int], Array[E] is Array[Int]
980 #
981 # This function is mainly used to inherit a signature.
982 # Because, unlike `anchor_to`, we do not want a full resolution of
983 # a type but only an adapted version of it.
984 #
985 # ## Example 2
986 #
987 # ~~~
988 # class A[E]
989 # fun foo(e:E):E is abstract
990 # end
991 # class B super A[Int] end
992 # ~~~
993 #
994 # The signature on foo is (e: E): E
995 # If we resolve the signature for B, we get (e:Int):Int
996 #
997 # ## Example 3
998 #
999 # ~~~nitish
1000 # class A[E]
1001 # fun foo(e:E):E is abstract
1002 # end
1003 # class C[F]
1004 # var a: A[Array[F]]
1005 # fun bar do a.foo(x) # <- x is here
1006 # end
1007 # ~~~
1008 #
1009 # The first question is: is foo available on `a`?
1010 #
1011 # The static type of a is `A[Array[F]]`, that is an open type.
1012 # in order to find a method `foo`, whe must look at a resolved type.
1013 #
1014 # A[Array[F]].anchor_to(C[nullable Object]) #-> A[Array[nullable Object]]
1015 #
1016 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
1017 #
1018 # The next question is: what is the accepted types for `x`?
1019 #
1020 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
1021 #
1022 # E.resolve_for(A[Array[F]],C[nullable Object]) #-> Array[F]
1023 #
1024 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
1025 #
1026 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
1027 # two function instead of one seems also to be a bad idea.
1028 #
1029 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
1030 # ENSURE: `not self.need_anchor implies result == self`
1031 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
1032
1033 # Resolve formal type to its verbatim bound.
1034 # If the type is not formal, just return self
1035 #
1036 # The result is returned exactly as declared in the "type" property (verbatim).
1037 # So it could be another formal type.
1038 #
1039 # In case of conflicts or inconsistencies in the model, the method returns a `MErrorType`.
1040 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self
1041
1042 # Resolve the formal type to its simplest equivalent form.
1043 #
1044 # Formal types are either free or fixed.
1045 # When it is fixed, it means that it is equivalent with a simpler type.
1046 # When a formal type is free, it means that it is only equivalent with itself.
1047 # This method return the most simple equivalent type of `self`.
1048 #
1049 # This method is mainly used for subtype test in order to sanely compare fixed.
1050 #
1051 # By default, return self.
1052 # See the redefinitions for specific behavior in each kind of type.
1053 #
1054 # In case of conflicts or inconsistencies in the model, the method returns a `MErrorType`.
1055 fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self
1056
1057 # Is the type a `MErrorType` or contains an `MErrorType`?
1058 #
1059 # `MErrorType` are used in result with conflict or inconsistencies.
1060 #
1061 # See `is_legal_in` to check conformity with generic bounds.
1062 fun is_ok: Bool do return true
1063
1064 # Is the type legal in a given `mmodule` (with an optional `anchor`)?
1065 #
1066 # A type is valid if:
1067 #
1068 # * it does not contain a `MErrorType` (see `is_ok`).
1069 # * its generic formal arguments are within their bounds.
1070 fun is_legal_in(mmodule: MModule, anchor: nullable MClassType): Bool do return is_ok
1071
1072 # Can the type be resolved?
1073 #
1074 # In order to resolve open types, the formal types must make sence.
1075 #
1076 # ## Example
1077 #
1078 # class A[E]
1079 # end
1080 # class B[F]
1081 # end
1082 #
1083 # ~~~nitish
1084 # E.can_resolve_for(A[Int]) #-> true, E make sense in A
1085 #
1086 # E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
1087 #
1088 # B[E].can_resolve_for(A[F], B[Object]) #-> true,
1089 # # B[E] is a red hearing only the E is important,
1090 # # E make sense in A
1091 # ~~~
1092 #
1093 # REQUIRE: `anchor != null implies not anchor.need_anchor`
1094 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
1095 # ENSURE: `not self.need_anchor implies result == true`
1096 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
1097
1098 # Return the nullable version of the type
1099 # If the type is already nullable then self is returned
1100 fun as_nullable: MType
1101 do
1102 var res = self.as_nullable_cache
1103 if res != null then return res
1104 res = new MNullableType(self)
1105 self.as_nullable_cache = res
1106 return res
1107 end
1108
1109 # Remove the base type of a decorated (proxy) type.
1110 # Is the type is not decorated, then self is returned.
1111 #
1112 # Most of the time it is used to return the not nullable version of a nullable type.
1113 # In this case, this just remove the `nullable` notation, but the result can still contains null.
1114 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
1115 # If you really want to exclude the `null` value, then use `as_notnull`
1116 fun undecorate: MType
1117 do
1118 return self
1119 end
1120
1121 # Returns the not null version of the type.
1122 # That is `self` minus the `null` value.
1123 #
1124 # For most types, this return `self`.
1125 # For formal types, this returns a special `MNotNullType`
1126 fun as_notnull: MType do return self
1127
1128 private var as_nullable_cache: nullable MType = null
1129
1130
1131 # The depth of the type seen as a tree.
1132 #
1133 # * A -> 1
1134 # * G[A] -> 2
1135 # * H[A, B] -> 2
1136 # * H[G[A], B] -> 3
1137 #
1138 # Formal types have a depth of 1.
1139 fun depth: Int
1140 do
1141 return 1
1142 end
1143
1144 # The length of the type seen as a tree.
1145 #
1146 # * A -> 1
1147 # * G[A] -> 2
1148 # * H[A, B] -> 3
1149 # * H[G[A], B] -> 4
1150 #
1151 # Formal types have a length of 1.
1152 fun length: Int
1153 do
1154 return 1
1155 end
1156
1157 # Compute all the classdefs inherited/imported.
1158 # The returned set contains:
1159 # * the class definitions from `mmodule` and its imported modules
1160 # * the class definitions of this type and its super-types
1161 #
1162 # This function is used mainly internally.
1163 #
1164 # REQUIRE: `not self.need_anchor`
1165 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
1166
1167 # Compute all the super-classes.
1168 # This function is used mainly internally.
1169 #
1170 # REQUIRE: `not self.need_anchor`
1171 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
1172
1173 # Compute all the declared super-types.
