Merge: Warn call on nullable receiver
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class Model
34 # All known classes
35 var mclasses = new Array[MClass]
36
37 # All known properties
38 var mproperties = new Array[MProperty]
39
40 # Hierarchy of class definition.
41 #
42 # Each classdef is associated with its super-classdefs in regard to
43 # its module of definition.
44 var mclassdef_hierarchy = new POSet[MClassDef]
45
46 # Class-type hierarchy restricted to the introduction.
47 #
48 # The idea is that what is true on introduction is always true whatever
49 # the module considered.
50 # Therefore, this hierarchy is used for a fast positive subtype check.
51 #
52 # This poset will evolve in a monotonous way:
53 # * Two non connected nodes will remain unconnected
54 # * New nodes can appear with new edges
55 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
56
57 # Global overlapped class-type hierarchy.
58 # The hierarchy when all modules are combined.
59 # Therefore, this hierarchy is used for a fast negative subtype check.
60 #
61 # This poset will evolve in an anarchic way. Loops can even be created.
62 #
63 # FIXME decide what to do on loops
64 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
65
66 # Collections of classes grouped by their short name
67 private var mclasses_by_name = new MultiHashMap[String, MClass]
68
69 # Return all class named `name`.
70 #
71 # If such a class does not exist, null is returned
72 # (instead of an empty array)
73 #
74 # Visibility or modules are not considered
75 fun get_mclasses_by_name(name: String): nullable Array[MClass]
76 do
77 return mclasses_by_name.get_or_null(name)
78 end
79
80 # Collections of properties grouped by their short name
81 private var mproperties_by_name = new MultiHashMap[String, MProperty]
82
83 # Return all properties named `name`.
84 #
85 # If such a property does not exist, null is returned
86 # (instead of an empty array)
87 #
88 # Visibility or modules are not considered
89 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
90 do
91 return mproperties_by_name.get_or_null(name)
92 end
93
94 # The only null type
95 var null_type = new MNullType(self)
96
97 # Build an ordered tree with from `concerns`
98 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
99 var seen = new HashSet[MConcern]
100 var res = new ConcernsTree
101
102 var todo = new Array[MConcern]
103 todo.add_all mconcerns
104
105 while not todo.is_empty do
106 var c = todo.pop
107 if seen.has(c) then continue
108 var pc = c.parent_concern
109 if pc == null then
110 res.add(null, c)
111 else
112 res.add(pc, c)
113 todo.add(pc)
114 end
115 seen.add(c)
116 end
117
118 return res
119 end
120 end
121
122 # An OrderedTree that can be easily refined for display purposes
123 class ConcernsTree
124 super OrderedTree[MConcern]
125 end
126
127 redef class MModule
128 # All the classes introduced in the module
129 var intro_mclasses = new Array[MClass]
130
131 # All the class definitions of the module
132 # (introduction and refinement)
133 var mclassdefs = new Array[MClassDef]
134
135 # Does the current module has a given class `mclass`?
136 # Return true if the mmodule introduces, refines or imports a class.
137 # Visibility is not considered.
138 fun has_mclass(mclass: MClass): Bool
139 do
140 return self.in_importation <= mclass.intro_mmodule
141 end
142
143 # Full hierarchy of introduced ans imported classes.
144 #
145 # Create a new hierarchy got by flattening the classes for the module
146 # and its imported modules.
147 # Visibility is not considered.
148 #
149 # Note: this function is expensive and is usually used for the main
150 # module of a program only. Do not use it to do you own subtype
151 # functions.
152 fun flatten_mclass_hierarchy: POSet[MClass]
153 do
154 var res = self.flatten_mclass_hierarchy_cache
155 if res != null then return res
156 res = new POSet[MClass]
157 for m in self.in_importation.greaters do
158 for cd in m.mclassdefs do
159 var c = cd.mclass
160 res.add_node(c)
161 for s in cd.supertypes do
162 res.add_edge(c, s.mclass)
163 end
164 end
165 end
166 self.flatten_mclass_hierarchy_cache = res
167 return res
168 end
169
170 # Sort a given array of classes using the linearization order of the module
171 # The most general is first, the most specific is last
172 fun linearize_mclasses(mclasses: Array[MClass])
173 do
174 self.flatten_mclass_hierarchy.sort(mclasses)
175 end
176
177 # Sort a given array of class definitions using the linearization order of the module
178 # the refinement link is stronger than the specialisation link
179 # The most general is first, the most specific is last
180 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
181 do
182 var sorter = new MClassDefSorter(self)
183 sorter.sort(mclassdefs)
184 end
185
186 # Sort a given array of property definitions using the linearization order of the module
187 # the refinement link is stronger than the specialisation link
188 # The most general is first, the most specific is last
189 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
190 do
191 var sorter = new MPropDefSorter(self)
192 sorter.sort(mpropdefs)
193 end
194
195 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
196
197 # The primitive type `Object`, the root of the class hierarchy
198 var object_type: MClassType = self.get_primitive_class("Object").mclass_type is lazy
199
200 # The type `Pointer`, super class to all extern classes
201 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
202
203 # The primitive type `Bool`
204 var bool_type: MClassType = self.get_primitive_class("Bool").mclass_type is lazy
205
206 # The primitive type `Int`
207 var int_type: MClassType = self.get_primitive_class("Int").mclass_type is lazy
208
209 # The primitive type `Byte`
210 var byte_type: MClassType = self.get_primitive_class("Byte").mclass_type is lazy
211
212 # The primitive type `Char`
213 var char_type: MClassType = self.get_primitive_class("Char").mclass_type is lazy
214
215 # The primitive type `Float`
216 var float_type: MClassType = self.get_primitive_class("Float").mclass_type is lazy
217
218 # The primitive type `String`
219 var string_type: MClassType = self.get_primitive_class("String").mclass_type is lazy
220
221 # The primitive type `NativeString`
222 var native_string_type: MClassType = self.get_primitive_class("NativeString").mclass_type is lazy
223
224 # A primitive type of `Array`
225 fun array_type(elt_type: MType): MClassType do return array_class.get_mtype([elt_type])
226
227 # The primitive class `Array`
228 var array_class: MClass = self.get_primitive_class("Array") is lazy
229
230 # A primitive type of `NativeArray`
231 fun native_array_type(elt_type: MType): MClassType do return native_array_class.get_mtype([elt_type])
232
233 # The primitive class `NativeArray`
234 var native_array_class: MClass = self.get_primitive_class("NativeArray") is lazy
235
236 # The primitive type `Sys`, the main type of the program, if any
237 fun sys_type: nullable MClassType
238 do
239 var clas = self.model.get_mclasses_by_name("Sys")
240 if clas == null then return null
241 return get_primitive_class("Sys").mclass_type
242 end
243
244 # The primitive type `Finalizable`
245 # Used to tag classes that need to be finalized.
246 fun finalizable_type: nullable MClassType
247 do
248 var clas = self.model.get_mclasses_by_name("Finalizable")
249 if clas == null then return null
250 return get_primitive_class("Finalizable").mclass_type
251 end
252
253 # Force to get the primitive class named `name` or abort
254 fun get_primitive_class(name: String): MClass
255 do
256 var cla = self.model.get_mclasses_by_name(name)
257 # Filter classes by introducing module
258 if cla != null then cla = [for c in cla do if self.in_importation <= c.intro_mmodule then c]
259 if cla == null or cla.is_empty then
260 if name == "Bool" and self.model.get_mclasses_by_name("Object") != null then
261 # Bool is injected because it is needed by engine to code the result
262 # of the implicit casts.
