model&modelize: introduce default parameters
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class Model
34 # All known classes
35 var mclasses = new Array[MClass]
36
37 # All known properties
38 var mproperties = new Array[MProperty]
39
40 # Hierarchy of class definition.
41 #
42 # Each classdef is associated with its super-classdefs in regard to
43 # its module of definition.
44 var mclassdef_hierarchy = new POSet[MClassDef]
45
46 # Class-type hierarchy restricted to the introduction.
47 #
48 # The idea is that what is true on introduction is always true whatever
49 # the module considered.
50 # Therefore, this hierarchy is used for a fast positive subtype check.
51 #
52 # This poset will evolve in a monotonous way:
53 # * Two non connected nodes will remain unconnected
54 # * New nodes can appear with new edges
55 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
56
57 # Global overlapped class-type hierarchy.
58 # The hierarchy when all modules are combined.
59 # Therefore, this hierarchy is used for a fast negative subtype check.
60 #
61 # This poset will evolve in an anarchic way. Loops can even be created.
62 #
63 # FIXME decide what to do on loops
64 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
65
66 # Collections of classes grouped by their short name
67 private var mclasses_by_name = new MultiHashMap[String, MClass]
68
69 # Return all class named `name`.
70 #
71 # If such a class does not exist, null is returned
72 # (instead of an empty array)
73 #
74 # Visibility or modules are not considered
75 fun get_mclasses_by_name(name: String): nullable Array[MClass]
76 do
77 return mclasses_by_name.get_or_null(name)
78 end
79
80 # Collections of properties grouped by their short name
81 private var mproperties_by_name = new MultiHashMap[String, MProperty]
82
83 # Return all properties named `name`.
84 #
85 # If such a property does not exist, null is returned
86 # (instead of an empty array)
87 #
88 # Visibility or modules are not considered
89 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
90 do
91 return mproperties_by_name.get_or_null(name)
92 end
93
94 # The only null type
95 var null_type = new MNullType(self)
96
97 # Build an ordered tree with from `concerns`
98 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
99 var seen = new HashSet[MConcern]
100 var res = new ConcernsTree
101
102 var todo = new Array[MConcern]
103 todo.add_all mconcerns
104
105 while not todo.is_empty do
106 var c = todo.pop
107 if seen.has(c) then continue
108 var pc = c.parent_concern
109 if pc == null then
110 res.add(null, c)
111 else
112 res.add(pc, c)
113 todo.add(pc)
114 end
115 seen.add(c)
116 end
117
118 return res
119 end
120 end
121
122 # An OrderedTree that can be easily refined for display purposes
123 class ConcernsTree
124 super OrderedTree[MConcern]
125 end
126
127 redef class MModule
128 # All the classes introduced in the module
129 var intro_mclasses = new Array[MClass]
130
131 # All the class definitions of the module
132 # (introduction and refinement)
133 var mclassdefs = new Array[MClassDef]
134
135 # Does the current module has a given class `mclass`?
136 # Return true if the mmodule introduces, refines or imports a class.
137 # Visibility is not considered.
138 fun has_mclass(mclass: MClass): Bool
139 do
140 return self.in_importation <= mclass.intro_mmodule
141 end
142
143 # Full hierarchy of introduced ans imported classes.
144 #
145 # Create a new hierarchy got by flattening the classes for the module
146 # and its imported modules.
147 # Visibility is not considered.
148 #
149 # Note: this function is expensive and is usually used for the main
150 # module of a program only. Do not use it to do you own subtype
151 # functions.
152 fun flatten_mclass_hierarchy: POSet[MClass]
153 do
154 var res = self.flatten_mclass_hierarchy_cache
155 if res != null then return res
156 res = new POSet[MClass]
157 for m in self.in_importation.greaters do
158 for cd in m.mclassdefs do
159 var c = cd.mclass
160 res.add_node(c)
161 for s in cd.supertypes do
162 res.add_edge(c, s.mclass)
163 end
164 end
165 end
166 self.flatten_mclass_hierarchy_cache = res
167 return res
168 end
169
170 # Sort a given array of classes using the linearization order of the module
171 # The most general is first, the most specific is last
172 fun linearize_mclasses(mclasses: Array[MClass])
173 do
174 self.flatten_mclass_hierarchy.sort(mclasses)
175 end
176
177 # Sort a given array of class definitions using the linearization order of the module
178 # the refinement link is stronger than the specialisation link
179 # The most general is first, the most specific is last
180 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
181 do
182 var sorter = new MClassDefSorter(self)
183 sorter.sort(mclassdefs)
184 end
185
186 # Sort a given array of property definitions using the linearization order of the module
187 # the refinement link is stronger than the specialisation link
188 # The most general is first, the most specific is last
189 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
190 do
191 var sorter = new MPropDefSorter(self)
192 sorter.sort(mpropdefs)
193 end
194
195 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
196
197 # The primitive type `Object`, the root of the class hierarchy
198 var object_type: MClassType = self.get_primitive_class("Object").mclass_type is lazy
199
200 # The type `Pointer`, super class to all extern classes
201 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
202
203 # The primitive type `Bool`
204 var bool_type: MClassType = self.get_primitive_class("Bool").mclass_type is lazy
205
206 # The primitive type `Int`
207 var int_type: MClassType = self.get_primitive_class("Int").mclass_type is lazy
208
209 # The primitive type `Char`
210 var char_type: MClassType = self.get_primitive_class("Char").mclass_type is lazy
211
212 # The primitive type `Float`
213 var float_type: MClassType = self.get_primitive_class("Float").mclass_type is lazy
214
215 # The primitive type `String`
216 var string_type: MClassType = self.get_primitive_class("String").mclass_type is lazy
217
218 # The primitive type `NativeString`
219 var native_string_type: MClassType = self.get_primitive_class("NativeString").mclass_type is lazy
220
221 # A primitive type of `Array`
222 fun array_type(elt_type: MType): MClassType do return array_class.get_mtype([elt_type])
223
224 # The primitive class `Array`
225 var array_class: MClass = self.get_primitive_class("Array") is lazy
226
227 # A primitive type of `NativeArray`
228 fun native_array_type(elt_type: MType): MClassType do return native_array_class.get_mtype([elt_type])
229
230 # The primitive class `NativeArray`
231 var native_array_class: MClass = self.get_primitive_class("NativeArray") is lazy
232
233 # The primitive type `Sys`, the main type of the program, if any
234 fun sys_type: nullable MClassType
235 do
236 var clas = self.model.get_mclasses_by_name("Sys")
237 if clas == null then return null
238 return get_primitive_class("Sys").mclass_type
239 end
240
241 # The primitive type `Finalizable`
242 # Used to tag classes that need to be finalized.
243 fun finalizable_type: nullable MClassType
244 do
245 var clas = self.model.get_mclasses_by_name("Finalizable")
246 if clas == null then return null
247 return get_primitive_class("Finalizable").mclass_type
248 end
249
250 # Force to get the primitive class named `name` or abort
251 fun get_primitive_class(name: String): MClass
252 do
253 var cla = self.model.get_mclasses_by_name(name)
254 # Filter classes by introducing module
255 if cla != null then cla = [for c in cla do if self.in_importation <= c.intro_mmodule then c]
256 if cla == null or cla.is_empty then
257 if name == "Bool" and self.model.get_mclasses_by_name("Object") != null then
258 # Bool is injected because it is needed by engine to code the result
259 # of the implicit casts.
260 var c = new MClass(self, name, null, enum_kind, public_visibility)
261 var cladef = new MClassDef(self, c.mclass_type, new Location(null, 0,0,0,0))
262 cladef.set_supertypes([object_type])
263 cladef.add_in_hierarchy
264 return c
265 end
266 print("Fatal Error: no primitive class {name} in {self}")
267 exit(1)
268 end
269 if cla.length != 1 then
270 var msg = "Fatal Error: more than one primitive class {name} in {self}:"
271 for c in cla do msg += " {c.full_name}"
272 print msg
273 #exit(1)
274 end
275 return cla.first
276 end
277
278 # Try to get the primitive method named `name` on the type `recv`
279 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
280 do
281 var props = self.model.get_mproperties_by_name(name)
282 if props == null then return null
283 var res: nullable MMethod = null
284 for mprop in props do
285 assert mprop isa MMethod
286 var intro = mprop.intro_mclassdef
287 for mclassdef in recv.mclassdefs do
288 if not self.in_importation.greaters.has(mclassdef.mmodule) then continue
289 if not mclassdef.in_hierarchy.greaters.has(intro) then continue
290 if res == null then
291 res = mprop
292 else if res != mprop then
293 print("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
294 abort
295 end
296 end
297 end
298 return res
299 end
300 end
301
302 private class MClassDefSorter
303 super Comparator
304 redef type COMPARED: MClassDef
305 var mmodule: MModule
306 redef fun compare(a, b)
307 do
308 var ca = a.mclass
309 var cb = b.mclass
310 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
311 return mmodule.model.mclassdef_hierarchy.compare(a, b)
312 end
313 end
314
315 private class MPropDefSorter
316 super Comparator
317 redef type COMPARED: MPropDef
318 var mmodule: MModule
319 redef fun compare(pa, pb)
320 do
321 var a = pa.mclassdef
322 var b = pb.mclassdef
323 var ca = a.mclass
324 var cb = b.mclass
325 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
326 return mmodule.model.mclassdef_hierarchy.compare(a, b)
327 end
328 end
329
330 # A named class
331 #
332 # `MClass` are global to the model; it means that a `MClass` is not bound to a
333 # specific `MModule`.