1174 # Super-types are returned as declared in the classdefs (verbatim).
1175 # This function is used mainly internally.
1176 #
1177 # REQUIRE: `not self.need_anchor`
1178 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
1179
1180 # Is the property in self for a given module
1181 # This method does not filter visibility or whatever
1182 #
1183 # REQUIRE: `not self.need_anchor`
1184 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
1185 do
1186 assert not self.need_anchor
1187 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
1188 end
1189 end
1190
1191 # A type based on a class.
1192 #
1193 # `MClassType` have properties (see `has_mproperty`).
1194 class MClassType
1195 super MType
1196
1197 # The associated class
1198 var mclass: MClass
1199
1200 redef fun model do return self.mclass.intro_mmodule.model
1201
1202 redef fun location do return mclass.location
1203
1204 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1205
1206 # The formal arguments of the type
1207 # ENSURE: `result.length == self.mclass.arity`
1208 var arguments = new Array[MType]
1209
1210 redef fun to_s do return mclass.to_s
1211
1212 redef fun full_name do return mclass.full_name
1213
1214 redef fun c_name do return mclass.c_name
1215
1216 redef fun need_anchor do return false
1217
1218 redef fun anchor_to(mmodule: MModule, anchor: MClassType): MClassType
1219 do
1220 return super.as(MClassType)
1221 end
1222
1223 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1224
1225 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1226
1227 redef fun collect_mclassdefs(mmodule)
1228 do
1229 assert not self.need_anchor
1230 var cache = self.collect_mclassdefs_cache
1231 if not cache.has_key(mmodule) then
1232 self.collect_things(mmodule)
1233 end
1234 return cache[mmodule]
1235 end
1236
1237 redef fun collect_mclasses(mmodule)
1238 do
1239 if collect_mclasses_last_module == mmodule then return collect_mclasses_last_module_cache
1240 assert not self.need_anchor
1241 var cache = self.collect_mclasses_cache
1242 if not cache.has_key(mmodule) then
1243 self.collect_things(mmodule)
1244 end
1245 var res = cache[mmodule]
1246 collect_mclasses_last_module = mmodule
1247 collect_mclasses_last_module_cache = res
1248 return res
1249 end
1250
1251 private var collect_mclasses_last_module: nullable MModule = null
1252 private var collect_mclasses_last_module_cache: Set[MClass] is noinit
1253
1254 redef fun collect_mtypes(mmodule)
1255 do
1256 assert not self.need_anchor
1257 var cache = self.collect_mtypes_cache
1258 if not cache.has_key(mmodule) then
1259 self.collect_things(mmodule)
1260 end
1261 return cache[mmodule]
1262 end
1263
1264 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1265 private fun collect_things(mmodule: MModule)
1266 do
1267 var res = new HashSet[MClassDef]
1268 var seen = new HashSet[MClass]
1269 var types = new HashSet[MClassType]
1270 seen.add(self.mclass)
1271 var todo = [self.mclass]
1272 while not todo.is_empty do
1273 var mclass = todo.pop
1274 #print "process {mclass}"
1275 for mclassdef in mclass.mclassdefs do
1276 if not mmodule.in_importation <= mclassdef.mmodule then continue
1277 #print " process {mclassdef}"
1278 res.add(mclassdef)
1279 for supertype in mclassdef.supertypes do
1280 types.add(supertype)
1281 var superclass = supertype.mclass
1282 if seen.has(superclass) then continue
1283 #print " add {superclass}"
1284 seen.add(superclass)
1285 todo.add(superclass)
1286 end
1287 end
1288 end
1289 collect_mclassdefs_cache[mmodule] = res
1290 collect_mclasses_cache[mmodule] = seen
1291 collect_mtypes_cache[mmodule] = types
1292 end
1293
1294 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1295 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1296 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1297
1298 end
1299
1300 # A type based on a generic class.
1301 # A generic type a just a class with additional formal generic arguments.
1302 class MGenericType
1303 super MClassType
1304
1305 redef var arguments
1306
1307 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1308
1309 init
1310 do
1311 assert self.mclass.arity == arguments.length
1312
1313 self.need_anchor = false
1314 for t in arguments do
1315 if t.need_anchor then
1316 self.need_anchor = true
1317 break
1318 end
1319 end
1320
1321 self.to_s = "{mclass}[{arguments.join(", ")}]"
1322 end
1323
1324 # The short-name of the class, then the full-name of each type arguments within brackets.
1325 # Example: `"Map[String, List[Int]]"`
1326 redef var to_s is noinit
1327
1328 # The full-name of the class, then the full-name of each type arguments within brackets.
1329 # Example: `"core::Map[core::String, core::List[core::Int]]"`
1330 redef var full_name is lazy do
1331 var args = new Array[String]
1332 for t in arguments do
1333 args.add t.full_name
1334 end
1335 return "{mclass.full_name}[{args.join(", ")}]"
1336 end
1337
1338 redef var c_name is lazy do
1339 var res = mclass.c_name
1340 # Note: because the arity is known, a prefix notation is enough
1341 for t in arguments do
1342 res += "__"
1343 res += t.c_name
1344 end
1345 return res.to_s
1346 end
1347
1348 redef var need_anchor is noinit
1349
1350 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1351 do
1352 if not need_anchor then return self
1353 assert can_resolve_for(mtype, anchor, mmodule)
1354 var types = new Array[MType]
1355 for t in arguments do
1356 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1357 end
1358 return mclass.get_mtype(types)
1359 end
1360
1361 redef fun can_resolve_for(mtype, anchor, mmodule)
1362 do
1363 if not need_anchor then return true
1364 for t in arguments do
1365 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1366 end
1367 return true
1368 end
1369
1370 redef fun is_ok
1371 do
1372 for t in arguments do if not t.is_ok then return false
1373 return super
1374 end
1375
1376 redef fun is_legal_in(mmodule, anchor)
1377 do
1378 var mtype
1379 if need_anchor then
1380 assert anchor != null
1381 mtype = anchor_to(mmodule, anchor)
1382 else
1383 mtype = self
1384 end
1385 if not mtype.is_ok then return false
1386 return mtype.is_subtype(mmodule, null, mtype.mclass.intro.bound_mtype)
1387 end
1388
1389 redef fun depth
1390 do
1391 var dmax = 0
1392 for a in self.arguments do
1393 var d = a.depth
1394 if d > dmax then dmax = d
1395 end
1396 return dmax + 1
1397 end
1398
1399 redef fun length
1400 do
1401 var res = 1
1402 for a in self.arguments do
1403 res += a.length
1404 end
1405 return res
1406 end
1407 end
1408
1409 # A formal type (either virtual of parametric).