263 var c = new MClass(self, name, null, enum_kind, public_visibility)
264 var cladef = new MClassDef(self, c.mclass_type, new Location(null, 0,0,0,0))
265 cladef.set_supertypes([object_type])
266 cladef.add_in_hierarchy
267 return c
268 end
269 print("Fatal Error: no primitive class {name} in {self}")
270 exit(1)
271 end
272 if cla.length != 1 then
273 var msg = "Fatal Error: more than one primitive class {name} in {self}:"
274 for c in cla do msg += " {c.full_name}"
275 print msg
276 #exit(1)
277 end
278 return cla.first
279 end
280
281 # Try to get the primitive method named `name` on the type `recv`
282 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
283 do
284 var props = self.model.get_mproperties_by_name(name)
285 if props == null then return null
286 var res: nullable MMethod = null
287 for mprop in props do
288 assert mprop isa MMethod
289 var intro = mprop.intro_mclassdef
290 for mclassdef in recv.mclassdefs do
291 if not self.in_importation.greaters.has(mclassdef.mmodule) then continue
292 if not mclassdef.in_hierarchy.greaters.has(intro) then continue
293 if res == null then
294 res = mprop
295 else if res != mprop then
296 print("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
297 abort
298 end
299 end
300 end
301 return res
302 end
303 end
304
305 private class MClassDefSorter
306 super Comparator
307 redef type COMPARED: MClassDef
308 var mmodule: MModule
309 redef fun compare(a, b)
310 do
311 var ca = a.mclass
312 var cb = b.mclass
313 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
314 return mmodule.model.mclassdef_hierarchy.compare(a, b)
315 end
316 end
317
318 private class MPropDefSorter
319 super Comparator
320 redef type COMPARED: MPropDef
321 var mmodule: MModule
322 redef fun compare(pa, pb)
323 do
324 var a = pa.mclassdef
325 var b = pb.mclassdef
326 var ca = a.mclass
327 var cb = b.mclass
328 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
329 return mmodule.model.mclassdef_hierarchy.compare(a, b)
330 end
331 end
332
333 # A named class
334 #
335 # `MClass` are global to the model; it means that a `MClass` is not bound to a
336 # specific `MModule`.
337 #
338 # This characteristic helps the reasoning about classes in a program since a
339 # single `MClass` object always denote the same class.
340 #
341 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
342 # These do not really have properties nor belong to a hierarchy since the property and the
343 # hierarchy of a class depends of the refinement in the modules.
344 #
345 # Most services on classes require the precision of a module, and no one can asks what are
346 # the super-classes of a class nor what are properties of a class without precising what is
347 # the module considered.
348 #
349 # For instance, during the typing of a source-file, the module considered is the module of the file.
350 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
351 # *is the method `foo` exists in the class `Bar` in the current module?*
352 #
353 # During some global analysis, the module considered may be the main module of the program.
354 class MClass
355 super MEntity
356
357 # The module that introduce the class
358 # While classes are not bound to a specific module,
359 # the introducing module is used for naming an visibility
360 var intro_mmodule: MModule
361
362 # The short name of the class
363 # In Nit, the name of a class cannot evolve in refinements
364 redef var name: String
365
366 # The canonical name of the class
367 #
368 # It is the name of the class prefixed by the full_name of the `intro_mmodule`
369 # Example: `"owner::module::MyClass"`
370 redef var full_name is lazy do
371 return "{self.intro_mmodule.namespace_for(visibility)}::{name}"
372 end
373
374 redef var c_name is lazy do
375 return "{intro_mmodule.c_namespace_for(visibility)}__{name.to_cmangle}"
376 end
377
378 # The number of generic formal parameters
379 # 0 if the class is not generic
380 var arity: Int is noinit
381
382 # Each generic formal parameters in order.
383 # is empty if the class is not generic
384 var mparameters = new Array[MParameterType]
385
386 # A string version of the signature a generic class.
387 #
388 # eg. `Map[K: nullable Object, V: nullable Object]`
389 #
390 # If the class in non generic the name is just given.
391 #
392 # eg. `Object`
393 fun signature_to_s: String
394 do
395 if arity == 0 then return name
396 var res = new FlatBuffer
397 res.append name
398 res.append "["
399 for i in [0..arity[ do
400 if i > 0 then res.append ", "
401 res.append mparameters[i].name
402 res.append ": "
403 res.append intro.bound_mtype.arguments[i].to_s
404 end
405 res.append "]"
406 return res.to_s
407 end
408
409 # Initialize `mparameters` from their names.
410 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
411 autoinit
412 do
413 if parameter_names == null then
414 self.arity = 0
415 else
416 self.arity = parameter_names.length
417 end
418
419 # Create the formal parameter types
420 if arity > 0 then
421 assert parameter_names != null
422 var mparametertypes = new Array[MParameterType]
423 for i in [0..arity[ do
424 var mparametertype = new MParameterType(self, i, parameter_names[i])
425 mparametertypes.add(mparametertype)
426 end
427 self.mparameters = mparametertypes
428 var mclass_type = new MGenericType(self, mparametertypes)
429 self.mclass_type = mclass_type
430 self.get_mtype_cache[mparametertypes] = mclass_type
431 else
432 self.mclass_type = new MClassType(self)
433 end
434 end
435
436 # The kind of the class (interface, abstract class, etc.)
437 # In Nit, the kind of a class cannot evolve in refinements
438 var kind: MClassKind
439
440 # The visibility of the class
441 # In Nit, the visibility of a class cannot evolve in refinements
442 var visibility: MVisibility
443
444 init
445 do
446 intro_mmodule.intro_mclasses.add(self)
447 var model = intro_mmodule.model
448 model.mclasses_by_name.add_one(name, self)
449 model.mclasses.add(self)
450 end
451
452 redef fun model do return intro_mmodule.model
453
454 # All class definitions (introduction and refinements)
455 var mclassdefs = new Array[MClassDef]
456
457 # Alias for `name`
458 redef fun to_s do return self.name
459
460 # The definition that introduces the class.
461 #
462 # Warning: such a definition may not exist in the early life of the object.
463 # In this case, the method will abort.
464 #
465 # Use `try_intro` instead
466 var intro: MClassDef is noinit
467
468 # The definition that introduces the class or null if not yet known.
469 #
470 # See `intro`
471 fun try_intro: nullable MClassDef do
472 if isset _intro then return _intro else return null
473 end
474
475 # Return the class `self` in the class hierarchy of the module `mmodule`.
476 #
477 # SEE: `MModule::flatten_mclass_hierarchy`
478 # REQUIRE: `mmodule.has_mclass(self)`
479 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
480 do
481 return mmodule.flatten_mclass_hierarchy[self]
482 end
483
484 # The principal static type of the class.
485 #
486 # For non-generic class, mclass_type is the only `MClassType` based
487 # on self.
488 #
489 # For a generic class, the arguments are the formal parameters.
490 # i.e.: for the class Array[E:Object], the `mclass_type` is Array[E].
491 # If you want Array[Object] the see `MClassDef::bound_mtype`
492 #
493 # For generic classes, the mclass_type is also the way to get a formal
494 # generic parameter type.
495 #
496 # To get other types based on a generic class, see `get_mtype`.
