Merge: compiler: Refactor
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class MEntity
34 # The visibility of the MEntity.
35 #
36 # MPackages, MGroups and MModules are always public.
37 # The visibility of `MClass` and `MProperty` is defined by the keyword used.
38 # `MClassDef` and `MPropDef` return the visibility of `MClass` and `MProperty`.
39 fun visibility: MVisibility do return public_visibility
40 end
41
42 redef class Model
43 # All known classes
44 var mclasses = new Array[MClass]
45
46 # All known properties
47 var mproperties = new Array[MProperty]
48
49 # Hierarchy of class definition.
50 #
51 # Each classdef is associated with its super-classdefs in regard to
52 # its module of definition.
53 var mclassdef_hierarchy = new POSet[MClassDef]
54
55 # Class-type hierarchy restricted to the introduction.
56 #
57 # The idea is that what is true on introduction is always true whatever
58 # the module considered.
59 # Therefore, this hierarchy is used for a fast positive subtype check.
60 #
61 # This poset will evolve in a monotonous way:
62 # * Two non connected nodes will remain unconnected
63 # * New nodes can appear with new edges
64 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
65
66 # Global overlapped class-type hierarchy.
67 # The hierarchy when all modules are combined.
68 # Therefore, this hierarchy is used for a fast negative subtype check.
69 #
70 # This poset will evolve in an anarchic way. Loops can even be created.
71 #
72 # FIXME decide what to do on loops
73 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
74
75 # Collections of classes grouped by their short name
76 private var mclasses_by_name = new MultiHashMap[String, MClass]
77
78 # Return all classes named `name`.
79 #
80 # If such a class does not exist, null is returned
81 # (instead of an empty array)
82 #
83 # Visibility or modules are not considered
84 fun get_mclasses_by_name(name: String): nullable Array[MClass]
85 do
86 return mclasses_by_name.get_or_null(name)
87 end
88
89 # Collections of properties grouped by their short name
90 private var mproperties_by_name = new MultiHashMap[String, MProperty]
91
92 # Return all properties named `name`.
93 #
94 # If such a property does not exist, null is returned
95 # (instead of an empty array)
96 #
97 # Visibility or modules are not considered
98 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
99 do
100 return mproperties_by_name.get_or_null(name)
101 end
102
103 # The only null type
104 var null_type = new MNullType(self)
105
106 # The only bottom type
107 var bottom_type: MBottomType = null_type.as_notnull
108
109 # Build an ordered tree with from `concerns`
110 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
111 var seen = new HashSet[MConcern]
112 var res = new ConcernsTree
113
114 var todo = new Array[MConcern]
115 todo.add_all mconcerns
116
117 while not todo.is_empty do
118 var c = todo.pop
119 if seen.has(c) then continue
120 var pc = c.parent_concern
121 if pc == null then
122 res.add(null, c)
123 else
124 res.add(pc, c)
125 todo.add(pc)
126 end
127 seen.add(c)
128 end
129
130 return res
131 end
132 end
133
134 # An OrderedTree bound to MEntity.
135 #
136 # We introduce a new class so it can be easily refined by tools working
137 # with a Model.
138 class MEntityTree
139 super OrderedTree[MEntity]
140 end
141
142 # A MEntityTree borned to MConcern.
143 #
144 # TODO remove when nitdoc is fully merged with model_collect
145 class ConcernsTree
146 super OrderedTree[MConcern]
147 end
148
149 redef class MModule
150 # All the classes introduced in the module
151 var intro_mclasses = new Array[MClass]
152
153 # All the class definitions of the module
154 # (introduction and refinement)
155 var mclassdefs = new Array[MClassDef]
156
157 # Does the current module has a given class `mclass`?
158 # Return true if the mmodule introduces, refines or imports a class.
159 # Visibility is not considered.
160 fun has_mclass(mclass: MClass): Bool
161 do
162 return self.in_importation <= mclass.intro_mmodule
163 end
164
165 # Full hierarchy of introduced and imported classes.
166 #
167 # Create a new hierarchy got by flattening the classes for the module
168 # and its imported modules.
169 # Visibility is not considered.
170 #
171 # Note: this function is expensive and is usually used for the main
172 # module of a program only. Do not use it to do you own subtype
173 # functions.
174 fun flatten_mclass_hierarchy: POSet[MClass]
175 do
176 var res = self.flatten_mclass_hierarchy_cache
177 if res != null then return res
178 res = new POSet[MClass]
179 for m in self.in_importation.greaters do
180 for cd in m.mclassdefs do
181 var c = cd.mclass
182 res.add_node(c)
183 for s in cd.supertypes do
184 res.add_edge(c, s.mclass)
185 end
186 end
187 end
188 self.flatten_mclass_hierarchy_cache = res
189 return res
190 end
191
192 # Sort a given array of classes using the linearization order of the module
193 # The most general is first, the most specific is last
194 fun linearize_mclasses(mclasses: Array[MClass])
195 do
196 self.flatten_mclass_hierarchy.sort(mclasses)
197 end
198
199 # Sort a given array of class definitions using the linearization order of the module
200 # the refinement link is stronger than the specialisation link
201 # The most general is first, the most specific is last
202 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
203 do
204 var sorter = new MClassDefSorter(self)
205 sorter.sort(mclassdefs)
206 end
207
208 # Sort a given array of property definitions using the linearization order of the module
209 # the refinement link is stronger than the specialisation link
210 # The most general is first, the most specific is last
211 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
212 do
213 var sorter = new MPropDefSorter(self)
214 sorter.sort(mpropdefs)
215 end
216
217 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
218
219 # The primitive type `Object`, the root of the class hierarchy
220 var object_type: MClassType = self.get_primitive_class("Object").mclass_type is lazy
221
222 # The type `Pointer`, super class to all extern classes
223 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
224
225 # The primitive type `Bool`
226 var bool_type: MClassType = self.get_primitive_class("Bool").mclass_type is lazy
227
228 # The primitive type `Int`
229 var int_type: MClassType = self.get_primitive_class("Int").mclass_type is lazy
230
231 # The primitive type `Byte`
232 var byte_type: MClassType = self.get_primitive_class("Byte").mclass_type is lazy
233
234 # The primitive type `Int8`
235 var int8_type: MClassType = self.get_primitive_class("Int8").mclass_type is lazy
236
237 # The primitive type `Int16`
238 var int16_type: MClassType = self.get_primitive_class("Int16").mclass_type is lazy
239
240 # The primitive type `UInt16`
241 var uint16_type: MClassType = self.get_primitive_class("UInt16").mclass_type is lazy
242
243 # The primitive type `Int32`
244 var int32_type: MClassType = self.get_primitive_class("Int32").mclass_type is lazy
245
246 # The primitive type `UInt32`
247 var uint32_type: MClassType = self.get_primitive_class("UInt32").mclass_type is lazy
248
249 # The primitive type `Char`
250 var char_type: MClassType = self.get_primitive_class("Char").mclass_type is lazy
251
252 # The primitive type `Float`
253 var float_type: MClassType = self.get_primitive_class("Float").mclass_type is lazy
254
255 # The primitive type `String`
256 var string_type: MClassType = self.get_primitive_class("String").mclass_type is lazy
257
258 # The primitive type `CString`
259 var c_string_type: MClassType = self.get_primitive_class("CString").mclass_type is lazy
260
261 # A primitive type of `Array`
262 fun array_type(elt_type: MType): MClassType do return array_class.get_mtype([elt_type])
263
264 # The primitive class `Array`
265 var array_class: MClass = self.get_primitive_class("Array") is lazy
266
267 # A primitive type of `NativeArray`
268 fun native_array_type(elt_type: MType): MClassType do return native_array_class.get_mtype([elt_type])
269
270 # The primitive class `NativeArray`
271 var native_array_class: MClass = self.get_primitive_class("NativeArray") is lazy
272
273 # The primitive type `Sys`, the main type of the program, if any
274 fun sys_type: nullable MClassType
275 do
276 var clas = self.model.get_mclasses_by_name("Sys")
277 if clas == null then return null
278 return get_primitive_class("Sys").mclass_type
279 end
280
281 # The primitive type `Finalizable`
282 # Used to tag classes that need to be finalized.
283 fun finalizable_type: nullable MClassType
284 do
285 var clas = self.model.get_mclasses_by_name("Finalizable")
286 if clas == null then return null
287 return get_primitive_class("Finalizable").mclass_type
288 end
289
290 # Force to get the primitive class named `name` or abort
291 fun get_primitive_class(name: String): MClass
292 do
293 var cla = self.model.get_mclasses_by_name(name)
294 # Filter classes by introducing module
295 if cla != null then cla = [for c in cla do if self.in_importation <= c.intro_mmodule then c]
296 if cla == null or cla.is_empty then
297 if name == "Bool" and self.model.get_mclasses_by_name("Object") != null then
298 # Bool is injected because it is needed by engine to code the result
299 # of the implicit casts.
300 var loc = model.no_location
301 var c = new MClass(self, name, loc, null, enum_kind, public_visibility)
302 var cladef = new MClassDef(self, c.mclass_type, loc)
303 cladef.set_supertypes([object_type])
304 cladef.add_in_hierarchy
305 return c
306 end
307 print_error("Fatal Error: no primitive class {name} in {self}")
308 exit(1)
309 abort
310 end
311 if cla.length != 1 then
312 var msg = "Fatal Error: more than one primitive class {name} in {self}:"
313 for c in cla do msg += " {c.full_name}"
314 print_error msg
315 #exit(1)
316 end
317 return cla.first
318 end
319
320 # Try to get the primitive method named `name` on the type `recv`
321 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
322 do
323 var props = self.model.get_mproperties_by_name(name)
324 if props == null then return null
325 var res: nullable MMethod = null
326 var recvtype = recv.intro.bound_mtype
327 for mprop in props do
328 assert mprop isa MMethod
329 if not recvtype.has_mproperty(self, mprop) then continue
330 if res == null then
331 res = mprop
332 else if res != mprop then
333 print_error("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
334 abort
335 end
336 end
337 return res
338 end
339 end
340
341 private class MClassDefSorter
342 super Comparator
343 redef type COMPARED: MClassDef
344 var mmodule: MModule
345 redef fun compare(a, b)
346 do
347 var ca = a.mclass
348 var cb = b.mclass
349 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
350 return mmodule.model.mclassdef_hierarchy.compare(a, b)
351 end
352 end
353
354 private class MPropDefSorter
355 super Comparator
356 redef type COMPARED: MPropDef
357 var mmodule: MModule
358 redef fun compare(pa, pb)
359 do
360 var a = pa.mclassdef
361 var b = pb.mclassdef
362 var ca = a.mclass
363 var cb = b.mclass
364 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
365 return mmodule.model.mclassdef_hierarchy.compare(a, b)
366 end
367 end
368
369 # A named class
370 #
371 # `MClass` are global to the model; it means that a `MClass` is not bound to a
372 # specific `MModule`.