1410 #
1411 # The main issue with formal types is that they offer very little information on their own
1412 # and need a context (anchor and mmodule) to be useful.
1413 abstract class MFormalType
1414 super MType
1415
1416 redef var as_notnull = new MNotNullType(self) is lazy
1417 end
1418
1419 # A virtual formal type.
1420 class MVirtualType
1421 super MFormalType
1422
1423 # The property associated with the type.
1424 # Its the definitions of this property that determine the bound or the virtual type.
1425 var mproperty: MVirtualTypeProp
1426
1427 redef fun location do return mproperty.location
1428
1429 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1430
1431 redef fun lookup_bound(mmodule, resolved_receiver)
1432 do
1433 # There is two possible invalid cases: the vt does not exists in resolved_receiver or the bound is broken
1434 if not resolved_receiver.has_mproperty(mmodule, mproperty) then return new MErrorType(model)
1435 return lookup_single_definition(mmodule, resolved_receiver).bound or else new MErrorType(model)
1436 end
1437
1438 private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef
1439 do
1440 assert not resolved_receiver.need_anchor
1441 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1442 if props.is_empty then
1443 abort
1444 else if props.length == 1 then
1445 return props.first
1446 end
1447 var types = new ArraySet[MType]
1448 var res = props.first
1449 for p in props do
1450 types.add(p.bound.as(not null))
1451 if not res.is_fixed then res = p
1452 end
1453 if types.length == 1 then
1454 return res
1455 end
1456 abort
1457 end
1458
1459 # A VT is fixed when:
1460 # * the VT is (re-)defined with the annotation `is fixed`
1461 # * the VT is (indirectly) bound to an enum class (see `enum_kind`) since there is no subtype possible
1462 # * the receiver is an enum class since there is no subtype possible
1463 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1464 do
1465 assert not resolved_receiver.need_anchor
1466 resolved_receiver = resolved_receiver.undecorate
1467 assert resolved_receiver isa MClassType # It is the only remaining type
1468
1469 var prop = lookup_single_definition(mmodule, resolved_receiver)
1470 var res = prop.bound
1471 if res == null then return new MErrorType(model)
1472
1473 # Recursively lookup the fixed result
1474 res = res.lookup_fixed(mmodule, resolved_receiver)
1475
1476 # 1. For a fixed VT, return the resolved bound
1477 if prop.is_fixed then return res
1478
1479 # 2. For a enum boud, return the bound
1480 if res isa MClassType and res.mclass.kind == enum_kind then return res
1481
1482 # 3. for a enum receiver return the bound
1483 if resolved_receiver.mclass.kind == enum_kind then return res
1484
1485 return self
1486 end
1487
1488 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1489 do
1490 if not cleanup_virtual then return self
1491 assert can_resolve_for(mtype, anchor, mmodule)
1492
1493 if mproperty.is_selftype then return mtype
1494
1495 # self is a virtual type declared (or inherited) in mtype
1496 # The point of the function it to get the bound of the virtual type that make sense for mtype
1497 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1498 #print "{class_name}: {self}/{mtype}/{anchor}?"
1499 var resolved_receiver
1500 if mtype.need_anchor then
1501 assert anchor != null
1502 resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true)
1503 else
1504 resolved_receiver = mtype
1505 end
1506 # Now, we can get the bound
1507 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1508 # The bound is exactly as declared in the "type" property, so we must resolve it again
1509 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1510
1511 return res
1512 end
1513
1514 redef fun can_resolve_for(mtype, anchor, mmodule)
1515 do
1516 if mtype.need_anchor then
1517 assert anchor != null
1518 mtype = mtype.anchor_to(mmodule, anchor)
1519 end
1520 return mtype.has_mproperty(mmodule, mproperty)
1521 end
1522
1523 redef fun to_s do return self.mproperty.to_s
1524
1525 redef fun full_name do return self.mproperty.full_name
1526
1527 redef fun c_name do return self.mproperty.c_name
1528 end
1529
1530 # The type associated to a formal parameter generic type of a class
1531 #
1532 # Each parameter type is associated to a specific class.
1533 # It means that all refinements of a same class "share" the parameter type,
1534 # but that a generic subclass has its own parameter types.
1535 #
1536 # However, in the sense of the meta-model, a parameter type of a class is
1537 # a valid type in a subclass. The "in the sense of the meta-model" is
1538 # important because, in the Nit language, the programmer cannot refers
1539 # directly to the parameter types of the super-classes.
1540 #
1541 # Example:
1542 #
1543 # class A[E]
1544 # fun e: E is abstract
1545 # end
1546 # class B[F]
1547 # super A[Array[F]]
1548 # end
1549 #
1550 # In the class definition B[F], `F` is a valid type but `E` is not.
1551 # However, `self.e` is a valid method call, and the signature of `e` is
1552 # declared `e: E`.
1553 #
1554 # Note that parameter types are shared among class refinements.
1555 # Therefore parameter only have an internal name (see `to_s` for details).
1556 class MParameterType
1557 super MFormalType
1558
1559 # The generic class where the parameter belong
1560 var mclass: MClass
1561
1562 redef fun model do return self.mclass.intro_mmodule.model
1563
1564 redef fun location do return mclass.location
1565
1566 # The position of the parameter (0 for the first parameter)
1567 # FIXME: is `position` a better name?
