model: make autoinit the main construction mechanism
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class Model
34 # All known classes
35 var mclasses = new Array[MClass]
36
37 # All known properties
38 var mproperties = new Array[MProperty]
39
40 # Hierarchy of class definition.
41 #
42 # Each classdef is associated with its super-classdefs in regard to
43 # its module of definition.
44 var mclassdef_hierarchy = new POSet[MClassDef]
45
46 # Class-type hierarchy restricted to the introduction.
47 #
48 # The idea is that what is true on introduction is always true whatever
49 # the module considered.
50 # Therefore, this hierarchy is used for a fast positive subtype check.
51 #
52 # This poset will evolve in a monotonous way:
53 # * Two non connected nodes will remain unconnected
54 # * New nodes can appear with new edges
55 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
56
57 # Global overlapped class-type hierarchy.
58 # The hierarchy when all modules are combined.
59 # Therefore, this hierarchy is used for a fast negative subtype check.
60 #
61 # This poset will evolve in an anarchic way. Loops can even be created.
62 #
63 # FIXME decide what to do on loops
64 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
65
66 # Collections of classes grouped by their short name
67 private var mclasses_by_name = new MultiHashMap[String, MClass]
68
69 # Return all class named `name`.
70 #
71 # If such a class does not exist, null is returned
72 # (instead of an empty array)
73 #
74 # Visibility or modules are not considered
75 fun get_mclasses_by_name(name: String): nullable Array[MClass]
76 do
77 return mclasses_by_name.get_or_null(name)
78 end
79
80 # Collections of properties grouped by their short name
81 private var mproperties_by_name = new MultiHashMap[String, MProperty]
82
83 # Return all properties named `name`.
84 #
85 # If such a property does not exist, null is returned
86 # (instead of an empty array)
87 #
88 # Visibility or modules are not considered
89 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
90 do
91 return mproperties_by_name.get_or_null(name)
92 end
93
94 # The only null type
95 var null_type = new MNullType(self)
96
97 # Build an ordered tree with from `concerns`
98 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
99 var seen = new HashSet[MConcern]
100 var res = new ConcernsTree
101
102 var todo = new Array[MConcern]
103 todo.add_all mconcerns
104
105 while not todo.is_empty do
106 var c = todo.pop
107 if seen.has(c) then continue
108 var pc = c.parent_concern
109 if pc == null then
110 res.add(null, c)
111 else
112 res.add(pc, c)
113 todo.add(pc)
114 end
115 seen.add(c)
116 end
117
118 return res
119 end
120 end
121
122 # An OrderedTree bound to MEntity.
123 #
124 # We introduce a new class so it can be easily refined by tools working
125 # with a Model.
126 class MEntityTree
127 super OrderedTree[MEntity]
128 end
129
130 # A MEntityTree borned to MConcern.
131 #
132 # TODO remove when nitdoc is fully merged with model_collect
133 class ConcernsTree
134 super OrderedTree[MConcern]
135 end
136
137 redef class MModule
138 # All the classes introduced in the module
139 var intro_mclasses = new Array[MClass]
140
141 # All the class definitions of the module
142 # (introduction and refinement)
143 var mclassdefs = new Array[MClassDef]
144
145 # Does the current module has a given class `mclass`?
146 # Return true if the mmodule introduces, refines or imports a class.
147 # Visibility is not considered.
148 fun has_mclass(mclass: MClass): Bool
149 do
150 return self.in_importation <= mclass.intro_mmodule
151 end
152
153 # Full hierarchy of introduced ans imported classes.
154 #
155 # Create a new hierarchy got by flattening the classes for the module
156 # and its imported modules.
157 # Visibility is not considered.
158 #
159 # Note: this function is expensive and is usually used for the main
160 # module of a program only. Do not use it to do you own subtype
161 # functions.
162 fun flatten_mclass_hierarchy: POSet[MClass]
163 do
164 var res = self.flatten_mclass_hierarchy_cache
165 if res != null then return res
166 res = new POSet[MClass]
167 for m in self.in_importation.greaters do
168 for cd in m.mclassdefs do
169 var c = cd.mclass
170 res.add_node(c)
171 for s in cd.supertypes do
172 res.add_edge(c, s.mclass)
173 end
174 end
175 end
176 self.flatten_mclass_hierarchy_cache = res
177 return res
178 end
179
180 # Sort a given array of classes using the linearization order of the module
181 # The most general is first, the most specific is last
182 fun linearize_mclasses(mclasses: Array[MClass])
183 do
184 self.flatten_mclass_hierarchy.sort(mclasses)
185 end
186
187 # Sort a given array of class definitions using the linearization order of the module
188 # the refinement link is stronger than the specialisation link
189 # The most general is first, the most specific is last
190 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
191 do
192 var sorter = new MClassDefSorter(self)
193 sorter.sort(mclassdefs)
194 end
195
196 # Sort a given array of property definitions using the linearization order of the module
197 # the refinement link is stronger than the specialisation link
198 # The most general is first, the most specific is last
199 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
200 do
201 var sorter = new MPropDefSorter(self)
202 sorter.sort(mpropdefs)
203 end
204
205 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
206
207 # The primitive type `Object`, the root of the class hierarchy
208 var object_type: MClassType = self.get_primitive_class("Object").mclass_type is lazy
209
210 # The type `Pointer`, super class to all extern classes
211 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
212
213 # The primitive type `Bool`
214 var bool_type: MClassType = self.get_primitive_class("Bool").mclass_type is lazy
215
216 # The primitive type `Int`
217 var int_type: MClassType = self.get_primitive_class("Int").mclass_type is lazy
218
219 # The primitive type `Byte`
220 var byte_type: MClassType = self.get_primitive_class("Byte").mclass_type is lazy
221
222 # The primitive type `Int8`
223 var int8_type: MClassType = self.get_primitive_class("Int8").mclass_type is lazy
224
225 # The primitive type `Int16`
226 var int16_type: MClassType = self.get_primitive_class("Int16").mclass_type is lazy
227
228 # The primitive type `UInt16`
229 var uint16_type: MClassType = self.get_primitive_class("UInt16").mclass_type is lazy
230
231 # The primitive type `Int32`
232 var int32_type: MClassType = self.get_primitive_class("Int32").mclass_type is lazy
233
234 # The primitive type `UInt32`
235 var uint32_type: MClassType = self.get_primitive_class("UInt32").mclass_type is lazy
236
237 # The primitive type `Char`
238 var char_type: MClassType = self.get_primitive_class("Char").mclass_type is lazy
239
240 # The primitive type `Float`
241 var float_type: MClassType = self.get_primitive_class("Float").mclass_type is lazy
242
243 # The primitive type `String`
244 var string_type: MClassType = self.get_primitive_class("String").mclass_type is lazy
245
246 # The primitive type `NativeString`
247 var native_string_type: MClassType = self.get_primitive_class("NativeString").mclass_type is lazy
248
249 # A primitive type of `Array`
250 fun array_type(elt_type: MType): MClassType do return array_class.get_mtype([elt_type])
251
252 # The primitive class `Array`
253 var array_class: MClass = self.get_primitive_class("Array") is lazy
254
255 # A primitive type of `NativeArray`
256 fun native_array_type(elt_type: MType): MClassType do return native_array_class.get_mtype([elt_type])
257
258 # The primitive class `NativeArray`
259 var native_array_class: MClass = self.get_primitive_class("NativeArray") is lazy
260
261 # The primitive type `Sys`, the main type of the program, if any
262 fun sys_type: nullable MClassType
263 do
264 var clas = self.model.get_mclasses_by_name("Sys")
265 if clas == null then return null
266 return get_primitive_class("Sys").mclass_type
267 end
268
269 # The primitive type `Finalizable`
270 # Used to tag classes that need to be finalized.
271 fun finalizable_type: nullable MClassType
272 do
273 var clas = self.model.get_mclasses_by_name("Finalizable")
274 if clas == null then return null
275 return get_primitive_class("Finalizable").mclass_type
276 end
277
278 # Force to get the primitive class named `name` or abort
279 fun get_primitive_class(name: String): MClass
280 do
281 var cla = self.model.get_mclasses_by_name(name)
282 # Filter classes by introducing module
283 if cla != null then cla = [for c in cla do if self.in_importation <= c.intro_mmodule then c]
284 if cla == null or cla.is_empty then
285 if name == "Bool" and self.model.get_mclasses_by_name("Object") != null then
286 # Bool is injected because it is needed by engine to code the result
287 # of the implicit casts.