373 #
374 # This characteristic helps the reasoning about classes in a program since a
375 # single `MClass` object always denote the same class.
376 #
377 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
378 # These do not really have properties nor belong to a hierarchy since the property and the
379 # hierarchy of a class depends of the refinement in the modules.
380 #
381 # Most services on classes require the precision of a module, and no one can asks what are
382 # the super-classes of a class nor what are properties of a class without precising what is
383 # the module considered.
384 #
385 # For instance, during the typing of a source-file, the module considered is the module of the file.
386 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
387 # *is the method `foo` exists in the class `Bar` in the current module?*
388 #
389 # During some global analysis, the module considered may be the main module of the program.
390 class MClass
391 super MEntity
392
393 # The module that introduce the class
394 #
395 # While classes are not bound to a specific module,
396 # the introducing module is used for naming and visibility.
397 var intro_mmodule: MModule
398
399 # The short name of the class
400 # In Nit, the name of a class cannot evolve in refinements
401 redef var name
402
403 redef var location
404
405 # The canonical name of the class
406 #
407 # It is the name of the class prefixed by the full_name of the `intro_mmodule`
408 # Example: `"owner::module::MyClass"`
409 redef var full_name is lazy do
410 return "{self.intro_mmodule.namespace_for(visibility)}::{name}"
411 end
412
413 redef var c_name is lazy do
414 return "{intro_mmodule.c_namespace_for(visibility)}__{name.to_cmangle}"
415 end
416
417 # The number of generic formal parameters
418 # 0 if the class is not generic
419 var arity: Int is noinit
420
421 # Each generic formal parameters in order.
422 # is empty if the class is not generic
423 var mparameters = new Array[MParameterType]
424
425 # A string version of the signature a generic class.
426 #
427 # eg. `Map[K: nullable Object, V: nullable Object]`
428 #
429 # If the class in non generic the name is just given.
430 #
431 # eg. `Object`
432 fun signature_to_s: String
433 do
434 if arity == 0 then return name
435 var res = new FlatBuffer
436 res.append name
437 res.append "["
438 for i in [0..arity[ do
439 if i > 0 then res.append ", "
440 res.append mparameters[i].name
441 res.append ": "
442 res.append intro.bound_mtype.arguments[i].to_s
443 end
444 res.append "]"
445 return res.to_s
446 end
447
448 # Initialize `mparameters` from their names.
449 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
450 autoinit
451 do
452 if parameter_names == null then
453 self.arity = 0
454 else
455 self.arity = parameter_names.length
456 end
457
458 # Create the formal parameter types
459 if arity > 0 then
460 assert parameter_names != null
461 var mparametertypes = new Array[MParameterType]
462 for i in [0..arity[ do
463 var mparametertype = new MParameterType(self, i, parameter_names[i])
464 mparametertypes.add(mparametertype)
465 end
466 self.mparameters = mparametertypes
467 var mclass_type = new MGenericType(self, mparametertypes)
468 self.mclass_type = mclass_type
469 self.get_mtype_cache[mparametertypes] = mclass_type
470 else
471 self.mclass_type = new MClassType(self)
472 end
473 end
474
475 # The kind of the class (interface, abstract class, etc.)
476 # In Nit, the kind of a class cannot evolve in refinements
477 var kind: MClassKind
478
479 # The visibility of the class
480 # In Nit, the visibility of a class cannot evolve in refinements
481 redef var visibility
482
483 init
484 do
485 intro_mmodule.intro_mclasses.add(self)
486 var model = intro_mmodule.model
487 model.mclasses_by_name.add_one(name, self)
488 model.mclasses.add(self)
489 end
490
491 redef fun model do return intro_mmodule.model
492
493 # All class definitions (introduction and refinements)
494 var mclassdefs = new Array[MClassDef]
495
496 # Alias for `name`
497 redef fun to_s do return self.name
498
499 # The definition that introduces the class.
500 #
501 # Warning: such a definition may not exist in the early life of the object.
502 # In this case, the method will abort.
503 #
504 # Use `try_intro` instead
505 var intro: MClassDef is noinit
506
507 # The definition that introduces the class or null if not yet known.
508 #
509 # See `intro`
510 fun try_intro: nullable MClassDef do
511 if isset _intro then return _intro else return null
512 end
513
514 # Return the class `self` in the class hierarchy of the module `mmodule`.
515 #
516 # SEE: `MModule::flatten_mclass_hierarchy`
517 # REQUIRE: `mmodule.has_mclass(self)`
518 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
519 do
520 return mmodule.flatten_mclass_hierarchy[self]
521 end
522
523 # The principal static type of the class.
524 #
525 # For non-generic class, `mclass_type` is the only `MClassType` based
526 # on self.
527 #
528 # For a generic class, the arguments are the formal parameters.
529 # i.e.: for the class `Array[E:Object]`, the `mclass_type` is `Array[E]`.
530 # If you want `Array[Object]`, see `MClassDef::bound_mtype`.
531 #
532 # For generic classes, the mclass_type is also the way to get a formal
533 # generic parameter type.
534 #
535 # To get other types based on a generic class, see `get_mtype`.
536 #
537 # ENSURE: `mclass_type.mclass == self`
538 var mclass_type: MClassType is noinit
539
540 # Return a generic type based on the class
541 # Is the class is not generic, then the result is `mclass_type`
542 #
543 # REQUIRE: `mtype_arguments.length == self.arity`
544 fun get_mtype(mtype_arguments: Array[MType]): MClassType
545 do
546 assert mtype_arguments.length == self.arity
547 if self.arity == 0 then return self.mclass_type
548 var res = get_mtype_cache.get_or_null(mtype_arguments)
549 if res != null then return res
550 res = new MGenericType(self, mtype_arguments)
551 self.get_mtype_cache[mtype_arguments.to_a] = res
552 return res
553 end
554
555 private var get_mtype_cache = new HashMap[Array[MType], MGenericType]
556
557 # Is there a `new` factory to allow the pseudo instantiation?
558 var has_new_factory = false is writable
559
560 # Is `self` a standard or abstract class kind?
561 var is_class: Bool is lazy do return kind == concrete_kind or kind == abstract_kind
562
563 # Is `self` an interface kind?
564 var is_interface: Bool is lazy do return kind == interface_kind
565
566 # Is `self` an enum kind?
567 var is_enum: Bool is lazy do return kind == enum_kind
568
569 # Is `self` and abstract class?
570 var is_abstract: Bool is lazy do return kind == abstract_kind
571
572 redef fun mdoc_or_fallback
573 do
574 # Don’t use `intro.mdoc_or_fallback` because it would create an infinite
575 # recursion.
576 return intro.mdoc
577 end
578 end
579
580
581 # A definition (an introduction or a refinement) of a class in a module
582 #
583 # A `MClassDef` is associated with an explicit (or almost) definition of a
584 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
585 # a specific class and a specific module, and contains declarations like super-classes
586 # or properties.
587 #
588 # It is the class definitions that are the backbone of most things in the model:
589 # ClassDefs are defined with regard with other classdefs.
590 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
591 #
592 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
593 class MClassDef
594 super MEntity
595
596 # The module where the definition is
597 var mmodule: MModule
598
599 # The associated `MClass`
600 var mclass: MClass is noinit
601
602 # The bounded type associated to the mclassdef
603 #
604 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
605 # are the same type.
606 #
607 # Example:
608 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
609 # If you want Array[E], then see `mclass.mclass_type`
610 #
611 # ENSURE: `bound_mtype.mclass == self.mclass`
612 var bound_mtype: MClassType
613
614 redef var location
615
616 redef fun visibility do return mclass.visibility
617
618 # Internal name combining the module and the class
619 # Example: "mymodule$MyClass"
620 redef var to_s is noinit
621
622 init
623 do
624 self.mclass = bound_mtype.mclass
625 mmodule.mclassdefs.add(self)
626 mclass.mclassdefs.add(self)
627 if mclass.intro_mmodule == mmodule then
628 assert not isset mclass._intro
629 mclass.intro = self
630 end
631 self.to_s = "{mmodule}${mclass}"
632 end
633
634 # Actually the name of the `mclass`
635 redef fun name do return mclass.name
636
637 # The module and class name separated by a '$'.
638 #
639 # The short-name of the class is used for introduction.
640 # Example: "my_module$MyClass"
641 #
642 # The full-name of the class is used for refinement.