1568 var rank: Int
1569
1570 redef var name
1571
1572 redef fun to_s do return name
1573
1574 redef var full_name is lazy do return "{mclass.full_name}::{name}"
1575
1576 redef var c_name is lazy do return mclass.c_name + "__" + "#{name}".to_cmangle
1577
1578 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1579 do
1580 assert not resolved_receiver.need_anchor
1581 resolved_receiver = resolved_receiver.undecorate
1582 assert resolved_receiver isa MClassType # It is the only remaining type
1583 var goalclass = self.mclass
1584 if resolved_receiver.mclass == goalclass then
1585 return resolved_receiver.arguments[self.rank]
1586 end
1587 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1588 for t in supertypes do
1589 if t.mclass == goalclass then
1590 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1591 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1592 var res = t.arguments[self.rank]
1593 return res
1594 end
1595 end
1596 # Cannot found `self` in `resolved_receiver`
1597 return new MErrorType(model)
1598 end
1599
1600 # A PT is fixed when:
1601 # * Its bound is a enum class (see `enum_kind`).
1602 # The PT is just useless, but it is still a case.
1603 # * More usually, the `resolved_receiver` is a subclass of `self.mclass`,
1604 # so it is necessarily fixed in a `super` clause, either with a normal type
1605 # or with another PT.
1606 # See `resolve_for` for examples about related issues.
1607 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1608 do
1609 assert not resolved_receiver.need_anchor
1610 resolved_receiver = resolved_receiver.undecorate
1611 assert resolved_receiver isa MClassType # It is the only remaining type
1612 var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false)
1613 return res
1614 end
1615
1616 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1617 do
1618 assert can_resolve_for(mtype, anchor, mmodule)
1619 #print "{class_name}: {self}/{mtype}/{anchor}?"
1620
1621 if mtype isa MGenericType and mtype.mclass == self.mclass then
1622 var res = mtype.arguments[self.rank]
1623 if anchor != null and res.need_anchor then
1624 # Maybe the result can be resolved more if are bound to a final class
1625 var r2 = res.anchor_to(mmodule, anchor)
1626 if r2 isa MClassType and r2.mclass.kind == enum_kind then return r2
1627 end
1628 return res
1629 end
1630
1631 # self is a parameter type of mtype (or of a super-class of mtype)
1632 # The point of the function it to get the bound of the virtual type that make sense for mtype
1633 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1634 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1635 var resolved_receiver
1636 if mtype.need_anchor then
1637 assert anchor != null
1638 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1639 else
1640 resolved_receiver = mtype
1641 end
1642 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1643 if resolved_receiver isa MParameterType then
1644 assert anchor != null
1645 assert resolved_receiver.mclass == anchor.mclass
1646 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1647 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1648 end
1649 assert resolved_receiver isa MClassType # It is the only remaining type
1650
1651 # Eh! The parameter is in the current class.
1652 # So we return the corresponding argument, no mater what!
1653 if resolved_receiver.mclass == self.mclass then
1654 var res = resolved_receiver.arguments[self.rank]
1655 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1656 return res
1657 end
1658
1659 if resolved_receiver.need_anchor then
1660 assert anchor != null
1661 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1662 end
1663 # Now, we can get the bound
1664 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1665 # The bound is exactly as declared in the "type" property, so we must resolve it again
1666 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1667
1668 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1669
1670 return res
1671 end
1672
1673 redef fun can_resolve_for(mtype, anchor, mmodule)
1674 do
1675 if mtype.need_anchor then
1676 assert anchor != null
1677 mtype = mtype.anchor_to(mmodule, anchor)
1678 end
1679 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1680 end
1681 end
1682
1683 # A type that decorates another type.
1684 #
1685 # The point of this class is to provide a common implementation of sevices that just forward to the original type.
1686 # Specific decorator are expected to redefine (or to extend) the default implementation as this suit them.
1687 abstract class MProxyType
1688 super MType
1689 # The base type
1690 var mtype: MType
1691
1692 redef fun location do return mtype.location
1693
1694 redef fun model do return self.mtype.model
1695 redef fun need_anchor do return mtype.need_anchor
1696 redef fun as_nullable do return mtype.as_nullable
1697 redef fun as_notnull do return mtype.as_notnull
1698 redef fun undecorate do return mtype.undecorate
1699 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1700 do
1701 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1702 return res
1703 end
1704
1705 redef fun can_resolve_for(mtype, anchor, mmodule)
1706 do
1707 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1708 end
1709
1710 redef fun is_ok do return mtype.is_ok
1711
1712 redef fun is_legal_in(mmodule, anchor) do return mtype.is_legal_in(mmodule, anchor)
1713
1714 redef fun lookup_fixed(mmodule, resolved_receiver)
1715 do
1716 var t = mtype.lookup_fixed(mmodule, resolved_receiver)
1717 return t
1718 end
1719
1720 redef fun depth do return self.mtype.depth
1721
1722 redef fun length do return self.mtype.length
1723
1724 redef fun collect_mclassdefs(mmodule)
1725 do
1726 assert not self.need_anchor
1727 return self.mtype.collect_mclassdefs(mmodule)
1728 end
1729
1730 redef fun collect_mclasses(mmodule)
1731 do
1732 assert not self.need_anchor
1733 return self.mtype.collect_mclasses(mmodule)
1734 end
1735
1736 redef fun collect_mtypes(mmodule)
1737 do
1738 assert not self.need_anchor
1739 return self.mtype.collect_mtypes(mmodule)
1740 end
1741 end
1742
1743 # A type prefixed with "nullable"
1744 class MNullableType
1745 super MProxyType
1746
1747 init
1748 do
1749 self.to_s = "nullable {mtype}"
1750 end
1751
1752 redef var to_s is noinit
1753
1754 redef var full_name is lazy do return "nullable {mtype.full_name}"
1755
1756 redef var c_name is lazy do return "nullable__{mtype.c_name}"
1757
1758 redef fun as_nullable do return self
1759 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1760 do
1761 var res = super
1762 return res.as_nullable
1763 end
1764
1765 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable`
1766 redef fun lookup_fixed(mmodule, resolved_receiver)
1767 do
1768 var t = super
1769 if t == mtype then return self
1770 return t.as_nullable
1771 end
1772 end
1773
1774 # A non-null version of a formal type.
1775 #
1776 # When a formal type in bounded to a nullable type, this is the type of the not null version of it.