288 var c = new MClass(self, name, null, enum_kind, public_visibility)
289 var cladef = new MClassDef(self, c.mclass_type, new Location(null, 0,0,0,0))
290 cladef.set_supertypes([object_type])
291 cladef.add_in_hierarchy
292 return c
293 end
294 print("Fatal Error: no primitive class {name} in {self}")
295 exit(1)
296 abort
297 end
298 if cla.length != 1 then
299 var msg = "Fatal Error: more than one primitive class {name} in {self}:"
300 for c in cla do msg += " {c.full_name}"
301 print msg
302 #exit(1)
303 end
304 return cla.first
305 end
306
307 # Try to get the primitive method named `name` on the type `recv`
308 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
309 do
310 var props = self.model.get_mproperties_by_name(name)
311 if props == null then return null
312 var res: nullable MMethod = null
313 var recvtype = recv.intro.bound_mtype
314 for mprop in props do
315 assert mprop isa MMethod
316 if not recvtype.has_mproperty(self, mprop) then continue
317 if res == null then
318 res = mprop
319 else if res != mprop then
320 print("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
321 abort
322 end
323 end
324 return res
325 end
326 end
327
328 private class MClassDefSorter
329 super Comparator
330 redef type COMPARED: MClassDef
331 var mmodule: MModule
332 redef fun compare(a, b)
333 do
334 var ca = a.mclass
335 var cb = b.mclass
336 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
337 return mmodule.model.mclassdef_hierarchy.compare(a, b)
338 end
339 end
340
341 private class MPropDefSorter
342 super Comparator
343 redef type COMPARED: MPropDef
344 var mmodule: MModule
345 redef fun compare(pa, pb)
346 do
347 var a = pa.mclassdef
348 var b = pb.mclassdef
349 var ca = a.mclass
350 var cb = b.mclass
351 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
352 return mmodule.model.mclassdef_hierarchy.compare(a, b)
353 end
354 end
355
356 # A named class
357 #
358 # `MClass` are global to the model; it means that a `MClass` is not bound to a
359 # specific `MModule`.
360 #
361 # This characteristic helps the reasoning about classes in a program since a
362 # single `MClass` object always denote the same class.
363 #
364 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
365 # These do not really have properties nor belong to a hierarchy since the property and the
366 # hierarchy of a class depends of the refinement in the modules.
367 #
368 # Most services on classes require the precision of a module, and no one can asks what are
369 # the super-classes of a class nor what are properties of a class without precising what is
370 # the module considered.
371 #
372 # For instance, during the typing of a source-file, the module considered is the module of the file.
373 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
374 # *is the method `foo` exists in the class `Bar` in the current module?*
375 #
376 # During some global analysis, the module considered may be the main module of the program.
377 class MClass
378 super MEntity
379
380 # The module that introduce the class
381 # While classes are not bound to a specific module,
382 # the introducing module is used for naming an visibility
383 var intro_mmodule: MModule
384
385 # The short name of the class
386 # In Nit, the name of a class cannot evolve in refinements
387 redef var name
388
389 # The canonical name of the class
390 #
391 # It is the name of the class prefixed by the full_name of the `intro_mmodule`
392 # Example: `"owner::module::MyClass"`
393 redef var full_name is lazy do
394 return "{self.intro_mmodule.namespace_for(visibility)}::{name}"
395 end
396
397 redef var c_name is lazy do
398 return "{intro_mmodule.c_namespace_for(visibility)}__{name.to_cmangle}"
399 end
400
401 # The number of generic formal parameters
402 # 0 if the class is not generic
403 var arity: Int is noinit
404
405 # Each generic formal parameters in order.
406 # is empty if the class is not generic
407 var mparameters = new Array[MParameterType]
408
409 # A string version of the signature a generic class.
410 #
411 # eg. `Map[K: nullable Object, V: nullable Object]`
412 #
413 # If the class in non generic the name is just given.
414 #
415 # eg. `Object`
416 fun signature_to_s: String
417 do
418 if arity == 0 then return name
419 var res = new FlatBuffer
420 res.append name
421 res.append "["
422 for i in [0..arity[ do
423 if i > 0 then res.append ", "
424 res.append mparameters[i].name
425 res.append ": "
426 res.append intro.bound_mtype.arguments[i].to_s
427 end
428 res.append "]"
429 return res.to_s
430 end
431
432 # Initialize `mparameters` from their names.
433 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
434 autoinit
435 do
436 if parameter_names == null then
437 self.arity = 0
438 else
439 self.arity = parameter_names.length
440 end
441
442 # Create the formal parameter types
443 if arity > 0 then
444 assert parameter_names != null
445 var mparametertypes = new Array[MParameterType]
446 for i in [0..arity[ do
447 var mparametertype = new MParameterType(self, i, parameter_names[i])
448 mparametertypes.add(mparametertype)
449 end
450 self.mparameters = mparametertypes
451 var mclass_type = new MGenericType(self, mparametertypes)
452 self.mclass_type = mclass_type
453 self.get_mtype_cache[mparametertypes] = mclass_type
454 else
455 self.mclass_type = new MClassType(self)
456 end
457 end
458
459 # The kind of the class (interface, abstract class, etc.)
460 # In Nit, the kind of a class cannot evolve in refinements
461 var kind: MClassKind
462
463 # The visibility of the class
464 # In Nit, the visibility of a class cannot evolve in refinements
465 var visibility: MVisibility
466
467 init
468 do
469 intro_mmodule.intro_mclasses.add(self)
470 var model = intro_mmodule.model
471 model.mclasses_by_name.add_one(name, self)
472 model.mclasses.add(self)
473 end
474
475 redef fun model do return intro_mmodule.model
476
477 # All class definitions (introduction and refinements)
478 var mclassdefs = new Array[MClassDef]
479
480 # Alias for `name`
481 redef fun to_s do return self.name
482
483 # The definition that introduces the class.
484 #
485 # Warning: such a definition may not exist in the early life of the object.
486 # In this case, the method will abort.
487 #
488 # Use `try_intro` instead
489 var intro: MClassDef is noinit
490
491 # The definition that introduces the class or null if not yet known.
492 #
493 # See `intro`
494 fun try_intro: nullable MClassDef do
495 if isset _intro then return _intro else return null
496 end
497
498 # Return the class `self` in the class hierarchy of the module `mmodule`.
499 #
500 # SEE: `MModule::flatten_mclass_hierarchy`
501 # REQUIRE: `mmodule.has_mclass(self)`
502 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
503 do
504 return mmodule.flatten_mclass_hierarchy[self]
505 end
506
507 # The principal static type of the class.
508 #
509 # For non-generic class, mclass_type is the only `MClassType` based
510 # on self.
511 #
512 # For a generic class, the arguments are the formal parameters.
513 # i.e.: for the class Array[E:Object], the `mclass_type` is Array[E].
514 # If you want Array[Object] the see `MClassDef::bound_mtype`
515 #
516 # For generic classes, the mclass_type is also the way to get a formal
517 # generic parameter type.
518 #
519 # To get other types based on a generic class, see `get_mtype`.
520 #
521 # ENSURE: `mclass_type.mclass == self`
522 var mclass_type: MClassType is noinit
523
524 # Return a generic type based on the class
525 # Is the class is not generic, then the result is `mclass_type`
526 #
527 # REQUIRE: `mtype_arguments.length == self.arity`
528 fun get_mtype(mtype_arguments: Array[MType]): MClassType
529 do
530 assert mtype_arguments.length == self.arity
531 if self.arity == 0 then return self.mclass_type
532 var res = get_mtype_cache.get_or_null(mtype_arguments)
533 if res != null then return res
534 res = new MGenericType(self, mtype_arguments)
535 self.get_mtype_cache[mtype_arguments.to_a] = res
536 return res
537 end
538
539 private var get_mtype_cache = new HashMap[Array[MType], MGenericType]
540
541 # Is there a `new` factory to allow the pseudo instantiation?
542 var has_new_factory = false is writable
543
544 # Is `self` a standard or abstract class kind?
545 var is_class: Bool is lazy do return kind == concrete_kind or kind == abstract_kind
546
547 # Is `self` an interface kind?
548 var is_interface: Bool is lazy do return kind == interface_kind
549
550 # Is `self` an enum kind?
551 var is_enum: Bool is lazy do return kind == enum_kind
552
553 # Is `self` and abstract class?
554 var is_abstract: Bool is lazy do return kind == abstract_kind
555 end
556
557
558 # A definition (an introduction or a refinement) of a class in a module
559 #
560 # A `MClassDef` is associated with an explicit (or almost) definition of a
561 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
562 # a specific class and a specific module, and contains declarations like super-classes
563 # or properties.
564 #
565 # It is the class definitions that are the backbone of most things in the model:
566 # ClassDefs are defined with regard with other classdefs.
567 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
568 #
569 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
570 class MClassDef
571 super MEntity
572
573 # The module where the definition is
574 var mmodule: MModule
575
576 # The associated `MClass`
577 var mclass: MClass is noinit
578
579 # The bounded type associated to the mclassdef
580 #
581 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
582 # are the same type.
583 #
584 # Example:
585 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
586 # If you want Array[E], then see `mclass.mclass_type`
587 #
588 # ENSURE: `bound_mtype.mclass == self.mclass`
589 var bound_mtype: MClassType
590
591 # The origin of the definition
592 var location: Location
593
594 # Internal name combining the module and the class
595 # Example: "mymodule#MyClass"
596 redef var to_s is noinit
597
598 init
599 do
600 self.mclass = bound_mtype.mclass
601 mmodule.mclassdefs.add(self)
602 mclass.mclassdefs.add(self)
603 if mclass.intro_mmodule == mmodule then
604 assert not isset mclass._intro
605 mclass.intro = self
606 end
607 self.to_s = "{mmodule}#{mclass}"
608 end
609
610 # Actually the name of the `mclass`
611 redef fun name do return mclass.name
612
613 # The module and class name separated by a '#'.
614 #
615 # The short-name of the class is used for introduction.
616 # Example: "my_module#MyClass"
617 #
618 # The full-name of the class is used for refinement.