643 # Example: "my_module$intro_module::MyClass"
644 redef var full_name is lazy do
645 if is_intro then
646 # public gives 'p$A'
647 # private gives 'p::m$A'
648 return "{mmodule.namespace_for(mclass.visibility)}${mclass.name}"
649 else if mclass.intro_mmodule.mpackage != mmodule.mpackage then
650 # public gives 'q::n$p::A'
651 # private gives 'q::n$p::m::A'
652 return "{mmodule.full_name}${mclass.full_name}"
653 else if mclass.visibility > private_visibility then
654 # public gives 'p::n$A'
655 return "{mmodule.full_name}${mclass.name}"
656 else
657 # private gives 'p::n$::m::A' (redundant p is omitted)
658 return "{mmodule.full_name}$::{mclass.intro_mmodule.name}::{mclass.name}"
659 end
660 end
661
662 redef var c_name is lazy do
663 if is_intro then
664 return "{mmodule.c_namespace_for(mclass.visibility)}___{mclass.c_name}"
665 else if mclass.intro_mmodule.mpackage == mmodule.mpackage and mclass.visibility > private_visibility then
666 return "{mmodule.c_name}___{mclass.name.to_cmangle}"
667 else
668 return "{mmodule.c_name}___{mclass.c_name}"
669 end
670 end
671
672 redef fun model do return mmodule.model
673
674 # All declared super-types
675 # FIXME: quite ugly but not better idea yet
676 var supertypes = new Array[MClassType]
677
678 # Register some super-types for the class (ie "super SomeType")
679 #
680 # The hierarchy must not already be set
681 # REQUIRE: `self.in_hierarchy == null`
682 fun set_supertypes(supertypes: Array[MClassType])
683 do
684 assert unique_invocation: self.in_hierarchy == null
685 var mmodule = self.mmodule
686 var model = mmodule.model
687 var mtype = self.bound_mtype
688
689 for supertype in supertypes do
690 self.supertypes.add(supertype)
691
692 # Register in full_type_specialization_hierarchy
693 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
694 # Register in intro_type_specialization_hierarchy
695 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
696 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
697 end
698 end
699
700 end
701
702 # Collect the super-types (set by set_supertypes) to build the hierarchy
703 #
704 # This function can only invoked once by class
705 # REQUIRE: `self.in_hierarchy == null`
706 # ENSURE: `self.in_hierarchy != null`
707 fun add_in_hierarchy
708 do
709 assert unique_invocation: self.in_hierarchy == null
710 var model = mmodule.model
711 var res = model.mclassdef_hierarchy.add_node(self)
712 self.in_hierarchy = res
713 var mtype = self.bound_mtype
714
715 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
716 # The simpliest way is to attach it to collect_mclassdefs
717 for mclassdef in mtype.collect_mclassdefs(mmodule) do
718 res.poset.add_edge(self, mclassdef)
719 end
720 end
721
722 # The view of the class definition in `mclassdef_hierarchy`
723 var in_hierarchy: nullable POSetElement[MClassDef] = null
724
725 # Is the definition the one that introduced `mclass`?
726 fun is_intro: Bool do return isset mclass._intro and mclass.intro == self
727
728 # All properties introduced by the classdef
729 var intro_mproperties = new Array[MProperty]
730
731 # All property introductions and redefinitions in `self` (not inheritance).
732 var mpropdefs = new Array[MPropDef]
733
734 # All property introductions and redefinitions (not inheritance) in `self` by its associated property.
735 var mpropdefs_by_property = new HashMap[MProperty, MPropDef]
736
737 redef fun mdoc_or_fallback do return mdoc or else mclass.mdoc_or_fallback
738 end
739
740 # A global static type
741 #
742 # MType are global to the model; it means that a `MType` is not bound to a
743 # specific `MModule`.
744 # This characteristic helps the reasoning about static types in a program
745 # since a single `MType` object always denote the same type.
746 #
747 # However, because a `MType` is global, it does not really have properties
748 # nor have subtypes to a hierarchy since the property and the class hierarchy
749 # depends of a module.
750 # Moreover, virtual types an formal generic parameter types also depends on
751 # a receiver to have sense.
752 #
753 # Therefore, most method of the types require a module and an anchor.
754 # The module is used to know what are the classes and the specialization
755 # links.
756 # The anchor is used to know what is the bound of the virtual types and formal
757 # generic parameter types.
758 #
759 # MType are not directly usable to get properties. See the `anchor_to` method
760 # and the `MClassType` class.
761 #
762 # FIXME: the order of the parameters is not the best. We mus pick on from:
763 # * foo(mmodule, anchor, othertype)
764 # * foo(othertype, anchor, mmodule)
765 # * foo(anchor, mmodule, othertype)
766 # * foo(othertype, mmodule, anchor)
767 abstract class MType
768 super MEntity
769
770 redef fun name do return to_s
771
772 # Return true if `self` is an subtype of `sup`.
773 # The typing is done using the standard typing policy of Nit.
774 #
775 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
776 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
777 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
778 do
779 var sub = self
780 if sub == sup then return true
781
782 #print "1.is {sub} a {sup}? ===="
783
784 if anchor == null then
785 assert not sub.need_anchor
786 assert not sup.need_anchor
787 else
788 # First, resolve the formal types to the simplest equivalent forms in the receiver
789 assert sub.can_resolve_for(anchor, null, mmodule)
790 sub = sub.lookup_fixed(mmodule, anchor)
791 assert sup.can_resolve_for(anchor, null, mmodule)
792 sup = sup.lookup_fixed(mmodule, anchor)
793 end
794
795 # Does `sup` accept null or not?
796 # Discard the nullable marker if it exists
797 var sup_accept_null = false
798 if sup isa MNullableType then
799 sup_accept_null = true
800 sup = sup.mtype
801 else if sup isa MNotNullType then
802 sup = sup.mtype
803 else if sup isa MNullType then
804 sup_accept_null = true
805 end
806
807 # Can `sub` provide null or not?
808 # Thus we can match with `sup_accept_null`
809 # Also discard the nullable marker if it exists
810 var sub_reject_null = false
811 if sub isa MNullableType then
812 if not sup_accept_null then return false
813 sub = sub.mtype
814 else if sub isa MNotNullType then
815 sub_reject_null = true
816 sub = sub.mtype
817 else if sub isa MNullType then
818 return sup_accept_null
819 end
820 # Now the case of direct null and nullable is over.
821
822 # If `sub` is a formal type, then it is accepted if its bound is accepted
823 while sub isa MFormalType do
824 #print "3.is {sub} a {sup}?"
825
826 # A unfixed formal type can only accept itself
827 if sub == sup then return true
828
829 assert anchor != null
830 sub = sub.lookup_bound(mmodule, anchor)
831 if sub_reject_null then sub = sub.as_notnull
832
833 #print "3.is {sub} a {sup}?"
834
835 # Manage the second layer of null/nullable
836 if sub isa MNullableType then
837 if not sup_accept_null and not sub_reject_null then return false
838 sub = sub.mtype
839 else if sub isa MNotNullType then
840 sub_reject_null = true
841 sub = sub.mtype
842 else if sub isa MNullType then
843 return sup_accept_null
844 end
845 end
846 #print "4.is {sub} a {sup}? <- no more resolution"
847
848 if sub isa MBottomType or sub isa MErrorType then
849 return true
850 end
851
852 assert sub isa MClassType else print_error "{sub} <? {sup}" # It is the only remaining type
853
854 # Handle sup-type when the sub-type is class-based (other cases must have be identified before).
855 if sup isa MFormalType or sup isa MNullType or sup isa MBottomType or sup isa MErrorType then
856 # These types are not super-types of Class-based types.
857 return false
858 end
859
860 assert sup isa MClassType else print_error "got {sup} {sub.inspect}" # It is the only remaining type
861
862 # Now both are MClassType, we need to dig
863
864 if sub == sup then return true
865
866 if anchor == null then anchor = sub # UGLY: any anchor will work
867 var resolved_sub = sub.anchor_to(mmodule, anchor)
868 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
869 if res == false then return false
870 if not sup isa MGenericType then return true
871 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
872 assert sub2.mclass == sup.mclass
873 for i in [0..sup.mclass.arity[ do
874 var sub_arg = sub2.arguments[i]
875 var sup_arg = sup.arguments[i]
876 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
877 if res == false then return false
878 end
879 return true
880 end
881
882 # The base class type on which self is based
883 #
884 # This base type is used to get property (an internally to perform
885 # unsafe type comparison).
886 #
887 # Beware: some types (like null) are not based on a class thus this
888 # method will crash
889 #
890 # Basically, this function transform the virtual types and parameter
891 # types to their bounds.
892 #
893 # Example
894 #
895 # class A end
896 # class B super A end
897 # class X end
898 # class Y super X end
899 # class G[T: A]
900 # type U: X
901 # end
902 # class H
903 # super G[B]
904 # redef type U: Y
905 # end
906 #
907 # Map[T,U] anchor_to H #-> Map[B,Y]
908 #
909 # Explanation of the example:
910 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
911 # because "redef type U: Y". Therefore, Map[T, U] is bound to
912 # Map[B, Y]
913 #
914 # REQUIRE: `self.need_anchor implies anchor != null`
915 # ENSURE: `not self.need_anchor implies result == self`
916 # ENSURE: `not result.need_anchor`
917 fun anchor_to(mmodule: MModule, anchor: nullable MClassType): MType
918 do
919 if not need_anchor then return self
920 assert anchor != null and not anchor.need_anchor
921 # Just resolve to the anchor and clear all the virtual types
922 var res = self.resolve_for(anchor, null, mmodule, true)
923 assert not res.need_anchor
924 return res
925 end
926
927 # Does `self` contain a virtual type or a formal generic parameter type?
928 # In order to remove those types, you usually want to use `anchor_to`.
929 fun need_anchor: Bool do return true
930
931 # Return the supertype when adapted to a class.
932 #
933 # In Nit, for each super-class of a type, there is a equivalent super-type.
934 #
935 # Example:
936 #
937 # ~~~nitish
938 # class G[T, U] end
939 # class H[V] super G[V, Bool] end
940 #
941 # H[Int] supertype_to G #-> G[Int, Bool]
942 # ~~~
943 #
944 # REQUIRE: `super_mclass` is a super-class of `self`
945 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
946 # ENSURE: `result.mclass = super_mclass`
947 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
948 do
949 if super_mclass.arity == 0 then return super_mclass.mclass_type
950 if self isa MClassType and self.mclass == super_mclass then return self
951 var resolved_self
952 if self.need_anchor then
953 assert anchor != null
954 resolved_self = self.anchor_to(mmodule, anchor)
955 else
956 resolved_self = self
957 end
958 var supertypes = resolved_self.collect_mtypes(mmodule)
959 for supertype in supertypes do
960 if supertype.mclass == super_mclass then
961 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
962 return supertype.resolve_for(self, anchor, mmodule, false)
963 end
964 end
965 abort
966 end
967
968 # Replace formals generic types in self with resolved values in `mtype`
969 # If `cleanup_virtual` is true, then virtual types are also replaced
970 # with their bounds.