497 #
498 # ENSURE: `mclass_type.mclass == self`
499 var mclass_type: MClassType is noinit
500
501 # Return a generic type based on the class
502 # Is the class is not generic, then the result is `mclass_type`
503 #
504 # REQUIRE: `mtype_arguments.length == self.arity`
505 fun get_mtype(mtype_arguments: Array[MType]): MClassType
506 do
507 assert mtype_arguments.length == self.arity
508 if self.arity == 0 then return self.mclass_type
509 var res = get_mtype_cache.get_or_null(mtype_arguments)
510 if res != null then return res
511 res = new MGenericType(self, mtype_arguments)
512 self.get_mtype_cache[mtype_arguments.to_a] = res
513 return res
514 end
515
516 private var get_mtype_cache = new HashMap[Array[MType], MGenericType]
517
518 # Is there a `new` factory to allow the pseudo instantiation?
519 var has_new_factory = false is writable
520 end
521
522
523 # A definition (an introduction or a refinement) of a class in a module
524 #
525 # A `MClassDef` is associated with an explicit (or almost) definition of a
526 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
527 # a specific class and a specific module, and contains declarations like super-classes
528 # or properties.
529 #
530 # It is the class definitions that are the backbone of most things in the model:
531 # ClassDefs are defined with regard with other classdefs.
532 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
533 #
534 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
535 class MClassDef
536 super MEntity
537
538 # The module where the definition is
539 var mmodule: MModule
540
541 # The associated `MClass`
542 var mclass: MClass is noinit
543
544 # The bounded type associated to the mclassdef
545 #
546 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
547 # are the same type.
548 #
549 # Example:
550 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
551 # If you want Array[E], then see `mclass.mclass_type`
552 #
553 # ENSURE: `bound_mtype.mclass == self.mclass`
554 var bound_mtype: MClassType
555
556 # The origin of the definition
557 var location: Location
558
559 # Internal name combining the module and the class
560 # Example: "mymodule#MyClass"
561 redef var to_s: String is noinit
562
563 init
564 do
565 self.mclass = bound_mtype.mclass
566 mmodule.mclassdefs.add(self)
567 mclass.mclassdefs.add(self)
568 if mclass.intro_mmodule == mmodule then
569 assert not isset mclass._intro
570 mclass.intro = self
571 end
572 self.to_s = "{mmodule}#{mclass}"
573 end
574
575 # Actually the name of the `mclass`
576 redef fun name do return mclass.name
577
578 # The module and class name separated by a '#'.
579 #
580 # The short-name of the class is used for introduction.
581 # Example: "my_module#MyClass"
582 #
583 # The full-name of the class is used for refinement.
584 # Example: "my_module#intro_module::MyClass"
585 redef var full_name is lazy do
586 if is_intro then
587 # public gives 'p#A'
588 # private gives 'p::m#A'
589 return "{mmodule.namespace_for(mclass.visibility)}#{mclass.name}"
590 else if mclass.intro_mmodule.mproject != mmodule.mproject then
591 # public gives 'q::n#p::A'
592 # private gives 'q::n#p::m::A'
593 return "{mmodule.full_name}#{mclass.full_name}"
594 else if mclass.visibility > private_visibility then
595 # public gives 'p::n#A'
596 return "{mmodule.full_name}#{mclass.name}"
597 else
598 # private gives 'p::n#::m::A' (redundant p is omitted)
599 return "{mmodule.full_name}#::{mclass.intro_mmodule.name}::{mclass.name}"
600 end
601 end
602
603 redef var c_name is lazy do
604 if is_intro then
605 return "{mmodule.c_namespace_for(mclass.visibility)}___{mclass.c_name}"
606 else if mclass.intro_mmodule.mproject == mmodule.mproject and mclass.visibility > private_visibility then
607 return "{mmodule.c_name}___{mclass.name.to_cmangle}"
608 else
609 return "{mmodule.c_name}___{mclass.c_name}"
610 end
611 end
612
613 redef fun model do return mmodule.model
614
615 # All declared super-types
616 # FIXME: quite ugly but not better idea yet
617 var supertypes = new Array[MClassType]
618
619 # Register some super-types for the class (ie "super SomeType")
620 #
621 # The hierarchy must not already be set
622 # REQUIRE: `self.in_hierarchy == null`
623 fun set_supertypes(supertypes: Array[MClassType])
624 do
625 assert unique_invocation: self.in_hierarchy == null
626 var mmodule = self.mmodule
627 var model = mmodule.model
628 var mtype = self.bound_mtype
629
630 for supertype in supertypes do
631 self.supertypes.add(supertype)
632
633 # Register in full_type_specialization_hierarchy
634 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
635 # Register in intro_type_specialization_hierarchy
636 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
637 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
638 end
639 end
640
641 end
642
643 # Collect the super-types (set by set_supertypes) to build the hierarchy
644 #
645 # This function can only invoked once by class
646 # REQUIRE: `self.in_hierarchy == null`
647 # ENSURE: `self.in_hierarchy != null`
648 fun add_in_hierarchy
649 do
650 assert unique_invocation: self.in_hierarchy == null
651 var model = mmodule.model
652 var res = model.mclassdef_hierarchy.add_node(self)
653 self.in_hierarchy = res
654 var mtype = self.bound_mtype
655
656 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
657 # The simpliest way is to attach it to collect_mclassdefs
658 for mclassdef in mtype.collect_mclassdefs(mmodule) do
659 res.poset.add_edge(self, mclassdef)
660 end
661 end
662
663 # The view of the class definition in `mclassdef_hierarchy`
664 var in_hierarchy: nullable POSetElement[MClassDef] = null
665
666 # Is the definition the one that introduced `mclass`?
667 fun is_intro: Bool do return isset mclass._intro and mclass.intro == self
668
669 # All properties introduced by the classdef
670 var intro_mproperties = new Array[MProperty]
671
672 # All property definitions in the class (introductions and redefinitions)
673 var mpropdefs = new Array[MPropDef]
674 end
675
676 # A global static type
677 #
678 # MType are global to the model; it means that a `MType` is not bound to a
679 # specific `MModule`.
680 # This characteristic helps the reasoning about static types in a program
681 # since a single `MType` object always denote the same type.
682 #
683 # However, because a `MType` is global, it does not really have properties
684 # nor have subtypes to a hierarchy since the property and the class hierarchy
685 # depends of a module.
686 # Moreover, virtual types an formal generic parameter types also depends on
687 # a receiver to have sense.
688 #
689 # Therefore, most method of the types require a module and an anchor.
690 # The module is used to know what are the classes and the specialization
691 # links.
692 # The anchor is used to know what is the bound of the virtual types and formal
693 # generic parameter types.
694 #
695 # MType are not directly usable to get properties. See the `anchor_to` method
696 # and the `MClassType` class.
697 #
698 # FIXME: the order of the parameters is not the best. We mus pick on from:
699 # * foo(mmodule, anchor, othertype)
700 # * foo(othertype, anchor, mmodule)
701 # * foo(anchor, mmodule, othertype)
702 # * foo(othertype, mmodule, anchor)
703 abstract class MType
704 super MEntity
705
706 redef fun name do return to_s
707
708 # Return true if `self` is an subtype of `sup`.
709 # The typing is done using the standard typing policy of Nit.
710 #
711 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
712 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
713 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
714 do
715 var sub = self
716 if sub == sup then return true
717
718 #print "1.is {sub} a {sup}? ===="
719
720 if anchor == null then
721 assert not sub.need_anchor
722 assert not sup.need_anchor
723 else
724 # First, resolve the formal types to the simplest equivalent forms in the receiver
725 assert sub.can_resolve_for(anchor, null, mmodule)
726 sub = sub.lookup_fixed(mmodule, anchor)
727 assert sup.can_resolve_for(anchor, null, mmodule)
728 sup = sup.lookup_fixed(mmodule, anchor)
729 end
730
731 # Does `sup` accept null or not?
