Merge: Not null types
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class Model
34 # All known classes
35 var mclasses = new Array[MClass]
36
37 # All known properties
38 var mproperties = new Array[MProperty]
39
40 # Hierarchy of class definition.
41 #
42 # Each classdef is associated with its super-classdefs in regard to
43 # its module of definition.
44 var mclassdef_hierarchy = new POSet[MClassDef]
45
46 # Class-type hierarchy restricted to the introduction.
47 #
48 # The idea is that what is true on introduction is always true whatever
49 # the module considered.
50 # Therefore, this hierarchy is used for a fast positive subtype check.
51 #
52 # This poset will evolve in a monotonous way:
53 # * Two non connected nodes will remain unconnected
54 # * New nodes can appear with new edges
55 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
56
57 # Global overlapped class-type hierarchy.
58 # The hierarchy when all modules are combined.
59 # Therefore, this hierarchy is used for a fast negative subtype check.
60 #
61 # This poset will evolve in an anarchic way. Loops can even be created.
62 #
63 # FIXME decide what to do on loops
64 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
65
66 # Collections of classes grouped by their short name
67 private var mclasses_by_name = new MultiHashMap[String, MClass]
68
69 # Return all class named `name`.
70 #
71 # If such a class does not exist, null is returned
72 # (instead of an empty array)
73 #
74 # Visibility or modules are not considered
75 fun get_mclasses_by_name(name: String): nullable Array[MClass]
76 do
77 return mclasses_by_name.get_or_null(name)
78 end
79
80 # Collections of properties grouped by their short name
81 private var mproperties_by_name = new MultiHashMap[String, MProperty]
82
83 # Return all properties named `name`.
84 #
85 # If such a property does not exist, null is returned
86 # (instead of an empty array)
87 #
88 # Visibility or modules are not considered
89 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
90 do
91 return mproperties_by_name.get_or_null(name)
92 end
93
94 # The only null type
95 var null_type = new MNullType(self)
96
97 # Build an ordered tree with from `concerns`
98 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
99 var seen = new HashSet[MConcern]
100 var res = new ConcernsTree
101
102 var todo = new Array[MConcern]
103 todo.add_all mconcerns
104
105 while not todo.is_empty do
106 var c = todo.pop
107 if seen.has(c) then continue
108 var pc = c.parent_concern
109 if pc == null then
110 res.add(null, c)
111 else
112 res.add(pc, c)
113 todo.add(pc)
114 end
115 seen.add(c)
116 end
117
118 return res
119 end
120 end
121
122 # An OrderedTree that can be easily refined for display purposes
123 class ConcernsTree
124 super OrderedTree[MConcern]
125 end
126
127 redef class MModule
128 # All the classes introduced in the module
129 var intro_mclasses = new Array[MClass]
130
131 # All the class definitions of the module
132 # (introduction and refinement)
133 var mclassdefs = new Array[MClassDef]
134
135 # Does the current module has a given class `mclass`?
136 # Return true if the mmodule introduces, refines or imports a class.
137 # Visibility is not considered.
138 fun has_mclass(mclass: MClass): Bool
139 do
140 return self.in_importation <= mclass.intro_mmodule
141 end
142
143 # Full hierarchy of introduced ans imported classes.
144 #
145 # Create a new hierarchy got by flattening the classes for the module
146 # and its imported modules.
147 # Visibility is not considered.
148 #
149 # Note: this function is expensive and is usually used for the main
150 # module of a program only. Do not use it to do you own subtype
151 # functions.
152 fun flatten_mclass_hierarchy: POSet[MClass]
153 do
154 var res = self.flatten_mclass_hierarchy_cache
155 if res != null then return res
156 res = new POSet[MClass]
157 for m in self.in_importation.greaters do
158 for cd in m.mclassdefs do
159 var c = cd.mclass
160 res.add_node(c)
161 for s in cd.supertypes do
162 res.add_edge(c, s.mclass)
163 end
164 end
165 end
166 self.flatten_mclass_hierarchy_cache = res
167 return res
168 end
169
170 # Sort a given array of classes using the linearization order of the module
171 # The most general is first, the most specific is last
172 fun linearize_mclasses(mclasses: Array[MClass])
173 do
174 self.flatten_mclass_hierarchy.sort(mclasses)
175 end
176
177 # Sort a given array of class definitions using the linearization order of the module
178 # the refinement link is stronger than the specialisation link
179 # The most general is first, the most specific is last
180 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
181 do
182 var sorter = new MClassDefSorter(self)
183 sorter.sort(mclassdefs)
184 end
185
186 # Sort a given array of property definitions using the linearization order of the module
187 # the refinement link is stronger than the specialisation link
188 # The most general is first, the most specific is last
189 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
190 do
191 var sorter = new MPropDefSorter(self)
192 sorter.sort(mpropdefs)
193 end
194
195 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
196
197 # The primitive type `Object`, the root of the class hierarchy
198 var object_type: MClassType = self.get_primitive_class("Object").mclass_type is lazy
199
200 # The type `Pointer`, super class to all extern classes
201 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
202
203 # The primitive type `Bool`
204 var bool_type: MClassType = self.get_primitive_class("Bool").mclass_type is lazy
205
206 # The primitive type `Int`
207 var int_type: MClassType = self.get_primitive_class("Int").mclass_type is lazy
208
209 # The primitive type `Char`
210 var char_type: MClassType = self.get_primitive_class("Char").mclass_type is lazy
211
212 # The primitive type `Float`
213 var float_type: MClassType = self.get_primitive_class("Float").mclass_type is lazy
214
215 # The primitive type `String`
216 var string_type: MClassType = self.get_primitive_class("String").mclass_type is lazy
217
218 # The primitive type `NativeString`
219 var native_string_type: MClassType = self.get_primitive_class("NativeString").mclass_type is lazy
220
221 # A primitive type of `Array`
222 fun array_type(elt_type: MType): MClassType do return array_class.get_mtype([elt_type])
223
224 # The primitive class `Array`
225 var array_class: MClass = self.get_primitive_class("Array") is lazy
226
227 # A primitive type of `NativeArray`
228 fun native_array_type(elt_type: MType): MClassType do return native_array_class.get_mtype([elt_type])
229
230 # The primitive class `NativeArray`
231 var native_array_class: MClass = self.get_primitive_class("NativeArray") is lazy
232
233 # The primitive type `Sys`, the main type of the program, if any
234 fun sys_type: nullable MClassType
235 do
236 var clas = self.model.get_mclasses_by_name("Sys")
237 if clas == null then return null
238 return get_primitive_class("Sys").mclass_type
239 end
240
241 # The primitive type `Finalizable`
242 # Used to tag classes that need to be finalized.
243 fun finalizable_type: nullable MClassType
244 do
245 var clas = self.model.get_mclasses_by_name("Finalizable")
246 if clas == null then return null
247 return get_primitive_class("Finalizable").mclass_type
248 end
249
250 # Force to get the primitive class named `name` or abort
251 fun get_primitive_class(name: String): MClass
252 do
253 var cla = self.model.get_mclasses_by_name(name)
254 # Filter classes by introducing module
255 if cla != null then cla = [for c in cla do if self.in_importation <= c.intro_mmodule then c]
256 if cla == null or cla.is_empty then
257 if name == "Bool" and self.model.get_mclasses_by_name("Object") != null then
258 # Bool is injected because it is needed by engine to code the result
259 # of the implicit casts.
260 var c = new MClass(self, name, null, enum_kind, public_visibility)
261 var cladef = new MClassDef(self, c.mclass_type, new Location(null, 0,0,0,0))
262 cladef.set_supertypes([object_type])
263 cladef.add_in_hierarchy
264 return c
265 end
266 print("Fatal Error: no primitive class {name} in {self}")
267 exit(1)
268 end
269 if cla.length != 1 then
270 var msg = "Fatal Error: more than one primitive class {name} in {self}:"
271 for c in cla do msg += " {c.full_name}"
272 print msg
273 #exit(1)
274 end
275 return cla.first
276 end
277
278 # Try to get the primitive method named `name` on the type `recv`
279 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
280 do
281 var props = self.model.get_mproperties_by_name(name)
282 if props == null then return null
283 var res: nullable MMethod = null
284 for mprop in props do
285 assert mprop isa MMethod
286 var intro = mprop.intro_mclassdef
287 for mclassdef in recv.mclassdefs do
288 if not self.in_importation.greaters.has(mclassdef.mmodule) then continue
289 if not mclassdef.in_hierarchy.greaters.has(intro) then continue
290 if res == null then
291 res = mprop
292 else if res != mprop then
293 print("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
294 abort
295 end
296 end
297 end
298 return res
299 end
300 end
301
302 private class MClassDefSorter
303 super Comparator
304 redef type COMPARED: MClassDef
305 var mmodule: MModule
306 redef fun compare(a, b)
307 do
308 var ca = a.mclass
309 var cb = b.mclass
310 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
311 return mmodule.model.mclassdef_hierarchy.compare(a, b)
312 end
313 end
314
315 private class MPropDefSorter
316 super Comparator
317 redef type COMPARED: MPropDef
318 var mmodule: MModule
319 redef fun compare(pa, pb)
320 do
321 var a = pa.mclassdef
322 var b = pb.mclassdef
323 var ca = a.mclass
324 var cb = b.mclass
325 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
326 return mmodule.model.mclassdef_hierarchy.compare(a, b)
327 end
328 end
329
330 # A named class
331 #
332 # `MClass` are global to the model; it means that a `MClass` is not bound to a
333 # specific `MModule`.