334 #
335 # This characteristic helps the reasoning about classes in a program since a
336 # single `MClass` object always denote the same class.
337 #
338 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
339 # These do not really have properties nor belong to a hierarchy since the property and the
340 # hierarchy of a class depends of the refinement in the modules.
341 #
342 # Most services on classes require the precision of a module, and no one can asks what are
343 # the super-classes of a class nor what are properties of a class without precising what is
344 # the module considered.
345 #
346 # For instance, during the typing of a source-file, the module considered is the module of the file.
347 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
348 # *is the method `foo` exists in the class `Bar` in the current module?*
349 #
350 # During some global analysis, the module considered may be the main module of the program.
351 class MClass
352 super MEntity
353
354 # The module that introduce the class
355 # While classes are not bound to a specific module,
356 # the introducing module is used for naming an visibility
357 var intro_mmodule: MModule
358
359 # The short name of the class
360 # In Nit, the name of a class cannot evolve in refinements
361 redef var name: String
362
363 # The canonical name of the class
364 #
365 # It is the name of the class prefixed by the full_name of the `intro_mmodule`
366 # Example: `"owner::module::MyClass"`
367 redef var full_name is lazy do
368 return "{self.intro_mmodule.namespace_for(visibility)}::{name}"
369 end
370
371 redef var c_name is lazy do
372 return "{intro_mmodule.c_namespace_for(visibility)}__{name.to_cmangle}"
373 end
374
375 # The number of generic formal parameters
376 # 0 if the class is not generic
377 var arity: Int is noinit
378
379 # Each generic formal parameters in order.
380 # is empty if the class is not generic
381 var mparameters = new Array[MParameterType]
382
383 # A string version of the signature a generic class.
384 #
385 # eg. `Map[K: nullable Object, V: nullable Object]`
386 #
387 # If the class in non generic the name is just given.
388 #
389 # eg. `Object`
390 fun signature_to_s: String
391 do
392 if arity == 0 then return name
393 var res = new FlatBuffer
394 res.append name
395 res.append "["
396 for i in [0..arity[ do
397 if i > 0 then res.append ", "
398 res.append mparameters[i].name
399 res.append ": "
400 res.append intro.bound_mtype.arguments[i].to_s
401 end
402 res.append "]"
403 return res.to_s
404 end
405
406 # Initialize `mparameters` from their names.
407 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
408 autoinit
409 do
410 if parameter_names == null then
411 self.arity = 0
412 else
413 self.arity = parameter_names.length
414 end
415
416 # Create the formal parameter types
417 if arity > 0 then
418 assert parameter_names != null
419 var mparametertypes = new Array[MParameterType]
420 for i in [0..arity[ do
421 var mparametertype = new MParameterType(self, i, parameter_names[i])
422 mparametertypes.add(mparametertype)
423 end
424 self.mparameters = mparametertypes
425 var mclass_type = new MGenericType(self, mparametertypes)
426 self.mclass_type = mclass_type
427 self.get_mtype_cache[mparametertypes] = mclass_type
428 else
429 self.mclass_type = new MClassType(self)
430 end
431 end
432
433 # The kind of the class (interface, abstract class, etc.)
434 # In Nit, the kind of a class cannot evolve in refinements
435 var kind: MClassKind
436
437 # The visibility of the class
438 # In Nit, the visibility of a class cannot evolve in refinements
439 var visibility: MVisibility
440
441 init
442 do
443 intro_mmodule.intro_mclasses.add(self)
444 var model = intro_mmodule.model
445 model.mclasses_by_name.add_one(name, self)
446 model.mclasses.add(self)
447 end
448
449 redef fun model do return intro_mmodule.model
450
451 # All class definitions (introduction and refinements)
452 var mclassdefs = new Array[MClassDef]
453
454 # Alias for `name`
455 redef fun to_s do return self.name
456
457 # The definition that introduces the class.
458 #
459 # Warning: such a definition may not exist in the early life of the object.
460 # In this case, the method will abort.
461 #
462 # Use `try_intro` instead
463 var intro: MClassDef is noinit
464
465 # The definition that introduces the class or null if not yet known.
466 #
467 # See `intro`
468 fun try_intro: nullable MClassDef do
469 if isset _intro then return _intro else return null
470 end
471
472 # Return the class `self` in the class hierarchy of the module `mmodule`.
473 #
474 # SEE: `MModule::flatten_mclass_hierarchy`
475 # REQUIRE: `mmodule.has_mclass(self)`
476 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
477 do
478 return mmodule.flatten_mclass_hierarchy[self]
479 end
480
481 # The principal static type of the class.
482 #
483 # For non-generic class, mclass_type is the only `MClassType` based
484 # on self.
485 #
486 # For a generic class, the arguments are the formal parameters.
487 # i.e.: for the class Array[E:Object], the `mclass_type` is Array[E].
488 # If you want Array[Object] the see `MClassDef::bound_mtype`
489 #
490 # For generic classes, the mclass_type is also the way to get a formal
491 # generic parameter type.
492 #
493 # To get other types based on a generic class, see `get_mtype`.
494 #
495 # ENSURE: `mclass_type.mclass == self`
496 var mclass_type: MClassType is noinit
497
498 # Return a generic type based on the class
499 # Is the class is not generic, then the result is `mclass_type`
500 #
501 # REQUIRE: `mtype_arguments.length == self.arity`
502 fun get_mtype(mtype_arguments: Array[MType]): MClassType
503 do
504 assert mtype_arguments.length == self.arity
505 if self.arity == 0 then return self.mclass_type
506 var res = get_mtype_cache.get_or_null(mtype_arguments)
507 if res != null then return res
508 res = new MGenericType(self, mtype_arguments)
509 self.get_mtype_cache[mtype_arguments.to_a] = res
510 return res
511 end
512
513 private var get_mtype_cache = new HashMap[Array[MType], MGenericType]
514
515 # Is there a `new` factory to allow the pseudo instantiation?
516 var has_new_factory = false is writable
517 end
518
519
520 # A definition (an introduction or a refinement) of a class in a module
521 #
522 # A `MClassDef` is associated with an explicit (or almost) definition of a
523 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
524 # a specific class and a specific module, and contains declarations like super-classes
525 # or properties.
526 #
527 # It is the class definitions that are the backbone of most things in the model:
528 # ClassDefs are defined with regard with other classdefs.
529 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
530 #
531 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
532 class MClassDef
533 super MEntity
534
535 # The module where the definition is
536 var mmodule: MModule
537
538 # The associated `MClass`
539 var mclass: MClass is noinit
540
541 # The bounded type associated to the mclassdef
542 #
543 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
544 # are the same type.
545 #
546 # Example:
547 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
548 # If you want Array[E], then see `mclass.mclass_type`
549 #
550 # ENSURE: `bound_mtype.mclass == self.mclass`
551 var bound_mtype: MClassType
552
553 # The origin of the definition
554 var location: Location
555
556 # Internal name combining the module and the class
557 # Example: "mymodule#MyClass"
558 redef var to_s: String is noinit
559
560 init
561 do
562 self.mclass = bound_mtype.mclass
563 mmodule.mclassdefs.add(self)
564 mclass.mclassdefs.add(self)
565 if mclass.intro_mmodule == mmodule then
566 assert not isset mclass._intro
567 mclass.intro = self
568 end
569 self.to_s = "{mmodule}#{mclass}"
570 end
571
572 # Actually the name of the `mclass`
573 redef fun name do return mclass.name
574
575 # The module and class name separated by a '#'.
576 #
577 # The short-name of the class is used for introduction.
578 # Example: "my_module#MyClass"
579 #
580 # The full-name of the class is used for refinement.