732 # Discard the nullable marker if it exists
733 var sup_accept_null = false
734 if sup isa MNullableType then
735 sup_accept_null = true
736 sup = sup.mtype
737 else if sup isa MNotNullType then
738 sup = sup.mtype
739 else if sup isa MNullType then
740 sup_accept_null = true
741 end
742
743 # Can `sub` provide null or not?
744 # Thus we can match with `sup_accept_null`
745 # Also discard the nullable marker if it exists
746 var sub_reject_null = false
747 if sub isa MNullableType then
748 if not sup_accept_null then return false
749 sub = sub.mtype
750 else if sub isa MNotNullType then
751 sub_reject_null = true
752 sub = sub.mtype
753 else if sub isa MNullType then
754 return sup_accept_null
755 end
756 # Now the case of direct null and nullable is over.
757
758 # If `sub` is a formal type, then it is accepted if its bound is accepted
759 while sub isa MFormalType do
760 #print "3.is {sub} a {sup}?"
761
762 # A unfixed formal type can only accept itself
763 if sub == sup then return true
764
765 assert anchor != null
766 sub = sub.lookup_bound(mmodule, anchor)
767 if sub_reject_null then sub = sub.as_notnull
768
769 #print "3.is {sub} a {sup}?"
770
771 # Manage the second layer of null/nullable
772 if sub isa MNullableType then
773 if not sup_accept_null and not sub_reject_null then return false
774 sub = sub.mtype
775 else if sub isa MNotNullType then
776 sub_reject_null = true
777 sub = sub.mtype
778 else if sub isa MNullType then
779 return sup_accept_null
780 end
781 end
782 #print "4.is {sub} a {sup}? <- no more resolution"
783
784 assert sub isa MClassType else print "{sub} <? {sub}" # It is the only remaining type
785
786 # A unfixed formal type can only accept itself
787 if sup isa MFormalType then
788 return false
789 end
790
791 if sup isa MNullType then
792 # `sup` accepts only null
793 return false
794 end
795
796 assert sup isa MClassType # It is the only remaining type
797
798 # Now both are MClassType, we need to dig
799
800 if sub == sup then return true
801
802 if anchor == null then anchor = sub # UGLY: any anchor will work
803 var resolved_sub = sub.anchor_to(mmodule, anchor)
804 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
805 if res == false then return false
806 if not sup isa MGenericType then return true
807 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
808 assert sub2.mclass == sup.mclass
809 for i in [0..sup.mclass.arity[ do
810 var sub_arg = sub2.arguments[i]
811 var sup_arg = sup.arguments[i]
812 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
813 if res == false then return false
814 end
815 return true
816 end
817
818 # The base class type on which self is based
819 #
820 # This base type is used to get property (an internally to perform
821 # unsafe type comparison).
822 #
823 # Beware: some types (like null) are not based on a class thus this
824 # method will crash
825 #
826 # Basically, this function transform the virtual types and parameter
827 # types to their bounds.
828 #
829 # Example
830 #
831 # class A end
832 # class B super A end
833 # class X end
834 # class Y super X end
835 # class G[T: A]
836 # type U: X
837 # end
838 # class H
839 # super G[B]
840 # redef type U: Y
841 # end
842 #
843 # Map[T,U] anchor_to H #-> Map[B,Y]
844 #
845 # Explanation of the example:
846 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
847 # because "redef type U: Y". Therefore, Map[T, U] is bound to
848 # Map[B, Y]
849 #
850 # ENSURE: `not self.need_anchor implies result == self`
851 # ENSURE: `not result.need_anchor`
852 fun anchor_to(mmodule: MModule, anchor: MClassType): MType
853 do
854 if not need_anchor then return self
855 assert not anchor.need_anchor
856 # Just resolve to the anchor and clear all the virtual types
857 var res = self.resolve_for(anchor, null, mmodule, true)
858 assert not res.need_anchor
859 return res
860 end
861
862 # Does `self` contain a virtual type or a formal generic parameter type?
863 # In order to remove those types, you usually want to use `anchor_to`.
864 fun need_anchor: Bool do return true
865
866 # Return the supertype when adapted to a class.
867 #
868 # In Nit, for each super-class of a type, there is a equivalent super-type.
869 #
870 # Example:
871 #
872 # ~~~nitish
873 # class G[T, U] end
874 # class H[V] super G[V, Bool] end
875 #
876 # H[Int] supertype_to G #-> G[Int, Bool]
877 # ~~~
878 #
879 # REQUIRE: `super_mclass` is a super-class of `self`
880 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
881 # ENSURE: `result.mclass = super_mclass`
882 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
883 do
884 if super_mclass.arity == 0 then return super_mclass.mclass_type
885 if self isa MClassType and self.mclass == super_mclass then return self
886 var resolved_self
887 if self.need_anchor then
888 assert anchor != null
889 resolved_self = self.anchor_to(mmodule, anchor)
890 else
891 resolved_self = self
892 end
893 var supertypes = resolved_self.collect_mtypes(mmodule)
894 for supertype in supertypes do
895 if supertype.mclass == super_mclass then
896 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
897 return supertype.resolve_for(self, anchor, mmodule, false)
898 end
899 end
900 abort
901 end
902
903 # Replace formals generic types in self with resolved values in `mtype`
904 # If `cleanup_virtual` is true, then virtual types are also replaced
905 # with their bounds.
906 #
907 # This function returns self if `need_anchor` is false.
908 #
909 # ## Example 1
910 #
911 # ~~~
912 # class G[E] end
913 # class H[F] super G[F] end
914 # class X[Z] end
915 # ~~~
916 #
917 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
918 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
919 #
920 # Explanation of the example:
921 # * Array[E].need_anchor is true because there is a formal generic parameter type E
922 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
923 # * Since "H[F] super G[F]", E is in fact F for H
924 # * More specifically, in H[Int], E is Int
925 # * So, in H[Int], Array[E] is Array[Int]
926 #
927 # This function is mainly used to inherit a signature.
928 # Because, unlike `anchor_to`, we do not want a full resolution of
929 # a type but only an adapted version of it.
930 #
931 # ## Example 2
932 #
933 # ~~~
934 # class A[E]
935 # fun foo(e:E):E is abstract
936 # end
937 # class B super A[Int] end
938 # ~~~
939 #
940 # The signature on foo is (e: E): E
941 # If we resolve the signature for B, we get (e:Int):Int
942 #
943 # ## Example 3
944 #
945 # ~~~nitish
946 # class A[E]
947 # fun foo(e:E):E is abstract
948 # end
949 # class C[F]
950 # var a: A[Array[F]]
951 # fun bar do a.foo(x) # <- x is here
952 # end
953 # ~~~
954 #
955 # The first question is: is foo available on `a`?
956 #
957 # The static type of a is `A[Array[F]]`, that is an open type.
958 # in order to find a method `foo`, whe must look at a resolved type.
959 #
960 # A[Array[F]].anchor_to(C[nullable Object]) #-> A[Array[nullable Object]]
961 #
962 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
963 #
964 # The next question is: what is the accepted types for `x`?
965 #
966 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
967 #
968 # E.resolve_for(A[Array[F]],C[nullable Object]) #-> Array[F]
969 #
970 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
971 #
972 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
973 # two function instead of one seems also to be a bad idea.