334 #
335 # This characteristic helps the reasoning about classes in a program since a
336 # single `MClass` object always denote the same class.
337 #
338 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
339 # These do not really have properties nor belong to a hierarchy since the property and the
340 # hierarchy of a class depends of the refinement in the modules.
341 #
342 # Most services on classes require the precision of a module, and no one can asks what are
343 # the super-classes of a class nor what are properties of a class without precising what is
344 # the module considered.
345 #
346 # For instance, during the typing of a source-file, the module considered is the module of the file.
347 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
348 # *is the method `foo` exists in the class `Bar` in the current module?*
349 #
350 # During some global analysis, the module considered may be the main module of the program.
351 class MClass
352 super MEntity
353
354 # The module that introduce the class
355 # While classes are not bound to a specific module,
356 # the introducing module is used for naming an visibility
357 var intro_mmodule: MModule
358
359 # The short name of the class
360 # In Nit, the name of a class cannot evolve in refinements
361 redef var name: String
362
363 # The canonical name of the class
364 #
365 # It is the name of the class prefixed by the full_name of the `intro_mmodule`
366 # Example: `"owner::module::MyClass"`
367 redef var full_name is lazy do
368 return "{self.intro_mmodule.namespace_for(visibility)}::{name}"
369 end
370
371 redef var c_name is lazy do
372 return "{intro_mmodule.c_namespace_for(visibility)}__{name.to_cmangle}"
373 end
374
375 # The number of generic formal parameters
376 # 0 if the class is not generic
377 var arity: Int is noinit
378
379 # Each generic formal parameters in order.
380 # is empty if the class is not generic
381 var mparameters = new Array[MParameterType]
382
383 # Initialize `mparameters` from their names.
384 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
385 autoinit
386 do
387 if parameter_names == null then
388 self.arity = 0
389 else
390 self.arity = parameter_names.length
391 end
392
393 # Create the formal parameter types
394 if arity > 0 then
395 assert parameter_names != null
396 var mparametertypes = new Array[MParameterType]
397 for i in [0..arity[ do
398 var mparametertype = new MParameterType(self, i, parameter_names[i])
399 mparametertypes.add(mparametertype)
400 end
401 self.mparameters = mparametertypes
402 var mclass_type = new MGenericType(self, mparametertypes)
403 self.mclass_type = mclass_type
404 self.get_mtype_cache[mparametertypes] = mclass_type
405 else
406 self.mclass_type = new MClassType(self)
407 end
408 end
409
410 # The kind of the class (interface, abstract class, etc.)
411 # In Nit, the kind of a class cannot evolve in refinements
412 var kind: MClassKind
413
414 # The visibility of the class
415 # In Nit, the visibility of a class cannot evolve in refinements
416 var visibility: MVisibility
417
418 init
419 do
420 intro_mmodule.intro_mclasses.add(self)
421 var model = intro_mmodule.model
422 model.mclasses_by_name.add_one(name, self)
423 model.mclasses.add(self)
424 end
425
426 redef fun model do return intro_mmodule.model
427
428 # All class definitions (introduction and refinements)
429 var mclassdefs = new Array[MClassDef]
430
431 # Alias for `name`
432 redef fun to_s do return self.name
433
434 # The definition that introduces the class.
435 #
436 # Warning: such a definition may not exist in the early life of the object.
437 # In this case, the method will abort.
438 #
439 # Use `try_intro` instead
440 var intro: MClassDef is noinit
441
442 # The definition that introduces the class or null if not yet known.
443 #
444 # See `intro`
445 fun try_intro: nullable MClassDef do
446 if isset _intro then return _intro else return null
447 end
448
449 # Return the class `self` in the class hierarchy of the module `mmodule`.
450 #
451 # SEE: `MModule::flatten_mclass_hierarchy`
452 # REQUIRE: `mmodule.has_mclass(self)`
453 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
454 do
455 return mmodule.flatten_mclass_hierarchy[self]
456 end
457
458 # The principal static type of the class.
459 #
460 # For non-generic class, mclass_type is the only `MClassType` based
461 # on self.
462 #
463 # For a generic class, the arguments are the formal parameters.
464 # i.e.: for the class Array[E:Object], the `mclass_type` is Array[E].
465 # If you want Array[Object] the see `MClassDef::bound_mtype`
466 #
467 # For generic classes, the mclass_type is also the way to get a formal
468 # generic parameter type.
469 #
470 # To get other types based on a generic class, see `get_mtype`.
471 #
472 # ENSURE: `mclass_type.mclass == self`
473 var mclass_type: MClassType is noinit
474
475 # Return a generic type based on the class
476 # Is the class is not generic, then the result is `mclass_type`
477 #
478 # REQUIRE: `mtype_arguments.length == self.arity`
479 fun get_mtype(mtype_arguments: Array[MType]): MClassType
480 do
481 assert mtype_arguments.length == self.arity
482 if self.arity == 0 then return self.mclass_type
483 var res = get_mtype_cache.get_or_null(mtype_arguments)
484 if res != null then return res
485 res = new MGenericType(self, mtype_arguments)
486 self.get_mtype_cache[mtype_arguments.to_a] = res
487 return res
488 end
489
490 private var get_mtype_cache = new HashMap[Array[MType], MGenericType]
491
492 # Is there a `new` factory to allow the pseudo instantiation?
493 var has_new_factory = false is writable
494 end
495
496
497 # A definition (an introduction or a refinement) of a class in a module
498 #
499 # A `MClassDef` is associated with an explicit (or almost) definition of a
500 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
501 # a specific class and a specific module, and contains declarations like super-classes
502 # or properties.
503 #
504 # It is the class definitions that are the backbone of most things in the model:
505 # ClassDefs are defined with regard with other classdefs.
506 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
507 #
508 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
509 class MClassDef
510 super MEntity
511
512 # The module where the definition is
513 var mmodule: MModule
514
515 # The associated `MClass`
516 var mclass: MClass is noinit
517
518 # The bounded type associated to the mclassdef
519 #
520 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
521 # are the same type.
522 #
523 # Example:
524 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
525 # If you want Array[E], then see `mclass.mclass_type`
526 #
527 # ENSURE: `bound_mtype.mclass == self.mclass`
528 var bound_mtype: MClassType
529
530 # The origin of the definition
531 var location: Location
532
533 # Internal name combining the module and the class
534 # Example: "mymodule#MyClass"
535 redef var to_s: String is noinit
536
537 init
538 do
539 self.mclass = bound_mtype.mclass
540 mmodule.mclassdefs.add(self)
541 mclass.mclassdefs.add(self)
542 if mclass.intro_mmodule == mmodule then
543 assert not isset mclass._intro
544 mclass.intro = self
545 end
546 self.to_s = "{mmodule}#{mclass}"
547 end
548
549 # Actually the name of the `mclass`
550 redef fun name do return mclass.name
551
552 # The module and class name separated by a '#'.
553 #
554 # The short-name of the class is used for introduction.
555 # Example: "my_module#MyClass"
556 #
557 # The full-name of the class is used for refinement.