619 # Example: "my_module#intro_module::MyClass"
620 redef var full_name is lazy do
621 if is_intro then
622 # public gives 'p#A'
623 # private gives 'p::m#A'
624 return "{mmodule.namespace_for(mclass.visibility)}#{mclass.name}"
625 else if mclass.intro_mmodule.mpackage != mmodule.mpackage then
626 # public gives 'q::n#p::A'
627 # private gives 'q::n#p::m::A'
628 return "{mmodule.full_name}#{mclass.full_name}"
629 else if mclass.visibility > private_visibility then
630 # public gives 'p::n#A'
631 return "{mmodule.full_name}#{mclass.name}"
632 else
633 # private gives 'p::n#::m::A' (redundant p is omitted)
634 return "{mmodule.full_name}#::{mclass.intro_mmodule.name}::{mclass.name}"
635 end
636 end
637
638 redef var c_name is lazy do
639 if is_intro then
640 return "{mmodule.c_namespace_for(mclass.visibility)}___{mclass.c_name}"
641 else if mclass.intro_mmodule.mpackage == mmodule.mpackage and mclass.visibility > private_visibility then
642 return "{mmodule.c_name}___{mclass.name.to_cmangle}"
643 else
644 return "{mmodule.c_name}___{mclass.c_name}"
645 end
646 end
647
648 redef fun model do return mmodule.model
649
650 # All declared super-types
651 # FIXME: quite ugly but not better idea yet
652 var supertypes = new Array[MClassType]
653
654 # Register some super-types for the class (ie "super SomeType")
655 #
656 # The hierarchy must not already be set
657 # REQUIRE: `self.in_hierarchy == null`
658 fun set_supertypes(supertypes: Array[MClassType])
659 do
660 assert unique_invocation: self.in_hierarchy == null
661 var mmodule = self.mmodule
662 var model = mmodule.model
663 var mtype = self.bound_mtype
664
665 for supertype in supertypes do
666 self.supertypes.add(supertype)
667
668 # Register in full_type_specialization_hierarchy
669 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
670 # Register in intro_type_specialization_hierarchy
671 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
672 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
673 end
674 end
675
676 end
677
678 # Collect the super-types (set by set_supertypes) to build the hierarchy
679 #
680 # This function can only invoked once by class
681 # REQUIRE: `self.in_hierarchy == null`
682 # ENSURE: `self.in_hierarchy != null`
683 fun add_in_hierarchy
684 do
685 assert unique_invocation: self.in_hierarchy == null
686 var model = mmodule.model
687 var res = model.mclassdef_hierarchy.add_node(self)
688 self.in_hierarchy = res
689 var mtype = self.bound_mtype
690
691 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
692 # The simpliest way is to attach it to collect_mclassdefs
693 for mclassdef in mtype.collect_mclassdefs(mmodule) do
694 res.poset.add_edge(self, mclassdef)
695 end
696 end
697
698 # The view of the class definition in `mclassdef_hierarchy`
699 var in_hierarchy: nullable POSetElement[MClassDef] = null
700
701 # Is the definition the one that introduced `mclass`?
702 fun is_intro: Bool do return isset mclass._intro and mclass.intro == self
703
704 # All properties introduced by the classdef
705 var intro_mproperties = new Array[MProperty]
706
707 # All property definitions in the class (introductions and redefinitions)
708 var mpropdefs = new Array[MPropDef]
709
710 # The special autoinit constructor
711 var auto_init: nullable MMethodDef = null is writable
712 end
713
714 # A global static type
715 #
716 # MType are global to the model; it means that a `MType` is not bound to a
717 # specific `MModule`.
718 # This characteristic helps the reasoning about static types in a program
719 # since a single `MType` object always denote the same type.
720 #
721 # However, because a `MType` is global, it does not really have properties
722 # nor have subtypes to a hierarchy since the property and the class hierarchy
723 # depends of a module.
724 # Moreover, virtual types an formal generic parameter types also depends on
725 # a receiver to have sense.
726 #
727 # Therefore, most method of the types require a module and an anchor.
728 # The module is used to know what are the classes and the specialization
729 # links.
730 # The anchor is used to know what is the bound of the virtual types and formal
731 # generic parameter types.
732 #
733 # MType are not directly usable to get properties. See the `anchor_to` method
734 # and the `MClassType` class.
735 #
736 # FIXME: the order of the parameters is not the best. We mus pick on from:
737 # * foo(mmodule, anchor, othertype)
738 # * foo(othertype, anchor, mmodule)
739 # * foo(anchor, mmodule, othertype)
740 # * foo(othertype, mmodule, anchor)
741 abstract class MType
742 super MEntity
743
744 redef fun name do return to_s
745
746 # Return true if `self` is an subtype of `sup`.
747 # The typing is done using the standard typing policy of Nit.
748 #
749 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
750 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
751 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
752 do
753 var sub = self
754 if sub == sup then return true
755
756 #print "1.is {sub} a {sup}? ===="
757
758 if anchor == null then
759 assert not sub.need_anchor
760 assert not sup.need_anchor
761 else
762 # First, resolve the formal types to the simplest equivalent forms in the receiver
763 assert sub.can_resolve_for(anchor, null, mmodule)
764 sub = sub.lookup_fixed(mmodule, anchor)
765 assert sup.can_resolve_for(anchor, null, mmodule)
766 sup = sup.lookup_fixed(mmodule, anchor)
767 end
768
769 # Does `sup` accept null or not?
770 # Discard the nullable marker if it exists
771 var sup_accept_null = false
772 if sup isa MNullableType then
773 sup_accept_null = true
774 sup = sup.mtype
775 else if sup isa MNotNullType then
776 sup = sup.mtype
777 else if sup isa MNullType then
778 sup_accept_null = true
779 end
780
781 # Can `sub` provide null or not?
782 # Thus we can match with `sup_accept_null`
783 # Also discard the nullable marker if it exists
784 var sub_reject_null = false
785 if sub isa MNullableType then
786 if not sup_accept_null then return false
787 sub = sub.mtype
788 else if sub isa MNotNullType then
789 sub_reject_null = true
790 sub = sub.mtype
791 else if sub isa MNullType then
792 return sup_accept_null
793 end
794 # Now the case of direct null and nullable is over.
795
796 # If `sub` is a formal type, then it is accepted if its bound is accepted
797 while sub isa MFormalType do
798 #print "3.is {sub} a {sup}?"
799
800 # A unfixed formal type can only accept itself
801 if sub == sup then return true
802
803 assert anchor != null
804 sub = sub.lookup_bound(mmodule, anchor)
805 if sub_reject_null then sub = sub.as_notnull
806
807 #print "3.is {sub} a {sup}?"
808
809 # Manage the second layer of null/nullable
810 if sub isa MNullableType then
811 if not sup_accept_null and not sub_reject_null then return false
812 sub = sub.mtype
813 else if sub isa MNotNullType then
814 sub_reject_null = true
815 sub = sub.mtype
816 else if sub isa MNullType then
817 return sup_accept_null
818 end
819 end
820 #print "4.is {sub} a {sup}? <- no more resolution"
821
822 if sub isa MBottomType then
823 return true
824 end
825
826 assert sub isa MClassType else print "{sub} <? {sub}" # It is the only remaining type
827
828 # Handle sup-type when the sub-type is class-based (other cases must have be identified before).
829 if sup isa MFormalType or sup isa MNullType or sup isa MBottomType then
830 # These types are not super-types of Class-based types.
831 return false
832 end
833
834 assert sup isa MClassType else print "got {sup} {sub.inspect}" # It is the only remaining type
835
836 # Now both are MClassType, we need to dig
837
838 if sub == sup then return true
839
840 if anchor == null then anchor = sub # UGLY: any anchor will work
841 var resolved_sub = sub.anchor_to(mmodule, anchor)
842 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
843 if res == false then return false
844 if not sup isa MGenericType then return true
845 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
846 assert sub2.mclass == sup.mclass
847 for i in [0..sup.mclass.arity[ do
848 var sub_arg = sub2.arguments[i]
849 var sup_arg = sup.arguments[i]
850 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
851 if res == false then return false
852 end
853 return true
854 end
855
856 # The base class type on which self is based
857 #
858 # This base type is used to get property (an internally to perform
859 # unsafe type comparison).
860 #
861 # Beware: some types (like null) are not based on a class thus this
862 # method will crash
863 #
864 # Basically, this function transform the virtual types and parameter
865 # types to their bounds.
866 #
867 # Example
868 #
869 # class A end
870 # class B super A end
871 # class X end
872 # class Y super X end
873 # class G[T: A]
874 # type U: X
875 # end
876 # class H
877 # super G[B]
878 # redef type U: Y
879 # end
880 #
881 # Map[T,U] anchor_to H #-> Map[B,Y]
882 #
883 # Explanation of the example:
884 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
885 # because "redef type U: Y". Therefore, Map[T, U] is bound to
886 # Map[B, Y]
887 #
888 # ENSURE: `not self.need_anchor implies result == self`
889 # ENSURE: `not result.need_anchor`
890 fun anchor_to(mmodule: MModule, anchor: MClassType): MType
891 do
892 if not need_anchor then return self
893 assert not anchor.need_anchor
894 # Just resolve to the anchor and clear all the virtual types
895 var res = self.resolve_for(anchor, null, mmodule, true)
896 assert not res.need_anchor
897 return res
898 end
899
900 # Does `self` contain a virtual type or a formal generic parameter type?
901 # In order to remove those types, you usually want to use `anchor_to`.
902 fun need_anchor: Bool do return true
903
904 # Return the supertype when adapted to a class.