974 #
975 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
976 # ENSURE: `not self.need_anchor implies result == self`
977 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
978
979 # Resolve formal type to its verbatim bound.
980 # If the type is not formal, just return self
981 #
982 # The result is returned exactly as declared in the "type" property (verbatim).
983 # So it could be another formal type.
984 #
985 # In case of conflict, the method aborts.
986 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self
987
988 # Resolve the formal type to its simplest equivalent form.
989 #
990 # Formal types are either free or fixed.
991 # When it is fixed, it means that it is equivalent with a simpler type.
992 # When a formal type is free, it means that it is only equivalent with itself.
993 # This method return the most simple equivalent type of `self`.
994 #
995 # This method is mainly used for subtype test in order to sanely compare fixed.
996 #
997 # By default, return self.
998 # See the redefinitions for specific behavior in each kind of type.
999 fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self
1000
1001 # Can the type be resolved?
1002 #
1003 # In order to resolve open types, the formal types must make sence.
1004 #
1005 # ## Example
1006 #
1007 # class A[E]
1008 # end
1009 # class B[F]
1010 # end
1011 #
1012 # ~~~nitish
1013 # E.can_resolve_for(A[Int]) #-> true, E make sense in A
1014 #
1015 # E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
1016 #
1017 # B[E].can_resolve_for(A[F], B[Object]) #-> true,
1018 # # B[E] is a red hearing only the E is important,
1019 # # E make sense in A
1020 # ~~~
1021 #
1022 # REQUIRE: `anchor != null implies not anchor.need_anchor`
1023 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
1024 # ENSURE: `not self.need_anchor implies result == true`
1025 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
1026
1027 # Return the nullable version of the type
1028 # If the type is already nullable then self is returned
1029 fun as_nullable: MType
1030 do
1031 var res = self.as_nullable_cache
1032 if res != null then return res
1033 res = new MNullableType(self)
1034 self.as_nullable_cache = res
1035 return res
1036 end
1037
1038 # Remove the base type of a decorated (proxy) type.
1039 # Is the type is not decorated, then self is returned.
1040 #
1041 # Most of the time it is used to return the not nullable version of a nullable type.
1042 # In this case, this just remove the `nullable` notation, but the result can still contains null.
1043 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
1044 # If you really want to exclude the `null` value, then use `as_notnull`
1045 fun undecorate: MType
1046 do
1047 return self
1048 end
1049
1050 # Returns the not null version of the type.
1051 # That is `self` minus the `null` value.
1052 #
1053 # For most types, this return `self`.
1054 # For formal types, this returns a special `MNotNullType`
1055 fun as_notnull: MType do return self
1056
1057 private var as_nullable_cache: nullable MType = null
1058
1059
1060 # The depth of the type seen as a tree.
1061 #
1062 # * A -> 1
1063 # * G[A] -> 2
1064 # * H[A, B] -> 2
1065 # * H[G[A], B] -> 3
1066 #
1067 # Formal types have a depth of 1.
1068 fun depth: Int
1069 do
1070 return 1
1071 end
1072
1073 # The length of the type seen as a tree.
1074 #
1075 # * A -> 1
1076 # * G[A] -> 2
1077 # * H[A, B] -> 3
1078 # * H[G[A], B] -> 4
1079 #
1080 # Formal types have a length of 1.
1081 fun length: Int
1082 do
1083 return 1
1084 end
1085
1086 # Compute all the classdefs inherited/imported.
1087 # The returned set contains:
1088 # * the class definitions from `mmodule` and its imported modules
1089 # * the class definitions of this type and its super-types
1090 #
1091 # This function is used mainly internally.
1092 #
1093 # REQUIRE: `not self.need_anchor`
1094 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
1095
1096 # Compute all the super-classes.
1097 # This function is used mainly internally.
1098 #
1099 # REQUIRE: `not self.need_anchor`
1100 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
1101
1102 # Compute all the declared super-types.
1103 # Super-types are returned as declared in the classdefs (verbatim).
1104 # This function is used mainly internally.
1105 #
1106 # REQUIRE: `not self.need_anchor`
1107 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
1108
1109 # Is the property in self for a given module
1110 # This method does not filter visibility or whatever
1111 #
1112 # REQUIRE: `not self.need_anchor`
1113 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
1114 do
1115 assert not self.need_anchor
1116 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
1117 end
1118 end
1119
1120 # A type based on a class.
1121 #
1122 # `MClassType` have properties (see `has_mproperty`).
1123 class MClassType
1124 super MType
1125
1126 # The associated class
1127 var mclass: MClass
1128
1129 redef fun model do return self.mclass.intro_mmodule.model
1130
1131 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1132
1133 # The formal arguments of the type
1134 # ENSURE: `result.length == self.mclass.arity`
1135 var arguments = new Array[MType]
1136
1137 redef fun to_s do return mclass.to_s
1138
1139 redef fun full_name do return mclass.full_name
1140
1141 redef fun c_name do return mclass.c_name
1142
1143 redef fun need_anchor do return false
1144
1145 redef fun anchor_to(mmodule: MModule, anchor: MClassType): MClassType
1146 do
1147 return super.as(MClassType)
1148 end
1149
1150 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1151
1152 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1153
1154 redef fun collect_mclassdefs(mmodule)
1155 do
1156 assert not self.need_anchor
1157 var cache = self.collect_mclassdefs_cache
1158 if not cache.has_key(mmodule) then
1159 self.collect_things(mmodule)
1160 end
1161 return cache[mmodule]
1162 end
1163
1164 redef fun collect_mclasses(mmodule)
1165 do
1166 if collect_mclasses_last_module == mmodule then return collect_mclasses_last_module_cache
1167 assert not self.need_anchor
1168 var cache = self.collect_mclasses_cache
1169 if not cache.has_key(mmodule) then
1170 self.collect_things(mmodule)
1171 end
1172 var res = cache[mmodule]
1173 collect_mclasses_last_module = mmodule
1174 collect_mclasses_last_module_cache = res
1175 return res
1176 end
1177
1178 private var collect_mclasses_last_module: nullable MModule = null
1179 private var collect_mclasses_last_module_cache: Set[MClass] is noinit
1180
1181 redef fun collect_mtypes(mmodule)
1182 do
1183 assert not self.need_anchor
1184 var cache = self.collect_mtypes_cache
1185 if not cache.has_key(mmodule) then
1186 self.collect_things(mmodule)
1187 end
1188 return cache[mmodule]
1189 end
1190
1191 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1192 private fun collect_things(mmodule: MModule)
1193 do
1194 var res = new HashSet[MClassDef]
1195 var seen = new HashSet[MClass]
1196 var types = new HashSet[MClassType]
1197 seen.add(self.mclass)
1198 var todo = [self.mclass]
1199 while not todo.is_empty do
1200 var mclass = todo.pop
1201 #print "process {mclass}"
1202 for mclassdef in mclass.mclassdefs do
1203 if not mmodule.in_importation <= mclassdef.mmodule then continue
1204 #print " process {mclassdef}"
1205 res.add(mclassdef)
1206 for supertype in mclassdef.supertypes do
1207 types.add(supertype)
1208 var superclass = supertype.mclass
1209 if seen.has(superclass) then continue
1210 #print " add {superclass}"
1211 seen.add(superclass)
1212 todo.add(superclass)
1213 end
1214 end
1215 end
1216 collect_mclassdefs_cache[mmodule] = res
1217 collect_mclasses_cache[mmodule] = seen
1218 collect_mtypes_cache[mmodule] = types
1219 end
1220
1221 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1222 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1223 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1224
1225 end
1226
1227 # A type based on a generic class.