971 #
972 # This function returns self if `need_anchor` is false.
973 #
974 # ## Example 1
975 #
976 # ~~~
977 # class G[E] end
978 # class H[F] super G[F] end
979 # class X[Z] end
980 # ~~~
981 #
982 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
983 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
984 #
985 # Explanation of the example:
986 # * Array[E].need_anchor is true because there is a formal generic parameter type E
987 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
988 # * Since "H[F] super G[F]", E is in fact F for H
989 # * More specifically, in H[Int], E is Int
990 # * So, in H[Int], Array[E] is Array[Int]
991 #
992 # This function is mainly used to inherit a signature.
993 # Because, unlike `anchor_to`, we do not want a full resolution of
994 # a type but only an adapted version of it.
995 #
996 # ## Example 2
997 #
998 # ~~~
999 # class A[E]
1000 # fun foo(e:E):E is abstract
1001 # end
1002 # class B super A[Int] end
1003 # ~~~
1004 #
1005 # The signature on foo is (e: E): E
1006 # If we resolve the signature for B, we get (e:Int):Int
1007 #
1008 # ## Example 3
1009 #
1010 # ~~~nitish
1011 # class A[E]
1012 # fun foo(e:E):E is abstract
1013 # end
1014 # class C[F]
1015 # var a: A[Array[F]]
1016 # fun bar do a.foo(x) # <- x is here
1017 # end
1018 # ~~~
1019 #
1020 # The first question is: is foo available on `a`?
1021 #
1022 # The static type of a is `A[Array[F]]`, that is an open type.
1023 # in order to find a method `foo`, whe must look at a resolved type.
1024 #
1025 # A[Array[F]].anchor_to(C[nullable Object]) #-> A[Array[nullable Object]]
1026 #
1027 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
1028 #
1029 # The next question is: what is the accepted types for `x`?
1030 #
1031 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
1032 #
1033 # E.resolve_for(A[Array[F]],C[nullable Object]) #-> Array[F]
1034 #
1035 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
1036 #
1037 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
1038 # two function instead of one seems also to be a bad idea.
1039 #
1040 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
1041 # ENSURE: `not self.need_anchor implies result == self`
1042 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
1043
1044 # Resolve formal type to its verbatim bound.
1045 # If the type is not formal, just return self
1046 #
1047 # The result is returned exactly as declared in the "type" property (verbatim).
1048 # So it could be another formal type.
1049 #
1050 # In case of conflicts or inconsistencies in the model, the method returns a `MErrorType`.
1051 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self
1052
1053 # Resolve the formal type to its simplest equivalent form.
1054 #
1055 # Formal types are either free or fixed.
1056 # When it is fixed, it means that it is equivalent with a simpler type.
1057 # When a formal type is free, it means that it is only equivalent with itself.
1058 # This method return the most simple equivalent type of `self`.
1059 #
1060 # This method is mainly used for subtype test in order to sanely compare fixed.
1061 #
1062 # By default, return self.
1063 # See the redefinitions for specific behavior in each kind of type.
1064 #
1065 # In case of conflicts or inconsistencies in the model, the method returns a `MErrorType`.
1066 fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self
1067
1068 # Is the type a `MErrorType` or contains an `MErrorType`?
1069 #
1070 # `MErrorType` are used in result with conflict or inconsistencies.
1071 #
1072 # See `is_legal_in` to check conformity with generic bounds.
1073 fun is_ok: Bool do return true
1074
1075 # Is the type legal in a given `mmodule` (with an optional `anchor`)?
1076 #
1077 # A type is valid if:
1078 #
1079 # * it does not contain a `MErrorType` (see `is_ok`).
1080 # * its generic formal arguments are within their bounds.
1081 fun is_legal_in(mmodule: MModule, anchor: nullable MClassType): Bool do return is_ok
1082
1083 # Can the type be resolved?
1084 #
1085 # In order to resolve open types, the formal types must make sence.
1086 #
1087 # ## Example
1088 #
1089 # class A[E]
1090 # end
1091 # class B[F]
1092 # end
1093 #
1094 # ~~~nitish
1095 # E.can_resolve_for(A[Int]) #-> true, E make sense in A
1096 #
1097 # E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
1098 #
1099 # B[E].can_resolve_for(A[F], B[Object]) #-> true,
1100 # # B[E] is a red hearing only the E is important,
1101 # # E make sense in A
1102 # ~~~
1103 #
1104 # REQUIRE: `anchor != null implies not anchor.need_anchor`
1105 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
1106 # ENSURE: `not self.need_anchor implies result == true`
1107 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
1108
1109 # Return the nullable version of the type
1110 # If the type is already nullable then self is returned
1111 fun as_nullable: MType
1112 do
1113 var res = self.as_nullable_cache
1114 if res != null then return res
1115 res = new MNullableType(self)
1116 self.as_nullable_cache = res
1117 return res
1118 end
1119
1120 # Remove the base type of a decorated (proxy) type.
1121 # Is the type is not decorated, then self is returned.
1122 #
1123 # Most of the time it is used to return the not nullable version of a nullable type.
1124 # In this case, this just remove the `nullable` notation, but the result can still contains null.
1125 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
1126 # If you really want to exclude the `null` value, then use `as_notnull`
1127 fun undecorate: MType
1128 do
1129 return self
1130 end
1131
1132 # Returns the not null version of the type.
1133 # That is `self` minus the `null` value.
1134 #
1135 # For most types, this return `self`.
1136 # For formal types, this returns a special `MNotNullType`
1137 fun as_notnull: MType do return self
1138
1139 private var as_nullable_cache: nullable MType = null
1140
1141
1142 # The depth of the type seen as a tree.
1143 #
1144 # * A -> 1
1145 # * G[A] -> 2
1146 # * H[A, B] -> 2
1147 # * H[G[A], B] -> 3
1148 #
1149 # Formal types have a depth of 1.
1150 # Only `MClassType` and `MFormalType` nodes are counted.
1151 fun depth: Int
1152 do
1153 return 1
1154 end
1155
1156 # The length of the type seen as a tree.
1157 #
1158 # * A -> 1
1159 # * G[A] -> 2
1160 # * H[A, B] -> 3
1161 # * H[G[A], B] -> 4
1162 #
1163 # Formal types have a length of 1.
1164 # Only `MClassType` and `MFormalType` nodes are counted.
1165 fun length: Int
1166 do
1167 return 1
1168 end
1169
1170 # Compute all the classdefs inherited/imported.
1171 # The returned set contains:
1172 # * the class definitions from `mmodule` and its imported modules
1173 # * the class definitions of this type and its super-types
1174 #
1175 # This function is used mainly internally.
1176 #
1177 # REQUIRE: `not self.need_anchor`
1178 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
1179
1180 # Compute all the super-classes.
1181 # This function is used mainly internally.
1182 #
1183 # REQUIRE: `not self.need_anchor`
1184 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
1185
1186 # Compute all the declared super-types.
1187 # Super-types are returned as declared in the classdefs (verbatim).
1188 # This function is used mainly internally.
1189 #
1190 # REQUIRE: `not self.need_anchor`
1191 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
1192
1193 # Is the property in self for a given module
1194 # This method does not filter visibility or whatever
1195 #
1196 # REQUIRE: `not self.need_anchor`
1197 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
1198 do
1199 assert not self.need_anchor
1200 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
1201 end
1202 end
1203
1204 # A type based on a class.
1205 #
1206 # `MClassType` have properties (see `has_mproperty`).
1207 class MClassType
1208 super MType
1209
1210 # The associated class
1211 var mclass: MClass
1212
1213 redef fun model do return self.mclass.intro_mmodule.model
1214
1215 redef fun location do return mclass.location
1216
1217 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1218
1219 # The formal arguments of the type
1220 # ENSURE: `result.length == self.mclass.arity`
1221 var arguments = new Array[MType]
1222
1223 redef fun to_s do return mclass.to_s
1224
1225 redef fun full_name do return mclass.full_name
1226
1227 redef fun c_name do return mclass.c_name
1228
1229 redef fun need_anchor do return false
1230
1231 redef fun anchor_to(mmodule, anchor): MClassType
1232 do
1233 return super.as(MClassType)
1234 end
1235
1236 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1237
1238 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1239
1240 redef fun collect_mclassdefs(mmodule)
1241 do
1242 assert not self.need_anchor
1243 var cache = self.collect_mclassdefs_cache
1244 if not cache.has_key(mmodule) then
1245 self.collect_things(mmodule)
1246 end
1247 return cache[mmodule]
1248 end
1249
1250 redef fun collect_mclasses(mmodule)
1251 do
1252 if collect_mclasses_last_module == mmodule then return collect_mclasses_last_module_cache
1253 assert not self.need_anchor
1254 var cache = self.collect_mclasses_cache
1255 if not cache.has_key(mmodule) then
1256 self.collect_things(mmodule)
1257 end
1258 var res = cache[mmodule]
1259 collect_mclasses_last_module = mmodule
1260 collect_mclasses_last_module_cache = res
1261 return res
1262 end
1263
1264 private var collect_mclasses_last_module: nullable MModule = null
1265 private var collect_mclasses_last_module_cache: Set[MClass] is noinit
1266
1267 redef fun collect_mtypes(mmodule)
1268 do
1269 assert not self.need_anchor
1270 var cache = self.collect_mtypes_cache
1271 if not cache.has_key(mmodule) then
1272 self.collect_things(mmodule)
1273 end
1274 return cache[mmodule]
1275 end
1276
1277 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1278 private fun collect_things(mmodule: MModule)
1279 do
1280 var res = new HashSet[MClassDef]
1281 var seen = new HashSet[MClass]
1282 var types = new HashSet[MClassType]
1283 seen.add(self.mclass)
1284 var todo = [self.mclass]
1285 while not todo.is_empty do
1286 var mclass = todo.pop
1287 #print "process {mclass}"
1288 for mclassdef in mclass.mclassdefs do
1289 if not mmodule.in_importation <= mclassdef.mmodule then continue
1290 #print " process {mclassdef}"
1291 res.add(mclassdef)
1292 for supertype in mclassdef.supertypes do
1293 types.add(supertype)
1294 var superclass = supertype.mclass
1295 if seen.has(superclass) then continue
1296 #print " add {superclass}"
1297 seen.add(superclass)
1298 todo.add(superclass)
1299 end
1300 end
1301 end
1302 collect_mclassdefs_cache[mmodule] = res
1303 collect_mclasses_cache[mmodule] = seen
1304 collect_mtypes_cache[mmodule] = types
1305 end
1306
1307 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1308 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1309 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1310
1311 redef fun mdoc_or_fallback do return mclass.mdoc_or_fallback
1312 end
1313
1314 # A type based on a generic class.