905 #
906 # In Nit, for each super-class of a type, there is a equivalent super-type.
907 #
908 # Example:
909 #
910 # ~~~nitish
911 # class G[T, U] end
912 # class H[V] super G[V, Bool] end
913 #
914 # H[Int] supertype_to G #-> G[Int, Bool]
915 # ~~~
916 #
917 # REQUIRE: `super_mclass` is a super-class of `self`
918 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
919 # ENSURE: `result.mclass = super_mclass`
920 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
921 do
922 if super_mclass.arity == 0 then return super_mclass.mclass_type
923 if self isa MClassType and self.mclass == super_mclass then return self
924 var resolved_self
925 if self.need_anchor then
926 assert anchor != null
927 resolved_self = self.anchor_to(mmodule, anchor)
928 else
929 resolved_self = self
930 end
931 var supertypes = resolved_self.collect_mtypes(mmodule)
932 for supertype in supertypes do
933 if supertype.mclass == super_mclass then
934 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
935 return supertype.resolve_for(self, anchor, mmodule, false)
936 end
937 end
938 abort
939 end
940
941 # Replace formals generic types in self with resolved values in `mtype`
942 # If `cleanup_virtual` is true, then virtual types are also replaced
943 # with their bounds.
944 #
945 # This function returns self if `need_anchor` is false.
946 #
947 # ## Example 1
948 #
949 # ~~~
950 # class G[E] end
951 # class H[F] super G[F] end
952 # class X[Z] end
953 # ~~~
954 #
955 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
956 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
957 #
958 # Explanation of the example:
959 # * Array[E].need_anchor is true because there is a formal generic parameter type E
960 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
961 # * Since "H[F] super G[F]", E is in fact F for H
962 # * More specifically, in H[Int], E is Int
963 # * So, in H[Int], Array[E] is Array[Int]
964 #
965 # This function is mainly used to inherit a signature.
966 # Because, unlike `anchor_to`, we do not want a full resolution of
967 # a type but only an adapted version of it.
968 #
969 # ## Example 2
970 #
971 # ~~~
972 # class A[E]
973 # fun foo(e:E):E is abstract
974 # end
975 # class B super A[Int] end
976 # ~~~
977 #
978 # The signature on foo is (e: E): E
979 # If we resolve the signature for B, we get (e:Int):Int
980 #
981 # ## Example 3
982 #
983 # ~~~nitish
984 # class A[E]
985 # fun foo(e:E):E is abstract
986 # end
987 # class C[F]
988 # var a: A[Array[F]]
989 # fun bar do a.foo(x) # <- x is here
990 # end
991 # ~~~
992 #
993 # The first question is: is foo available on `a`?
994 #
995 # The static type of a is `A[Array[F]]`, that is an open type.
996 # in order to find a method `foo`, whe must look at a resolved type.
997 #
998 # A[Array[F]].anchor_to(C[nullable Object]) #-> A[Array[nullable Object]]
999 #
1000 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
1001 #
1002 # The next question is: what is the accepted types for `x`?
1003 #
1004 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
1005 #
1006 # E.resolve_for(A[Array[F]],C[nullable Object]) #-> Array[F]
1007 #
1008 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
1009 #
1010 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
1011 # two function instead of one seems also to be a bad idea.
1012 #
1013 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
1014 # ENSURE: `not self.need_anchor implies result == self`
1015 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
1016
1017 # Resolve formal type to its verbatim bound.
1018 # If the type is not formal, just return self
1019 #
1020 # The result is returned exactly as declared in the "type" property (verbatim).
1021 # So it could be another formal type.
1022 #
1023 # In case of conflicts or inconsistencies in the model, the method returns a `MBottomType`.
1024 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self
1025
1026 # Resolve the formal type to its simplest equivalent form.
1027 #
1028 # Formal types are either free or fixed.
1029 # When it is fixed, it means that it is equivalent with a simpler type.
1030 # When a formal type is free, it means that it is only equivalent with itself.
1031 # This method return the most simple equivalent type of `self`.
1032 #
1033 # This method is mainly used for subtype test in order to sanely compare fixed.
1034 #
1035 # By default, return self.
1036 # See the redefinitions for specific behavior in each kind of type.
1037 #
1038 # In case of conflicts or inconsistencies in the model, the method returns a `MBottomType`.
1039 fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self
1040
1041 # Can the type be resolved?
1042 #
1043 # In order to resolve open types, the formal types must make sence.
1044 #
1045 # ## Example
1046 #
1047 # class A[E]
1048 # end
1049 # class B[F]
1050 # end
1051 #
1052 # ~~~nitish
1053 # E.can_resolve_for(A[Int]) #-> true, E make sense in A
1054 #
1055 # E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
1056 #
1057 # B[E].can_resolve_for(A[F], B[Object]) #-> true,
1058 # # B[E] is a red hearing only the E is important,
1059 # # E make sense in A
1060 # ~~~
1061 #
1062 # REQUIRE: `anchor != null implies not anchor.need_anchor`
1063 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
1064 # ENSURE: `not self.need_anchor implies result == true`
1065 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
1066
1067 # Return the nullable version of the type
1068 # If the type is already nullable then self is returned
1069 fun as_nullable: MType
1070 do
1071 var res = self.as_nullable_cache
1072 if res != null then return res
1073 res = new MNullableType(self)
1074 self.as_nullable_cache = res
1075 return res
1076 end
1077
1078 # Remove the base type of a decorated (proxy) type.
1079 # Is the type is not decorated, then self is returned.
1080 #
1081 # Most of the time it is used to return the not nullable version of a nullable type.
1082 # In this case, this just remove the `nullable` notation, but the result can still contains null.
1083 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
1084 # If you really want to exclude the `null` value, then use `as_notnull`
1085 fun undecorate: MType
1086 do
1087 return self
1088 end
1089
1090 # Returns the not null version of the type.
1091 # That is `self` minus the `null` value.
1092 #
1093 # For most types, this return `self`.
1094 # For formal types, this returns a special `MNotNullType`
1095 fun as_notnull: MType do return self
1096
1097 private var as_nullable_cache: nullable MType = null
1098
1099
1100 # The depth of the type seen as a tree.
1101 #
1102 # * A -> 1
1103 # * G[A] -> 2
1104 # * H[A, B] -> 2
1105 # * H[G[A], B] -> 3
1106 #
1107 # Formal types have a depth of 1.
1108 fun depth: Int
1109 do
1110 return 1
1111 end
1112
1113 # The length of the type seen as a tree.
1114 #
1115 # * A -> 1
1116 # * G[A] -> 2
1117 # * H[A, B] -> 3
1118 # * H[G[A], B] -> 4
1119 #
1120 # Formal types have a length of 1.
1121 fun length: Int
1122 do
1123 return 1
1124 end
1125
1126 # Compute all the classdefs inherited/imported.
1127 # The returned set contains:
1128 # * the class definitions from `mmodule` and its imported modules
1129 # * the class definitions of this type and its super-types
1130 #
1131 # This function is used mainly internally.
1132 #
1133 # REQUIRE: `not self.need_anchor`
1134 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
1135
1136 # Compute all the super-classes.
1137 # This function is used mainly internally.
1138 #
1139 # REQUIRE: `not self.need_anchor`
1140 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
1141
1142 # Compute all the declared super-types.
1143 # Super-types are returned as declared in the classdefs (verbatim).
1144 # This function is used mainly internally.
1145 #
1146 # REQUIRE: `not self.need_anchor`
1147 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
1148
1149 # Is the property in self for a given module
1150 # This method does not filter visibility or whatever
1151 #
1152 # REQUIRE: `not self.need_anchor`
1153 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
1154 do
1155 assert not self.need_anchor
1156 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
1157 end
1158 end
1159
1160 # A type based on a class.
1161 #
1162 # `MClassType` have properties (see `has_mproperty`).