558 # Example: "my_module#intro_module::MyClass"
559 redef var full_name is lazy do
560 if is_intro then
561 # public gives 'p#A'
562 # private gives 'p::m#A'
563 return "{mmodule.namespace_for(mclass.visibility)}#{mclass.name}"
564 else if mclass.intro_mmodule.mproject != mmodule.mproject then
565 # public gives 'q::n#p::A'
566 # private gives 'q::n#p::m::A'
567 return "{mmodule.full_name}#{mclass.full_name}"
568 else if mclass.visibility > private_visibility then
569 # public gives 'p::n#A'
570 return "{mmodule.full_name}#{mclass.name}"
571 else
572 # private gives 'p::n#::m::A' (redundant p is omitted)
573 return "{mmodule.full_name}#::{mclass.intro_mmodule.name}::{mclass.name}"
574 end
575 end
576
577 redef var c_name is lazy do
578 if is_intro then
579 return "{mmodule.c_namespace_for(mclass.visibility)}___{mclass.c_name}"
580 else if mclass.intro_mmodule.mproject == mmodule.mproject and mclass.visibility > private_visibility then
581 return "{mmodule.c_name}___{mclass.name.to_cmangle}"
582 else
583 return "{mmodule.c_name}___{mclass.c_name}"
584 end
585 end
586
587 redef fun model do return mmodule.model
588
589 # All declared super-types
590 # FIXME: quite ugly but not better idea yet
591 var supertypes = new Array[MClassType]
592
593 # Register some super-types for the class (ie "super SomeType")
594 #
595 # The hierarchy must not already be set
596 # REQUIRE: `self.in_hierarchy == null`
597 fun set_supertypes(supertypes: Array[MClassType])
598 do
599 assert unique_invocation: self.in_hierarchy == null
600 var mmodule = self.mmodule
601 var model = mmodule.model
602 var mtype = self.bound_mtype
603
604 for supertype in supertypes do
605 self.supertypes.add(supertype)
606
607 # Register in full_type_specialization_hierarchy
608 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
609 # Register in intro_type_specialization_hierarchy
610 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
611 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
612 end
613 end
614
615 end
616
617 # Collect the super-types (set by set_supertypes) to build the hierarchy
618 #
619 # This function can only invoked once by class
620 # REQUIRE: `self.in_hierarchy == null`
621 # ENSURE: `self.in_hierarchy != null`
622 fun add_in_hierarchy
623 do
624 assert unique_invocation: self.in_hierarchy == null
625 var model = mmodule.model
626 var res = model.mclassdef_hierarchy.add_node(self)
627 self.in_hierarchy = res
628 var mtype = self.bound_mtype
629
630 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
631 # The simpliest way is to attach it to collect_mclassdefs
632 for mclassdef in mtype.collect_mclassdefs(mmodule) do
633 res.poset.add_edge(self, mclassdef)
634 end
635 end
636
637 # The view of the class definition in `mclassdef_hierarchy`
638 var in_hierarchy: nullable POSetElement[MClassDef] = null
639
640 # Is the definition the one that introduced `mclass`?
641 fun is_intro: Bool do return isset mclass._intro and mclass.intro == self
642
643 # All properties introduced by the classdef
644 var intro_mproperties = new Array[MProperty]
645
646 # All property definitions in the class (introductions and redefinitions)
647 var mpropdefs = new Array[MPropDef]
648 end
649
650 # A global static type
651 #
652 # MType are global to the model; it means that a `MType` is not bound to a
653 # specific `MModule`.
654 # This characteristic helps the reasoning about static types in a program
655 # since a single `MType` object always denote the same type.
656 #
657 # However, because a `MType` is global, it does not really have properties
658 # nor have subtypes to a hierarchy since the property and the class hierarchy
659 # depends of a module.
660 # Moreover, virtual types an formal generic parameter types also depends on
661 # a receiver to have sense.
662 #
663 # Therefore, most method of the types require a module and an anchor.
664 # The module is used to know what are the classes and the specialization
665 # links.
666 # The anchor is used to know what is the bound of the virtual types and formal
667 # generic parameter types.
668 #
669 # MType are not directly usable to get properties. See the `anchor_to` method
670 # and the `MClassType` class.
671 #
672 # FIXME: the order of the parameters is not the best. We mus pick on from:
673 # * foo(mmodule, anchor, othertype)
674 # * foo(othertype, anchor, mmodule)
675 # * foo(anchor, mmodule, othertype)
676 # * foo(othertype, mmodule, anchor)
677 abstract class MType
678 super MEntity
679
680 redef fun name do return to_s
681
682 # Return true if `self` is an subtype of `sup`.
683 # The typing is done using the standard typing policy of Nit.
684 #
685 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
686 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
687 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
688 do
689 var sub = self
690 if sub == sup then return true
691
692 #print "1.is {sub} a {sup}? ===="
693
694 if anchor == null then
695 assert not sub.need_anchor
696 assert not sup.need_anchor
697 else
698 # First, resolve the formal types to the simplest equivalent forms in the receiver
699 assert sub.can_resolve_for(anchor, null, mmodule)
700 sub = sub.lookup_fixed(mmodule, anchor)
701 assert sup.can_resolve_for(anchor, null, mmodule)
702 sup = sup.lookup_fixed(mmodule, anchor)
703 end
704
705 # Does `sup` accept null or not?
706 # Discard the nullable marker if it exists
707 var sup_accept_null = false
708 if sup isa MNullableType then
709 sup_accept_null = true
710 sup = sup.mtype
711 else if sup isa MNotNullType then
712 sup = sup.mtype
713 else if sup isa MNullType then
714 sup_accept_null = true
715 end
716
717 # Can `sub` provide null or not?
718 # Thus we can match with `sup_accept_null`
719 # Also discard the nullable marker if it exists
720 var sub_reject_null = false
721 if sub isa MNullableType then
722 if not sup_accept_null then return false
723 sub = sub.mtype
724 else if sub isa MNotNullType then
725 sub_reject_null = true
726 sub = sub.mtype
727 else if sub isa MNullType then
728 return sup_accept_null
729 end
730 # Now the case of direct null and nullable is over.
731
732 # If `sub` is a formal type, then it is accepted if its bound is accepted
733 while sub isa MFormalType do
734 #print "3.is {sub} a {sup}?"
735
736 # A unfixed formal type can only accept itself
737 if sub == sup then return true
738
739 assert anchor != null
740 sub = sub.lookup_bound(mmodule, anchor)
741 if sub_reject_null then sub = sub.as_notnull
742
743 #print "3.is {sub} a {sup}?"
744
745 # Manage the second layer of null/nullable
746 if sub isa MNullableType then
747 if not sup_accept_null and not sub_reject_null then return false
748 sub = sub.mtype
749 else if sub isa MNotNullType then
750 sub_reject_null = true
751 sub = sub.mtype
752 else if sub isa MNullType then
753 return sup_accept_null
754 end
755 end
756 #print "4.is {sub} a {sup}? <- no more resolution"
757
758 assert sub isa MClassType else print "{sub} <? {sub}" # It is the only remaining type
759
760 # A unfixed formal type can only accept itself
761 if sup isa MFormalType then
762 return false
763 end
764
765 if sup isa MNullType then
766 # `sup` accepts only null
767 return false
768 end
769
770 assert sup isa MClassType # It is the only remaining type
771
772 # Now both are MClassType, we need to dig
773
774 if sub == sup then return true
775
776 if anchor == null then anchor = sub # UGLY: any anchor will work
777 var resolved_sub = sub.anchor_to(mmodule, anchor)
778 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
779 if res == false then return false
780 if not sup isa MGenericType then return true
781 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
782 assert sub2.mclass == sup.mclass
783 for i in [0..sup.mclass.arity[ do
784 var sub_arg = sub2.arguments[i]
785 var sup_arg = sup.arguments[i]
786 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
787 if res == false then return false
788 end
789 return true
790 end
791
792 # The base class type on which self is based
793 #
794 # This base type is used to get property (an internally to perform
795 # unsafe type comparison).
796 #
797 # Beware: some types (like null) are not based on a class thus this
798 # method will crash
799 #
800 # Basically, this function transform the virtual types and parameter
801 # types to their bounds.
802 #
803 # Example
804 #
805 # class A end
806 # class B super A end
807 # class X end
808 # class Y super X end
809 # class G[T: A]
810 # type U: X
811 # end
812 # class H
813 # super G[B]
814 # redef type U: Y
815 # end
816 #
817 # Map[T,U] anchor_to H #-> Map[B,Y]
818 #
819 # Explanation of the example:
820 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
821 # because "redef type U: Y". Therefore, Map[T, U] is bound to
822 # Map[B, Y]
823 #
824 # ENSURE: `not self.need_anchor implies result == self`
825 # ENSURE: `not result.need_anchor`
826 fun anchor_to(mmodule: MModule, anchor: MClassType): MType
827 do
828 if not need_anchor then return self
829 assert not anchor.need_anchor
830 # Just resolve to the anchor and clear all the virtual types
831 var res = self.resolve_for(anchor, null, mmodule, true)
832 assert not res.need_anchor
833 return res
834 end
835
836 # Does `self` contain a virtual type or a formal generic parameter type?
837 # In order to remove those types, you usually want to use `anchor_to`.
838 fun need_anchor: Bool do return true
839
840 # Return the supertype when adapted to a class.
841 #
842 # In Nit, for each super-class of a type, there is a equivalent super-type.
843 #
844 # Example:
845 #
846 # ~~~nitish
847 # class G[T, U] end
848 # class H[V] super G[V, Bool] end
849 #
850 # H[Int] supertype_to G #-> G[Int, Bool]
851 # ~~~
852 #
853 # REQUIRE: `super_mclass` is a super-class of `self`
854 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
855 # ENSURE: `result.mclass = super_mclass`
856 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
857 do
858 if super_mclass.arity == 0 then return super_mclass.mclass_type
859 if self isa MClassType and self.mclass == super_mclass then return self
860 var resolved_self
861 if self.need_anchor then
862 assert anchor != null
863 resolved_self = self.anchor_to(mmodule, anchor)
864 else
865 resolved_self = self
866 end
867 var supertypes = resolved_self.collect_mtypes(mmodule)
868 for supertype in supertypes do
869 if supertype.mclass == super_mclass then
870 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
871 return supertype.resolve_for(self, anchor, mmodule, false)
872 end
873 end
874 abort
875 end
876
877 # Replace formals generic types in self with resolved values in `mtype`
878 # If `cleanup_virtual` is true, then virtual types are also replaced
879 # with their bounds.