581 # Example: "my_module#intro_module::MyClass"
582 redef var full_name is lazy do
583 if is_intro then
584 # public gives 'p#A'
585 # private gives 'p::m#A'
586 return "{mmodule.namespace_for(mclass.visibility)}#{mclass.name}"
587 else if mclass.intro_mmodule.mproject != mmodule.mproject then
588 # public gives 'q::n#p::A'
589 # private gives 'q::n#p::m::A'
590 return "{mmodule.full_name}#{mclass.full_name}"
591 else if mclass.visibility > private_visibility then
592 # public gives 'p::n#A'
593 return "{mmodule.full_name}#{mclass.name}"
594 else
595 # private gives 'p::n#::m::A' (redundant p is omitted)
596 return "{mmodule.full_name}#::{mclass.intro_mmodule.name}::{mclass.name}"
597 end
598 end
599
600 redef var c_name is lazy do
601 if is_intro then
602 return "{mmodule.c_namespace_for(mclass.visibility)}___{mclass.c_name}"
603 else if mclass.intro_mmodule.mproject == mmodule.mproject and mclass.visibility > private_visibility then
604 return "{mmodule.c_name}___{mclass.name.to_cmangle}"
605 else
606 return "{mmodule.c_name}___{mclass.c_name}"
607 end
608 end
609
610 redef fun model do return mmodule.model
611
612 # All declared super-types
613 # FIXME: quite ugly but not better idea yet
614 var supertypes = new Array[MClassType]
615
616 # Register some super-types for the class (ie "super SomeType")
617 #
618 # The hierarchy must not already be set
619 # REQUIRE: `self.in_hierarchy == null`
620 fun set_supertypes(supertypes: Array[MClassType])
621 do
622 assert unique_invocation: self.in_hierarchy == null
623 var mmodule = self.mmodule
624 var model = mmodule.model
625 var mtype = self.bound_mtype
626
627 for supertype in supertypes do
628 self.supertypes.add(supertype)
629
630 # Register in full_type_specialization_hierarchy
631 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
632 # Register in intro_type_specialization_hierarchy
633 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
634 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
635 end
636 end
637
638 end
639
640 # Collect the super-types (set by set_supertypes) to build the hierarchy
641 #
642 # This function can only invoked once by class
643 # REQUIRE: `self.in_hierarchy == null`
644 # ENSURE: `self.in_hierarchy != null`
645 fun add_in_hierarchy
646 do
647 assert unique_invocation: self.in_hierarchy == null
648 var model = mmodule.model
649 var res = model.mclassdef_hierarchy.add_node(self)
650 self.in_hierarchy = res
651 var mtype = self.bound_mtype
652
653 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
654 # The simpliest way is to attach it to collect_mclassdefs
655 for mclassdef in mtype.collect_mclassdefs(mmodule) do
656 res.poset.add_edge(self, mclassdef)
657 end
658 end
659
660 # The view of the class definition in `mclassdef_hierarchy`
661 var in_hierarchy: nullable POSetElement[MClassDef] = null
662
663 # Is the definition the one that introduced `mclass`?
664 fun is_intro: Bool do return isset mclass._intro and mclass.intro == self
665
666 # All properties introduced by the classdef
667 var intro_mproperties = new Array[MProperty]
668
669 # All property definitions in the class (introductions and redefinitions)
670 var mpropdefs = new Array[MPropDef]
671 end
672
673 # A global static type
674 #
675 # MType are global to the model; it means that a `MType` is not bound to a
676 # specific `MModule`.
677 # This characteristic helps the reasoning about static types in a program
678 # since a single `MType` object always denote the same type.
679 #
680 # However, because a `MType` is global, it does not really have properties
681 # nor have subtypes to a hierarchy since the property and the class hierarchy
682 # depends of a module.
683 # Moreover, virtual types an formal generic parameter types also depends on
684 # a receiver to have sense.
685 #
686 # Therefore, most method of the types require a module and an anchor.
687 # The module is used to know what are the classes and the specialization
688 # links.
689 # The anchor is used to know what is the bound of the virtual types and formal
690 # generic parameter types.
691 #
692 # MType are not directly usable to get properties. See the `anchor_to` method
693 # and the `MClassType` class.
694 #
695 # FIXME: the order of the parameters is not the best. We mus pick on from:
696 # * foo(mmodule, anchor, othertype)
697 # * foo(othertype, anchor, mmodule)
698 # * foo(anchor, mmodule, othertype)
699 # * foo(othertype, mmodule, anchor)
700 abstract class MType
701 super MEntity
702
703 redef fun name do return to_s
704
705 # Return true if `self` is an subtype of `sup`.
706 # The typing is done using the standard typing policy of Nit.
707 #
708 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
709 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
710 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
711 do
712 var sub = self
713 if sub == sup then return true
714
715 #print "1.is {sub} a {sup}? ===="
716
717 if anchor == null then
718 assert not sub.need_anchor
719 assert not sup.need_anchor
720 else
721 # First, resolve the formal types to the simplest equivalent forms in the receiver
722 assert sub.can_resolve_for(anchor, null, mmodule)
723 sub = sub.lookup_fixed(mmodule, anchor)
724 assert sup.can_resolve_for(anchor, null, mmodule)
725 sup = sup.lookup_fixed(mmodule, anchor)
726 end
727
728 # Does `sup` accept null or not?
729 # Discard the nullable marker if it exists
730 var sup_accept_null = false
731 if sup isa MNullableType then
732 sup_accept_null = true
733 sup = sup.mtype
734 else if sup isa MNotNullType then
735 sup = sup.mtype
736 else if sup isa MNullType then
737 sup_accept_null = true
738 end
739
740 # Can `sub` provide null or not?
741 # Thus we can match with `sup_accept_null`
742 # Also discard the nullable marker if it exists
743 var sub_reject_null = false
744 if sub isa MNullableType then
745 if not sup_accept_null then return false
746 sub = sub.mtype
747 else if sub isa MNotNullType then
748 sub_reject_null = true
749 sub = sub.mtype
750 else if sub isa MNullType then
751 return sup_accept_null
752 end
753 # Now the case of direct null and nullable is over.
754
755 # If `sub` is a formal type, then it is accepted if its bound is accepted
756 while sub isa MFormalType do
757 #print "3.is {sub} a {sup}?"
758
759 # A unfixed formal type can only accept itself
760 if sub == sup then return true
761
762 assert anchor != null
763 sub = sub.lookup_bound(mmodule, anchor)
764 if sub_reject_null then sub = sub.as_notnull
765
766 #print "3.is {sub} a {sup}?"
767
768 # Manage the second layer of null/nullable
769 if sub isa MNullableType then
770 if not sup_accept_null and not sub_reject_null then return false
771 sub = sub.mtype
772 else if sub isa MNotNullType then
773 sub_reject_null = true
774 sub = sub.mtype
775 else if sub isa MNullType then
776 return sup_accept_null
777 end
778 end
779 #print "4.is {sub} a {sup}? <- no more resolution"
780
781 assert sub isa MClassType else print "{sub} <? {sub}" # It is the only remaining type
782
783 # A unfixed formal type can only accept itself
784 if sup isa MFormalType then
785 return false
786 end
787
788 if sup isa MNullType then
789 # `sup` accepts only null
790 return false
791 end
792
793 assert sup isa MClassType # It is the only remaining type
794
795 # Now both are MClassType, we need to dig
796
797 if sub == sup then return true
798
799 if anchor == null then anchor = sub # UGLY: any anchor will work
800 var resolved_sub = sub.anchor_to(mmodule, anchor)
801 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
802 if res == false then return false
803 if not sup isa MGenericType then return true
804 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
805 assert sub2.mclass == sup.mclass
806 for i in [0..sup.mclass.arity[ do
807 var sub_arg = sub2.arguments[i]
808 var sup_arg = sup.arguments[i]
809 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
810 if res == false then return false
811 end
812 return true
813 end
814
815 # The base class type on which self is based
816 #
817 # This base type is used to get property (an internally to perform
818 # unsafe type comparison).
819 #
820 # Beware: some types (like null) are not based on a class thus this
821 # method will crash
822 #
823 # Basically, this function transform the virtual types and parameter
824 # types to their bounds.
825 #
826 # Example
827 #
828 # class A end
829 # class B super A end
830 # class X end
831 # class Y super X end
832 # class G[T: A]
833 # type U: X
834 # end
835 # class H
836 # super G[B]
837 # redef type U: Y
838 # end
839 #
840 # Map[T,U] anchor_to H #-> Map[B,Y]
841 #
842 # Explanation of the example:
843 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
844 # because "redef type U: Y". Therefore, Map[T, U] is bound to
845 # Map[B, Y]
846 #
847 # ENSURE: `not self.need_anchor implies result == self`
848 # ENSURE: `not result.need_anchor`
849 fun anchor_to(mmodule: MModule, anchor: MClassType): MType
850 do
851 if not need_anchor then return self
852 assert not anchor.need_anchor
853 # Just resolve to the anchor and clear all the virtual types
854 var res = self.resolve_for(anchor, null, mmodule, true)
855 assert not res.need_anchor
856 return res
857 end
858
859 # Does `self` contain a virtual type or a formal generic parameter type?
860 # In order to remove those types, you usually want to use `anchor_to`.
861 fun need_anchor: Bool do return true
862
863 # Return the supertype when adapted to a class.
864 #
865 # In Nit, for each super-class of a type, there is a equivalent super-type.