1315 # A generic type a just a class with additional formal generic arguments.
1316 class MGenericType
1317 super MClassType
1318
1319 redef var arguments
1320
1321 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1322
1323 init
1324 do
1325 assert self.mclass.arity == arguments.length
1326
1327 self.need_anchor = false
1328 for t in arguments do
1329 if t.need_anchor then
1330 self.need_anchor = true
1331 break
1332 end
1333 end
1334
1335 self.to_s = "{mclass}[{arguments.join(", ")}]"
1336 end
1337
1338 # The short-name of the class, then the full-name of each type arguments within brackets.
1339 # Example: `"Map[String, List[Int]]"`
1340 redef var to_s is noinit
1341
1342 # The full-name of the class, then the full-name of each type arguments within brackets.
1343 # Example: `"core::Map[core::String, core::List[core::Int]]"`
1344 redef var full_name is lazy do
1345 var args = new Array[String]
1346 for t in arguments do
1347 args.add t.full_name
1348 end
1349 return "{mclass.full_name}[{args.join(", ")}]"
1350 end
1351
1352 redef var c_name is lazy do
1353 var res = mclass.c_name
1354 # Note: because the arity is known, a prefix notation is enough
1355 for t in arguments do
1356 res += "__"
1357 res += t.c_name
1358 end
1359 return res.to_s
1360 end
1361
1362 redef var need_anchor is noinit
1363
1364 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1365 do
1366 if not need_anchor then return self
1367 assert can_resolve_for(mtype, anchor, mmodule)
1368 var types = new Array[MType]
1369 for t in arguments do
1370 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1371 end
1372 return mclass.get_mtype(types)
1373 end
1374
1375 redef fun can_resolve_for(mtype, anchor, mmodule)
1376 do
1377 if not need_anchor then return true
1378 for t in arguments do
1379 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1380 end
1381 return true
1382 end
1383
1384 redef fun is_ok
1385 do
1386 for t in arguments do if not t.is_ok then return false
1387 return super
1388 end
1389
1390 redef fun is_legal_in(mmodule, anchor)
1391 do
1392 var mtype
1393 if need_anchor then
1394 assert anchor != null
1395 mtype = anchor_to(mmodule, anchor)
1396 else
1397 mtype = self
1398 end
1399 if not mtype.is_ok then return false
1400 return mtype.is_subtype(mmodule, null, mtype.mclass.intro.bound_mtype)
1401 end
1402
1403 redef fun depth
1404 do
1405 var dmax = 0
1406 for a in self.arguments do
1407 var d = a.depth
1408 if d > dmax then dmax = d
1409 end
1410 return dmax + 1
1411 end
1412
1413 redef fun length
1414 do
1415 var res = 1
1416 for a in self.arguments do
1417 res += a.length
1418 end
1419 return res
1420 end
1421 end
1422
1423 # A formal type (either virtual of parametric).
1424 #
1425 # The main issue with formal types is that they offer very little information on their own
1426 # and need a context (anchor and mmodule) to be useful.
1427 abstract class MFormalType
1428 super MType
1429
1430 redef var as_notnull = new MNotNullType(self) is lazy
1431 end
1432
1433 # A virtual formal type.
1434 class MVirtualType
1435 super MFormalType
1436
1437 # The property associated with the type.
1438 # Its the definitions of this property that determine the bound or the virtual type.
1439 var mproperty: MVirtualTypeProp
1440
1441 redef fun location do return mproperty.location
1442
1443 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1444
1445 redef fun lookup_bound(mmodule, resolved_receiver)
1446 do
1447 # There is two possible invalid cases: the vt does not exists in resolved_receiver or the bound is broken
1448 if not resolved_receiver.has_mproperty(mmodule, mproperty) then return new MErrorType(model)
1449 return lookup_single_definition(mmodule, resolved_receiver).bound or else new MErrorType(model)
1450 end
1451
1452 private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef
1453 do
1454 assert not resolved_receiver.need_anchor
1455 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1456 if props.is_empty then
1457 abort
1458 else if props.length == 1 then
1459 return props.first
1460 end
1461 var types = new ArraySet[MType]
1462 var res = props.first
1463 for p in props do
1464 types.add(p.bound.as(not null))
1465 if not res.is_fixed then res = p
1466 end
1467 if types.length == 1 then
1468 return res
1469 end
1470 abort
1471 end
1472
1473 # A VT is fixed when:
1474 # * the VT is (re-)defined with the annotation `is fixed`
1475 # * the VT is (indirectly) bound to an enum class (see `enum_kind`) since there is no subtype possible
1476 # * the receiver is an enum class since there is no subtype possible
1477 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1478 do
1479 assert not resolved_receiver.need_anchor
1480 resolved_receiver = resolved_receiver.undecorate
1481 assert resolved_receiver isa MClassType # It is the only remaining type
1482
1483 var prop = lookup_single_definition(mmodule, resolved_receiver)
1484 var res = prop.bound
1485 if res == null then return new MErrorType(model)
1486
1487 # Recursively lookup the fixed result
1488 res = res.lookup_fixed(mmodule, resolved_receiver)
1489
1490 # 1. For a fixed VT, return the resolved bound
1491 if prop.is_fixed then return res
1492
1493 # 2. For a enum boud, return the bound
1494 if res isa MClassType and res.mclass.kind == enum_kind then return res
1495
1496 # 3. for a enum receiver return the bound
1497 if resolved_receiver.mclass.kind == enum_kind then return res
1498
1499 return self
1500 end
1501
1502 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1503 do
1504 if not cleanup_virtual then return self
1505 assert can_resolve_for(mtype, anchor, mmodule)
1506
1507 if mproperty.is_selftype then return mtype
1508
1509 # self is a virtual type declared (or inherited) in mtype
1510 # The point of the function it to get the bound of the virtual type that make sense for mtype
1511 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1512 #print "{class_name}: {self}/{mtype}/{anchor}?"
1513 var resolved_receiver
1514 if mtype.need_anchor then
1515 assert anchor != null
1516 resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true)
1517 else
1518 resolved_receiver = mtype
1519 end
1520 # Now, we can get the bound
1521 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1522 # The bound is exactly as declared in the "type" property, so we must resolve it again
1523 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1524
1525 return res
1526 end
1527
1528 redef fun can_resolve_for(mtype, anchor, mmodule)
1529 do
1530 if mtype.need_anchor then
1531 assert anchor != null
1532 mtype = mtype.anchor_to(mmodule, anchor)
1533 end
1534 return mtype.has_mproperty(mmodule, mproperty)
1535 end
1536
1537 redef fun to_s do return self.mproperty.to_s
1538
1539 redef fun full_name do return self.mproperty.full_name
1540
1541 redef fun c_name do return self.mproperty.c_name
1542
1543 redef fun mdoc_or_fallback do return mproperty.mdoc_or_fallback
1544 end
1545
1546 # The type associated to a formal parameter generic type of a class
1547 #
1548 # Each parameter type is associated to a specific class.
1549 # It means that all refinements of a same class "share" the parameter type,
1550 # but that a generic subclass has its own parameter types.
1551 #
1552 # However, in the sense of the meta-model, a parameter type of a class is
1553 # a valid type in a subclass. The "in the sense of the meta-model" is
1554 # important because, in the Nit language, the programmer cannot refers
1555 # directly to the parameter types of the super-classes.
1556 #
1557 # Example:
1558 #
1559 # class A[E]
1560 # fun e: E is abstract
1561 # end
1562 # class B[F]
1563 # super A[Array[F]]
1564 # end
1565 #
1566 # In the class definition B[F], `F` is a valid type but `E` is not.
1567 # However, `self.e` is a valid method call, and the signature of `e` is
1568 # declared `e: E`.
1569 #
1570 # Note that parameter types are shared among class refinements.
1571 # Therefore parameter only have an internal name (see `to_s` for details).
1572 class MParameterType
1573 super MFormalType
1574
1575 # The generic class where the parameter belong
1576 var mclass: MClass
1577
1578 redef fun model do return self.mclass.intro_mmodule.model
1579
1580 redef fun location do return mclass.location
1581
1582 # The position of the parameter (0 for the first parameter)
1583 # FIXME: is `position` a better name?
1584 var rank: Int
1585
1586 redef var name
1587
1588 redef fun to_s do return name
1589
1590 redef var full_name is lazy do return "{mclass.full_name}::{name}"
1591
1592 redef var c_name is lazy do return mclass.c_name + "__" + "#{name}".to_cmangle
1593
1594 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1595 do
1596 assert not resolved_receiver.need_anchor
1597 resolved_receiver = resolved_receiver.undecorate
1598 assert resolved_receiver isa MClassType # It is the only remaining type
1599 var goalclass = self.mclass
1600 if resolved_receiver.mclass == goalclass then
1601 return resolved_receiver.arguments[self.rank]
1602 end
1603 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1604 for t in supertypes do
1605 if t.mclass == goalclass then
1606 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1607 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1608 var res = t.arguments[self.rank]
1609 return res
1610 end
1611 end
1612 # Cannot found `self` in `resolved_receiver`
1613 return new MErrorType(model)
1614 end
1615
1616 # A PT is fixed when:
1617 # * Its bound is a enum class (see `enum_kind`).
1618 # The PT is just useless, but it is still a case.
1619 # * More usually, the `resolved_receiver` is a subclass of `self.mclass`,
1620 # so it is necessarily fixed in a `super` clause, either with a normal type
1621 # or with another PT.