1228 # A generic type a just a class with additional formal generic arguments.
1229 class MGenericType
1230 super MClassType
1231
1232 redef var arguments
1233
1234 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1235
1236 init
1237 do
1238 assert self.mclass.arity == arguments.length
1239
1240 self.need_anchor = false
1241 for t in arguments do
1242 if t.need_anchor then
1243 self.need_anchor = true
1244 break
1245 end
1246 end
1247
1248 self.to_s = "{mclass}[{arguments.join(", ")}]"
1249 end
1250
1251 # The short-name of the class, then the full-name of each type arguments within brackets.
1252 # Example: `"Map[String, List[Int]]"`
1253 redef var to_s: String is noinit
1254
1255 # The full-name of the class, then the full-name of each type arguments within brackets.
1256 # Example: `"standard::Map[standard::String, standard::List[standard::Int]]"`
1257 redef var full_name is lazy do
1258 var args = new Array[String]
1259 for t in arguments do
1260 args.add t.full_name
1261 end
1262 return "{mclass.full_name}[{args.join(", ")}]"
1263 end
1264
1265 redef var c_name is lazy do
1266 var res = mclass.c_name
1267 # Note: because the arity is known, a prefix notation is enough
1268 for t in arguments do
1269 res += "__"
1270 res += t.c_name
1271 end
1272 return res.to_s
1273 end
1274
1275 redef var need_anchor: Bool is noinit
1276
1277 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1278 do
1279 if not need_anchor then return self
1280 assert can_resolve_for(mtype, anchor, mmodule)
1281 var types = new Array[MType]
1282 for t in arguments do
1283 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1284 end
1285 return mclass.get_mtype(types)
1286 end
1287
1288 redef fun can_resolve_for(mtype, anchor, mmodule)
1289 do
1290 if not need_anchor then return true
1291 for t in arguments do
1292 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1293 end
1294 return true
1295 end
1296
1297
1298 redef fun depth
1299 do
1300 var dmax = 0
1301 for a in self.arguments do
1302 var d = a.depth
1303 if d > dmax then dmax = d
1304 end
1305 return dmax + 1
1306 end
1307
1308 redef fun length
1309 do
1310 var res = 1
1311 for a in self.arguments do
1312 res += a.length
1313 end
1314 return res
1315 end
1316 end
1317
1318 # A formal type (either virtual of parametric).
1319 #
1320 # The main issue with formal types is that they offer very little information on their own
1321 # and need a context (anchor and mmodule) to be useful.
1322 abstract class MFormalType
1323 super MType
1324
1325 redef var as_notnull = new MNotNullType(self) is lazy
1326 end
1327
1328 # A virtual formal type.
1329 class MVirtualType
1330 super MFormalType
1331
1332 # The property associated with the type.
1333 # Its the definitions of this property that determine the bound or the virtual type.
1334 var mproperty: MVirtualTypeProp
1335
1336 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1337
1338 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1339 do
1340 return lookup_single_definition(mmodule, resolved_receiver).bound.as(not null)
1341 end
1342
1343 private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef
1344 do
1345 assert not resolved_receiver.need_anchor
1346 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1347 if props.is_empty then
1348 abort
1349 else if props.length == 1 then
1350 return props.first
1351 end
1352 var types = new ArraySet[MType]
1353 var res = props.first
1354 for p in props do
1355 types.add(p.bound.as(not null))
1356 if not res.is_fixed then res = p
1357 end
1358 if types.length == 1 then
1359 return res
1360 end
1361 abort
1362 end
1363
1364 # A VT is fixed when:
1365 # * the VT is (re-)defined with the annotation `is fixed`
1366 # * the VT is (indirectly) bound to an enum class (see `enum_kind`) since there is no subtype possible
1367 # * the receiver is an enum class since there is no subtype possible
1368 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1369 do
1370 assert not resolved_receiver.need_anchor
1371 resolved_receiver = resolved_receiver.undecorate
1372 assert resolved_receiver isa MClassType # It is the only remaining type
1373
1374 var prop = lookup_single_definition(mmodule, resolved_receiver)
1375 var res = prop.bound.as(not null)
1376
1377 # Recursively lookup the fixed result
1378 res = res.lookup_fixed(mmodule, resolved_receiver)
1379
1380 # 1. For a fixed VT, return the resolved bound
1381 if prop.is_fixed then return res
1382
1383 # 2. For a enum boud, return the bound
1384 if res isa MClassType and res.mclass.kind == enum_kind then return res
1385
1386 # 3. for a enum receiver return the bound
1387 if resolved_receiver.mclass.kind == enum_kind then return res
1388
1389 return self
1390 end
1391
1392 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1393 do
1394 if not cleanup_virtual then return self
1395 assert can_resolve_for(mtype, anchor, mmodule)
1396 # self is a virtual type declared (or inherited) in mtype
1397 # The point of the function it to get the bound of the virtual type that make sense for mtype
1398 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1399 #print "{class_name}: {self}/{mtype}/{anchor}?"
1400 var resolved_receiver
1401 if mtype.need_anchor then
1402 assert anchor != null
1403 resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true)
1404 else
1405 resolved_receiver = mtype
1406 end
1407 # Now, we can get the bound
1408 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1409 # The bound is exactly as declared in the "type" property, so we must resolve it again
1410 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1411
1412 return res
1413 end
1414
1415 redef fun can_resolve_for(mtype, anchor, mmodule)
1416 do
1417 if mtype.need_anchor then
1418 assert anchor != null
1419 mtype = mtype.anchor_to(mmodule, anchor)
1420 end
1421 return mtype.has_mproperty(mmodule, mproperty)
1422 end
1423
1424 redef fun to_s do return self.mproperty.to_s
1425
1426 redef fun full_name do return self.mproperty.full_name
1427
1428 redef fun c_name do return self.mproperty.c_name
1429 end
1430
1431 # The type associated to a formal parameter generic type of a class
1432 #
1433 # Each parameter type is associated to a specific class.
1434 # It means that all refinements of a same class "share" the parameter type,
1435 # but that a generic subclass has its own parameter types.
1436 #
1437 # However, in the sense of the meta-model, a parameter type of a class is
1438 # a valid type in a subclass. The "in the sense of the meta-model" is
1439 # important because, in the Nit language, the programmer cannot refers
1440 # directly to the parameter types of the super-classes.
1441 #
1442 # Example:
1443 #
1444 # class A[E]
1445 # fun e: E is abstract
1446 # end
1447 # class B[F]
1448 # super A[Array[F]]
1449 # end
1450 #
1451 # In the class definition B[F], `F` is a valid type but `E` is not.
1452 # However, `self.e` is a valid method call, and the signature of `e` is
1453 # declared `e: E`.
1454 #
1455 # Note that parameter types are shared among class refinements.
1456 # Therefore parameter only have an internal name (see `to_s` for details).
1457 class MParameterType
1458 super MFormalType
1459
1460 # The generic class where the parameter belong
1461 var mclass: MClass
1462
1463 redef fun model do return self.mclass.intro_mmodule.model
1464
1465 # The position of the parameter (0 for the first parameter)
1466 # FIXME: is `position` a better name?