866 #
867 # Example:
868 #
869 # ~~~nitish
870 # class G[T, U] end
871 # class H[V] super G[V, Bool] end
872 #
873 # H[Int] supertype_to G #-> G[Int, Bool]
874 # ~~~
875 #
876 # REQUIRE: `super_mclass` is a super-class of `self`
877 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
878 # ENSURE: `result.mclass = super_mclass`
879 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
880 do
881 if super_mclass.arity == 0 then return super_mclass.mclass_type
882 if self isa MClassType and self.mclass == super_mclass then return self
883 var resolved_self
884 if self.need_anchor then
885 assert anchor != null
886 resolved_self = self.anchor_to(mmodule, anchor)
887 else
888 resolved_self = self
889 end
890 var supertypes = resolved_self.collect_mtypes(mmodule)
891 for supertype in supertypes do
892 if supertype.mclass == super_mclass then
893 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
894 return supertype.resolve_for(self, anchor, mmodule, false)
895 end
896 end
897 abort
898 end
899
900 # Replace formals generic types in self with resolved values in `mtype`
901 # If `cleanup_virtual` is true, then virtual types are also replaced
902 # with their bounds.
903 #
904 # This function returns self if `need_anchor` is false.
905 #
906 # ## Example 1
907 #
908 # ~~~
909 # class G[E] end
910 # class H[F] super G[F] end
911 # class X[Z] end
912 # ~~~
913 #
914 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
915 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
916 #
917 # Explanation of the example:
918 # * Array[E].need_anchor is true because there is a formal generic parameter type E
919 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
920 # * Since "H[F] super G[F]", E is in fact F for H
921 # * More specifically, in H[Int], E is Int
922 # * So, in H[Int], Array[E] is Array[Int]
923 #
924 # This function is mainly used to inherit a signature.
925 # Because, unlike `anchor_to`, we do not want a full resolution of
926 # a type but only an adapted version of it.
927 #
928 # ## Example 2
929 #
930 # ~~~
931 # class A[E]
932 # fun foo(e:E):E is abstract
933 # end
934 # class B super A[Int] end
935 # ~~~
936 #
937 # The signature on foo is (e: E): E
938 # If we resolve the signature for B, we get (e:Int):Int
939 #
940 # ## Example 3
941 #
942 # ~~~nitish
943 # class A[E]
944 # fun foo(e:E):E is abstract
945 # end
946 # class C[F]
947 # var a: A[Array[F]]
948 # fun bar do a.foo(x) # <- x is here
949 # end
950 # ~~~
951 #
952 # The first question is: is foo available on `a`?
953 #
954 # The static type of a is `A[Array[F]]`, that is an open type.
955 # in order to find a method `foo`, whe must look at a resolved type.
956 #
957 # A[Array[F]].anchor_to(C[nullable Object]) #-> A[Array[nullable Object]]
958 #
959 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
960 #
961 # The next question is: what is the accepted types for `x`?
962 #
963 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
964 #
965 # E.resolve_for(A[Array[F]],C[nullable Object]) #-> Array[F]
966 #
967 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
968 #
969 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
970 # two function instead of one seems also to be a bad idea.
971 #
972 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
973 # ENSURE: `not self.need_anchor implies result == self`
974 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
975
976 # Resolve formal type to its verbatim bound.
977 # If the type is not formal, just return self
978 #
979 # The result is returned exactly as declared in the "type" property (verbatim).
980 # So it could be another formal type.
981 #
982 # In case of conflict, the method aborts.
983 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self
984
985 # Resolve the formal type to its simplest equivalent form.
986 #
987 # Formal types are either free or fixed.
988 # When it is fixed, it means that it is equivalent with a simpler type.
989 # When a formal type is free, it means that it is only equivalent with itself.
990 # This method return the most simple equivalent type of `self`.
991 #
992 # This method is mainly used for subtype test in order to sanely compare fixed.
993 #
994 # By default, return self.
995 # See the redefinitions for specific behavior in each kind of type.
996 fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self
997
998 # Can the type be resolved?
999 #
1000 # In order to resolve open types, the formal types must make sence.
1001 #
1002 # ## Example
1003 #
1004 # class A[E]
1005 # end
1006 # class B[F]
1007 # end
1008 #
1009 # ~~~nitish
1010 # E.can_resolve_for(A[Int]) #-> true, E make sense in A
1011 #
1012 # E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
1013 #
1014 # B[E].can_resolve_for(A[F], B[Object]) #-> true,
1015 # # B[E] is a red hearing only the E is important,
1016 # # E make sense in A
1017 # ~~~
1018 #
1019 # REQUIRE: `anchor != null implies not anchor.need_anchor`
1020 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
1021 # ENSURE: `not self.need_anchor implies result == true`
1022 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
1023
1024 # Return the nullable version of the type
1025 # If the type is already nullable then self is returned
1026 fun as_nullable: MType
1027 do
1028 var res = self.as_nullable_cache
1029 if res != null then return res
1030 res = new MNullableType(self)
1031 self.as_nullable_cache = res
1032 return res
1033 end
1034
1035 # Remove the base type of a decorated (proxy) type.
1036 # Is the type is not decorated, then self is returned.
1037 #
1038 # Most of the time it is used to return the not nullable version of a nullable type.
1039 # In this case, this just remove the `nullable` notation, but the result can still contains null.
1040 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
1041 # If you really want to exclude the `null` value, then use `as_notnull`
1042 fun undecorate: MType
1043 do
1044 return self
1045 end
1046
1047 # Returns the not null version of the type.
1048 # That is `self` minus the `null` value.
1049 #
1050 # For most types, this return `self`.
1051 # For formal types, this returns a special `MNotNullType`
1052 fun as_notnull: MType do return self
1053
1054 private var as_nullable_cache: nullable MType = null
1055
1056
1057 # The depth of the type seen as a tree.
1058 #
1059 # * A -> 1
1060 # * G[A] -> 2
1061 # * H[A, B] -> 2
1062 # * H[G[A], B] -> 3
1063 #
1064 # Formal types have a depth of 1.
1065 fun depth: Int
1066 do
1067 return 1
1068 end
1069
1070 # The length of the type seen as a tree.
1071 #
1072 # * A -> 1
1073 # * G[A] -> 2
1074 # * H[A, B] -> 3
1075 # * H[G[A], B] -> 4
1076 #
1077 # Formal types have a length of 1.
1078 fun length: Int
1079 do
1080 return 1
1081 end
1082
1083 # Compute all the classdefs inherited/imported.
1084 # The returned set contains:
1085 # * the class definitions from `mmodule` and its imported modules
1086 # * the class definitions of this type and its super-types
1087 #
1088 # This function is used mainly internally.
1089 #
1090 # REQUIRE: `not self.need_anchor`
1091 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
1092
1093 # Compute all the super-classes.
1094 # This function is used mainly internally.
1095 #
1096 # REQUIRE: `not self.need_anchor`
1097 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
1098
1099 # Compute all the declared super-types.
1100 # Super-types are returned as declared in the classdefs (verbatim).
1101 # This function is used mainly internally.
1102 #
1103 # REQUIRE: `not self.need_anchor`
1104 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
1105
1106 # Is the property in self for a given module
1107 # This method does not filter visibility or whatever
1108 #
1109 # REQUIRE: `not self.need_anchor`
1110 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
1111 do
1112 assert not self.need_anchor
1113 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
1114 end
1115 end
1116
1117 # A type based on a class.
1118 #
1119 # `MClassType` have properties (see `has_mproperty`).
1120 class MClassType
1121 super MType
1122
1123 # The associated class
1124 var mclass: MClass
1125
1126 redef fun model do return self.mclass.intro_mmodule.model
1127
1128 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1129
1130 # The formal arguments of the type
1131 # ENSURE: `result.length == self.mclass.arity`
1132 var arguments = new Array[MType]
1133
1134 redef fun to_s do return mclass.to_s
1135
1136 redef fun full_name do return mclass.full_name
1137
1138 redef fun c_name do return mclass.c_name
1139
1140 redef fun need_anchor do return false
1141
1142 redef fun anchor_to(mmodule: MModule, anchor: MClassType): MClassType
1143 do
1144 return super.as(MClassType)
1145 end
1146
1147 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1148
1149 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1150
1151 redef fun collect_mclassdefs(mmodule)
1152 do
1153 assert not self.need_anchor
1154 var cache = self.collect_mclassdefs_cache
1155 if not cache.has_key(mmodule) then
1156 self.collect_things(mmodule)
1157 end
1158 return cache[mmodule]
1159 end
1160
1161 redef fun collect_mclasses(mmodule)
1162 do
1163 if collect_mclasses_last_module == mmodule then return collect_mclasses_last_module_cache
1164 assert not self.need_anchor
1165 var cache = self.collect_mclasses_cache
1166 if not cache.has_key(mmodule) then
1167 self.collect_things(mmodule)
1168 end
1169 var res = cache[mmodule]
1170 collect_mclasses_last_module = mmodule
1171 collect_mclasses_last_module_cache = res
1172 return res
1173 end
1174
1175 private var collect_mclasses_last_module: nullable MModule = null
1176 private var collect_mclasses_last_module_cache: Set[MClass] is noinit
1177
1178 redef fun collect_mtypes(mmodule)
1179 do
1180 assert not self.need_anchor
1181 var cache = self.collect_mtypes_cache
1182 if not cache.has_key(mmodule) then
1183 self.collect_things(mmodule)
1184 end
1185 return cache[mmodule]
1186 end
1187
1188 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1189 private fun collect_things(mmodule: MModule)
1190 do
1191 var res = new HashSet[MClassDef]
1192 var seen = new HashSet[MClass]
1193 var types = new HashSet[MClassType]
1194 seen.add(self.mclass)
1195 var todo = [self.mclass]
1196 while not todo.is_empty do
1197 var mclass = todo.pop
1198 #print "process {mclass}"
1199 for mclassdef in mclass.mclassdefs do
1200 if not mmodule.in_importation <= mclassdef.mmodule then continue
1201 #print " process {mclassdef}"
1202 res.add(mclassdef)
1203 for supertype in mclassdef.supertypes do
1204 types.add(supertype)
1205 var superclass = supertype.mclass
1206 if seen.has(superclass) then continue
1207 #print " add {superclass}"
1208 seen.add(superclass)
1209 todo.add(superclass)
1210 end
1211 end
1212 end
1213 collect_mclassdefs_cache[mmodule] = res
1214 collect_mclasses_cache[mmodule] = seen
1215 collect_mtypes_cache[mmodule] = types
1216 end
1217
1218 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1219 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1220 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1221
1222 end
1223
1224 # A type based on a generic class.