1163 class MClassType
1164 super MType
1165
1166 # The associated class
1167 var mclass: MClass
1168
1169 redef fun model do return self.mclass.intro_mmodule.model
1170
1171 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1172
1173 # The formal arguments of the type
1174 # ENSURE: `result.length == self.mclass.arity`
1175 var arguments = new Array[MType]
1176
1177 redef fun to_s do return mclass.to_s
1178
1179 redef fun full_name do return mclass.full_name
1180
1181 redef fun c_name do return mclass.c_name
1182
1183 redef fun need_anchor do return false
1184
1185 redef fun anchor_to(mmodule: MModule, anchor: MClassType): MClassType
1186 do
1187 return super.as(MClassType)
1188 end
1189
1190 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1191
1192 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1193
1194 redef fun collect_mclassdefs(mmodule)
1195 do
1196 assert not self.need_anchor
1197 var cache = self.collect_mclassdefs_cache
1198 if not cache.has_key(mmodule) then
1199 self.collect_things(mmodule)
1200 end
1201 return cache[mmodule]
1202 end
1203
1204 redef fun collect_mclasses(mmodule)
1205 do
1206 if collect_mclasses_last_module == mmodule then return collect_mclasses_last_module_cache
1207 assert not self.need_anchor
1208 var cache = self.collect_mclasses_cache
1209 if not cache.has_key(mmodule) then
1210 self.collect_things(mmodule)
1211 end
1212 var res = cache[mmodule]
1213 collect_mclasses_last_module = mmodule
1214 collect_mclasses_last_module_cache = res
1215 return res
1216 end
1217
1218 private var collect_mclasses_last_module: nullable MModule = null
1219 private var collect_mclasses_last_module_cache: Set[MClass] is noinit
1220
1221 redef fun collect_mtypes(mmodule)
1222 do
1223 assert not self.need_anchor
1224 var cache = self.collect_mtypes_cache
1225 if not cache.has_key(mmodule) then
1226 self.collect_things(mmodule)
1227 end
1228 return cache[mmodule]
1229 end
1230
1231 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1232 private fun collect_things(mmodule: MModule)
1233 do
1234 var res = new HashSet[MClassDef]
1235 var seen = new HashSet[MClass]
1236 var types = new HashSet[MClassType]
1237 seen.add(self.mclass)
1238 var todo = [self.mclass]
1239 while not todo.is_empty do
1240 var mclass = todo.pop
1241 #print "process {mclass}"
1242 for mclassdef in mclass.mclassdefs do
1243 if not mmodule.in_importation <= mclassdef.mmodule then continue
1244 #print " process {mclassdef}"
1245 res.add(mclassdef)
1246 for supertype in mclassdef.supertypes do
1247 types.add(supertype)
1248 var superclass = supertype.mclass
1249 if seen.has(superclass) then continue
1250 #print " add {superclass}"
1251 seen.add(superclass)
1252 todo.add(superclass)
1253 end
1254 end
1255 end
1256 collect_mclassdefs_cache[mmodule] = res
1257 collect_mclasses_cache[mmodule] = seen
1258 collect_mtypes_cache[mmodule] = types
1259 end
1260
1261 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1262 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1263 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1264
1265 end
1266
1267 # A type based on a generic class.
1268 # A generic type a just a class with additional formal generic arguments.
1269 class MGenericType
1270 super MClassType
1271
1272 redef var arguments
1273
1274 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1275
1276 init
1277 do
1278 assert self.mclass.arity == arguments.length
1279
1280 self.need_anchor = false
1281 for t in arguments do
1282 if t.need_anchor then
1283 self.need_anchor = true
1284 break
1285 end
1286 end
1287
1288 self.to_s = "{mclass}[{arguments.join(", ")}]"
1289 end
1290
1291 # The short-name of the class, then the full-name of each type arguments within brackets.
1292 # Example: `"Map[String, List[Int]]"`
1293 redef var to_s is noinit
1294
1295 # The full-name of the class, then the full-name of each type arguments within brackets.
1296 # Example: `"core::Map[core::String, core::List[core::Int]]"`
1297 redef var full_name is lazy do
1298 var args = new Array[String]
1299 for t in arguments do
1300 args.add t.full_name
1301 end
1302 return "{mclass.full_name}[{args.join(", ")}]"
1303 end
1304
1305 redef var c_name is lazy do
1306 var res = mclass.c_name
1307 # Note: because the arity is known, a prefix notation is enough
1308 for t in arguments do
1309 res += "__"
1310 res += t.c_name
1311 end
1312 return res.to_s
1313 end
1314
1315 redef var need_anchor is noinit
1316
1317 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1318 do
1319 if not need_anchor then return self
1320 assert can_resolve_for(mtype, anchor, mmodule)
1321 var types = new Array[MType]
1322 for t in arguments do
1323 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1324 end
1325 return mclass.get_mtype(types)
1326 end
1327
1328 redef fun can_resolve_for(mtype, anchor, mmodule)
1329 do
1330 if not need_anchor then return true
1331 for t in arguments do
1332 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1333 end
1334 return true
1335 end
1336
1337
1338 redef fun depth
1339 do
1340 var dmax = 0
1341 for a in self.arguments do
1342 var d = a.depth
1343 if d > dmax then dmax = d
1344 end
1345 return dmax + 1
1346 end
1347
1348 redef fun length
1349 do
1350 var res = 1
1351 for a in self.arguments do
1352 res += a.length
1353 end
1354 return res
1355 end
1356 end
1357
1358 # A formal type (either virtual of parametric).
1359 #
1360 # The main issue with formal types is that they offer very little information on their own
1361 # and need a context (anchor and mmodule) to be useful.
1362 abstract class MFormalType
1363 super MType
1364
1365 redef var as_notnull = new MNotNullType(self) is lazy
1366 end
1367
1368 # A virtual formal type.
1369 class MVirtualType
1370 super MFormalType
1371
1372 # The property associated with the type.
1373 # Its the definitions of this property that determine the bound or the virtual type.
1374 var mproperty: MVirtualTypeProp
1375
1376 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1377
1378 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1379 do
1380 return lookup_single_definition(mmodule, resolved_receiver).bound or else new MBottomType(model)
1381 end
1382
1383 private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef
1384 do
1385 assert not resolved_receiver.need_anchor
1386 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1387 if props.is_empty then
1388 abort
1389 else if props.length == 1 then
1390 return props.first
1391 end
1392 var types = new ArraySet[MType]
1393 var res = props.first
1394 for p in props do
1395 types.add(p.bound.as(not null))
1396 if not res.is_fixed then res = p
1397 end
1398 if types.length == 1 then
1399 return res
1400 end
1401 abort
1402 end
1403
1404 # A VT is fixed when:
1405 # * the VT is (re-)defined with the annotation `is fixed`
1406 # * the VT is (indirectly) bound to an enum class (see `enum_kind`) since there is no subtype possible
1407 # * the receiver is an enum class since there is no subtype possible
1408 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1409 do
1410 assert not resolved_receiver.need_anchor
1411 resolved_receiver = resolved_receiver.undecorate
1412 assert resolved_receiver isa MClassType # It is the only remaining type
1413
1414 var prop = lookup_single_definition(mmodule, resolved_receiver)
1415 var res = prop.bound
1416 if res == null then return new MBottomType(model)
1417
1418 # Recursively lookup the fixed result
1419 res = res.lookup_fixed(mmodule, resolved_receiver)
1420
1421 # 1. For a fixed VT, return the resolved bound
1422 if prop.is_fixed then return res
1423
1424 # 2. For a enum boud, return the bound
1425 if res isa MClassType and res.mclass.kind == enum_kind then return res
1426
1427 # 3. for a enum receiver return the bound
1428 if resolved_receiver.mclass.kind == enum_kind then return res
1429
1430 return self
1431 end
1432
1433 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1434 do
1435 if not cleanup_virtual then return self
1436 assert can_resolve_for(mtype, anchor, mmodule)
1437 # self is a virtual type declared (or inherited) in mtype
1438 # The point of the function it to get the bound of the virtual type that make sense for mtype
1439 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1440 #print "{class_name}: {self}/{mtype}/{anchor}?"
1441 var resolved_receiver
1442 if mtype.need_anchor then
1443 assert anchor != null
1444 resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true)
1445 else
1446 resolved_receiver = mtype
1447 end
1448 # Now, we can get the bound
1449 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1450 # The bound is exactly as declared in the "type" property, so we must resolve it again
1451 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1452
1453 return res
1454 end
1455
1456 redef fun can_resolve_for(mtype, anchor, mmodule)
1457 do
1458 if mtype.need_anchor then
1459 assert anchor != null
1460 mtype = mtype.anchor_to(mmodule, anchor)
1461 end
1462 return mtype.has_mproperty(mmodule, mproperty)
1463 end
1464
1465 redef fun to_s do return self.mproperty.to_s
1466
1467 redef fun full_name do return self.mproperty.full_name
1468
1469 redef fun c_name do return self.mproperty.c_name
1470 end
1471
1472 # The type associated to a formal parameter generic type of a class
1473 #
1474 # Each parameter type is associated to a specific class.
1475 # It means that all refinements of a same class "share" the parameter type,
1476 # but that a generic subclass has its own parameter types.
1477 #
1478 # However, in the sense of the meta-model, a parameter type of a class is
1479 # a valid type in a subclass. The "in the sense of the meta-model" is
1480 # important because, in the Nit language, the programmer cannot refers
1481 # directly to the parameter types of the super-classes.
1482 #
1483 # Example:
1484 #
1485 # class A[E]
1486 # fun e: E is abstract
1487 # end
1488 # class B[F]
1489 # super A[Array[F]]
1490 # end
1491 #
1492 # In the class definition B[F], `F` is a valid type but `E` is not.
1493 # However, `self.e` is a valid method call, and the signature of `e` is
1494 # declared `e: E`.
1495 #
1496 # Note that parameter types are shared among class refinements.
1497 # Therefore parameter only have an internal name (see `to_s` for details).
1498 class MParameterType
1499 super MFormalType
1500
1501 # The generic class where the parameter belong
1502 var mclass: MClass
1503
1504 redef fun model do return self.mclass.intro_mmodule.model
1505
1506 # The position of the parameter (0 for the first parameter)
1507 # FIXME: is `position` a better name?
1508 var rank: Int
1509
1510 redef var name
1511
1512 redef fun to_s do return name
1513
1514 redef var full_name is lazy do return "{mclass.full_name}::{name}"
1515
1516 redef var c_name is lazy do return mclass.c_name + "__" + "#{name}".to_cmangle
1517
1518 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1519 do
1520 assert not resolved_receiver.need_anchor
1521 resolved_receiver = resolved_receiver.undecorate
1522 assert resolved_receiver isa MClassType # It is the only remaining type
1523 var goalclass = self.mclass
1524 if resolved_receiver.mclass == goalclass then
1525 return resolved_receiver.arguments[self.rank]
1526 end
1527 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1528 for t in supertypes do
1529 if t.mclass == goalclass then
1530 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1531 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1532 var res = t.arguments[self.rank]
1533 return res
1534 end
1535 end
1536 abort
1537 end
1538
1539 # A PT is fixed when:
1540 # * Its bound is a enum class (see `enum_kind`).