1467 var rank: Int
1468
1469 redef var name
1470
1471 redef fun to_s do return name
1472
1473 redef var full_name is lazy do return "{mclass.full_name}::{name}"
1474
1475 redef var c_name is lazy do return mclass.c_name + "__" + "#{name}".to_cmangle
1476
1477 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1478 do
1479 assert not resolved_receiver.need_anchor
1480 resolved_receiver = resolved_receiver.undecorate
1481 assert resolved_receiver isa MClassType # It is the only remaining type
1482 var goalclass = self.mclass
1483 if resolved_receiver.mclass == goalclass then
1484 return resolved_receiver.arguments[self.rank]
1485 end
1486 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1487 for t in supertypes do
1488 if t.mclass == goalclass then
1489 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1490 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1491 var res = t.arguments[self.rank]
1492 return res
1493 end
1494 end
1495 abort
1496 end
1497
1498 # A PT is fixed when:
1499 # * Its bound is a enum class (see `enum_kind`).
1500 # The PT is just useless, but it is still a case.
1501 # * More usually, the `resolved_receiver` is a subclass of `self.mclass`,
1502 # so it is necessarily fixed in a `super` clause, either with a normal type
1503 # or with another PT.
1504 # See `resolve_for` for examples about related issues.
1505 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1506 do
1507 assert not resolved_receiver.need_anchor
1508 resolved_receiver = resolved_receiver.undecorate
1509 assert resolved_receiver isa MClassType # It is the only remaining type
1510 var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false)
1511 return res
1512 end
1513
1514 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1515 do
1516 assert can_resolve_for(mtype, anchor, mmodule)
1517 #print "{class_name}: {self}/{mtype}/{anchor}?"
1518
1519 if mtype isa MGenericType and mtype.mclass == self.mclass then
1520 var res = mtype.arguments[self.rank]
1521 if anchor != null and res.need_anchor then
1522 # Maybe the result can be resolved more if are bound to a final class
1523 var r2 = res.anchor_to(mmodule, anchor)
1524 if r2 isa MClassType and r2.mclass.kind == enum_kind then return r2
1525 end
1526 return res
1527 end
1528
1529 # self is a parameter type of mtype (or of a super-class of mtype)
1530 # The point of the function it to get the bound of the virtual type that make sense for mtype
1531 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1532 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1533 var resolved_receiver
1534 if mtype.need_anchor then
1535 assert anchor != null
1536 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1537 else
1538 resolved_receiver = mtype
1539 end
1540 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1541 if resolved_receiver isa MParameterType then
1542 assert resolved_receiver.mclass == anchor.mclass
1543 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1544 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1545 end
1546 assert resolved_receiver isa MClassType # It is the only remaining type
1547
1548 # Eh! The parameter is in the current class.
1549 # So we return the corresponding argument, no mater what!
1550 if resolved_receiver.mclass == self.mclass then
1551 var res = resolved_receiver.arguments[self.rank]
1552 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1553 return res
1554 end
1555
1556 if resolved_receiver.need_anchor then
1557 assert anchor != null
1558 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1559 end
1560 # Now, we can get the bound
1561 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1562 # The bound is exactly as declared in the "type" property, so we must resolve it again
1563 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1564
1565 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1566
1567 return res
1568 end
1569
1570 redef fun can_resolve_for(mtype, anchor, mmodule)
1571 do
1572 if mtype.need_anchor then
1573 assert anchor != null
1574 mtype = mtype.anchor_to(mmodule, anchor)
1575 end
1576 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1577 end
1578 end
1579
1580 # A type that decorates another type.
1581 #
1582 # The point of this class is to provide a common implementation of sevices that just forward to the original type.
1583 # Specific decorator are expected to redefine (or to extend) the default implementation as this suit them.
1584 abstract class MProxyType
1585 super MType
1586 # The base type
1587 var mtype: MType
1588
1589 redef fun model do return self.mtype.model
1590 redef fun need_anchor do return mtype.need_anchor
1591 redef fun as_nullable do return mtype.as_nullable
1592 redef fun as_notnull do return mtype.as_notnull
1593 redef fun undecorate do return mtype.undecorate
1594 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1595 do
1596 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1597 return res
1598 end
1599
1600 redef fun can_resolve_for(mtype, anchor, mmodule)
1601 do
1602 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1603 end
1604
1605 redef fun lookup_fixed(mmodule, resolved_receiver)
1606 do
1607 var t = mtype.lookup_fixed(mmodule, resolved_receiver)
1608 return t
1609 end
1610
1611 redef fun depth do return self.mtype.depth
1612
1613 redef fun length do return self.mtype.length
1614
1615 redef fun collect_mclassdefs(mmodule)
1616 do
1617 assert not self.need_anchor
1618 return self.mtype.collect_mclassdefs(mmodule)
1619 end
1620
1621 redef fun collect_mclasses(mmodule)
1622 do
1623 assert not self.need_anchor
1624 return self.mtype.collect_mclasses(mmodule)
1625 end
1626
1627 redef fun collect_mtypes(mmodule)
1628 do
1629 assert not self.need_anchor
1630 return self.mtype.collect_mtypes(mmodule)
1631 end
1632 end
1633
1634 # A type prefixed with "nullable"
1635 class MNullableType
1636 super MProxyType
1637
1638 init
1639 do
1640 self.to_s = "nullable {mtype}"
1641 end
1642
1643 redef var to_s: String is noinit
1644
1645 redef var full_name is lazy do return "nullable {mtype.full_name}"
1646
1647 redef var c_name is lazy do return "nullable__{mtype.c_name}"
1648
1649 redef fun as_nullable do return self
1650 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1651 do
1652 var res = super
1653 return res.as_nullable
1654 end
1655
1656 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable`
1657 redef fun lookup_fixed(mmodule, resolved_receiver)
1658 do
1659 var t = super
1660 if t == mtype then return self
1661 return t.as_nullable
1662 end
1663 end
1664
1665 # A non-null version of a formal type.
1666 #
1667 # When a formal type in bounded to a nullable type, this is the type of the not null version of it.
1668 class MNotNullType
1669 super MProxyType
1670
1671 redef fun to_s do return "not null {mtype}"
1672 redef var full_name is lazy do return "not null {mtype.full_name}"
1673 redef var c_name is lazy do return "notnull__{mtype.c_name}"
1674
1675 redef fun as_notnull do return self
1676
1677 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1678 do
1679 var res = super
1680 return res.as_notnull
1681 end
1682
1683 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_notnull`
1684 redef fun lookup_fixed(mmodule, resolved_receiver)
1685 do
1686 var t = super
1687 if t == mtype then return self
1688 return t.as_notnull
1689 end
1690 end
1691
1692 # The type of the only value null
1693 #
1694 # The is only one null type per model, see `MModel::null_type`.
1695 class MNullType
1696 super MType
1697 redef var model: Model
1698 redef fun to_s do return "null"
1699 redef fun full_name do return "null"
1700 redef fun c_name do return "null"
1701 redef fun as_nullable do return self
1702
1703 redef var as_notnull = new MBottomType(model) is lazy
1704 redef fun need_anchor do return false
1705 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1706 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1707
1708 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1709
1710 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1711
1712 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1713 end
1714
1715 # The special universal most specific type.
1716 #
1717 # This type is intended to be only used internally for type computation or analysis and should not be exposed to the user.
1718 # The bottom type can de used to denote things that are absurd, dead, or the absence of knowledge.
1719 #
1720 # Semantically it is the singleton `null.as_notnull`.