1225 # A generic type a just a class with additional formal generic arguments.
1226 class MGenericType
1227 super MClassType
1228
1229 redef var arguments
1230
1231 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1232
1233 init
1234 do
1235 assert self.mclass.arity == arguments.length
1236
1237 self.need_anchor = false
1238 for t in arguments do
1239 if t.need_anchor then
1240 self.need_anchor = true
1241 break
1242 end
1243 end
1244
1245 self.to_s = "{mclass}[{arguments.join(", ")}]"
1246 end
1247
1248 # The short-name of the class, then the full-name of each type arguments within brackets.
1249 # Example: `"Map[String, List[Int]]"`
1250 redef var to_s: String is noinit
1251
1252 # The full-name of the class, then the full-name of each type arguments within brackets.
1253 # Example: `"standard::Map[standard::String, standard::List[standard::Int]]"`
1254 redef var full_name is lazy do
1255 var args = new Array[String]
1256 for t in arguments do
1257 args.add t.full_name
1258 end
1259 return "{mclass.full_name}[{args.join(", ")}]"
1260 end
1261
1262 redef var c_name is lazy do
1263 var res = mclass.c_name
1264 # Note: because the arity is known, a prefix notation is enough
1265 for t in arguments do
1266 res += "__"
1267 res += t.c_name
1268 end
1269 return res.to_s
1270 end
1271
1272 redef var need_anchor: Bool is noinit
1273
1274 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1275 do
1276 if not need_anchor then return self
1277 assert can_resolve_for(mtype, anchor, mmodule)
1278 var types = new Array[MType]
1279 for t in arguments do
1280 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1281 end
1282 return mclass.get_mtype(types)
1283 end
1284
1285 redef fun can_resolve_for(mtype, anchor, mmodule)
1286 do
1287 if not need_anchor then return true
1288 for t in arguments do
1289 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1290 end
1291 return true
1292 end
1293
1294
1295 redef fun depth
1296 do
1297 var dmax = 0
1298 for a in self.arguments do
1299 var d = a.depth
1300 if d > dmax then dmax = d
1301 end
1302 return dmax + 1
1303 end
1304
1305 redef fun length
1306 do
1307 var res = 1
1308 for a in self.arguments do
1309 res += a.length
1310 end
1311 return res
1312 end
1313 end
1314
1315 # A formal type (either virtual of parametric).
1316 #
1317 # The main issue with formal types is that they offer very little information on their own
1318 # and need a context (anchor and mmodule) to be useful.
1319 abstract class MFormalType
1320 super MType
1321
1322 redef var as_notnull = new MNotNullType(self) is lazy
1323 end
1324
1325 # A virtual formal type.
1326 class MVirtualType
1327 super MFormalType
1328
1329 # The property associated with the type.
1330 # Its the definitions of this property that determine the bound or the virtual type.
1331 var mproperty: MVirtualTypeProp
1332
1333 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1334
1335 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1336 do
1337 return lookup_single_definition(mmodule, resolved_receiver).bound.as(not null)
1338 end
1339
1340 private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef
1341 do
1342 assert not resolved_receiver.need_anchor
1343 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1344 if props.is_empty then
1345 abort
1346 else if props.length == 1 then
1347 return props.first
1348 end
1349 var types = new ArraySet[MType]
1350 var res = props.first
1351 for p in props do
1352 types.add(p.bound.as(not null))
1353 if not res.is_fixed then res = p
1354 end
1355 if types.length == 1 then
1356 return res
1357 end
1358 abort
1359 end
1360
1361 # A VT is fixed when:
1362 # * the VT is (re-)defined with the annotation `is fixed`
1363 # * the VT is (indirectly) bound to an enum class (see `enum_kind`) since there is no subtype possible
1364 # * the receiver is an enum class since there is no subtype possible
1365 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1366 do
1367 assert not resolved_receiver.need_anchor
1368 resolved_receiver = resolved_receiver.undecorate
1369 assert resolved_receiver isa MClassType # It is the only remaining type
1370
1371 var prop = lookup_single_definition(mmodule, resolved_receiver)
1372 var res = prop.bound.as(not null)
1373
1374 # Recursively lookup the fixed result
1375 res = res.lookup_fixed(mmodule, resolved_receiver)
1376
1377 # 1. For a fixed VT, return the resolved bound
1378 if prop.is_fixed then return res
1379
1380 # 2. For a enum boud, return the bound
1381 if res isa MClassType and res.mclass.kind == enum_kind then return res
1382
1383 # 3. for a enum receiver return the bound
1384 if resolved_receiver.mclass.kind == enum_kind then return res
1385
1386 return self
1387 end
1388
1389 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1390 do
1391 if not cleanup_virtual then return self
1392 assert can_resolve_for(mtype, anchor, mmodule)
1393 # self is a virtual type declared (or inherited) in mtype
1394 # The point of the function it to get the bound of the virtual type that make sense for mtype
1395 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1396 #print "{class_name}: {self}/{mtype}/{anchor}?"
1397 var resolved_receiver
1398 if mtype.need_anchor then
1399 assert anchor != null
1400 resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true)
1401 else
1402 resolved_receiver = mtype
1403 end
1404 # Now, we can get the bound
1405 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1406 # The bound is exactly as declared in the "type" property, so we must resolve it again
1407 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1408
1409 return res
1410 end
1411
1412 redef fun can_resolve_for(mtype, anchor, mmodule)
1413 do
1414 if mtype.need_anchor then
1415 assert anchor != null
1416 mtype = mtype.anchor_to(mmodule, anchor)
1417 end
1418 return mtype.has_mproperty(mmodule, mproperty)
1419 end
1420
1421 redef fun to_s do return self.mproperty.to_s
1422
1423 redef fun full_name do return self.mproperty.full_name
1424
1425 redef fun c_name do return self.mproperty.c_name
1426 end
1427
1428 # The type associated to a formal parameter generic type of a class
1429 #
1430 # Each parameter type is associated to a specific class.
1431 # It means that all refinements of a same class "share" the parameter type,
1432 # but that a generic subclass has its own parameter types.
1433 #
1434 # However, in the sense of the meta-model, a parameter type of a class is
1435 # a valid type in a subclass. The "in the sense of the meta-model" is
1436 # important because, in the Nit language, the programmer cannot refers
1437 # directly to the parameter types of the super-classes.
1438 #
1439 # Example:
1440 #
1441 # class A[E]
1442 # fun e: E is abstract
1443 # end
1444 # class B[F]
1445 # super A[Array[F]]
1446 # end
1447 #
1448 # In the class definition B[F], `F` is a valid type but `E` is not.
1449 # However, `self.e` is a valid method call, and the signature of `e` is
1450 # declared `e: E`.
1451 #
1452 # Note that parameter types are shared among class refinements.
1453 # Therefore parameter only have an internal name (see `to_s` for details).
1454 class MParameterType
1455 super MFormalType
1456
1457 # The generic class where the parameter belong
1458 var mclass: MClass
1459
1460 redef fun model do return self.mclass.intro_mmodule.model
1461
1462 # The position of the parameter (0 for the first parameter)
1463 # FIXME: is `position` a better name?
1464 var rank: Int
1465
1466 redef var name
1467
1468 redef fun to_s do return name
1469
1470 redef var full_name is lazy do return "{mclass.full_name}::{name}"
1471
1472 redef var c_name is lazy do return mclass.c_name + "__" + "#{name}".to_cmangle
1473
1474 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1475 do
1476 assert not resolved_receiver.need_anchor
1477 resolved_receiver = resolved_receiver.undecorate
1478 assert resolved_receiver isa MClassType # It is the only remaining type
1479 var goalclass = self.mclass
1480 if resolved_receiver.mclass == goalclass then
1481 return resolved_receiver.arguments[self.rank]
1482 end
1483 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1484 for t in supertypes do
1485 if t.mclass == goalclass then
1486 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1487 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1488 var res = t.arguments[self.rank]
1489 return res
1490 end
1491 end
1492 abort
1493 end
1494
1495 # A PT is fixed when:
1496 # * Its bound is a enum class (see `enum_kind`).