1541 # The PT is just useless, but it is still a case.
1542 # * More usually, the `resolved_receiver` is a subclass of `self.mclass`,
1543 # so it is necessarily fixed in a `super` clause, either with a normal type
1544 # or with another PT.
1545 # See `resolve_for` for examples about related issues.
1546 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1547 do
1548 assert not resolved_receiver.need_anchor
1549 resolved_receiver = resolved_receiver.undecorate
1550 assert resolved_receiver isa MClassType # It is the only remaining type
1551 var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false)
1552 return res
1553 end
1554
1555 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1556 do
1557 assert can_resolve_for(mtype, anchor, mmodule)
1558 #print "{class_name}: {self}/{mtype}/{anchor}?"
1559
1560 if mtype isa MGenericType and mtype.mclass == self.mclass then
1561 var res = mtype.arguments[self.rank]
1562 if anchor != null and res.need_anchor then
1563 # Maybe the result can be resolved more if are bound to a final class
1564 var r2 = res.anchor_to(mmodule, anchor)
1565 if r2 isa MClassType and r2.mclass.kind == enum_kind then return r2
1566 end
1567 return res
1568 end
1569
1570 # self is a parameter type of mtype (or of a super-class of mtype)
1571 # The point of the function it to get the bound of the virtual type that make sense for mtype
1572 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1573 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1574 var resolved_receiver
1575 if mtype.need_anchor then
1576 assert anchor != null
1577 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1578 else
1579 resolved_receiver = mtype
1580 end
1581 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1582 if resolved_receiver isa MParameterType then
1583 assert anchor != null
1584 assert resolved_receiver.mclass == anchor.mclass
1585 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1586 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1587 end
1588 assert resolved_receiver isa MClassType # It is the only remaining type
1589
1590 # Eh! The parameter is in the current class.
1591 # So we return the corresponding argument, no mater what!
1592 if resolved_receiver.mclass == self.mclass then
1593 var res = resolved_receiver.arguments[self.rank]
1594 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1595 return res
1596 end
1597
1598 if resolved_receiver.need_anchor then
1599 assert anchor != null
1600 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1601 end
1602 # Now, we can get the bound
1603 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1604 # The bound is exactly as declared in the "type" property, so we must resolve it again
1605 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1606
1607 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1608
1609 return res
1610 end
1611
1612 redef fun can_resolve_for(mtype, anchor, mmodule)
1613 do
1614 if mtype.need_anchor then
1615 assert anchor != null
1616 mtype = mtype.anchor_to(mmodule, anchor)
1617 end
1618 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1619 end
1620 end
1621
1622 # A type that decorates another type.
1623 #
1624 # The point of this class is to provide a common implementation of sevices that just forward to the original type.
1625 # Specific decorator are expected to redefine (or to extend) the default implementation as this suit them.
1626 abstract class MProxyType
1627 super MType
1628 # The base type
1629 var mtype: MType
1630
1631 redef fun model do return self.mtype.model
1632 redef fun need_anchor do return mtype.need_anchor
1633 redef fun as_nullable do return mtype.as_nullable
1634 redef fun as_notnull do return mtype.as_notnull
1635 redef fun undecorate do return mtype.undecorate
1636 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1637 do
1638 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1639 return res
1640 end
1641
1642 redef fun can_resolve_for(mtype, anchor, mmodule)
1643 do
1644 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1645 end
1646
1647 redef fun lookup_fixed(mmodule, resolved_receiver)
1648 do
1649 var t = mtype.lookup_fixed(mmodule, resolved_receiver)
1650 return t
1651 end
1652
1653 redef fun depth do return self.mtype.depth
1654
1655 redef fun length do return self.mtype.length
1656
1657 redef fun collect_mclassdefs(mmodule)
1658 do
1659 assert not self.need_anchor
1660 return self.mtype.collect_mclassdefs(mmodule)
1661 end
1662
1663 redef fun collect_mclasses(mmodule)
1664 do
1665 assert not self.need_anchor
1666 return self.mtype.collect_mclasses(mmodule)
1667 end
1668
1669 redef fun collect_mtypes(mmodule)
1670 do
1671 assert not self.need_anchor
1672 return self.mtype.collect_mtypes(mmodule)
1673 end
1674 end
1675
1676 # A type prefixed with "nullable"
1677 class MNullableType
1678 super MProxyType
1679
1680 init
1681 do
1682 self.to_s = "nullable {mtype}"
1683 end
1684
1685 redef var to_s is noinit
1686
1687 redef var full_name is lazy do return "nullable {mtype.full_name}"
1688
1689 redef var c_name is lazy do return "nullable__{mtype.c_name}"
1690
1691 redef fun as_nullable do return self
1692 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1693 do
1694 var res = super
1695 return res.as_nullable
1696 end
1697
1698 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable`
1699 redef fun lookup_fixed(mmodule, resolved_receiver)
1700 do
1701 var t = super
1702 if t == mtype then return self
1703 return t.as_nullable
1704 end
1705 end
1706
1707 # A non-null version of a formal type.
1708 #
1709 # When a formal type in bounded to a nullable type, this is the type of the not null version of it.
1710 class MNotNullType
1711 super MProxyType
1712
1713 redef fun to_s do return "not null {mtype}"
1714 redef var full_name is lazy do return "not null {mtype.full_name}"
1715 redef var c_name is lazy do return "notnull__{mtype.c_name}"
1716
1717 redef fun as_notnull do return self
1718
1719 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1720 do
1721 var res = super
1722 return res.as_notnull
1723 end
1724
1725 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_notnull`
1726 redef fun lookup_fixed(mmodule, resolved_receiver)
1727 do
1728 var t = super
1729 if t == mtype then return self
1730 return t.as_notnull
1731 end
1732 end
1733
1734 # The type of the only value null
1735 #
1736 # The is only one null type per model, see `MModel::null_type`.
1737 class MNullType
1738 super MType
1739 redef var model
1740 redef fun to_s do return "null"
1741 redef fun full_name do return "null"
1742 redef fun c_name do return "null"
1743 redef fun as_nullable do return self
1744
1745 redef var as_notnull = new MBottomType(model) is lazy
1746 redef fun need_anchor do return false
1747 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1748 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1749
1750 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1751
1752 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1753
1754 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1755 end
1756
1757 # The special universal most specific type.
1758 #
1759 # This type is intended to be only used internally for type computation or analysis and should not be exposed to the user.
1760 # The bottom type can de used to denote things that are absurd, dead, or the absence of knowledge.
1761 #
1762 # Semantically it is the singleton `null.as_notnull`.
1763 class MBottomType
1764 super MType
1765 redef var model
1766 redef fun to_s do return "bottom"
1767 redef fun full_name do return "bottom"
1768 redef fun c_name do return "bottom"
1769 redef fun as_nullable do return model.null_type
1770 redef fun as_notnull do return self
1771 redef fun need_anchor do return false
1772 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1773 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1774
1775 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1776
1777 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1778
1779 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1780 end
1781
1782 # A signature of a method
1783 class MSignature
1784 super MType
1785
1786 # The each parameter (in order)
1787 var mparameters: Array[MParameter]
1788
1789 # Returns a parameter named `name`, if any.
1790 fun mparameter_by_name(name: String): nullable MParameter
1791 do
1792 for p in mparameters do
1793 if p.name == name then return p
1794 end
1795 return null
1796 end
1797
1798 # The return type (null for a procedure)
1799 var return_mtype: nullable MType
1800
1801 redef fun depth
1802 do
1803 var dmax = 0
1804 var t = self.return_mtype
1805 if t != null then dmax = t.depth
1806 for p in mparameters do
1807 var d = p.mtype.depth
1808 if d > dmax then dmax = d
1809 end
1810 return dmax + 1
1811 end
1812
1813 redef fun length
1814 do
1815 var res = 1
1816 var t = self.return_mtype
1817 if t != null then res += t.length
1818 for p in mparameters do
1819 res += p.mtype.length
1820 end
1821 return res
1822 end
1823
1824 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1825 init
1826 do
1827 var vararg_rank = -1
1828 for i in [0..mparameters.length[ do
1829 var parameter = mparameters[i]
1830 if parameter.is_vararg then
1831 if vararg_rank >= 0 then
1832 # If there is more than one vararg,
1833 # consider that additional arguments cannot be mapped.
1834 vararg_rank = -1
1835 break
1836 end
1837 vararg_rank = i
1838 end
1839 end
1840 self.vararg_rank = vararg_rank
1841 end
1842
1843 # The rank of the main ellipsis (`...`) for vararg (starting from 0).
1844 # value is -1 if there is no vararg.
1845 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1846 #
1847 # From a model POV, a signature can contain more than one vararg parameter,
1848 # the `vararg_rank` just indicates the one that will receive the additional arguments.
1849 # However, currently, if there is more that one vararg parameter, no one will be the main one,
1850 # and additional arguments will be refused.