1622 # See `resolve_for` for examples about related issues.
1623 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1624 do
1625 assert not resolved_receiver.need_anchor
1626 resolved_receiver = resolved_receiver.undecorate
1627 assert resolved_receiver isa MClassType # It is the only remaining type
1628 var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false)
1629 return res
1630 end
1631
1632 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1633 do
1634 assert can_resolve_for(mtype, anchor, mmodule)
1635 #print "{class_name}: {self}/{mtype}/{anchor}?"
1636
1637 if mtype isa MGenericType and mtype.mclass == self.mclass then
1638 var res = mtype.arguments[self.rank]
1639 if anchor != null and res.need_anchor then
1640 # Maybe the result can be resolved more if are bound to a final class
1641 var r2 = res.anchor_to(mmodule, anchor)
1642 if r2 isa MClassType and r2.mclass.kind == enum_kind then return r2
1643 end
1644 return res
1645 end
1646
1647 # self is a parameter type of mtype (or of a super-class of mtype)
1648 # The point of the function it to get the bound of the virtual type that make sense for mtype
1649 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1650 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1651 var resolved_receiver
1652 if mtype.need_anchor then
1653 assert anchor != null
1654 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1655 else
1656 resolved_receiver = mtype
1657 end
1658 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1659 if resolved_receiver isa MParameterType then
1660 assert anchor != null
1661 assert resolved_receiver.mclass == anchor.mclass
1662 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1663 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1664 end
1665 assert resolved_receiver isa MClassType # It is the only remaining type
1666
1667 # Eh! The parameter is in the current class.
1668 # So we return the corresponding argument, no mater what!
1669 if resolved_receiver.mclass == self.mclass then
1670 var res = resolved_receiver.arguments[self.rank]
1671 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1672 return res
1673 end
1674
1675 if resolved_receiver.need_anchor then
1676 assert anchor != null
1677 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1678 end
1679 # Now, we can get the bound
1680 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1681 # The bound is exactly as declared in the "type" property, so we must resolve it again
1682 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1683
1684 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1685
1686 return res
1687 end
1688
1689 redef fun can_resolve_for(mtype, anchor, mmodule)
1690 do
1691 if mtype.need_anchor then
1692 assert anchor != null
1693 mtype = mtype.anchor_to(mmodule, anchor)
1694 end
1695 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1696 end
1697 end
1698
1699 # A type that decorates another type.
1700 #
1701 # The point of this class is to provide a common implementation of sevices that just forward to the original type.
1702 # Specific decorator are expected to redefine (or to extend) the default implementation as this suit them.
1703 abstract class MProxyType
1704 super MType
1705 # The base type
1706 var mtype: MType
1707
1708 redef fun location do return mtype.location
1709
1710 redef fun model do return self.mtype.model
1711 redef fun need_anchor do return mtype.need_anchor
1712 redef fun as_nullable do return mtype.as_nullable
1713 redef fun as_notnull do return mtype.as_notnull
1714 redef fun undecorate do return mtype.undecorate
1715 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1716 do
1717 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1718 return res
1719 end
1720
1721 redef fun can_resolve_for(mtype, anchor, mmodule)
1722 do
1723 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1724 end
1725
1726 redef fun is_ok do return mtype.is_ok
1727
1728 redef fun is_legal_in(mmodule, anchor) do return mtype.is_legal_in(mmodule, anchor)
1729
1730 redef fun lookup_fixed(mmodule, resolved_receiver)
1731 do
1732 var t = mtype.lookup_fixed(mmodule, resolved_receiver)
1733 return t
1734 end
1735
1736 redef fun depth do return self.mtype.depth
1737
1738 redef fun length do return self.mtype.length
1739
1740 redef fun collect_mclassdefs(mmodule)
1741 do
1742 assert not self.need_anchor
1743 return self.mtype.collect_mclassdefs(mmodule)
1744 end
1745
1746 redef fun collect_mclasses(mmodule)
1747 do
1748 assert not self.need_anchor
1749 return self.mtype.collect_mclasses(mmodule)
1750 end
1751
1752 redef fun collect_mtypes(mmodule)
1753 do
1754 assert not self.need_anchor
1755 return self.mtype.collect_mtypes(mmodule)
1756 end
1757 end
1758
1759 # A type prefixed with "nullable"
1760 class MNullableType
1761 super MProxyType
1762
1763 init
1764 do
1765 self.to_s = "nullable {mtype}"
1766 end
1767
1768 redef var to_s is noinit
1769
1770 redef var full_name is lazy do return "nullable {mtype.full_name}"
1771
1772 redef var c_name is lazy do return "nullable__{mtype.c_name}"
1773
1774 redef fun as_nullable do return self
1775 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1776 do
1777 var res = super
1778 return res.as_nullable
1779 end
1780
1781 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable`
1782 redef fun lookup_fixed(mmodule, resolved_receiver)
1783 do
1784 var t = super
1785 if t == mtype then return self
1786 return t.as_nullable
1787 end
1788 end
1789
1790 # A non-null version of a formal type.
1791 #
1792 # When a formal type in bounded to a nullable type, this is the type of the not null version of it.
1793 class MNotNullType
1794 super MProxyType
1795
1796 redef fun to_s do return "not null {mtype}"
1797 redef var full_name is lazy do return "not null {mtype.full_name}"
1798 redef var c_name is lazy do return "notnull__{mtype.c_name}"
1799
1800 redef fun as_notnull do return self
1801
1802 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1803 do
1804 var res = super
1805 return res.as_notnull
1806 end
1807
1808 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_notnull`
1809 redef fun lookup_fixed(mmodule, resolved_receiver)
1810 do
1811 var t = super
1812 if t == mtype then return self
1813 return t.as_notnull
1814 end
1815 end
1816
1817 # The type of the only value null
1818 #
1819 # The is only one null type per model, see `MModel::null_type`.
1820 class MNullType
1821 super MType
1822 redef var model
1823 redef fun to_s do return "null"
1824 redef fun full_name do return "null"
1825 redef fun c_name do return "null"
1826 redef fun as_nullable do return self
1827
1828 redef var as_notnull: MBottomType = new MBottomType(model) is lazy
1829 redef fun need_anchor do return false
1830 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1831 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1832
1833 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1834
1835 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1836
1837 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1838 end
1839
1840 # The special universal most specific type.
1841 #
1842 # This type is intended to be only used internally for type computation or analysis and should not be exposed to the user.
1843 # The bottom type can de used to denote things that are dead (no instance).
1844 #
1845 # Semantically it is the singleton `null.as_notnull`.
1846 # Is also means that `self.as_nullable == null`.
1847 class MBottomType
1848 super MType
1849 redef var model
1850 redef fun to_s do return "bottom"
1851 redef fun full_name do return "bottom"
1852 redef fun c_name do return "bottom"
1853 redef fun as_nullable do return model.null_type
1854 redef fun as_notnull do return self
1855 redef fun need_anchor do return false
1856 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1857 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1858
1859 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1860
1861 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1862
1863 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1864 end
1865
1866 # A special type used as a silent error marker when building types.
1867 #
1868 # This type is intended to be only used internally for type operation and should not be exposed to the user.
1869 # The error type can de used to denote things that are conflicting or inconsistent.
1870 #
1871 # Some methods on types can return a `MErrorType` to denote a broken or a conflicting result.
1872 # Use `is_ok` to check if a type is (or contains) a `MErrorType` .
1873 class MErrorType
1874 super MType
1875 redef var model
1876 redef fun to_s do return "error"
1877 redef fun full_name do return "error"
1878 redef fun c_name do return "error"
1879 redef fun need_anchor do return false
1880 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1881 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1882 redef fun is_ok do return false
1883
1884 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1885
1886 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1887
1888 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1889 end
1890
1891 # A signature of a method
1892 class MSignature
1893 super MType
1894
1895 # The each parameter (in order)
1896 var mparameters: Array[MParameter]
1897
1898 # Returns a parameter named `name`, if any.
1899 fun mparameter_by_name(name: String): nullable MParameter
1900 do
1901 for p in mparameters do
1902 if p.name == name then return p
1903 end
1904 return null
1905 end
1906
1907 # The return type (null for a procedure)
1908 var return_mtype: nullable MType
1909
1910 redef fun depth
1911 do
1912 var dmax = 0
1913 var t = self.return_mtype
1914 if t != null then dmax = t.depth
1915 for p in mparameters do
1916 var d = p.mtype.depth
1917 if d > dmax then dmax = d
1918 end
1919 return dmax + 1
1920 end
1921
1922 redef fun length
1923 do
1924 var res = 1
1925 var t = self.return_mtype
1926 if t != null then res += t.length
1927 for p in mparameters do
1928 res += p.mtype.length
1929 end
1930 return res
1931 end
1932
1933 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1934 init
1935 do
1936 var vararg_rank = -1
1937 for i in [0..mparameters.length[ do
1938 var parameter = mparameters[i]
1939 if parameter.is_vararg then
1940 if vararg_rank >= 0 then
1941 # If there is more than one vararg,
1942 # consider that additional arguments cannot be mapped.
1943 vararg_rank = -1
1944 break
1945 end
1946 vararg_rank = i
1947 end
1948 end
1949 self.vararg_rank = vararg_rank
1950 end
1951
1952 # The rank of the main ellipsis (`...`) for vararg (starting from 0).
1953 # value is -1 if there is no vararg.
1954 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1955 #
1956 # From a model POV, a signature can contain more than one vararg parameter,
1957 # the `vararg_rank` just indicates the one that will receive the additional arguments.
1958 # However, currently, if there is more that one vararg parameter, no one will be the main one,
1959 # and additional arguments will be refused.
1960 var vararg_rank: Int is noinit
1961
1962 # The number of parameters
1963 fun arity: Int do return mparameters.length
1964
1965 redef fun to_s
1966 do
1967 var b = new FlatBuffer
1968 if not mparameters.is_empty then
1969 b.append("(")
1970 for i in [0..mparameters.length[ do
1971 var mparameter = mparameters[i]
1972 if i > 0 then b.append(", ")
1973 b.append(mparameter.name)
1974 b.append(": ")
1975 b.append(mparameter.mtype.to_s)
1976 if mparameter.is_vararg then
1977 b.append("...")