1497 # The PT is just useless, but it is still a case.
1498 # * More usually, the `resolved_receiver` is a subclass of `self.mclass`,
1499 # so it is necessarily fixed in a `super` clause, either with a normal type
1500 # or with another PT.
1501 # See `resolve_for` for examples about related issues.
1502 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1503 do
1504 assert not resolved_receiver.need_anchor
1505 resolved_receiver = resolved_receiver.undecorate
1506 assert resolved_receiver isa MClassType # It is the only remaining type
1507 var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false)
1508 return res
1509 end
1510
1511 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1512 do
1513 assert can_resolve_for(mtype, anchor, mmodule)
1514 #print "{class_name}: {self}/{mtype}/{anchor}?"
1515
1516 if mtype isa MGenericType and mtype.mclass == self.mclass then
1517 var res = mtype.arguments[self.rank]
1518 if anchor != null and res.need_anchor then
1519 # Maybe the result can be resolved more if are bound to a final class
1520 var r2 = res.anchor_to(mmodule, anchor)
1521 if r2 isa MClassType and r2.mclass.kind == enum_kind then return r2
1522 end
1523 return res
1524 end
1525
1526 # self is a parameter type of mtype (or of a super-class of mtype)
1527 # The point of the function it to get the bound of the virtual type that make sense for mtype
1528 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1529 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1530 var resolved_receiver
1531 if mtype.need_anchor then
1532 assert anchor != null
1533 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1534 else
1535 resolved_receiver = mtype
1536 end
1537 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1538 if resolved_receiver isa MParameterType then
1539 assert resolved_receiver.mclass == anchor.mclass
1540 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1541 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1542 end
1543 assert resolved_receiver isa MClassType # It is the only remaining type
1544
1545 # Eh! The parameter is in the current class.
1546 # So we return the corresponding argument, no mater what!
1547 if resolved_receiver.mclass == self.mclass then
1548 var res = resolved_receiver.arguments[self.rank]
1549 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1550 return res
1551 end
1552
1553 if resolved_receiver.need_anchor then
1554 assert anchor != null
1555 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1556 end
1557 # Now, we can get the bound
1558 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1559 # The bound is exactly as declared in the "type" property, so we must resolve it again
1560 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1561
1562 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1563
1564 return res
1565 end
1566
1567 redef fun can_resolve_for(mtype, anchor, mmodule)
1568 do
1569 if mtype.need_anchor then
1570 assert anchor != null
1571 mtype = mtype.anchor_to(mmodule, anchor)
1572 end
1573 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1574 end
1575 end
1576
1577 # A type that decorates another type.
1578 #
1579 # The point of this class is to provide a common implementation of sevices that just forward to the original type.
1580 # Specific decorator are expected to redefine (or to extend) the default implementation as this suit them.
1581 abstract class MProxyType
1582 super MType
1583 # The base type
1584 var mtype: MType
1585
1586 redef fun model do return self.mtype.model
1587 redef fun need_anchor do return mtype.need_anchor
1588 redef fun as_nullable do return mtype.as_nullable
1589 redef fun as_notnull do return mtype.as_notnull
1590 redef fun undecorate do return mtype.undecorate
1591 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1592 do
1593 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1594 return res
1595 end
1596
1597 redef fun can_resolve_for(mtype, anchor, mmodule)
1598 do
1599 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1600 end
1601
1602 redef fun lookup_fixed(mmodule, resolved_receiver)
1603 do
1604 var t = mtype.lookup_fixed(mmodule, resolved_receiver)
1605 return t
1606 end
1607
1608 redef fun depth do return self.mtype.depth
1609
1610 redef fun length do return self.mtype.length
1611
1612 redef fun collect_mclassdefs(mmodule)
1613 do
1614 assert not self.need_anchor
1615 return self.mtype.collect_mclassdefs(mmodule)
1616 end
1617
1618 redef fun collect_mclasses(mmodule)
1619 do
1620 assert not self.need_anchor
1621 return self.mtype.collect_mclasses(mmodule)
1622 end
1623
1624 redef fun collect_mtypes(mmodule)
1625 do
1626 assert not self.need_anchor
1627 return self.mtype.collect_mtypes(mmodule)
1628 end
1629 end
1630
1631 # A type prefixed with "nullable"
1632 class MNullableType
1633 super MProxyType
1634
1635 init
1636 do
1637 self.to_s = "nullable {mtype}"
1638 end
1639
1640 redef var to_s: String is noinit
1641
1642 redef var full_name is lazy do return "nullable {mtype.full_name}"
1643
1644 redef var c_name is lazy do return "nullable__{mtype.c_name}"
1645
1646 redef fun as_nullable do return self
1647 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1648 do
1649 var res = super
1650 return res.as_nullable
1651 end
1652
1653 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable`
1654 redef fun lookup_fixed(mmodule, resolved_receiver)
1655 do
1656 var t = super
1657 if t == mtype then return self
1658 return t.as_nullable
1659 end
1660 end
1661
1662 # A non-null version of a formal type.
1663 #
1664 # When a formal type in bounded to a nullable type, this is the type of the not null version of it.
1665 class MNotNullType
1666 super MProxyType
1667
1668 redef fun to_s do return "not null {mtype}"
1669 redef var full_name is lazy do return "not null {mtype.full_name}"
1670 redef var c_name is lazy do return "notnull__{mtype.c_name}"
1671
1672 redef fun as_notnull do return self
1673
1674 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1675 do
1676 var res = super
1677 return res.as_notnull
1678 end
1679
1680 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_notnull`
1681 redef fun lookup_fixed(mmodule, resolved_receiver)
1682 do
1683 var t = super
1684 if t == mtype then return self
1685 return t.as_notnull
1686 end
1687 end
1688
1689 # The type of the only value null
1690 #
1691 # The is only one null type per model, see `MModel::null_type`.
1692 class MNullType
1693 super MType
1694 redef var model: Model
1695 redef fun to_s do return "null"
1696 redef fun full_name do return "null"
1697 redef fun c_name do return "null"
1698 redef fun as_nullable do return self
1699
1700 # Aborts on `null`
1701 redef fun as_notnull do abort # sorry...
1702 redef fun need_anchor do return false
1703 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1704 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1705
1706 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1707
1708 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1709
1710 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1711 end
1712
1713 # A signature of a method
1714 class MSignature
1715 super MType
1716
1717 # The each parameter (in order)
1718 var mparameters: Array[MParameter]
1719
1720 # The return type (null for a procedure)
1721 var return_mtype: nullable MType
1722
1723 redef fun depth
1724 do
1725 var dmax = 0
1726 var t = self.return_mtype
1727 if t != null then dmax = t.depth
1728 for p in mparameters do
1729 var d = p.mtype.depth
1730 if d > dmax then dmax = d
1731 end
1732 return dmax + 1
1733 end
1734
1735 redef fun length
1736 do
1737 var res = 1
1738 var t = self.return_mtype
1739 if t != null then res += t.length
1740 for p in mparameters do
1741 res += p.mtype.length
1742 end
1743 return res
1744 end
1745
1746 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1747 init
1748 do
1749 var vararg_rank = -1
1750 for i in [0..mparameters.length[ do
1751 var parameter = mparameters[i]
1752 if parameter.is_vararg then
1753 assert vararg_rank == -1
1754 vararg_rank = i
1755 end
1756 end
1757 self.vararg_rank = vararg_rank
1758 end
1759
1760 # The rank of the ellipsis (`...`) for vararg (starting from 0).
1761 # value is -1 if there is no vararg.
1762 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1763 var vararg_rank: Int is noinit
1764
1765 # The number of parameters
1766 fun arity: Int do return mparameters.length
1767
1768 # The number of non-default parameters
1769 #
1770 # The number of default parameters is then `arity-min_arity`.
1771 #
1772 # Note that there cannot be both varargs and default prameters, thus
1773 # if `vararg_rank != -1` then `min_arity` == `arity`
1774 fun min_arity: Int
1775 do
1776 if vararg_rank != -1 then return arity
1777 var res = 0
1778 for p in mparameters do
1779 if not p.is_default then res += 1
1780 end
1781 return res
1782 end
1783
1784 redef fun to_s
1785 do
1786 var b = new FlatBuffer
1787 if not mparameters.is_empty then
1788 b.append("(")
1789 for i in [0..mparameters.length[ do
1790 var mparameter = mparameters[i]
1791 if i > 0 then b.append(", ")
1792 b.append(mparameter.name)
1793 b.append(": ")
1794 b.append(mparameter.mtype.to_s)
1795 if mparameter.is_vararg then
1796 b.append("...")