1851 var vararg_rank: Int is noinit
1852
1853 # The number of parameters
1854 fun arity: Int do return mparameters.length
1855
1856 redef fun to_s
1857 do
1858 var b = new FlatBuffer
1859 if not mparameters.is_empty then
1860 b.append("(")
1861 for i in [0..mparameters.length[ do
1862 var mparameter = mparameters[i]
1863 if i > 0 then b.append(", ")
1864 b.append(mparameter.name)
1865 b.append(": ")
1866 b.append(mparameter.mtype.to_s)
1867 if mparameter.is_vararg then
1868 b.append("...")
1869 end
1870 end
1871 b.append(")")
1872 end
1873 var ret = self.return_mtype
1874 if ret != null then
1875 b.append(": ")
1876 b.append(ret.to_s)
1877 end
1878 return b.to_s
1879 end
1880
1881 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
1882 do
1883 var params = new Array[MParameter]
1884 for p in self.mparameters do
1885 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1886 end
1887 var ret = self.return_mtype
1888 if ret != null then
1889 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1890 end
1891 var res = new MSignature(params, ret)
1892 return res
1893 end
1894 end
1895
1896 # A parameter in a signature
1897 class MParameter
1898 super MEntity
1899
1900 # The name of the parameter
1901 redef var name
1902
1903 # The static type of the parameter
1904 var mtype: MType
1905
1906 # Is the parameter a vararg?
1907 var is_vararg: Bool
1908
1909 redef fun to_s
1910 do
1911 if is_vararg then
1912 return "{name}: {mtype}..."
1913 else
1914 return "{name}: {mtype}"
1915 end
1916 end
1917
1918 # Returns a new parameter with the `mtype` resolved.
1919 # See `MType::resolve_for` for details.
1920 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
1921 do
1922 if not self.mtype.need_anchor then return self
1923 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1924 var res = new MParameter(self.name, newtype, self.is_vararg)
1925 return res
1926 end
1927
1928 redef fun model do return mtype.model
1929 end
1930
1931 # A service (global property) that generalize method, attribute, etc.
1932 #
1933 # `MProperty` are global to the model; it means that a `MProperty` is not bound
1934 # to a specific `MModule` nor a specific `MClass`.
1935 #
1936 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
1937 # and the other in subclasses and in refinements.
1938 #
1939 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
1940 # of any dynamic type).
1941 # For instance, a call site "x.foo" is associated to a `MProperty`.
1942 abstract class MProperty
1943 super MEntity
1944
1945 # The associated MPropDef subclass.
1946 # The two specialization hierarchy are symmetric.
1947 type MPROPDEF: MPropDef
1948
1949 # The classdef that introduce the property
1950 # While a property is not bound to a specific module, or class,
1951 # the introducing mclassdef is used for naming and visibility
1952 var intro_mclassdef: MClassDef
1953
1954 # The (short) name of the property
1955 redef var name
1956
1957 # The canonical name of the property.
1958 #
1959 # It is the short-`name` prefixed by the short-name of the class and the full-name of the module.
1960 # Example: "my_package::my_module::MyClass::my_method"
1961 redef var full_name is lazy do
1962 return "{intro_mclassdef.mmodule.namespace_for(visibility)}::{intro_mclassdef.mclass.name}::{name}"
1963 end
1964
1965 redef var c_name is lazy do
1966 # FIXME use `namespace_for`
1967 return "{intro_mclassdef.mmodule.c_name}__{intro_mclassdef.mclass.name.to_cmangle}__{name.to_cmangle}"
1968 end
1969
1970 # The visibility of the property
1971 var visibility: MVisibility
1972
1973 # Is the property usable as an initializer?
1974 var is_autoinit = false is writable
1975
1976 init
1977 do
1978 intro_mclassdef.intro_mproperties.add(self)
1979 var model = intro_mclassdef.mmodule.model
1980 model.mproperties_by_name.add_one(name, self)
1981 model.mproperties.add(self)
1982 end
1983
1984 # All definitions of the property.
1985 # The first is the introduction,
1986 # The other are redefinitions (in refinements and in subclasses)
1987 var mpropdefs = new Array[MPROPDEF]
1988
1989 # The definition that introduces the property.
1990 #
1991 # Warning: such a definition may not exist in the early life of the object.
1992 # In this case, the method will abort.
1993 var intro: MPROPDEF is noinit
1994
1995 redef fun model do return intro.model
1996
1997 # Alias for `name`
1998 redef fun to_s do return name
1999
2000 # Return the most specific property definitions defined or inherited by a type.
2001 # The selection knows that refinement is stronger than specialization;
2002 # however, in case of conflict more than one property are returned.
2003 # If mtype does not know mproperty then an empty array is returned.
2004 #
2005 # If you want the really most specific property, then look at `lookup_first_definition`
2006 #
2007 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2008 # ENSURE: `not mtype.has_mproperty(mmodule, self) == result.is_empty`
2009 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2010 do
2011 assert not mtype.need_anchor
2012 mtype = mtype.undecorate
2013
2014 var cache = self.lookup_definitions_cache[mmodule, mtype]
2015 if cache != null then return cache
2016
2017 #print "select prop {mproperty} for {mtype} in {self}"
2018 # First, select all candidates
2019 var candidates = new Array[MPROPDEF]
2020 for mpropdef in self.mpropdefs do
2021 # If the definition is not imported by the module, then skip
2022 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2023 # If the definition is not inherited by the type, then skip
2024 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2025 # Else, we keep it
2026 candidates.add(mpropdef)
2027 end
2028 # Fast track for only one candidate
2029 if candidates.length <= 1 then
2030 self.lookup_definitions_cache[mmodule, mtype] = candidates
2031 return candidates
2032 end
2033
2034 # Second, filter the most specific ones
2035 return select_most_specific(mmodule, candidates)
2036 end
2037
2038 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2039
2040 # Return the most specific property definitions inherited by a type.
2041 # The selection knows that refinement is stronger than specialization;
2042 # however, in case of conflict more than one property are returned.
2043 # If mtype does not know mproperty then an empty array is returned.
2044 #
2045 # If you want the really most specific property, then look at `lookup_next_definition`
2046 #
2047 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2048 # ENSURE: `not mtype.has_mproperty(mmodule, self) implies result.is_empty`
2049 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2050 do
2051 assert not mtype.need_anchor
2052 mtype = mtype.undecorate
2053
2054 # First, select all candidates
2055 var candidates = new Array[MPROPDEF]
2056 for mpropdef in self.mpropdefs do
2057 # If the definition is not imported by the module, then skip
2058 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2059 # If the definition is not inherited by the type, then skip
2060 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2061 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
2062 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
2063 # Else, we keep it
2064 candidates.add(mpropdef)
2065 end
2066 # Fast track for only one candidate
2067 if candidates.length <= 1 then return candidates
2068
2069 # Second, filter the most specific ones
2070 return select_most_specific(mmodule, candidates)
2071 end
2072
2073 # Return an array containing olny the most specific property definitions
2074 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
2075 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
2076 do
2077 var res = new Array[MPROPDEF]
2078 for pd1 in candidates do
2079 var cd1 = pd1.mclassdef
2080 var c1 = cd1.mclass
2081 var keep = true
2082 for pd2 in candidates do
2083 if pd2 == pd1 then continue # do not compare with self!
2084 var cd2 = pd2.mclassdef
2085 var c2 = cd2.mclass
2086 if c2.mclass_type == c1.mclass_type then
2087 if cd2.mmodule.in_importation < cd1.mmodule then
2088 # cd2 refines cd1; therefore we skip pd1
2089 keep = false
2090 break
2091 end
2092 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
2093 # cd2 < cd1; therefore we skip pd1
2094 keep = false
2095 break
2096 end
2097 end
2098 if keep then
2099 res.add(pd1)
2100 end
2101 end
2102 if res.is_empty then
2103 print "All lost! {candidates.join(", ")}"
2104 # FIXME: should be abort!
2105 end
2106 return res
2107 end
2108
2109 # Return the most specific definition in the linearization of `mtype`.
2110 #
2111 # If you want to know the next properties in the linearization,
2112 # look at `MPropDef::lookup_next_definition`.
2113 #
2114 # FIXME: the linearization is still unspecified
2115 #
2116 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2117 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2118 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
2119 do
2120 return lookup_all_definitions(mmodule, mtype).first
2121 end
2122
2123 # Return all definitions in a linearization order
2124 # Most specific first, most general last
2125 #
2126 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2127 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2128 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2129 do
2130 mtype = mtype.undecorate
2131
2132 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
2133 if cache != null then return cache
2134
2135 assert not mtype.need_anchor
2136 assert mtype.has_mproperty(mmodule, self)
2137
2138 #print "select prop {mproperty} for {mtype} in {self}"
2139 # First, select all candidates
2140 var candidates = new Array[MPROPDEF]
2141 for mpropdef in self.mpropdefs do
2142 # If the definition is not imported by the module, then skip
2143 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2144 # If the definition is not inherited by the type, then skip
2145 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2146 # Else, we keep it
2147 candidates.add(mpropdef)
2148 end
2149 # Fast track for only one candidate
2150 if candidates.length <= 1 then
2151 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2152 return candidates
2153 end
2154
2155 mmodule.linearize_mpropdefs(candidates)
2156 candidates = candidates.reversed
2157 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2158 return candidates
2159 end
2160
2161 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2162 end
2163
2164 # A global method
2165 class MMethod
2166 super MProperty
2167
2168 redef type MPROPDEF: MMethodDef
2169
2170 # Is the property defined at the top_level of the module?