1978 end
1979 end
1980 b.append(")")
1981 end
1982 var ret = self.return_mtype
1983 if ret != null then
1984 b.append(": ")
1985 b.append(ret.to_s)
1986 end
1987 return b.to_s
1988 end
1989
1990 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
1991 do
1992 var params = new Array[MParameter]
1993 for p in self.mparameters do
1994 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1995 end
1996 var ret = self.return_mtype
1997 if ret != null then
1998 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1999 end
2000 var res = new MSignature(params, ret)
2001 return res
2002 end
2003 end
2004
2005 # A parameter in a signature
2006 class MParameter
2007 super MEntity
2008
2009 # The name of the parameter
2010 redef var name
2011
2012 # The static type of the parameter
2013 var mtype: MType
2014
2015 # Is the parameter a vararg?
2016 var is_vararg: Bool
2017
2018 redef fun to_s
2019 do
2020 if is_vararg then
2021 return "{name}: {mtype}..."
2022 else
2023 return "{name}: {mtype}"
2024 end
2025 end
2026
2027 # Returns a new parameter with the `mtype` resolved.
2028 # See `MType::resolve_for` for details.
2029 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
2030 do
2031 if not self.mtype.need_anchor then return self
2032 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
2033 var res = new MParameter(self.name, newtype, self.is_vararg)
2034 return res
2035 end
2036
2037 redef fun model do return mtype.model
2038 end
2039
2040 # A service (global property) that generalize method, attribute, etc.
2041 #
2042 # `MProperty` are global to the model; it means that a `MProperty` is not bound
2043 # to a specific `MModule` nor a specific `MClass`.
2044 #
2045 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
2046 # and the other in subclasses and in refinements.
2047 #
2048 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
2049 # of any dynamic type).
2050 # For instance, a call site "x.foo" is associated to a `MProperty`.
2051 abstract class MProperty
2052 super MEntity
2053
2054 # The associated MPropDef subclass.
2055 # The two specialization hierarchy are symmetric.
2056 type MPROPDEF: MPropDef
2057
2058 # The classdef that introduce the property
2059 # While a property is not bound to a specific module, or class,
2060 # the introducing mclassdef is used for naming and visibility
2061 var intro_mclassdef: MClassDef
2062
2063 # The (short) name of the property
2064 redef var name
2065
2066 redef var location
2067
2068 redef fun mdoc_or_fallback
2069 do
2070 # Don’t use `intro.mdoc_or_fallback` because it would create an infinite
2071 # recursion.
2072 return intro.mdoc
2073 end
2074
2075 # The canonical name of the property.
2076 #
2077 # It is currently the short-`name` prefixed by the short-name of the class and the full-name of the module.
2078 # Example: "my_package::my_module::MyClass::my_method"
2079 #
2080 # The full-name of the module is needed because two distinct modules of the same package can
2081 # still refine the same class and introduce homonym properties.
2082 #
2083 # For public properties not introduced by refinement, the module name is not used.
2084 #
2085 # Example: `my_package::MyClass::My_method`
2086 redef var full_name is lazy do
2087 if intro_mclassdef.is_intro then
2088 return "{intro_mclassdef.mmodule.namespace_for(visibility)}::{intro_mclassdef.mclass.name}::{name}"
2089 else
2090 return "{intro_mclassdef.mmodule.full_name}::{intro_mclassdef.mclass.name}::{name}"
2091 end
2092 end
2093
2094 redef var c_name is lazy do
2095 # FIXME use `namespace_for`
2096 return "{intro_mclassdef.mmodule.c_name}__{intro_mclassdef.mclass.name.to_cmangle}__{name.to_cmangle}"
2097 end
2098
2099 # The visibility of the property
2100 redef var visibility
2101
2102 # Is the property usable as an initializer?
2103 var is_autoinit = false is writable
2104
2105 init
2106 do
2107 intro_mclassdef.intro_mproperties.add(self)
2108 var model = intro_mclassdef.mmodule.model
2109 model.mproperties_by_name.add_one(name, self)
2110 model.mproperties.add(self)
2111 end
2112
2113 # All definitions of the property.
2114 # The first is the introduction,
2115 # The other are redefinitions (in refinements and in subclasses)
2116 var mpropdefs = new Array[MPROPDEF]
2117
2118 # The definition that introduces the property.
2119 #
2120 # Warning: such a definition may not exist in the early life of the object.
2121 # In this case, the method will abort.
2122 var intro: MPROPDEF is noinit
2123
2124 redef fun model do return intro.model
2125
2126 # Alias for `name`
2127 redef fun to_s do return name
2128
2129 # Return the most specific property definitions defined or inherited by a type.
2130 # The selection knows that refinement is stronger than specialization;
2131 # however, in case of conflict more than one property are returned.
2132 # If mtype does not know mproperty then an empty array is returned.
2133 #
2134 # If you want the really most specific property, then look at `lookup_first_definition`
2135 #
2136 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2137 # ENSURE: `not mtype.has_mproperty(mmodule, self) == result.is_empty`
2138 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2139 do
2140 assert not mtype.need_anchor
2141 mtype = mtype.undecorate
2142
2143 var cache = self.lookup_definitions_cache[mmodule, mtype]
2144 if cache != null then return cache
2145
2146 #print "select prop {mproperty} for {mtype} in {self}"
2147 # First, select all candidates
2148 var candidates = new Array[MPROPDEF]
2149
2150 # Here we have two strategies: iterate propdefs or iterate classdefs.
2151 var mpropdefs = self.mpropdefs
2152 if mpropdefs.length <= 1 or mpropdefs.length < mtype.collect_mclassdefs(mmodule).length then
2153 # Iterate on all definitions of `self`, keep only those inherited by `mtype` in `mmodule`
2154 for mpropdef in mpropdefs do
2155 # If the definition is not imported by the module, then skip
2156 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2157 # If the definition is not inherited by the type, then skip
2158 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2159 # Else, we keep it
2160 candidates.add(mpropdef)
2161 end
2162 else
2163 # Iterate on all super-classdefs of `mtype`, keep only the definitions of `self`, if any.
2164 for mclassdef in mtype.collect_mclassdefs(mmodule) do
2165 var p = mclassdef.mpropdefs_by_property.get_or_null(self)
2166 if p != null then candidates.add p
2167 end
2168 end
2169
2170 # Fast track for only one candidate
2171 if candidates.length <= 1 then
2172 self.lookup_definitions_cache[mmodule, mtype] = candidates
2173 return candidates
2174 end
2175
2176 # Second, filter the most specific ones
2177 return select_most_specific(mmodule, candidates)
2178 end
2179
2180 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2181
2182 # Return the most specific property definitions inherited by a type.
2183 # The selection knows that refinement is stronger than specialization;
2184 # however, in case of conflict more than one property are returned.
2185 # If mtype does not know mproperty then an empty array is returned.
2186 #
2187 # If you want the really most specific property, then look at `lookup_next_definition`
2188 #
2189 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2190 # ENSURE: `not mtype.has_mproperty(mmodule, self) implies result.is_empty`
2191 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2192 do
2193 assert not mtype.need_anchor
2194 mtype = mtype.undecorate
2195
2196 # First, select all candidates
2197 var candidates = new Array[MPROPDEF]
2198 for mpropdef in self.mpropdefs do
2199 # If the definition is not imported by the module, then skip
2200 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2201 # If the definition is not inherited by the type, then skip
2202 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2203 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
2204 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
2205 # Else, we keep it
2206 candidates.add(mpropdef)
2207 end
2208 # Fast track for only one candidate
2209 if candidates.length <= 1 then return candidates
2210
2211 # Second, filter the most specific ones
2212 return select_most_specific(mmodule, candidates)
2213 end
2214
2215 # Return an array containing olny the most specific property definitions
2216 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
2217 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
2218 do
2219 var res = new Array[MPROPDEF]
2220 for pd1 in candidates do
2221 var cd1 = pd1.mclassdef
2222 var c1 = cd1.mclass
2223 var keep = true
2224 for pd2 in candidates do
2225 if pd2 == pd1 then continue # do not compare with self!
2226 var cd2 = pd2.mclassdef
2227 var c2 = cd2.mclass
2228 if c2.mclass_type == c1.mclass_type then
2229 if cd2.mmodule.in_importation < cd1.mmodule then
2230 # cd2 refines cd1; therefore we skip pd1
2231 keep = false
2232 break
2233 end
2234 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
2235 # cd2 < cd1; therefore we skip pd1
2236 keep = false
2237 break
2238 end
2239 end
2240 if keep then
2241 res.add(pd1)
2242 end
2243 end
2244 if res.is_empty then
2245 print_error "All lost! {candidates.join(", ")}"
2246 # FIXME: should be abort!
2247 end
2248 return res
2249 end
2250
2251 # Return the most specific definition in the linearization of `mtype`.
2252 #
2253 # If you want to know the next properties in the linearization,
2254 # look at `MPropDef::lookup_next_definition`.
2255 #
2256 # FIXME: the linearization is still unspecified
2257 #
2258 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2259 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2260 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
2261 do
2262 return lookup_all_definitions(mmodule, mtype).first
2263 end
2264
2265 # Return all definitions in a linearization order
2266 # Most specific first, most general last
2267 #
2268 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2269 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2270 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2271 do
2272 mtype = mtype.undecorate
2273
2274 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
2275 if cache != null then return cache
2276
2277 assert not mtype.need_anchor
2278 assert mtype.has_mproperty(mmodule, self)
2279
2280 #print "select prop {mproperty} for {mtype} in {self}"
2281 # First, select all candidates
2282 var candidates = new Array[MPROPDEF]
2283 for mpropdef in self.mpropdefs do
2284 # If the definition is not imported by the module, then skip
2285 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2286 # If the definition is not inherited by the type, then skip
2287 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2288 # Else, we keep it
2289 candidates.add(mpropdef)
2290 end
2291 # Fast track for only one candidate
2292 if candidates.length <= 1 then
2293 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2294 return candidates
2295 end
2296
2297 mmodule.linearize_mpropdefs(candidates)
2298 candidates = candidates.reversed
2299 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2300 return candidates
2301 end
2302
2303 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2304 end
2305
2306 # A global method
2307 class MMethod
2308 super MProperty
2309
2310 redef type MPROPDEF: MMethodDef
2311
2312 # Is the property defined at the top_level of the module?