1777 class MNotNullType
1778 super MProxyType
1779
1780 redef fun to_s do return "not null {mtype}"
1781 redef var full_name is lazy do return "not null {mtype.full_name}"
1782 redef var c_name is lazy do return "notnull__{mtype.c_name}"
1783
1784 redef fun as_notnull do return self
1785
1786 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1787 do
1788 var res = super
1789 return res.as_notnull
1790 end
1791
1792 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_notnull`
1793 redef fun lookup_fixed(mmodule, resolved_receiver)
1794 do
1795 var t = super
1796 if t == mtype then return self
1797 return t.as_notnull
1798 end
1799 end
1800
1801 # The type of the only value null
1802 #
1803 # The is only one null type per model, see `MModel::null_type`.
1804 class MNullType
1805 super MType
1806 redef var model
1807 redef fun to_s do return "null"
1808 redef fun full_name do return "null"
1809 redef fun c_name do return "null"
1810 redef fun as_nullable do return self
1811
1812 redef var as_notnull = new MBottomType(model) is lazy
1813 redef fun need_anchor do return false
1814 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1815 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1816
1817 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1818
1819 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1820
1821 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1822 end
1823
1824 # The special universal most specific type.
1825 #
1826 # This type is intended to be only used internally for type computation or analysis and should not be exposed to the user.
1827 # The bottom type can de used to denote things that are dead (no instance).
1828 #
1829 # Semantically it is the singleton `null.as_notnull`.
1830 # Is also means that `self.as_nullable == null`.
1831 class MBottomType
1832 super MType
1833 redef var model
1834 redef fun to_s do return "bottom"
1835 redef fun full_name do return "bottom"
1836 redef fun c_name do return "bottom"
1837 redef fun as_nullable do return model.null_type
1838 redef fun as_notnull do return self
1839 redef fun need_anchor do return false
1840 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1841 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1842
1843 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1844
1845 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1846
1847 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1848 end
1849
1850 # A special type used as a silent error marker when building types.
1851 #
1852 # This type is intended to be only used internally for type operation and should not be exposed to the user.
1853 # The error type can de used to denote things that are conflicting or inconsistent.
1854 #
1855 # Some methods on types can return a `MErrorType` to denote a broken or a conflicting result.
1856 # Use `is_ok` to check if a type is (or contains) a `MErrorType` .
1857 class MErrorType
1858 super MType
1859 redef var model
1860 redef fun to_s do return "error"
1861 redef fun full_name do return "error"
1862 redef fun c_name do return "error"
1863 redef fun need_anchor do return false
1864 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1865 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1866 redef fun is_ok do return false
1867
1868 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1869
1870 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1871
1872 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1873 end
1874
1875 # A signature of a method
1876 class MSignature
1877 super MType
1878
1879 # The each parameter (in order)
1880 var mparameters: Array[MParameter]
1881
1882 # Returns a parameter named `name`, if any.
1883 fun mparameter_by_name(name: String): nullable MParameter
1884 do
1885 for p in mparameters do
1886 if p.name == name then return p
1887 end
1888 return null
1889 end
1890
1891 # The return type (null for a procedure)
1892 var return_mtype: nullable MType
1893
1894 redef fun depth
1895 do
1896 var dmax = 0
1897 var t = self.return_mtype
1898 if t != null then dmax = t.depth
1899 for p in mparameters do
1900 var d = p.mtype.depth
1901 if d > dmax then dmax = d
1902 end
1903 return dmax + 1
1904 end
1905
1906 redef fun length
1907 do
1908 var res = 1
1909 var t = self.return_mtype
1910 if t != null then res += t.length
1911 for p in mparameters do
1912 res += p.mtype.length
1913 end
1914 return res
1915 end
1916
1917 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1918 init
1919 do
1920 var vararg_rank = -1
1921 for i in [0..mparameters.length[ do
1922 var parameter = mparameters[i]
1923 if parameter.is_vararg then
1924 if vararg_rank >= 0 then
1925 # If there is more than one vararg,
1926 # consider that additional arguments cannot be mapped.
1927 vararg_rank = -1
1928 break
1929 end
1930 vararg_rank = i
1931 end
1932 end
1933 self.vararg_rank = vararg_rank
1934 end
1935
1936 # The rank of the main ellipsis (`...`) for vararg (starting from 0).
1937 # value is -1 if there is no vararg.
1938 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1939 #
1940 # From a model POV, a signature can contain more than one vararg parameter,
1941 # the `vararg_rank` just indicates the one that will receive the additional arguments.
1942 # However, currently, if there is more that one vararg parameter, no one will be the main one,
1943 # and additional arguments will be refused.
1944 var vararg_rank: Int is noinit
1945
1946 # The number of parameters
1947 fun arity: Int do return mparameters.length
1948
1949 redef fun to_s
1950 do
1951 var b = new FlatBuffer
1952 if not mparameters.is_empty then
1953 b.append("(")
1954 for i in [0..mparameters.length[ do
1955 var mparameter = mparameters[i]
1956 if i > 0 then b.append(", ")
1957 b.append(mparameter.name)
1958 b.append(": ")
1959 b.append(mparameter.mtype.to_s)
1960 if mparameter.is_vararg then
1961 b.append("...")
1962 end
1963 end
1964 b.append(")")
1965 end
1966 var ret = self.return_mtype
1967 if ret != null then
1968 b.append(": ")
1969 b.append(ret.to_s)
1970 end
1971 return b.to_s
1972 end
1973
1974 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
1975 do
1976 var params = new Array[MParameter]
1977 for p in self.mparameters do
1978 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1979 end
1980 var ret = self.return_mtype
1981 if ret != null then
1982 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1983 end
1984 var res = new MSignature(params, ret)
1985 return res
1986 end
1987 end
1988
1989 # A parameter in a signature
1990 class MParameter
1991 super MEntity
1992
1993 # The name of the parameter
1994 redef var name
1995
1996 # The static type of the parameter
1997 var mtype: MType
1998
1999 # Is the parameter a vararg?
2000 var is_vararg: Bool
2001
2002 redef fun to_s
2003 do
2004 if is_vararg then
2005 return "{name}: {mtype}..."
2006 else
2007 return "{name}: {mtype}"
2008 end
2009 end
2010
2011 # Returns a new parameter with the `mtype` resolved.
2012 # See `MType::resolve_for` for details.
2013 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
2014 do
2015 if not self.mtype.need_anchor then return self
2016 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
2017 var res = new MParameter(self.name, newtype, self.is_vararg)
2018 return res
2019 end
2020
2021 redef fun model do return mtype.model
2022 end
2023
2024 # A service (global property) that generalize method, attribute, etc.