1797 end
1798 end
1799 b.append(")")
1800 end
1801 var ret = self.return_mtype
1802 if ret != null then
1803 b.append(": ")
1804 b.append(ret.to_s)
1805 end
1806 return b.to_s
1807 end
1808
1809 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
1810 do
1811 var params = new Array[MParameter]
1812 for p in self.mparameters do
1813 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1814 end
1815 var ret = self.return_mtype
1816 if ret != null then
1817 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1818 end
1819 var res = new MSignature(params, ret)
1820 return res
1821 end
1822 end
1823
1824 # A parameter in a signature
1825 class MParameter
1826 super MEntity
1827
1828 # The name of the parameter
1829 redef var name: String
1830
1831 # The static type of the parameter
1832 var mtype: MType
1833
1834 # Is the parameter a vararg?
1835 var is_vararg: Bool
1836
1837 # Is the parameter a default one?
1838 var is_default: Bool
1839
1840 redef fun to_s
1841 do
1842 if is_vararg then
1843 return "{name}: {mtype}..."
1844 else
1845 return "{name}: {mtype}"
1846 end
1847 end
1848
1849 # Returns a new parameter with the `mtype` resolved.
1850 # See `MType::resolve_for` for details.
1851 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
1852 do
1853 if not self.mtype.need_anchor then return self
1854 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1855 var res = new MParameter(self.name, newtype, self.is_vararg, self.is_default)
1856 return res
1857 end
1858
1859 redef fun model do return mtype.model
1860 end
1861
1862 # A service (global property) that generalize method, attribute, etc.
1863 #
1864 # `MProperty` are global to the model; it means that a `MProperty` is not bound
1865 # to a specific `MModule` nor a specific `MClass`.
1866 #
1867 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
1868 # and the other in subclasses and in refinements.
1869 #
1870 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
1871 # of any dynamic type).
1872 # For instance, a call site "x.foo" is associated to a `MProperty`.
1873 abstract class MProperty
1874 super MEntity
1875
1876 # The associated MPropDef subclass.
1877 # The two specialization hierarchy are symmetric.
1878 type MPROPDEF: MPropDef
1879
1880 # The classdef that introduce the property
1881 # While a property is not bound to a specific module, or class,
1882 # the introducing mclassdef is used for naming and visibility
1883 var intro_mclassdef: MClassDef
1884
1885 # The (short) name of the property
1886 redef var name: String
1887
1888 # The canonical name of the property.
1889 #
1890 # It is the short-`name` prefixed by the short-name of the class and the full-name of the module.
1891 # Example: "my_project::my_module::MyClass::my_method"
1892 redef var full_name is lazy do
1893 return "{intro_mclassdef.mmodule.namespace_for(visibility)}::{intro_mclassdef.mclass.name}::{name}"
1894 end
1895
1896 redef var c_name is lazy do
1897 # FIXME use `namespace_for`
1898 return "{intro_mclassdef.mmodule.c_name}__{intro_mclassdef.mclass.name.to_cmangle}__{name.to_cmangle}"
1899 end
1900
1901 # The visibility of the property
1902 var visibility: MVisibility
1903
1904 # Is the property usable as an initializer?
1905 var is_autoinit = false is writable
1906
1907 init
1908 do
1909 intro_mclassdef.intro_mproperties.add(self)
1910 var model = intro_mclassdef.mmodule.model
1911 model.mproperties_by_name.add_one(name, self)
1912 model.mproperties.add(self)
1913 end
1914
1915 # All definitions of the property.
1916 # The first is the introduction,
1917 # The other are redefinitions (in refinements and in subclasses)
1918 var mpropdefs = new Array[MPROPDEF]
1919
1920 # The definition that introduces the property.
1921 #
1922 # Warning: such a definition may not exist in the early life of the object.
1923 # In this case, the method will abort.
1924 var intro: MPROPDEF is noinit
1925
1926 redef fun model do return intro.model
1927
1928 # Alias for `name`
1929 redef fun to_s do return name
1930
1931 # Return the most specific property definitions defined or inherited by a type.
1932 # The selection knows that refinement is stronger than specialization;
1933 # however, in case of conflict more than one property are returned.
1934 # If mtype does not know mproperty then an empty array is returned.
1935 #
1936 # If you want the really most specific property, then look at `lookup_first_definition`
1937 #
1938 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
1939 # ENSURE: `not mtype.has_mproperty(mmodule, self) == result.is_empty`
1940 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1941 do
1942 assert not mtype.need_anchor
1943 mtype = mtype.undecorate
1944
1945 var cache = self.lookup_definitions_cache[mmodule, mtype]
1946 if cache != null then return cache
1947
1948 #print "select prop {mproperty} for {mtype} in {self}"
1949 # First, select all candidates
1950 var candidates = new Array[MPROPDEF]
1951 for mpropdef in self.mpropdefs do
1952 # If the definition is not imported by the module, then skip
1953 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1954 # If the definition is not inherited by the type, then skip
1955 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1956 # Else, we keep it
1957 candidates.add(mpropdef)
1958 end
1959 # Fast track for only one candidate
1960 if candidates.length <= 1 then
1961 self.lookup_definitions_cache[mmodule, mtype] = candidates
1962 return candidates
1963 end
1964
1965 # Second, filter the most specific ones
1966 return select_most_specific(mmodule, candidates)
1967 end
1968
1969 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
1970
1971 # Return the most specific property definitions inherited by a type.
1972 # The selection knows that refinement is stronger than specialization;
1973 # however, in case of conflict more than one property are returned.
1974 # If mtype does not know mproperty then an empty array is returned.
1975 #
1976 # If you want the really most specific property, then look at `lookup_next_definition`
1977 #
1978 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
1979 # ENSURE: `not mtype.has_mproperty(mmodule, self) implies result.is_empty`
1980 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1981 do
1982 assert not mtype.need_anchor
1983 mtype = mtype.undecorate
1984
1985 # First, select all candidates
1986 var candidates = new Array[MPROPDEF]
1987 for mpropdef in self.mpropdefs do
1988 # If the definition is not imported by the module, then skip
1989 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1990 # If the definition is not inherited by the type, then skip
1991 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1992 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
1993 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
1994 # Else, we keep it
1995 candidates.add(mpropdef)
1996 end
1997 # Fast track for only one candidate
1998 if candidates.length <= 1 then return candidates
1999
2000 # Second, filter the most specific ones
2001 return select_most_specific(mmodule, candidates)
2002 end
2003
2004 # Return an array containing olny the most specific property definitions
2005 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
2006 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
2007 do
2008 var res = new Array[MPROPDEF]
2009 for pd1 in candidates do
2010 var cd1 = pd1.mclassdef
2011 var c1 = cd1.mclass
2012 var keep = true
2013 for pd2 in candidates do
2014 if pd2 == pd1 then continue # do not compare with self!
2015 var cd2 = pd2.mclassdef
2016 var c2 = cd2.mclass
2017 if c2.mclass_type == c1.mclass_type then
2018 if cd2.mmodule.in_importation < cd1.mmodule then
2019 # cd2 refines cd1; therefore we skip pd1
2020 keep = false
2021 break
2022 end
2023 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
2024 # cd2 < cd1; therefore we skip pd1
2025 keep = false
2026 break
2027 end
2028 end
2029 if keep then
2030 res.add(pd1)
2031 end
2032 end
2033 if res.is_empty then
2034 print "All lost! {candidates.join(", ")}"
2035 # FIXME: should be abort!
2036 end
2037 return res
2038 end
2039
2040 # Return the most specific definition in the linearization of `mtype`.
2041 #
2042 # If you want to know the next properties in the linearization,
2043 # look at `MPropDef::lookup_next_definition`.
2044 #
2045 # FIXME: the linearization is still unspecified
2046 #
2047 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2048 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2049 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
2050 do
2051 return lookup_all_definitions(mmodule, mtype).first
2052 end
2053
2054 # Return all definitions in a linearization order
2055 # Most specific first, most general last
2056 #
2057 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2058 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2059 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2060 do
2061 mtype = mtype.undecorate
2062
2063 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
2064 if cache != null then return cache
2065
2066 assert not mtype.need_anchor
2067 assert mtype.has_mproperty(mmodule, self)
2068
2069 #print "select prop {mproperty} for {mtype} in {self}"
2070 # First, select all candidates
2071 var candidates = new Array[MPROPDEF]
2072 for mpropdef in self.mpropdefs do
2073 # If the definition is not imported by the module, then skip
2074 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2075 # If the definition is not inherited by the type, then skip
2076 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2077 # Else, we keep it
2078 candidates.add(mpropdef)
2079 end
2080 # Fast track for only one candidate
2081 if candidates.length <= 1 then
2082 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2083 return candidates
2084 end
2085
2086 mmodule.linearize_mpropdefs(candidates)
2087 candidates = candidates.reversed
2088 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2089 return candidates
2090 end
2091
2092 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2093 end
2094
2095 # A global method
2096 class MMethod
2097 super MProperty
2098
2099 redef type MPROPDEF: MMethodDef
2100
2101 # Is the property defined at the top_level of the module?
2102 # Currently such a property are stored in `Object`
2103 var is_toplevel: Bool = false is writable
2104
2105 # Is the property a constructor?