2313 # Currently such a property are stored in `Object`
2314 var is_toplevel: Bool = false is writable
2315
2316 # Is the property a constructor?
2317 # Warning, this property can be inherited by subclasses with or without being a constructor
2318 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
2319 var is_init: Bool = false is writable
2320
2321 # The constructor is a (the) root init with empty signature but a set of initializers
2322 var is_root_init: Bool = false is writable
2323
2324 # Is the property a 'new' constructor?
2325 var is_new: Bool = false is writable
2326
2327 # Is the property a legal constructor for a given class?
2328 # As usual, visibility is not considered.
2329 # FIXME not implemented
2330 fun is_init_for(mclass: MClass): Bool
2331 do
2332 return self.is_init
2333 end
2334
2335 # A specific method that is safe to call on null.
2336 # Currently, only `==`, `!=` and `is_same_instance` are safe
2337 fun is_null_safe: Bool do return name == "==" or name == "!=" or name == "is_same_instance"
2338 end
2339
2340 # A global attribute
2341 class MAttribute
2342 super MProperty
2343
2344 redef type MPROPDEF: MAttributeDef
2345
2346 end
2347
2348 # A global virtual type
2349 class MVirtualTypeProp
2350 super MProperty
2351
2352 redef type MPROPDEF: MVirtualTypeDef
2353
2354 # The formal type associated to the virtual type property
2355 var mvirtualtype = new MVirtualType(self)
2356
2357 # Is `self` the special virtual type `SELF`?
2358 var is_selftype: Bool is lazy do return name == "SELF"
2359 end
2360
2361 # A definition of a property (local property)
2362 #
2363 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
2364 # specific class definition (which belong to a specific module)
2365 abstract class MPropDef
2366 super MEntity
2367
2368 # The associated `MProperty` subclass.
2369 # the two specialization hierarchy are symmetric
2370 type MPROPERTY: MProperty
2371
2372 # Self class
2373 type MPROPDEF: MPropDef
2374
2375 # The class definition where the property definition is
2376 var mclassdef: MClassDef
2377
2378 # The associated global property
2379 var mproperty: MPROPERTY
2380
2381 redef var location: Location
2382
2383 redef fun visibility do return mproperty.visibility
2384
2385 init
2386 do
2387 mclassdef.mpropdefs.add(self)
2388 mproperty.mpropdefs.add(self)
2389 mclassdef.mpropdefs_by_property[mproperty] = self
2390 if mproperty.intro_mclassdef == mclassdef then
2391 assert not isset mproperty._intro
2392 mproperty.intro = self
2393 end
2394 self.to_s = "{mclassdef}${mproperty}"
2395 end
2396
2397 # Actually the name of the `mproperty`
2398 redef fun name do return mproperty.name
2399
2400 # The full-name of mpropdefs combine the information about the `classdef` and the `mproperty`.
2401 #
2402 # Therefore the combination of identifiers is awful,
2403 # the worst case being
2404 #
2405 # * a property "p::m::A::x"
2406 # * redefined in a refinement of a class "q::n::B"
2407 # * in a module "r::o"
2408 # * so "r::o$q::n::B$p::m::A::x"
2409 #
2410 # Fortunately, the full-name is simplified when entities are repeated.
2411 # For the previous case, the simplest form is "p$A$x".
2412 redef var full_name is lazy do
2413 var res = new FlatBuffer
2414
2415 # The first part is the mclassdef. Worst case is "r::o$q::n::B"
2416 res.append mclassdef.full_name
2417
2418 res.append "$"
2419
2420 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2421 # intro are unambiguous in a class
2422 res.append name
2423 else
2424 # Just try to simplify each part
2425 if mclassdef.mmodule.mpackage != mproperty.intro_mclassdef.mmodule.mpackage then
2426 # precise "p::m" only if "p" != "r"
2427 res.append mproperty.intro_mclassdef.mmodule.namespace_for(mproperty.visibility)
2428 res.append "::"
2429 else if mproperty.visibility <= private_visibility then
2430 # Same package ("p"=="q"), but private visibility,
2431 # does the module part ("::m") need to be displayed
2432 if mclassdef.mmodule.namespace_for(mclassdef.mclass.visibility) != mproperty.intro_mclassdef.mmodule.mpackage then
2433 res.append "::"
2434 res.append mproperty.intro_mclassdef.mmodule.name
2435 res.append "::"
2436 end
2437 end
2438 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2439 # precise "B" only if not the same class than "A"
2440 res.append mproperty.intro_mclassdef.name
2441 res.append "::"
2442 end
2443 # Always use the property name "x"
2444 res.append mproperty.name
2445 end
2446 return res.to_s
2447 end
2448
2449 redef var c_name is lazy do
2450 var res = new FlatBuffer
2451 res.append mclassdef.c_name
2452 res.append "___"
2453 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2454 res.append name.to_cmangle
2455 else
2456 if mclassdef.mmodule != mproperty.intro_mclassdef.mmodule then
2457 res.append mproperty.intro_mclassdef.mmodule.c_name
2458 res.append "__"
2459 end
2460 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2461 res.append mproperty.intro_mclassdef.name.to_cmangle
2462 res.append "__"
2463 end
2464 res.append mproperty.name.to_cmangle
2465 end
2466 return res.to_s
2467 end
2468
2469 redef fun model do return mclassdef.model
2470
2471 # Internal name combining the module, the class and the property
2472 # Example: "mymodule$MyClass$mymethod"
2473 redef var to_s is noinit
2474
2475 # Is self the definition that introduce the property?
2476 fun is_intro: Bool do return isset mproperty._intro and mproperty.intro == self
2477
2478 # Return the next definition in linearization of `mtype`.
2479 #
2480 # This method is used to determine what method is called by a super.
2481 #
2482 # REQUIRE: `not mtype.need_anchor`
2483 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
2484 do
2485 assert not mtype.need_anchor
2486
2487 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
2488 var i = mpropdefs.iterator
2489 while i.is_ok and i.item != self do i.next
2490 assert has_property: i.is_ok
2491 i.next
2492 assert has_next_property: i.is_ok
2493 return i.item
2494 end
2495
2496 redef fun mdoc_or_fallback do return mdoc or else mproperty.mdoc_or_fallback
2497 end
2498
2499 # A local definition of a method
2500 class MMethodDef
2501 super MPropDef
2502
2503 redef type MPROPERTY: MMethod
2504 redef type MPROPDEF: MMethodDef
2505
2506 # The signature attached to the property definition
2507 var msignature: nullable MSignature = null is writable
2508
2509 # The signature attached to the `new` call on a root-init
2510 # This is a concatenation of the signatures of the initializers
2511 #
2512 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2513 var new_msignature: nullable MSignature = null is writable
2514
2515 # List of initialisers to call in root-inits
2516 #
2517 # They could be setters or attributes
2518 #
2519 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2520 var initializers = new Array[MProperty]
2521
2522 # Is the method definition abstract?
2523 var is_abstract: Bool = false is writable
2524
2525 # Is the method definition intern?
2526 var is_intern = false is writable
2527
2528 # Is the method definition extern?
2529 var is_extern = false is writable
2530
2531 # An optional constant value returned in functions.
2532 #
2533 # Only some specific primitife value are accepted by engines.
2534 # Is used when there is no better implementation available.
2535 #
2536 # Currently used only for the implementation of the `--define`
2537 # command-line option.
2538 # SEE: module `mixin`.
2539 var constant_value: nullable Object = null is writable
2540 end
2541
2542 # A local definition of an attribute
2543 class MAttributeDef
2544 super MPropDef
2545
2546 redef type MPROPERTY: MAttribute
2547 redef type MPROPDEF: MAttributeDef
2548
2549 # The static type of the attribute
2550 var static_mtype: nullable MType = null is writable
2551 end
2552
2553 # A local definition of a virtual type
2554 class MVirtualTypeDef
2555 super MPropDef
2556
2557 redef type MPROPERTY: MVirtualTypeProp
2558 redef type MPROPDEF: MVirtualTypeDef
2559
2560 # The bound of the virtual type
2561 var bound: nullable MType = null is writable
2562
2563 # Is the bound fixed?
2564 var is_fixed = false is writable
2565 end
2566
2567 # A kind of class.
2568 #
2569 # * `abstract_kind`
2570 # * `concrete_kind`
2571 # * `interface_kind`
2572 # * `enum_kind`
2573 # * `extern_kind`
2574 #
2575 # Note this class is basically an enum.
2576 # FIXME: use a real enum once user-defined enums are available
2577 class MClassKind
2578 redef var to_s
2579
2580 # Is a constructor required?
2581 var need_init: Bool
2582
2583 # TODO: private init because enumeration.
2584
2585 # Can a class of kind `self` specializes a class of kine `other`?
2586 fun can_specialize(other: MClassKind): Bool
2587 do
2588 if other == interface_kind then return true # everybody can specialize interfaces
2589 if self == interface_kind or self == enum_kind then
2590 # no other case for interfaces
2591 return false
2592 else if self == extern_kind then
2593 # only compatible with themselves
2594 return self == other
2595 else if other == enum_kind or other == extern_kind then
2596 # abstract_kind and concrete_kind are incompatible
2597 return false
2598 end
2599 # remain only abstract_kind and concrete_kind
2600 return true
2601 end
2602 end
2603
2604 # The class kind `abstract`
2605 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", true)
2606 # The class kind `concrete`
2607 fun concrete_kind: MClassKind do return once new MClassKind("class", true)
2608 # The class kind `interface`
2609 fun interface_kind: MClassKind do return once new MClassKind("interface", false)
2610 # The class kind `enum`
2611 fun enum_kind: MClassKind do return once new MClassKind("enum", false)
2612 # The class kind `extern`
2613 fun extern_kind: MClassKind do return once new MClassKind("extern class", false)