2025 #
2026 # `MProperty` are global to the model; it means that a `MProperty` is not bound
2027 # to a specific `MModule` nor a specific `MClass`.
2028 #
2029 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
2030 # and the other in subclasses and in refinements.
2031 #
2032 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
2033 # of any dynamic type).
2034 # For instance, a call site "x.foo" is associated to a `MProperty`.
2035 abstract class MProperty
2036 super MEntity
2037
2038 # The associated MPropDef subclass.
2039 # The two specialization hierarchy are symmetric.
2040 type MPROPDEF: MPropDef
2041
2042 # The classdef that introduce the property
2043 # While a property is not bound to a specific module, or class,
2044 # the introducing mclassdef is used for naming and visibility
2045 var intro_mclassdef: MClassDef
2046
2047 # The (short) name of the property
2048 redef var name
2049
2050 redef var location
2051
2052 redef fun mdoc_or_fallback do return intro.mdoc_or_fallback
2053
2054 # The canonical name of the property.
2055 #
2056 # It is currently the short-`name` prefixed by the short-name of the class and the full-name of the module.
2057 # Example: "my_package::my_module::MyClass::my_method"
2058 #
2059 # The full-name of the module is needed because two distinct modules of the same package can
2060 # still refine the same class and introduce homonym properties.
2061 #
2062 # For public properties not introduced by refinement, the module name is not used.
2063 #
2064 # Example: `my_package::MyClass::My_method`
2065 redef var full_name is lazy do
2066 if intro_mclassdef.is_intro then
2067 return "{intro_mclassdef.mmodule.namespace_for(visibility)}::{intro_mclassdef.mclass.name}::{name}"
2068 else
2069 return "{intro_mclassdef.mmodule.full_name}::{intro_mclassdef.mclass.name}::{name}"
2070 end
2071 end
2072
2073 redef var c_name is lazy do
2074 # FIXME use `namespace_for`
2075 return "{intro_mclassdef.mmodule.c_name}__{intro_mclassdef.mclass.name.to_cmangle}__{name.to_cmangle}"
2076 end
2077
2078 # The visibility of the property
2079 redef var visibility
2080
2081 # Is the property usable as an initializer?
2082 var is_autoinit = false is writable
2083
2084 init
2085 do
2086 intro_mclassdef.intro_mproperties.add(self)
2087 var model = intro_mclassdef.mmodule.model
2088 model.mproperties_by_name.add_one(name, self)
2089 model.mproperties.add(self)
2090 end
2091
2092 # All definitions of the property.
2093 # The first is the introduction,
2094 # The other are redefinitions (in refinements and in subclasses)
2095 var mpropdefs = new Array[MPROPDEF]
2096
2097 # The definition that introduces the property.
2098 #
2099 # Warning: such a definition may not exist in the early life of the object.
2100 # In this case, the method will abort.
2101 var intro: MPROPDEF is noinit
2102
2103 redef fun model do return intro.model
2104
2105 # Alias for `name`
2106 redef fun to_s do return name
2107
2108 # Return the most specific property definitions defined or inherited by a type.
2109 # The selection knows that refinement is stronger than specialization;
2110 # however, in case of conflict more than one property are returned.
2111 # If mtype does not know mproperty then an empty array is returned.
2112 #
2113 # If you want the really most specific property, then look at `lookup_first_definition`
2114 #
2115 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2116 # ENSURE: `not mtype.has_mproperty(mmodule, self) == result.is_empty`
2117 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2118 do
2119 assert not mtype.need_anchor
2120 mtype = mtype.undecorate
2121
2122 var cache = self.lookup_definitions_cache[mmodule, mtype]
2123 if cache != null then return cache
2124
2125 #print "select prop {mproperty} for {mtype} in {self}"
2126 # First, select all candidates
2127 var candidates = new Array[MPROPDEF]
2128
2129 # Here we have two strategies: iterate propdefs or iterate classdefs.
2130 var mpropdefs = self.mpropdefs
2131 if mpropdefs.length <= 1 or mpropdefs.length < mtype.collect_mclassdefs(mmodule).length then
2132 # Iterate on all definitions of `self`, keep only those inherited by `mtype` in `mmodule`
2133 for mpropdef in mpropdefs do
2134 # If the definition is not imported by the module, then skip
2135 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2136 # If the definition is not inherited by the type, then skip
2137 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2138 # Else, we keep it
2139 candidates.add(mpropdef)
2140 end
2141 else
2142 # Iterate on all super-classdefs of `mtype`, keep only the definitions of `self`, if any.
2143 for mclassdef in mtype.collect_mclassdefs(mmodule) do
2144 var p = mclassdef.mpropdefs_by_property.get_or_null(self)
2145 if p != null then candidates.add p
2146 end
2147 end
2148
2149 # Fast track for only one candidate
2150 if candidates.length <= 1 then
2151 self.lookup_definitions_cache[mmodule, mtype] = candidates
2152 return candidates
2153 end
2154
2155 # Second, filter the most specific ones
2156 return select_most_specific(mmodule, candidates)
2157 end
2158
2159 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2160
2161 # Return the most specific property definitions inherited by a type.
2162 # The selection knows that refinement is stronger than specialization;
2163 # however, in case of conflict more than one property are returned.
2164 # If mtype does not know mproperty then an empty array is returned.
2165 #
2166 # If you want the really most specific property, then look at `lookup_next_definition`
2167 #
2168 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2169 # ENSURE: `not mtype.has_mproperty(mmodule, self) implies result.is_empty`
2170 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2171 do
2172 assert not mtype.need_anchor
2173 mtype = mtype.undecorate
2174
2175 # First, select all candidates
2176 var candidates = new Array[MPROPDEF]
2177 for mpropdef in self.mpropdefs do
2178 # If the definition is not imported by the module, then skip
2179 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2180 # If the definition is not inherited by the type, then skip
2181 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2182 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
2183 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
2184 # Else, we keep it
2185 candidates.add(mpropdef)
2186 end
2187 # Fast track for only one candidate
2188 if candidates.length <= 1 then return candidates
2189
2190 # Second, filter the most specific ones
2191 return select_most_specific(mmodule, candidates)
2192 end
2193
2194 # Return an array containing olny the most specific property definitions
2195 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
2196 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
2197 do
2198 var res = new Array[MPROPDEF]
2199 for pd1 in candidates do
2200 var cd1 = pd1.mclassdef
2201 var c1 = cd1.mclass
2202 var keep = true
2203 for pd2 in candidates do
2204 if pd2 == pd1 then continue # do not compare with self!