880 #
881 # This function returns self if `need_anchor` is false.
882 #
883 # ## Example 1
884 #
885 # ~~~
886 # class G[E] end
887 # class H[F] super G[F] end
888 # class X[Z] end
889 # ~~~
890 #
891 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
892 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
893 #
894 # Explanation of the example:
895 # * Array[E].need_anchor is true because there is a formal generic parameter type E
896 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
897 # * Since "H[F] super G[F]", E is in fact F for H
898 # * More specifically, in H[Int], E is Int
899 # * So, in H[Int], Array[E] is Array[Int]
900 #
901 # This function is mainly used to inherit a signature.
902 # Because, unlike `anchor_to`, we do not want a full resolution of
903 # a type but only an adapted version of it.
904 #
905 # ## Example 2
906 #
907 # ~~~
908 # class A[E]
909 # fun foo(e:E):E is abstract
910 # end
911 # class B super A[Int] end
912 # ~~~
913 #
914 # The signature on foo is (e: E): E
915 # If we resolve the signature for B, we get (e:Int):Int
916 #
917 # ## Example 3
918 #
919 # ~~~nitish
920 # class A[E]
921 # fun foo(e:E):E is abstract
922 # end
923 # class C[F]
924 # var a: A[Array[F]]
925 # fun bar do a.foo(x) # <- x is here
926 # end
927 # ~~~
928 #
929 # The first question is: is foo available on `a`?
930 #
931 # The static type of a is `A[Array[F]]`, that is an open type.
932 # in order to find a method `foo`, whe must look at a resolved type.
933 #
934 # A[Array[F]].anchor_to(C[nullable Object]) #-> A[Array[nullable Object]]
935 #
936 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
937 #
938 # The next question is: what is the accepted types for `x`?
939 #
940 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
941 #
942 # E.resolve_for(A[Array[F]],C[nullable Object]) #-> Array[F]
943 #
944 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
945 #
946 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
947 # two function instead of one seems also to be a bad idea.
948 #
949 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
950 # ENSURE: `not self.need_anchor implies result == self`
951 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
952
953 # Resolve formal type to its verbatim bound.
954 # If the type is not formal, just return self
955 #
956 # The result is returned exactly as declared in the "type" property (verbatim).
957 # So it could be another formal type.
958 #
959 # In case of conflict, the method aborts.
960 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self
961
962 # Resolve the formal type to its simplest equivalent form.
963 #
964 # Formal types are either free or fixed.
965 # When it is fixed, it means that it is equivalent with a simpler type.
966 # When a formal type is free, it means that it is only equivalent with itself.
967 # This method return the most simple equivalent type of `self`.
968 #
969 # This method is mainly used for subtype test in order to sanely compare fixed.
970 #
971 # By default, return self.
972 # See the redefinitions for specific behavior in each kind of type.
973 fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self
974
975 # Can the type be resolved?
976 #
977 # In order to resolve open types, the formal types must make sence.
978 #
979 # ## Example
980 #
981 # class A[E]
982 # end
983 # class B[F]
984 # end
985 #
986 # ~~~nitish
987 # E.can_resolve_for(A[Int]) #-> true, E make sense in A
988 #
989 # E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
990 #
991 # B[E].can_resolve_for(A[F], B[Object]) #-> true,
992 # # B[E] is a red hearing only the E is important,
993 # # E make sense in A
994 # ~~~
995 #
996 # REQUIRE: `anchor != null implies not anchor.need_anchor`
997 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
998 # ENSURE: `not self.need_anchor implies result == true`
999 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
1000
1001 # Return the nullable version of the type
1002 # If the type is already nullable then self is returned
1003 fun as_nullable: MType
1004 do
1005 var res = self.as_nullable_cache
1006 if res != null then return res
1007 res = new MNullableType(self)
1008 self.as_nullable_cache = res
1009 return res
1010 end
1011
1012 # Remove the base type of a decorated (proxy) type.
1013 # Is the type is not decorated, then self is returned.
1014 #
1015 # Most of the time it is used to return the not nullable version of a nullable type.
1016 # In this case, this just remove the `nullable` notation, but the result can still contains null.
1017 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
1018 # If you really want to exclude the `null` value, then use `as_notnull`
1019 fun undecorate: MType
1020 do
1021 return self
1022 end
1023
1024 # Returns the not null version of the type.
1025 # That is `self` minus the `null` value.
1026 #
1027 # For most types, this return `self`.
1028 # For formal types, this returns a special `MNotNullType`
1029 fun as_notnull: MType do return self
1030
1031 private var as_nullable_cache: nullable MType = null
1032
1033
1034 # The depth of the type seen as a tree.
1035 #
1036 # * A -> 1
1037 # * G[A] -> 2
1038 # * H[A, B] -> 2
1039 # * H[G[A], B] -> 3
1040 #
1041 # Formal types have a depth of 1.
1042 fun depth: Int
1043 do
1044 return 1
1045 end
1046
1047 # The length of the type seen as a tree.
1048 #
1049 # * A -> 1
1050 # * G[A] -> 2
1051 # * H[A, B] -> 3
1052 # * H[G[A], B] -> 4
1053 #
1054 # Formal types have a length of 1.
1055 fun length: Int
1056 do
1057 return 1
1058 end
1059
1060 # Compute all the classdefs inherited/imported.
1061 # The returned set contains:
1062 # * the class definitions from `mmodule` and its imported modules
1063 # * the class definitions of this type and its super-types
1064 #
1065 # This function is used mainly internally.
1066 #
1067 # REQUIRE: `not self.need_anchor`
1068 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
1069
1070 # Compute all the super-classes.
1071 # This function is used mainly internally.
1072 #
1073 # REQUIRE: `not self.need_anchor`
1074 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
1075
1076 # Compute all the declared super-types.
1077 # Super-types are returned as declared in the classdefs (verbatim).
1078 # This function is used mainly internally.
1079 #
1080 # REQUIRE: `not self.need_anchor`
1081 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
1082
1083 # Is the property in self for a given module
1084 # This method does not filter visibility or whatever
1085 #
1086 # REQUIRE: `not self.need_anchor`
1087 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
1088 do
1089 assert not self.need_anchor
1090 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
1091 end
1092 end
1093
1094 # A type based on a class.
1095 #
1096 # `MClassType` have properties (see `has_mproperty`).
1097 class MClassType
1098 super MType
1099
1100 # The associated class
1101 var mclass: MClass
1102
1103 redef fun model do return self.mclass.intro_mmodule.model
1104
1105 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1106
1107 # The formal arguments of the type
1108 # ENSURE: `result.length == self.mclass.arity`
1109 var arguments = new Array[MType]
1110
1111 redef fun to_s do return mclass.to_s
1112
1113 redef fun full_name do return mclass.full_name
1114
1115 redef fun c_name do return mclass.c_name
1116
1117 redef fun need_anchor do return false
1118
1119 redef fun anchor_to(mmodule: MModule, anchor: MClassType): MClassType
1120 do
1121 return super.as(MClassType)
1122 end
1123
1124 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1125
1126 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1127
1128 redef fun collect_mclassdefs(mmodule)
1129 do
1130 assert not self.need_anchor
1131 var cache = self.collect_mclassdefs_cache
1132 if not cache.has_key(mmodule) then
1133 self.collect_things(mmodule)
1134 end
1135 return cache[mmodule]
1136 end
1137
1138 redef fun collect_mclasses(mmodule)
1139 do
1140 if collect_mclasses_last_module == mmodule then return collect_mclasses_last_module_cache
1141 assert not self.need_anchor
1142 var cache = self.collect_mclasses_cache
1143 if not cache.has_key(mmodule) then
1144 self.collect_things(mmodule)
1145 end
1146 var res = cache[mmodule]
1147 collect_mclasses_last_module = mmodule
1148 collect_mclasses_last_module_cache = res
1149 return res
1150 end
1151
1152 private var collect_mclasses_last_module: nullable MModule = null
1153 private var collect_mclasses_last_module_cache: Set[MClass] is noinit
1154
1155 redef fun collect_mtypes(mmodule)
1156 do
1157 assert not self.need_anchor
1158 var cache = self.collect_mtypes_cache
1159 if not cache.has_key(mmodule) then
1160 self.collect_things(mmodule)
1161 end
1162 return cache[mmodule]
1163 end
1164
1165 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1166 private fun collect_things(mmodule: MModule)
1167 do
1168 var res = new HashSet[MClassDef]
1169 var seen = new HashSet[MClass]
1170 var types = new HashSet[MClassType]
1171 seen.add(self.mclass)
1172 var todo = [self.mclass]
1173 while not todo.is_empty do
1174 var mclass = todo.pop
1175 #print "process {mclass}"
1176 for mclassdef in mclass.mclassdefs do
1177 if not mmodule.in_importation <= mclassdef.mmodule then continue
1178 #print " process {mclassdef}"
1179 res.add(mclassdef)
1180 for supertype in mclassdef.supertypes do
1181 types.add(supertype)
1182 var superclass = supertype.mclass
1183 if seen.has(superclass) then continue
1184 #print " add {superclass}"
1185 seen.add(superclass)
1186 todo.add(superclass)
1187 end
1188 end
1189 end
1190 collect_mclassdefs_cache[mmodule] = res
1191 collect_mclasses_cache[mmodule] = seen
1192 collect_mtypes_cache[mmodule] = types
1193 end
1194
1195 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1196 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1197 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1198
1199 end
1200
1201 # A type based on a generic class.