2106 # Warning, this property can be inherited by subclasses with or without being a constructor
2107 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
2108 var is_init: Bool = false is writable
2109
2110 # The constructor is a (the) root init with empty signature but a set of initializers
2111 var is_root_init: Bool = false is writable
2112
2113 # Is the property a 'new' constructor?
2114 var is_new: Bool = false is writable
2115
2116 # Is the property a legal constructor for a given class?
2117 # As usual, visibility is not considered.
2118 # FIXME not implemented
2119 fun is_init_for(mclass: MClass): Bool
2120 do
2121 return self.is_init
2122 end
2123 end
2124
2125 # A global attribute
2126 class MAttribute
2127 super MProperty
2128
2129 redef type MPROPDEF: MAttributeDef
2130
2131 end
2132
2133 # A global virtual type
2134 class MVirtualTypeProp
2135 super MProperty
2136
2137 redef type MPROPDEF: MVirtualTypeDef
2138
2139 # The formal type associated to the virtual type property
2140 var mvirtualtype = new MVirtualType(self)
2141 end
2142
2143 # A definition of a property (local property)
2144 #
2145 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
2146 # specific class definition (which belong to a specific module)
2147 abstract class MPropDef
2148 super MEntity
2149
2150 # The associated `MProperty` subclass.
2151 # the two specialization hierarchy are symmetric
2152 type MPROPERTY: MProperty
2153
2154 # Self class
2155 type MPROPDEF: MPropDef
2156
2157 # The class definition where the property definition is
2158 var mclassdef: MClassDef
2159
2160 # The associated global property
2161 var mproperty: MPROPERTY
2162
2163 # The origin of the definition
2164 var location: Location
2165
2166 init
2167 do
2168 mclassdef.mpropdefs.add(self)
2169 mproperty.mpropdefs.add(self)
2170 if mproperty.intro_mclassdef == mclassdef then
2171 assert not isset mproperty._intro
2172 mproperty.intro = self
2173 end
2174 self.to_s = "{mclassdef}#{mproperty}"
2175 end
2176
2177 # Actually the name of the `mproperty`
2178 redef fun name do return mproperty.name
2179
2180 # The full-name of mpropdefs combine the information about the `classdef` and the `mproperty`.
2181 #
2182 # Therefore the combination of identifiers is awful,
2183 # the worst case being
2184 #
2185 # * a property "p::m::A::x"
2186 # * redefined in a refinement of a class "q::n::B"
2187 # * in a module "r::o"
2188 # * so "r::o#q::n::B#p::m::A::x"
2189 #
2190 # Fortunately, the full-name is simplified when entities are repeated.
2191 # For the previous case, the simplest form is "p#A#x".
2192 redef var full_name is lazy do
2193 var res = new FlatBuffer
2194
2195 # The first part is the mclassdef. Worst case is "r::o#q::n::B"
2196 res.append mclassdef.full_name
2197
2198 res.append "#"
2199
2200 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2201 # intro are unambiguous in a class
2202 res.append name
2203 else
2204 # Just try to simplify each part
2205 if mclassdef.mmodule.mproject != mproperty.intro_mclassdef.mmodule.mproject then
2206 # precise "p::m" only if "p" != "r"
2207 res.append mproperty.intro_mclassdef.mmodule.full_name
2208 res.append "::"
2209 else if mproperty.visibility <= private_visibility then
2210 # Same project ("p"=="q"), but private visibility,
2211 # does the module part ("::m") need to be displayed
2212 if mclassdef.mmodule.namespace_for(mclassdef.mclass.visibility) != mproperty.intro_mclassdef.mmodule.mproject then
2213 res.append "::"
2214 res.append mproperty.intro_mclassdef.mmodule.name
2215 res.append "::"
2216 end
2217 end
2218 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2219 # precise "B" only if not the same class than "A"
2220 res.append mproperty.intro_mclassdef.name
2221 res.append "::"
2222 end
2223 # Always use the property name "x"
2224 res.append mproperty.name
2225 end
2226 return res.to_s
2227 end
2228
2229 redef var c_name is lazy do
2230 var res = new FlatBuffer
2231 res.append mclassdef.c_name
2232 res.append "___"
2233 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2234 res.append name.to_cmangle
2235 else
2236 if mclassdef.mmodule != mproperty.intro_mclassdef.mmodule then
2237 res.append mproperty.intro_mclassdef.mmodule.c_name
2238 res.append "__"
2239 end
2240 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2241 res.append mproperty.intro_mclassdef.name.to_cmangle
2242 res.append "__"
2243 end
2244 res.append mproperty.name.to_cmangle
2245 end
2246 return res.to_s
2247 end
2248
2249 redef fun model do return mclassdef.model
2250
2251 # Internal name combining the module, the class and the property
2252 # Example: "mymodule#MyClass#mymethod"
2253 redef var to_s: String is noinit
2254
2255 # Is self the definition that introduce the property?
2256 fun is_intro: Bool do return mproperty.intro == self
2257
2258 # Return the next definition in linearization of `mtype`.
2259 #
2260 # This method is used to determine what method is called by a super.
2261 #
2262 # REQUIRE: `not mtype.need_anchor`
2263 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
2264 do
2265 assert not mtype.need_anchor
2266
2267 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
2268 var i = mpropdefs.iterator
2269 while i.is_ok and i.item != self do i.next
2270 assert has_property: i.is_ok
2271 i.next
2272 assert has_next_property: i.is_ok
2273 return i.item
2274 end
2275 end
2276
2277 # A local definition of a method
2278 class MMethodDef
2279 super MPropDef
2280
2281 redef type MPROPERTY: MMethod
2282 redef type MPROPDEF: MMethodDef
2283
2284 # The signature attached to the property definition
2285 var msignature: nullable MSignature = null is writable
2286
2287 # The signature attached to the `new` call on a root-init
2288 # This is a concatenation of the signatures of the initializers
2289 #
2290 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2291 var new_msignature: nullable MSignature = null is writable
2292
2293 # List of initialisers to call in root-inits
2294 #
2295 # They could be setters or attributes
2296 #
2297 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2298 var initializers = new Array[MProperty]
2299
2300 # Is the method definition abstract?
2301 var is_abstract: Bool = false is writable
2302
2303 # Is the method definition intern?
2304 var is_intern = false is writable
2305
2306 # Is the method definition extern?
2307 var is_extern = false is writable
2308
2309 # An optional constant value returned in functions.
2310 #
2311 # Only some specific primitife value are accepted by engines.
2312 # Is used when there is no better implementation available.
2313 #
2314 # Currently used only for the implementation of the `--define`
2315 # command-line option.
2316 # SEE: module `mixin`.
2317 var constant_value: nullable Object = null is writable
2318 end
2319
2320 # A local definition of an attribute
2321 class MAttributeDef
2322 super MPropDef
2323
2324 redef type MPROPERTY: MAttribute
2325 redef type MPROPDEF: MAttributeDef
2326
2327 # The static type of the attribute
2328 var static_mtype: nullable MType = null is writable
2329 end
2330
2331 # A local definition of a virtual type
2332 class MVirtualTypeDef
2333 super MPropDef
2334
2335 redef type MPROPERTY: MVirtualTypeProp
2336 redef type MPROPDEF: MVirtualTypeDef
2337
2338 # The bound of the virtual type
2339 var bound: nullable MType = null is writable
2340
2341 # Is the bound fixed?
2342 var is_fixed = false is writable
2343 end
2344
2345 # A kind of class.
2346 #
2347 # * `abstract_kind`
2348 # * `concrete_kind`
2349 # * `interface_kind`
2350 # * `enum_kind`
2351 # * `extern_kind`
2352 #
2353 # Note this class is basically an enum.
2354 # FIXME: use a real enum once user-defined enums are available
2355 class MClassKind
2356 redef var to_s: String
2357
2358 # Is a constructor required?
2359 var need_init: Bool
2360
2361 # TODO: private init because enumeration.
2362
2363 # Can a class of kind `self` specializes a class of kine `other`?
2364 fun can_specialize(other: MClassKind): Bool
2365 do
2366 if other == interface_kind then return true # everybody can specialize interfaces
2367 if self == interface_kind or self == enum_kind then
2368 # no other case for interfaces
2369 return false
2370 else if self == extern_kind then
2371 # only compatible with themselves
2372 return self == other
2373 else if other == enum_kind or other == extern_kind then
2374 # abstract_kind and concrete_kind are incompatible
2375 return false
2376 end
2377 # remain only abstract_kind and concrete_kind
2378 return true
2379 end
2380 end
2381
2382 # The class kind `abstract`
2383 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", true)
2384 # The class kind `concrete`
2385 fun concrete_kind: MClassKind do return once new MClassKind("class", true)
2386 # The class kind `interface`
2387 fun interface_kind: MClassKind do return once new MClassKind("interface", false)
2388 # The class kind `enum`
2389 fun enum_kind: MClassKind do return once new MClassKind("enum", false)
2390 # The class kind `extern`
2391 fun extern_kind: MClassKind do return once new MClassKind("extern class", false)