2205 var cd2 = pd2.mclassdef
2206 var c2 = cd2.mclass
2207 if c2.mclass_type == c1.mclass_type then
2208 if cd2.mmodule.in_importation < cd1.mmodule then
2209 # cd2 refines cd1; therefore we skip pd1
2210 keep = false
2211 break
2212 end
2213 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
2214 # cd2 < cd1; therefore we skip pd1
2215 keep = false
2216 break
2217 end
2218 end
2219 if keep then
2220 res.add(pd1)
2221 end
2222 end
2223 if res.is_empty then
2224 print_error "All lost! {candidates.join(", ")}"
2225 # FIXME: should be abort!
2226 end
2227 return res
2228 end
2229
2230 # Return the most specific definition in the linearization of `mtype`.
2231 #
2232 # If you want to know the next properties in the linearization,
2233 # look at `MPropDef::lookup_next_definition`.
2234 #
2235 # FIXME: the linearization is still unspecified
2236 #
2237 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2238 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2239 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
2240 do
2241 return lookup_all_definitions(mmodule, mtype).first
2242 end
2243
2244 # Return all definitions in a linearization order
2245 # Most specific first, most general last
2246 #
2247 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2248 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2249 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2250 do
2251 mtype = mtype.undecorate
2252
2253 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
2254 if cache != null then return cache
2255
2256 assert not mtype.need_anchor
2257 assert mtype.has_mproperty(mmodule, self)
2258
2259 #print "select prop {mproperty} for {mtype} in {self}"
2260 # First, select all candidates
2261 var candidates = new Array[MPROPDEF]
2262 for mpropdef in self.mpropdefs do
2263 # If the definition is not imported by the module, then skip
2264 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2265 # If the definition is not inherited by the type, then skip
2266 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2267 # Else, we keep it
2268 candidates.add(mpropdef)
2269 end
2270 # Fast track for only one candidate
2271 if candidates.length <= 1 then
2272 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2273 return candidates
2274 end
2275
2276 mmodule.linearize_mpropdefs(candidates)
2277 candidates = candidates.reversed
2278 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2279 return candidates
2280 end
2281
2282 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2283 end
2284
2285 # A global method
2286 class MMethod
2287 super MProperty
2288
2289 redef type MPROPDEF: MMethodDef
2290
2291 # Is the property defined at the top_level of the module?
2292 # Currently such a property are stored in `Object`
2293 var is_toplevel: Bool = false is writable
2294
2295 # Is the property a constructor?
2296 # Warning, this property can be inherited by subclasses with or without being a constructor
2297 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
2298 var is_init: Bool = false is writable
2299
2300 # The constructor is a (the) root init with empty signature but a set of initializers
2301 var is_root_init: Bool = false is writable
2302
2303 # Is the property a 'new' constructor?
2304 var is_new: Bool = false is writable
2305
2306 # Is the property a legal constructor for a given class?
2307 # As usual, visibility is not considered.
2308 # FIXME not implemented
2309 fun is_init_for(mclass: MClass): Bool
2310 do
2311 return self.is_init
2312 end
2313
2314 # A specific method that is safe to call on null.
2315 # Currently, only `==`, `!=` and `is_same_instance` are safe
2316 fun is_null_safe: Bool do return name == "==" or name == "!=" or name == "is_same_instance"
2317 end
2318
2319 # A global attribute
2320 class MAttribute
2321 super MProperty
2322
2323 redef type MPROPDEF: MAttributeDef
2324
2325 end
2326
2327 # A global virtual type
2328 class MVirtualTypeProp
2329 super MProperty
2330
2331 redef type MPROPDEF: MVirtualTypeDef
2332
2333 # The formal type associated to the virtual type property
2334 var mvirtualtype = new MVirtualType(self)
2335
2336 # Is `self` the special virtual type `SELF`?
2337 var is_selftype: Bool is lazy do return name == "SELF"
2338 end
2339
2340 # A definition of a property (local property)
2341 #
2342 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
2343 # specific class definition (which belong to a specific module)
2344 abstract class MPropDef
2345 super MEntity
2346
2347 # The associated `MProperty` subclass.
2348 # the two specialization hierarchy are symmetric
2349 type MPROPERTY: MProperty
2350
2351 # Self class
2352 type MPROPDEF: MPropDef
2353
2354 # The class definition where the property definition is
2355 var mclassdef: MClassDef
2356
2357 # The associated global property
2358 var mproperty: MPROPERTY
2359
2360 redef var location: Location
2361
2362 redef fun visibility do return mproperty.visibility
2363
2364 init
2365 do
2366 mclassdef.mpropdefs.add(self)
2367 mproperty.mpropdefs.add(self)
2368 mclassdef.mpropdefs_by_property[mproperty] = self
2369 if mproperty.intro_mclassdef == mclassdef then
2370 assert not isset mproperty._intro
2371 mproperty.intro = self
2372 end
2373 self.to_s = "{mclassdef}${mproperty}"
2374 end
2375
2376 # Actually the name of the `mproperty`
2377 redef fun name do return mproperty.name
2378
2379 # The full-name of mpropdefs combine the information about the `classdef` and the `mproperty`.
2380 #
2381 # Therefore the combination of identifiers is awful,
2382 # the worst case being
2383 #
2384 # * a property "p::m::A::x"
2385 # * redefined in a refinement of a class "q::n::B"
2386 # * in a module "r::o"
2387 # * so "r::o$q::n::B$p::m::A::x"
2388 #
2389 # Fortunately, the full-name is simplified when entities are repeated.
2390 # For the previous case, the simplest form is "p$A$x".