1202 # A generic type a just a class with additional formal generic arguments.
1203 class MGenericType
1204 super MClassType
1205
1206 redef var arguments
1207
1208 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1209
1210 init
1211 do
1212 assert self.mclass.arity == arguments.length
1213
1214 self.need_anchor = false
1215 for t in arguments do
1216 if t.need_anchor then
1217 self.need_anchor = true
1218 break
1219 end
1220 end
1221
1222 self.to_s = "{mclass}[{arguments.join(", ")}]"
1223 end
1224
1225 # The short-name of the class, then the full-name of each type arguments within brackets.
1226 # Example: `"Map[String, List[Int]]"`
1227 redef var to_s: String is noinit
1228
1229 # The full-name of the class, then the full-name of each type arguments within brackets.
1230 # Example: `"standard::Map[standard::String, standard::List[standard::Int]]"`
1231 redef var full_name is lazy do
1232 var args = new Array[String]
1233 for t in arguments do
1234 args.add t.full_name
1235 end
1236 return "{mclass.full_name}[{args.join(", ")}]"
1237 end
1238
1239 redef var c_name is lazy do
1240 var res = mclass.c_name
1241 # Note: because the arity is known, a prefix notation is enough
1242 for t in arguments do
1243 res += "__"
1244 res += t.c_name
1245 end
1246 return res.to_s
1247 end
1248
1249 redef var need_anchor: Bool is noinit
1250
1251 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1252 do
1253 if not need_anchor then return self
1254 assert can_resolve_for(mtype, anchor, mmodule)
1255 var types = new Array[MType]
1256 for t in arguments do
1257 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1258 end
1259 return mclass.get_mtype(types)
1260 end
1261
1262 redef fun can_resolve_for(mtype, anchor, mmodule)
1263 do
1264 if not need_anchor then return true
1265 for t in arguments do
1266 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1267 end
1268 return true
1269 end
1270
1271
1272 redef fun depth
1273 do
1274 var dmax = 0
1275 for a in self.arguments do
1276 var d = a.depth
1277 if d > dmax then dmax = d
1278 end
1279 return dmax + 1
1280 end
1281
1282 redef fun length
1283 do
1284 var res = 1
1285 for a in self.arguments do
1286 res += a.length
1287 end
1288 return res
1289 end
1290 end
1291
1292 # A formal type (either virtual of parametric).
1293 #
1294 # The main issue with formal types is that they offer very little information on their own
1295 # and need a context (anchor and mmodule) to be useful.
1296 abstract class MFormalType
1297 super MType
1298
1299 redef var as_notnull = new MNotNullType(self) is lazy
1300 end
1301
1302 # A virtual formal type.
1303 class MVirtualType
1304 super MFormalType
1305
1306 # The property associated with the type.
1307 # Its the definitions of this property that determine the bound or the virtual type.
1308 var mproperty: MVirtualTypeProp
1309
1310 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1311
1312 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1313 do
1314 return lookup_single_definition(mmodule, resolved_receiver).bound.as(not null)
1315 end
1316
1317 private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef
1318 do
1319 assert not resolved_receiver.need_anchor
1320 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1321 if props.is_empty then
1322 abort
1323 else if props.length == 1 then
1324 return props.first
1325 end
1326 var types = new ArraySet[MType]
1327 var res = props.first
1328 for p in props do
1329 types.add(p.bound.as(not null))
1330 if not res.is_fixed then res = p
1331 end
1332 if types.length == 1 then
1333 return res
1334 end
1335 abort
1336 end
1337
1338 # A VT is fixed when:
1339 # * the VT is (re-)defined with the annotation `is fixed`
1340 # * the VT is (indirectly) bound to an enum class (see `enum_kind`) since there is no subtype possible
1341 # * the receiver is an enum class since there is no subtype possible
1342 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1343 do
1344 assert not resolved_receiver.need_anchor
1345 resolved_receiver = resolved_receiver.undecorate
1346 assert resolved_receiver isa MClassType # It is the only remaining type
1347
1348 var prop = lookup_single_definition(mmodule, resolved_receiver)
1349 var res = prop.bound.as(not null)
1350
1351 # Recursively lookup the fixed result
1352 res = res.lookup_fixed(mmodule, resolved_receiver)
1353
1354 # 1. For a fixed VT, return the resolved bound
1355 if prop.is_fixed then return res
1356
1357 # 2. For a enum boud, return the bound
1358 if res isa MClassType and res.mclass.kind == enum_kind then return res
1359
1360 # 3. for a enum receiver return the bound
1361 if resolved_receiver.mclass.kind == enum_kind then return res
1362
1363 return self
1364 end
1365
1366 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1367 do
1368 if not cleanup_virtual then return self
1369 assert can_resolve_for(mtype, anchor, mmodule)
1370 # self is a virtual type declared (or inherited) in mtype
1371 # The point of the function it to get the bound of the virtual type that make sense for mtype
1372 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1373 #print "{class_name}: {self}/{mtype}/{anchor}?"
1374 var resolved_receiver
1375 if mtype.need_anchor then
1376 assert anchor != null
1377 resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true)
1378 else
1379 resolved_receiver = mtype
1380 end
1381 # Now, we can get the bound
1382 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1383 # The bound is exactly as declared in the "type" property, so we must resolve it again
1384 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1385
1386 return res
1387 end
1388
1389 redef fun can_resolve_for(mtype, anchor, mmodule)
1390 do
1391 if mtype.need_anchor then
1392 assert anchor != null
1393 mtype = mtype.anchor_to(mmodule, anchor)
1394 end
1395 return mtype.has_mproperty(mmodule, mproperty)
1396 end
1397
1398 redef fun to_s do return self.mproperty.to_s
1399
1400 redef fun full_name do return self.mproperty.full_name
1401
1402 redef fun c_name do return self.mproperty.c_name
1403 end
1404
1405 # The type associated to a formal parameter generic type of a class
1406 #
1407 # Each parameter type is associated to a specific class.
1408 # It means that all refinements of a same class "share" the parameter type,
1409 # but that a generic subclass has its own parameter types.
1410 #
1411 # However, in the sense of the meta-model, a parameter type of a class is
1412 # a valid type in a subclass. The "in the sense of the meta-model" is
1413 # important because, in the Nit language, the programmer cannot refers
1414 # directly to the parameter types of the super-classes.
1415 #
1416 # Example:
1417 #
1418 # class A[E]
1419 # fun e: E is abstract
1420 # end
1421 # class B[F]
1422 # super A[Array[F]]
1423 # end
1424 #
1425 # In the class definition B[F], `F` is a valid type but `E` is not.
1426 # However, `self.e` is a valid method call, and the signature of `e` is
1427 # declared `e: E`.
1428 #
1429 # Note that parameter types are shared among class refinements.
1430 # Therefore parameter only have an internal name (see `to_s` for details).
1431 class MParameterType
1432 super MFormalType
1433
1434 # The generic class where the parameter belong
1435 var mclass: MClass
1436
1437 redef fun model do return self.mclass.intro_mmodule.model
1438
1439 # The position of the parameter (0 for the first parameter)
1440 # FIXME: is `position` a better name?
1441 var rank: Int
1442
1443 redef var name
1444
1445 redef fun to_s do return name
1446
1447 redef var full_name is lazy do return "{mclass.full_name}::{name}"
1448
1449 redef var c_name is lazy do return mclass.c_name + "__" + "#{name}".to_cmangle
1450
1451 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1452 do
1453 assert not resolved_receiver.need_anchor
1454 resolved_receiver = resolved_receiver.undecorate
1455 assert resolved_receiver isa MClassType # It is the only remaining type
1456 var goalclass = self.mclass
1457 if resolved_receiver.mclass == goalclass then
1458 return resolved_receiver.arguments[self.rank]
1459 end
1460 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1461 for t in supertypes do
1462 if t.mclass == goalclass then
1463 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1464 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1465 var res = t.arguments[self.rank]
1466 return res
1467 end
1468 end
1469 abort
1470 end
1471
1472 # A PT is fixed when:
1473 # * Its bound is a enum class (see `enum_kind`).