2171 # Currently such a property are stored in `Object`
2172 var is_toplevel: Bool = false is writable
2173
2174 # Is the property a constructor?
2175 # Warning, this property can be inherited by subclasses with or without being a constructor
2176 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
2177 var is_init: Bool = false is writable
2178
2179 # The constructor is a (the) root init with empty signature but a set of initializers
2180 var is_root_init: Bool = false is writable
2181
2182 # Is the property a 'new' constructor?
2183 var is_new: Bool = false is writable
2184
2185 # Is the property a legal constructor for a given class?
2186 # As usual, visibility is not considered.
2187 # FIXME not implemented
2188 fun is_init_for(mclass: MClass): Bool
2189 do
2190 return self.is_init
2191 end
2192
2193 # A specific method that is safe to call on null.
2194 # Currently, only `==`, `!=` and `is_same_instance` are safe
2195 fun is_null_safe: Bool do return name == "==" or name == "!=" or name == "is_same_instance"
2196 end
2197
2198 # A global attribute
2199 class MAttribute
2200 super MProperty
2201
2202 redef type MPROPDEF: MAttributeDef
2203
2204 end
2205
2206 # A global virtual type
2207 class MVirtualTypeProp
2208 super MProperty
2209
2210 redef type MPROPDEF: MVirtualTypeDef
2211
2212 # The formal type associated to the virtual type property
2213 var mvirtualtype = new MVirtualType(self)
2214 end
2215
2216 # A definition of a property (local property)
2217 #
2218 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
2219 # specific class definition (which belong to a specific module)
2220 abstract class MPropDef
2221 super MEntity
2222
2223 # The associated `MProperty` subclass.
2224 # the two specialization hierarchy are symmetric
2225 type MPROPERTY: MProperty
2226
2227 # Self class
2228 type MPROPDEF: MPropDef
2229
2230 # The class definition where the property definition is
2231 var mclassdef: MClassDef
2232
2233 # The associated global property
2234 var mproperty: MPROPERTY
2235
2236 # The origin of the definition
2237 var location: Location
2238
2239 init
2240 do
2241 mclassdef.mpropdefs.add(self)
2242 mproperty.mpropdefs.add(self)
2243 if mproperty.intro_mclassdef == mclassdef then
2244 assert not isset mproperty._intro
2245 mproperty.intro = self
2246 end
2247 self.to_s = "{mclassdef}#{mproperty}"
2248 end
2249
2250 # Actually the name of the `mproperty`
2251 redef fun name do return mproperty.name
2252
2253 # The full-name of mpropdefs combine the information about the `classdef` and the `mproperty`.
2254 #
2255 # Therefore the combination of identifiers is awful,
2256 # the worst case being
2257 #
2258 # * a property "p::m::A::x"
2259 # * redefined in a refinement of a class "q::n::B"
2260 # * in a module "r::o"
2261 # * so "r::o#q::n::B#p::m::A::x"
2262 #
2263 # Fortunately, the full-name is simplified when entities are repeated.
2264 # For the previous case, the simplest form is "p#A#x".
2265 redef var full_name is lazy do
2266 var res = new FlatBuffer
2267
2268 # The first part is the mclassdef. Worst case is "r::o#q::n::B"
2269 res.append mclassdef.full_name
2270
2271 res.append "#"
2272
2273 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2274 # intro are unambiguous in a class
2275 res.append name
2276 else
2277 # Just try to simplify each part
2278 if mclassdef.mmodule.mpackage != mproperty.intro_mclassdef.mmodule.mpackage then
2279 # precise "p::m" only if "p" != "r"
2280 res.append mproperty.intro_mclassdef.mmodule.full_name
2281 res.append "::"
2282 else if mproperty.visibility <= private_visibility then
2283 # Same package ("p"=="q"), but private visibility,
2284 # does the module part ("::m") need to be displayed
2285 if mclassdef.mmodule.namespace_for(mclassdef.mclass.visibility) != mproperty.intro_mclassdef.mmodule.mpackage then
2286 res.append "::"
2287 res.append mproperty.intro_mclassdef.mmodule.name
2288 res.append "::"
2289 end
2290 end
2291 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2292 # precise "B" only if not the same class than "A"
2293 res.append mproperty.intro_mclassdef.name
2294 res.append "::"
2295 end
2296 # Always use the property name "x"
2297 res.append mproperty.name
2298 end
2299 return res.to_s
2300 end
2301
2302 redef var c_name is lazy do
2303 var res = new FlatBuffer
2304 res.append mclassdef.c_name
2305 res.append "___"
2306 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2307 res.append name.to_cmangle
2308 else
2309 if mclassdef.mmodule != mproperty.intro_mclassdef.mmodule then
2310 res.append mproperty.intro_mclassdef.mmodule.c_name
2311 res.append "__"
2312 end
2313 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2314 res.append mproperty.intro_mclassdef.name.to_cmangle
2315 res.append "__"
2316 end
2317 res.append mproperty.name.to_cmangle
2318 end
2319 return res.to_s
2320 end
2321
2322 redef fun model do return mclassdef.model
2323
2324 # Internal name combining the module, the class and the property
2325 # Example: "mymodule#MyClass#mymethod"
2326 redef var to_s is noinit
2327
2328 # Is self the definition that introduce the property?
2329 fun is_intro: Bool do return isset mproperty._intro and mproperty.intro == self
2330
2331 # Return the next definition in linearization of `mtype`.
2332 #
2333 # This method is used to determine what method is called by a super.
2334 #
2335 # REQUIRE: `not mtype.need_anchor`
2336 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
2337 do
2338 assert not mtype.need_anchor
2339
2340 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
2341 var i = mpropdefs.iterator
2342 while i.is_ok and i.item != self do i.next
2343 assert has_property: i.is_ok
2344 i.next
2345 assert has_next_property: i.is_ok
2346 return i.item
2347 end
2348 end
2349
2350 # A local definition of a method
2351 class MMethodDef
2352 super MPropDef
2353
2354 redef type MPROPERTY: MMethod
2355 redef type MPROPDEF: MMethodDef
2356
2357 # The signature attached to the property definition
2358 var msignature: nullable MSignature = null is writable
2359
2360 # The signature attached to the `new` call on a root-init
2361 # This is a concatenation of the signatures of the initializers
2362 #
2363 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2364 var new_msignature: nullable MSignature = null is writable
2365
2366 # List of initialisers to call in root-inits
2367 #
2368 # They could be setters or attributes
2369 #
2370 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2371 var initializers = new Array[MProperty]
2372
2373 # Is the method definition abstract?
2374 var is_abstract: Bool = false is writable
2375
2376 # Is the method definition intern?
2377 var is_intern = false is writable
2378
2379 # Is the method definition extern?
2380 var is_extern = false is writable
2381
2382 # An optional constant value returned in functions.
2383 #
2384 # Only some specific primitife value are accepted by engines.
2385 # Is used when there is no better implementation available.
2386 #
2387 # Currently used only for the implementation of the `--define`
2388 # command-line option.
2389 # SEE: module `mixin`.
2390 var constant_value: nullable Object = null is writable
2391 end
2392
2393 # A local definition of an attribute
2394 class MAttributeDef
2395 super MPropDef
2396
2397 redef type MPROPERTY: MAttribute
2398 redef type MPROPDEF: MAttributeDef
2399
2400 # The static type of the attribute
2401 var static_mtype: nullable MType = null is writable
2402 end
2403
2404 # A local definition of a virtual type
2405 class MVirtualTypeDef
2406 super MPropDef
2407
2408 redef type MPROPERTY: MVirtualTypeProp
2409 redef type MPROPDEF: MVirtualTypeDef
2410
2411 # The bound of the virtual type
2412 var bound: nullable MType = null is writable
2413
2414 # Is the bound fixed?
2415 var is_fixed = false is writable
2416 end
2417
2418 # A kind of class.
2419 #
2420 # * `abstract_kind`
2421 # * `concrete_kind`
2422 # * `interface_kind`
2423 # * `enum_kind`
2424 # * `extern_kind`
2425 #
2426 # Note this class is basically an enum.
2427 # FIXME: use a real enum once user-defined enums are available
2428 class MClassKind
2429 redef var to_s
2430
2431 # Is a constructor required?
2432 var need_init: Bool
2433
2434 # TODO: private init because enumeration.
2435
2436 # Can a class of kind `self` specializes a class of kine `other`?
2437 fun can_specialize(other: MClassKind): Bool
2438 do
2439 if other == interface_kind then return true # everybody can specialize interfaces
2440 if self == interface_kind or self == enum_kind then
2441 # no other case for interfaces
2442 return false
2443 else if self == extern_kind then
2444 # only compatible with themselves
2445 return self == other
2446 else if other == enum_kind or other == extern_kind then
2447 # abstract_kind and concrete_kind are incompatible
2448 return false
2449 end
2450 # remain only abstract_kind and concrete_kind
2451 return true
2452 end
2453 end
2454
2455 # The class kind `abstract`
2456 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", true)
2457 # The class kind `concrete`
2458 fun concrete_kind: MClassKind do return once new MClassKind("class", true)
2459 # The class kind `interface`
2460 fun interface_kind: MClassKind do return once new MClassKind("interface", false)
2461 # The class kind `enum`
2462 fun enum_kind: MClassKind do return once new MClassKind("enum", false)
2463 # The class kind `extern`
2464 fun extern_kind: MClassKind do return once new MClassKind("extern class", false)