2391 redef var full_name is lazy do
2392 var res = new FlatBuffer
2393
2394 # The first part is the mclassdef. Worst case is "r::o$q::n::B"
2395 res.append mclassdef.full_name
2396
2397 res.append "$"
2398
2399 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2400 # intro are unambiguous in a class
2401 res.append name
2402 else
2403 # Just try to simplify each part
2404 if mclassdef.mmodule.mpackage != mproperty.intro_mclassdef.mmodule.mpackage then
2405 # precise "p::m" only if "p" != "r"
2406 res.append mproperty.intro_mclassdef.mmodule.namespace_for(mproperty.visibility)
2407 res.append "::"
2408 else if mproperty.visibility <= private_visibility then
2409 # Same package ("p"=="q"), but private visibility,
2410 # does the module part ("::m") need to be displayed
2411 if mclassdef.mmodule.namespace_for(mclassdef.mclass.visibility) != mproperty.intro_mclassdef.mmodule.mpackage then
2412 res.append "::"
2413 res.append mproperty.intro_mclassdef.mmodule.name
2414 res.append "::"
2415 end
2416 end
2417 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2418 # precise "B" only if not the same class than "A"
2419 res.append mproperty.intro_mclassdef.name
2420 res.append "::"
2421 end
2422 # Always use the property name "x"
2423 res.append mproperty.name
2424 end
2425 return res.to_s
2426 end
2427
2428 redef var c_name is lazy do
2429 var res = new FlatBuffer
2430 res.append mclassdef.c_name
2431 res.append "___"
2432 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2433 res.append name.to_cmangle
2434 else
2435 if mclassdef.mmodule != mproperty.intro_mclassdef.mmodule then
2436 res.append mproperty.intro_mclassdef.mmodule.c_name
2437 res.append "__"
2438 end
2439 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2440 res.append mproperty.intro_mclassdef.name.to_cmangle
2441 res.append "__"
2442 end
2443 res.append mproperty.name.to_cmangle
2444 end
2445 return res.to_s
2446 end
2447
2448 redef fun model do return mclassdef.model
2449
2450 # Internal name combining the module, the class and the property
2451 # Example: "mymodule$MyClass$mymethod"
2452 redef var to_s is noinit
2453
2454 # Is self the definition that introduce the property?
2455 fun is_intro: Bool do return isset mproperty._intro and mproperty.intro == self
2456
2457 # Return the next definition in linearization of `mtype`.
2458 #
2459 # This method is used to determine what method is called by a super.
2460 #
2461 # REQUIRE: `not mtype.need_anchor`
2462 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
2463 do
2464 assert not mtype.need_anchor
2465
2466 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
2467 var i = mpropdefs.iterator
2468 while i.is_ok and i.item != self do i.next
2469 assert has_property: i.is_ok
2470 i.next
2471 assert has_next_property: i.is_ok
2472 return i.item
2473 end
2474 end
2475
2476 # A local definition of a method
2477 class MMethodDef
2478 super MPropDef
2479
2480 redef type MPROPERTY: MMethod
2481 redef type MPROPDEF: MMethodDef
2482
2483 # The signature attached to the property definition
2484 var msignature: nullable MSignature = null is writable
2485
2486 # The signature attached to the `new` call on a root-init
2487 # This is a concatenation of the signatures of the initializers
2488 #
2489 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2490 var new_msignature: nullable MSignature = null is writable
2491
2492 # List of initialisers to call in root-inits
2493 #
2494 # They could be setters or attributes
2495 #
2496 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2497 var initializers = new Array[MProperty]
2498
2499 # Is the method definition abstract?
2500 var is_abstract: Bool = false is writable
2501
2502 # Is the method definition intern?
2503 var is_intern = false is writable
2504
2505 # Is the method definition extern?
2506 var is_extern = false is writable
2507
2508 # An optional constant value returned in functions.
2509 #
2510 # Only some specific primitife value are accepted by engines.
2511 # Is used when there is no better implementation available.
2512 #
2513 # Currently used only for the implementation of the `--define`
2514 # command-line option.
2515 # SEE: module `mixin`.
2516 var constant_value: nullable Object = null is writable
2517 end
2518
2519 # A local definition of an attribute
2520 class MAttributeDef
2521 super MPropDef
2522
2523 redef type MPROPERTY: MAttribute
2524 redef type MPROPDEF: MAttributeDef
2525
2526 # The static type of the attribute
2527 var static_mtype: nullable MType = null is writable
2528 end
2529
2530 # A local definition of a virtual type
2531 class MVirtualTypeDef
2532 super MPropDef
2533
2534 redef type MPROPERTY: MVirtualTypeProp
2535 redef type MPROPDEF: MVirtualTypeDef
2536
2537 # The bound of the virtual type
2538 var bound: nullable MType = null is writable
2539
2540 # Is the bound fixed?
2541 var is_fixed = false is writable
2542 end
2543
2544 # A kind of class.
2545 #
2546 # * `abstract_kind`
2547 # * `concrete_kind`
2548 # * `interface_kind`
2549 # * `enum_kind`
2550 # * `extern_kind`
2551 #
2552 # Note this class is basically an enum.
2553 # FIXME: use a real enum once user-defined enums are available
2554 class MClassKind
2555 redef var to_s
2556
2557 # Is a constructor required?
2558 var need_init: Bool
2559
2560 # TODO: private init because enumeration.
2561
2562 # Can a class of kind `self` specializes a class of kine `other`?
2563 fun can_specialize(other: MClassKind): Bool
2564 do
2565 if other == interface_kind then return true # everybody can specialize interfaces
2566 if self == interface_kind or self == enum_kind then
2567 # no other case for interfaces
2568 return false
2569 else if self == extern_kind then
2570 # only compatible with themselves
2571 return self == other
2572 else if other == enum_kind or other == extern_kind then
2573 # abstract_kind and concrete_kind are incompatible
2574 return false
2575 end
2576 # remain only abstract_kind and concrete_kind
2577 return true
2578 end
2579 end
2580
2581 # The class kind `abstract`
2582 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", true)
2583 # The class kind `concrete`
2584 fun concrete_kind: MClassKind do return once new MClassKind("class", true)
2585 # The class kind `interface`
2586 fun interface_kind: MClassKind do return once new MClassKind("interface", false)
2587 # The class kind `enum`
2588 fun enum_kind: MClassKind do return once new MClassKind("enum", false)
2589 # The class kind `extern`
2590 fun extern_kind: MClassKind do return once new MClassKind("extern class", false)