1474 # The PT is just useless, but it is still a case.
1475 # * More usually, the `resolved_receiver` is a subclass of `self.mclass`,
1476 # so it is necessarily fixed in a `super` clause, either with a normal type
1477 # or with another PT.
1478 # See `resolve_for` for examples about related issues.
1479 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1480 do
1481 assert not resolved_receiver.need_anchor
1482 resolved_receiver = resolved_receiver.undecorate
1483 assert resolved_receiver isa MClassType # It is the only remaining type
1484 var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false)
1485 return res
1486 end
1487
1488 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1489 do
1490 assert can_resolve_for(mtype, anchor, mmodule)
1491 #print "{class_name}: {self}/{mtype}/{anchor}?"
1492
1493 if mtype isa MGenericType and mtype.mclass == self.mclass then
1494 var res = mtype.arguments[self.rank]
1495 if anchor != null and res.need_anchor then
1496 # Maybe the result can be resolved more if are bound to a final class
1497 var r2 = res.anchor_to(mmodule, anchor)
1498 if r2 isa MClassType and r2.mclass.kind == enum_kind then return r2
1499 end
1500 return res
1501 end
1502
1503 # self is a parameter type of mtype (or of a super-class of mtype)
1504 # The point of the function it to get the bound of the virtual type that make sense for mtype
1505 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1506 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1507 var resolved_receiver
1508 if mtype.need_anchor then
1509 assert anchor != null
1510 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1511 else
1512 resolved_receiver = mtype
1513 end
1514 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1515 if resolved_receiver isa MParameterType then
1516 assert resolved_receiver.mclass == anchor.mclass
1517 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1518 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1519 end
1520 assert resolved_receiver isa MClassType # It is the only remaining type
1521
1522 # Eh! The parameter is in the current class.
1523 # So we return the corresponding argument, no mater what!
1524 if resolved_receiver.mclass == self.mclass then
1525 var res = resolved_receiver.arguments[self.rank]
1526 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1527 return res
1528 end
1529
1530 if resolved_receiver.need_anchor then
1531 assert anchor != null
1532 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1533 end
1534 # Now, we can get the bound
1535 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1536 # The bound is exactly as declared in the "type" property, so we must resolve it again
1537 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1538
1539 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1540
1541 return res
1542 end
1543
1544 redef fun can_resolve_for(mtype, anchor, mmodule)
1545 do
1546 if mtype.need_anchor then
1547 assert anchor != null
1548 mtype = mtype.anchor_to(mmodule, anchor)
1549 end
1550 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1551 end
1552 end
1553
1554 # A type that decorates another type.
1555 #
1556 # The point of this class is to provide a common implementation of sevices that just forward to the original type.
1557 # Specific decorator are expected to redefine (or to extend) the default implementation as this suit them.
1558 abstract class MProxyType
1559 super MType
1560 # The base type
1561 var mtype: MType
1562
1563 redef fun model do return self.mtype.model
1564 redef fun need_anchor do return mtype.need_anchor
1565 redef fun as_nullable do return mtype.as_nullable
1566 redef fun as_notnull do return mtype.as_notnull
1567 redef fun undecorate do return mtype.undecorate
1568 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1569 do
1570 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1571 return res
1572 end
1573
1574 redef fun can_resolve_for(mtype, anchor, mmodule)
1575 do
1576 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1577 end
1578
1579 redef fun lookup_fixed(mmodule, resolved_receiver)
1580 do
1581 var t = mtype.lookup_fixed(mmodule, resolved_receiver)
1582 return t
1583 end
1584
1585 redef fun depth do return self.mtype.depth
1586
1587 redef fun length do return self.mtype.length
1588
1589 redef fun collect_mclassdefs(mmodule)
1590 do
1591 assert not self.need_anchor
1592 return self.mtype.collect_mclassdefs(mmodule)
1593 end
1594
1595 redef fun collect_mclasses(mmodule)
1596 do
1597 assert not self.need_anchor
1598 return self.mtype.collect_mclasses(mmodule)
1599 end
1600
1601 redef fun collect_mtypes(mmodule)
1602 do
1603 assert not self.need_anchor
1604 return self.mtype.collect_mtypes(mmodule)
1605 end
1606 end
1607
1608 # A type prefixed with "nullable"
1609 class MNullableType
1610 super MProxyType
1611
1612 init
1613 do
1614 self.to_s = "nullable {mtype}"
1615 end
1616
1617 redef var to_s: String is noinit
1618
1619 redef var full_name is lazy do return "nullable {mtype.full_name}"
1620
1621 redef var c_name is lazy do return "nullable__{mtype.c_name}"
1622
1623 redef fun as_nullable do return self
1624 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1625 do
1626 var res = super
1627 return res.as_nullable
1628 end
1629
1630 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable`
1631 redef fun lookup_fixed(mmodule, resolved_receiver)
1632 do
1633 var t = super
1634 if t == mtype then return self
1635 return t.as_nullable
1636 end
1637 end
1638
1639 # A non-null version of a formal type.
1640 #
1641 # When a formal type in bounded to a nullable type, this is the type of the not null version of it.
1642 class MNotNullType
1643 super MProxyType
1644
1645 redef fun to_s do return "not null {mtype}"
1646 redef var full_name is lazy do return "not null {mtype.full_name}"
1647 redef var c_name is lazy do return "notnull__{mtype.c_name}"
1648
1649 redef fun as_notnull do return self
1650
1651 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1652 do
1653 var res = super
1654 return res.as_notnull
1655 end
1656
1657 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_notnull`
1658 redef fun lookup_fixed(mmodule, resolved_receiver)
1659 do
1660 var t = super
1661 if t == mtype then return self
1662 return t.as_notnull
1663 end
1664 end
1665
1666 # The type of the only value null
1667 #
1668 # The is only one null type per model, see `MModel::null_type`.
1669 class MNullType
1670 super MType
1671 redef var model: Model
1672 redef fun to_s do return "null"
1673 redef fun full_name do return "null"
1674 redef fun c_name do return "null"
1675 redef fun as_nullable do return self
1676
1677 # Aborts on `null`
1678 redef fun as_notnull do abort # sorry...
1679 redef fun need_anchor do return false
1680 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1681 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1682
1683 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1684
1685 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1686
1687 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1688 end
1689
1690 # A signature of a method
1691 class MSignature
1692 super MType
1693
1694 # The each parameter (in order)
1695 var mparameters: Array[MParameter]
1696
1697 # The return type (null for a procedure)
1698 var return_mtype: nullable MType
1699
1700 redef fun depth
1701 do
1702 var dmax = 0
1703 var t = self.return_mtype
1704 if t != null then dmax = t.depth
1705 for p in mparameters do
1706 var d = p.mtype.depth
1707 if d > dmax then dmax = d
1708 end
1709 return dmax + 1
1710 end
1711
1712 redef fun length
1713 do
1714 var res = 1
1715 var t = self.return_mtype
1716 if t != null then res += t.length
1717 for p in mparameters do
1718 res += p.mtype.length
1719 end
1720 return res
1721 end
1722
1723 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1724 init
1725 do
1726 var vararg_rank = -1
1727 for i in [0..mparameters.length[ do
1728 var parameter = mparameters[i]
1729 if parameter.is_vararg then
1730 assert vararg_rank == -1
1731 vararg_rank = i
1732 end
1733 end
1734 self.vararg_rank = vararg_rank
1735 end
1736
1737 # The rank of the ellipsis (`...`) for vararg (starting from 0).
1738 # value is -1 if there is no vararg.
1739 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1740 var vararg_rank: Int is noinit
1741
1742 # The number or parameters
1743 fun arity: Int do return mparameters.length
1744
1745 redef fun to_s
1746 do
1747 var b = new FlatBuffer
1748 if not mparameters.is_empty then
1749 b.append("(")
1750 for i in [0..mparameters.length[ do
1751 var mparameter = mparameters[i]
1752 if i > 0 then b.append(", ")
1753 b.append(mparameter.name)
1754 b.append(": ")
1755 b.append(mparameter.mtype.to_s)
1756 if mparameter.is_vararg then
1757 b.append("...")
1758 end
1759 end
1760 b.append(")")
1761 end
1762 var ret = self.return_mtype
1763 if ret != null then
1764 b.append(": ")
1765 b.append(ret.to_s)
1766 end
1767 return b.to_s
1768 end
1769
1770 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
1771 do
1772 var params = new Array[MParameter]
1773 for p in self.mparameters do
1774 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1775 end
1776 var ret = self.return_mtype
1777 if ret != null then
1778 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1779 end
1780 var res = new MSignature(params, ret)
1781 return res
1782 end
1783 end
1784
1785 # A parameter in a signature
1786 class MParameter
1787 super MEntity
1788
1789 # The name of the parameter
1790 redef var name: String
1791
1792 # The static type of the parameter
1793 var mtype: MType
1794
1795 # Is the parameter a vararg?
1796 var is_vararg: Bool
1797
1798 redef fun to_s
1799 do
1800 if is_vararg then
1801 return "{name}: {mtype}..."
1802 else
1803 return "{name}: {mtype}"
1804 end
1805 end
1806
1807 # Returns a new parameter with the `mtype` resolved.
1808 # See `MType::resolve_for` for details.
1809 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
1810 do
1811 if not self.mtype.need_anchor then return self
1812 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1813 var res = new MParameter(self.name, newtype, self.is_vararg)
1814 return res
1815 end
1816
1817 redef fun model do return mtype.model
1818 end
1819
1820 # A service (global property) that generalize method, attribute, etc.
1821 #
1822 # `MProperty` are global to the model; it means that a `MProperty` is not bound
1823 # to a specific `MModule` nor a specific `MClass`.
1824 #
1825 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
1826 # and the other in subclasses and in refinements.
1827 #
1828 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
1829 # of any dynamic type).
1830 # For instance, a call site "x.foo" is associated to a `MProperty`.
1831 abstract class MProperty
1832 super MEntity
1833
1834 # The associated MPropDef subclass.
1835 # The two specialization hierarchy are symmetric.
1836 type MPROPDEF: MPropDef
1837
1838 # The classdef that introduce the property
1839 # While a property is not bound to a specific module, or class,
1840 # the introducing mclassdef is used for naming and visibility
1841 var intro_mclassdef: MClassDef
1842
1843 # The (short) name of the property
1844 redef var name: String
1845
1846 # The canonical name of the property.
1847 #
1848 # It is the short-`name` prefixed by the short-name of the class and the full-name of the module.
1849 # Example: "my_project::my_module::MyClass::my_method"
1850 redef var full_name is lazy do
1851 return "{intro_mclassdef.mmodule.namespace_for(visibility)}::{intro_mclassdef.mclass.name}::{name}"
1852 end
1853
1854 redef var c_name is lazy do
1855 # FIXME use `namespace_for`
1856 return "{intro_mclassdef.mmodule.c_name}__{intro_mclassdef.mclass.name.to_cmangle}__{name.to_cmangle}"
1857 end
1858
1859 # The visibility of the property
1860 var visibility: MVisibility
1861
1862 # Is the property usable as an initializer?
1863 var is_autoinit = false is writable
1864
1865 init
1866 do
1867 intro_mclassdef.intro_mproperties.add(self)
1868 var model = intro_mclassdef.mmodule.model
1869 model.mproperties_by_name.add_one(name, self)
1870 model.mproperties.add(self)
1871 end
1872
1873 # All definitions of the property.
1874 # The first is the introduction,
1875 # The other are redefinitions (in refinements and in subclasses)
1876 var mpropdefs = new Array[MPROPDEF]
1877
1878 # The definition that introduces the property.
1879 #
1880 # Warning: such a definition may not exist in the early life of the object.
1881 # In this case, the method will abort.
1882 var intro: MPROPDEF is noinit
1883
1884 redef fun model do return intro.model
1885
1886 # Alias for `name`
1887 redef fun to_s do return name
1888
1889 # Return the most specific property definitions defined or inherited by a type.
1890 # The selection knows that refinement is stronger than specialization;
1891 # however, in case of conflict more than one property are returned.
1892 # If mtype does not know mproperty then an empty array is returned.
1893 #
1894 # If you want the really most specific property, then look at `lookup_first_definition`
1895 #
1896 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
1897 # ENSURE: `not mtype.has_mproperty(mmodule, self) == result.is_empty`
1898 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1899 do
1900 assert not mtype.need_anchor
1901 mtype = mtype.undecorate
1902
1903 var cache = self.lookup_definitions_cache[mmodule, mtype]
1904 if cache != null then return cache
1905
1906 #print "select prop {mproperty} for {mtype} in {self}"
1907 # First, select all candidates
1908 var candidates = new Array[MPROPDEF]
1909 for mpropdef in self.mpropdefs do
1910 # If the definition is not imported by the module, then skip
1911 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1912 # If the definition is not inherited by the type, then skip
1913 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1914 # Else, we keep it
1915 candidates.add(mpropdef)
1916 end
1917 # Fast track for only one candidate
1918 if candidates.length <= 1 then
1919 self.lookup_definitions_cache[mmodule, mtype] = candidates
1920 return candidates
1921 end
1922
1923 # Second, filter the most specific ones
1924 return select_most_specific(mmodule, candidates)
1925 end
1926
1927 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
1928
1929 # Return the most specific property definitions inherited by a type.
1930 # The selection knows that refinement is stronger than specialization;
1931 # however, in case of conflict more than one property are returned.
1932 # If mtype does not know mproperty then an empty array is returned.
1933 #
1934 # If you want the really most specific property, then look at `lookup_next_definition`
1935 #
1936 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
1937 # ENSURE: `not mtype.has_mproperty(mmodule, self) implies result.is_empty`
1938 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1939 do
1940 assert not mtype.need_anchor
1941 mtype = mtype.undecorate
1942
1943 # First, select all candidates
1944 var candidates = new Array[MPROPDEF]
1945 for mpropdef in self.mpropdefs do
1946 # If the definition is not imported by the module, then skip
1947 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1948 # If the definition is not inherited by the type, then skip
1949 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1950 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
1951 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
1952 # Else, we keep it
1953 candidates.add(mpropdef)
1954 end
1955 # Fast track for only one candidate
1956 if candidates.length <= 1 then return candidates
1957
1958 # Second, filter the most specific ones
1959 return select_most_specific(mmodule, candidates)
1960 end
1961
1962 # Return an array containing olny the most specific property definitions
1963 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
1964 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
1965 do
1966 var res = new Array[MPROPDEF]
1967 for pd1 in candidates do
1968 var cd1 = pd1.mclassdef
1969 var c1 = cd1.mclass
1970 var keep = true
1971 for pd2 in candidates do
1972 if pd2 == pd1 then continue # do not compare with self!
1973 var cd2 = pd2.mclassdef
1974 var c2 = cd2.mclass
1975 if c2.mclass_type == c1.mclass_type then
1976 if cd2.mmodule.in_importation < cd1.mmodule then
1977 # cd2 refines cd1; therefore we skip pd1
1978 keep = false
1979 break
1980 end
1981 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
1982 # cd2 < cd1; therefore we skip pd1
1983 keep = false
1984 break
1985 end
1986 end
1987 if keep then
1988 res.add(pd1)
1989 end
1990 end
1991 if res.is_empty then
1992 print "All lost! {candidates.join(", ")}"
1993 # FIXME: should be abort!
1994 end
1995 return res
1996 end
1997
1998 # Return the most specific definition in the linearization of `mtype`.
1999 #
2000 # If you want to know the next properties in the linearization,
2001 # look at `MPropDef::lookup_next_definition`.
2002 #
2003 # FIXME: the linearization is still unspecified
2004 #
2005 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2006 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2007 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
2008 do
2009 return lookup_all_definitions(mmodule, mtype).first
2010 end
2011
2012 # Return all definitions in a linearization order
2013 # Most specific first, most general last
2014 #
2015 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2016 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2017 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2018 do
2019 mtype = mtype.undecorate
2020
2021 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
2022 if cache != null then return cache
2023
2024 assert not mtype.need_anchor
2025 assert mtype.has_mproperty(mmodule, self)
2026
2027 #print "select prop {mproperty} for {mtype} in {self}"
2028 # First, select all candidates
2029 var candidates = new Array[MPROPDEF]
2030 for mpropdef in self.mpropdefs do
2031 # If the definition is not imported by the module, then skip
2032 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2033 # If the definition is not inherited by the type, then skip
2034 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2035 # Else, we keep it
2036 candidates.add(mpropdef)
2037 end
2038 # Fast track for only one candidate
2039 if candidates.length <= 1 then
2040 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2041 return candidates
2042 end
2043
2044 mmodule.linearize_mpropdefs(candidates)
2045 candidates = candidates.reversed
2046 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2047 return candidates
2048 end
2049
2050 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2051 end
2052
2053 # A global method
2054 class MMethod
2055 super MProperty
2056
2057 redef type MPROPDEF: MMethodDef
2058
2059 # Is the property defined at the top_level of the module?
2060 # Currently such a property are stored in `Object`
2061 var is_toplevel: Bool = false is writable
2062
2063 # Is the property a constructor?
2064 # Warning, this property can be inherited by subclasses with or without being a constructor
2065 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
2066 var is_init: Bool = false is writable
2067
2068 # The constructor is a (the) root init with empty signature but a set of initializers
2069 var is_root_init: Bool = false is writable
2070
2071 # Is the property a 'new' constructor?
2072 var is_new: Bool = false is writable
2073
2074 # Is the property a legal constructor for a given class?
2075 # As usual, visibility is not considered.
2076 # FIXME not implemented
2077 fun is_init_for(mclass: MClass): Bool
2078 do
2079 return self.is_init
2080 end
2081 end
2082
2083 # A global attribute
2084 class MAttribute
2085 super MProperty
2086
2087 redef type MPROPDEF: MAttributeDef
2088
2089 end
2090
2091 # A global virtual type
2092 class MVirtualTypeProp
2093 super MProperty
2094
2095 redef type MPROPDEF: MVirtualTypeDef
2096
2097 # The formal type associated to the virtual type property
2098 var mvirtualtype = new MVirtualType(self)
2099 end
2100
2101 # A definition of a property (local property)
2102 #
2103 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
2104 # specific class definition (which belong to a specific module)
2105 abstract class MPropDef
2106 super MEntity
2107
2108 # The associated `MProperty` subclass.
2109 # the two specialization hierarchy are symmetric
2110 type MPROPERTY: MProperty
2111
2112 # Self class
2113 type MPROPDEF: MPropDef
2114
2115 # The class definition where the property definition is
2116 var mclassdef: MClassDef
2117
2118 # The associated global property
2119 var mproperty: MPROPERTY
2120
2121 # The origin of the definition
2122 var location: Location
2123
2124 init
2125 do
2126 mclassdef.mpropdefs.add(self)
2127 mproperty.mpropdefs.add(self)
2128 if mproperty.intro_mclassdef == mclassdef then
2129 assert not isset mproperty._intro
2130 mproperty.intro = self
2131 end
2132 self.to_s = "{mclassdef}#{mproperty}"
2133 end
2134
2135 # Actually the name of the `mproperty`
2136 redef fun name do return mproperty.name
2137
2138 # The full-name of mpropdefs combine the information about the `classdef` and the `mproperty`.
2139 #
2140 # Therefore the combination of identifiers is awful,
2141 # the worst case being
2142 #
2143 # * a property "p::m::A::x"
2144 # * redefined in a refinement of a class "q::n::B"
2145 # * in a module "r::o"
2146 # * so "r::o#q::n::B#p::m::A::x"
2147 #
2148 # Fortunately, the full-name is simplified when entities are repeated.
2149 # For the previous case, the simplest form is "p#A#x".
2150 redef var full_name is lazy do
2151 var res = new FlatBuffer
2152
2153 # The first part is the mclassdef. Worst case is "r::o#q::n::B"
2154 res.append mclassdef.full_name
2155
2156 res.append "#"
2157
2158 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2159 # intro are unambiguous in a class
2160 res.append name
2161 else
2162 # Just try to simplify each part
2163 if mclassdef.mmodule.mproject != mproperty.intro_mclassdef.mmodule.mproject then
2164 # precise "p::m" only if "p" != "r"
2165 res.append mproperty.intro_mclassdef.mmodule.full_name
2166 res.append "::"
2167 else if mproperty.visibility <= private_visibility then
2168 # Same project ("p"=="q"), but private visibility,
2169 # does the module part ("::m") need to be displayed
2170 if mclassdef.mmodule.namespace_for(mclassdef.mclass.visibility) != mproperty.intro_mclassdef.mmodule.mproject then
2171 res.append "::"
2172 res.append mproperty.intro_mclassdef.mmodule.name
2173 res.append "::"
2174 end
2175 end
2176 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2177 # precise "B" only if not the same class than "A"
2178 res.append mproperty.intro_mclassdef.name
2179 res.append "::"
2180 end
2181 # Always use the property name "x"
2182 res.append mproperty.name
2183 end
2184 return res.to_s
2185 end
2186
2187 redef var c_name is lazy do
2188 var res = new FlatBuffer
2189 res.append mclassdef.c_name
2190 res.append "___"
2191 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2192 res.append name.to_cmangle
2193 else
2194 if mclassdef.mmodule != mproperty.intro_mclassdef.mmodule then
2195 res.append mproperty.intro_mclassdef.mmodule.c_name
2196 res.append "__"
2197 end
2198 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2199 res.append mproperty.intro_mclassdef.name.to_cmangle
2200 res.append "__"
2201 end
2202 res.append mproperty.name.to_cmangle
2203 end
2204 return res.to_s
2205 end
2206
2207 redef fun model do return mclassdef.model
2208
2209 # Internal name combining the module, the class and the property
2210 # Example: "mymodule#MyClass#mymethod"
2211 redef var to_s: String is noinit
2212
2213 # Is self the definition that introduce the property?
2214 fun is_intro: Bool do return mproperty.intro == self
2215
2216 # Return the next definition in linearization of `mtype`.
2217 #
2218 # This method is used to determine what method is called by a super.
2219 #
2220 # REQUIRE: `not mtype.need_anchor`
2221 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
2222 do
2223 assert not mtype.need_anchor
2224
2225 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
2226 var i = mpropdefs.iterator
2227 while i.is_ok and i.item != self do i.next
2228 assert has_property: i.is_ok
2229 i.next
2230 assert has_next_property: i.is_ok
2231 return i.item
2232 end
2233 end
2234
2235 # A local definition of a method
2236 class MMethodDef
2237 super MPropDef
2238
2239 redef type MPROPERTY: MMethod
2240 redef type MPROPDEF: MMethodDef
2241
2242 # The signature attached to the property definition
2243 var msignature: nullable MSignature = null is writable
2244
2245 # The signature attached to the `new` call on a root-init
2246 # This is a concatenation of the signatures of the initializers
2247 #
2248 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2249 var new_msignature: nullable MSignature = null is writable
2250
2251 # List of initialisers to call in root-inits
2252 #
2253 # They could be setters or attributes
2254 #
2255 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2256 var initializers = new Array[MProperty]
2257
2258 # Is the method definition abstract?
2259 var is_abstract: Bool = false is writable
2260
2261 # Is the method definition intern?
2262 var is_intern = false is writable
2263
2264 # Is the method definition extern?
2265 var is_extern = false is writable
2266
2267 # An optional constant value returned in functions.
2268 #
2269 # Only some specific primitife value are accepted by engines.
2270 # Is used when there is no better implementation available.
2271 #
2272 # Currently used only for the implementation of the `--define`
2273 # command-line option.
2274 # SEE: module `mixin`.
2275 var constant_value: nullable Object = null is writable
2276 end
2277
2278 # A local definition of an attribute
2279 class MAttributeDef
2280 super MPropDef
2281
2282 redef type MPROPERTY: MAttribute
2283 redef type MPROPDEF: MAttributeDef
2284
2285 # The static type of the attribute
2286 var static_mtype: nullable MType = null is writable
2287 end
2288
2289 # A local definition of a virtual type
2290 class MVirtualTypeDef
2291 super MPropDef
2292
2293 redef type MPROPERTY: MVirtualTypeProp
2294 redef type MPROPDEF: MVirtualTypeDef
2295
2296 # The bound of the virtual type
2297 var bound: nullable MType = null is writable
2298
2299 # Is the bound fixed?
2300 var is_fixed = false is writable
2301 end
2302
2303 # A kind of class.
2304 #
2305 # * `abstract_kind`
2306 # * `concrete_kind`
2307 # * `interface_kind`
2308 # * `enum_kind`
2309 # * `extern_kind`
2310 #
2311 # Note this class is basically an enum.
2312 # FIXME: use a real enum once user-defined enums are available
2313 class MClassKind
2314 redef var to_s: String
2315
2316 # Is a constructor required?
2317 var need_init: Bool
2318
2319 # TODO: private init because enumeration.
2320
2321 # Can a class of kind `self` specializes a class of kine `other`?
2322 fun can_specialize(other: MClassKind): Bool
2323 do
2324 if other == interface_kind then return true # everybody can specialize interfaces
2325 if self == interface_kind or self == enum_kind then
2326 # no other case for interfaces
2327 return false
2328 else if self == extern_kind then
2329 # only compatible with themselves
2330 return self == other
2331 else if other == enum_kind or other == extern_kind then
2332 # abstract_kind and concrete_kind are incompatible
2333 return false
2334 end
2335 # remain only abstract_kind and concrete_kind
2336 return true
2337 end
2338 end
2339
2340 # The class kind `abstract`
2341 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", true)
2342 # The class kind `concrete`
2343 fun concrete_kind: MClassKind do return once new MClassKind("class", true)
2344 # The class kind `interface`
2345 fun interface_kind: MClassKind do return once new MClassKind("interface", false)
2346 # The class kind `enum`
2347 fun enum_kind: MClassKind do return once new MClassKind("enum", false)
2348 # The class kind `extern`
2349 fun extern_kind: MClassKind do return once new MClassKind("extern class", false)