1721 class MBottomType
1722 super MType
1723 redef var model: Model
1724 redef fun to_s do return "bottom"
1725 redef fun full_name do return "bottom"
1726 redef fun c_name do return "bottom"
1727 redef fun as_nullable do return model.null_type
1728 redef fun as_notnull do return self
1729 redef fun need_anchor do return false
1730 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1731 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1732
1733 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1734
1735 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1736
1737 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1738 end
1739
1740 # A signature of a method
1741 class MSignature
1742 super MType
1743
1744 # The each parameter (in order)
1745 var mparameters: Array[MParameter]
1746
1747 # Returns a parameter named `name`, if any.
1748 fun mparameter_by_name(name: String): nullable MParameter
1749 do
1750 for p in mparameters do
1751 if p.name == name then return p
1752 end
1753 return null
1754 end
1755
1756 # The return type (null for a procedure)
1757 var return_mtype: nullable MType
1758
1759 redef fun depth
1760 do
1761 var dmax = 0
1762 var t = self.return_mtype
1763 if t != null then dmax = t.depth
1764 for p in mparameters do
1765 var d = p.mtype.depth
1766 if d > dmax then dmax = d
1767 end
1768 return dmax + 1
1769 end
1770
1771 redef fun length
1772 do
1773 var res = 1
1774 var t = self.return_mtype
1775 if t != null then res += t.length
1776 for p in mparameters do
1777 res += p.mtype.length
1778 end
1779 return res
1780 end
1781
1782 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1783 init
1784 do
1785 var vararg_rank = -1
1786 for i in [0..mparameters.length[ do
1787 var parameter = mparameters[i]
1788 if parameter.is_vararg then
1789 assert vararg_rank == -1
1790 vararg_rank = i
1791 end
1792 end
1793 self.vararg_rank = vararg_rank
1794 end
1795
1796 # The rank of the ellipsis (`...`) for vararg (starting from 0).
1797 # value is -1 if there is no vararg.
1798 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1799 var vararg_rank: Int is noinit
1800
1801 # The number of parameters
1802 fun arity: Int do return mparameters.length
1803
1804 # The number of non-default parameters
1805 #
1806 # The number of default parameters is then `arity-min_arity`.
1807 #
1808 # Note that there cannot be both varargs and default prameters, thus
1809 # if `vararg_rank != -1` then `min_arity` == `arity`
1810 fun min_arity: Int
1811 do
1812 if vararg_rank != -1 then return arity
1813 var res = 0
1814 for p in mparameters do
1815 if not p.is_default then res += 1
1816 end
1817 return res
1818 end
1819
1820 redef fun to_s
1821 do
1822 var b = new FlatBuffer
1823 if not mparameters.is_empty then
1824 b.append("(")
1825 for i in [0..mparameters.length[ do
1826 var mparameter = mparameters[i]
1827 if i > 0 then b.append(", ")
1828 b.append(mparameter.name)
1829 b.append(": ")
1830 b.append(mparameter.mtype.to_s)
1831 if mparameter.is_vararg then
1832 b.append("...")
1833 end
1834 end
1835 b.append(")")
1836 end
1837 var ret = self.return_mtype
1838 if ret != null then
1839 b.append(": ")
1840 b.append(ret.to_s)
1841 end
1842 return b.to_s
1843 end
1844
1845 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
1846 do
1847 var params = new Array[MParameter]
1848 for p in self.mparameters do
1849 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1850 end
1851 var ret = self.return_mtype
1852 if ret != null then
1853 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1854 end
1855 var res = new MSignature(params, ret)
1856 return res
1857 end
1858 end
1859
1860 # A parameter in a signature
1861 class MParameter
1862 super MEntity
1863
1864 # The name of the parameter
1865 redef var name: String
1866
1867 # The static type of the parameter
1868 var mtype: MType
1869
1870 # Is the parameter a vararg?
1871 var is_vararg: Bool
1872
1873 # Is the parameter a default one?
1874 var is_default: Bool
1875
1876 redef fun to_s
1877 do
1878 if is_vararg then
1879 return "{name}: {mtype}..."
1880 else
1881 return "{name}: {mtype}"
1882 end
1883 end
1884
1885 # Returns a new parameter with the `mtype` resolved.
1886 # See `MType::resolve_for` for details.
1887 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
1888 do
1889 if not self.mtype.need_anchor then return self
1890 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1891 var res = new MParameter(self.name, newtype, self.is_vararg, self.is_default)
1892 return res
1893 end
1894
1895 redef fun model do return mtype.model
1896 end
1897
1898 # A service (global property) that generalize method, attribute, etc.
1899 #
1900 # `MProperty` are global to the model; it means that a `MProperty` is not bound
1901 # to a specific `MModule` nor a specific `MClass`.
1902 #
1903 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
1904 # and the other in subclasses and in refinements.
1905 #
1906 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
1907 # of any dynamic type).
1908 # For instance, a call site "x.foo" is associated to a `MProperty`.
1909 abstract class MProperty
1910 super MEntity
1911
1912 # The associated MPropDef subclass.
1913 # The two specialization hierarchy are symmetric.
1914 type MPROPDEF: MPropDef
1915
1916 # The classdef that introduce the property
1917 # While a property is not bound to a specific module, or class,
1918 # the introducing mclassdef is used for naming and visibility
1919 var intro_mclassdef: MClassDef
1920
1921 # The (short) name of the property
1922 redef var name: String
1923
1924 # The canonical name of the property.
1925 #
1926 # It is the short-`name` prefixed by the short-name of the class and the full-name of the module.
1927 # Example: "my_project::my_module::MyClass::my_method"
1928 redef var full_name is lazy do
1929 return "{intro_mclassdef.mmodule.namespace_for(visibility)}::{intro_mclassdef.mclass.name}::{name}"
1930 end
1931
1932 redef var c_name is lazy do
1933 # FIXME use `namespace_for`
1934 return "{intro_mclassdef.mmodule.c_name}__{intro_mclassdef.mclass.name.to_cmangle}__{name.to_cmangle}"
1935 end
1936
1937 # The visibility of the property
1938 var visibility: MVisibility
1939
1940 # Is the property usable as an initializer?
1941 var is_autoinit = false is writable
1942
1943 init
1944 do
1945 intro_mclassdef.intro_mproperties.add(self)
1946 var model = intro_mclassdef.mmodule.model
1947 model.mproperties_by_name.add_one(name, self)
1948 model.mproperties.add(self)
1949 end
1950
1951 # All definitions of the property.
1952 # The first is the introduction,
1953 # The other are redefinitions (in refinements and in subclasses)
1954 var mpropdefs = new Array[MPROPDEF]
1955
1956 # The definition that introduces the property.
1957 #
1958 # Warning: such a definition may not exist in the early life of the object.
1959 # In this case, the method will abort.
1960 var intro: MPROPDEF is noinit
1961
1962 redef fun model do return intro.model
1963
1964 # Alias for `name`
1965 redef fun to_s do return name
1966
1967 # Return the most specific property definitions defined or inherited by a type.
1968 # The selection knows that refinement is stronger than specialization;
1969 # however, in case of conflict more than one property are returned.
1970 # If mtype does not know mproperty then an empty array is returned.
1971 #
1972 # If you want the really most specific property, then look at `lookup_first_definition`
1973 #
1974 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
1975 # ENSURE: `not mtype.has_mproperty(mmodule, self) == result.is_empty`
1976 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1977 do
1978 assert not mtype.need_anchor
1979 mtype = mtype.undecorate
1980
1981 var cache = self.lookup_definitions_cache[mmodule, mtype]
1982 if cache != null then return cache
1983
1984 #print "select prop {mproperty} for {mtype} in {self}"
1985 # First, select all candidates
1986 var candidates = new Array[MPROPDEF]
1987 for mpropdef in self.mpropdefs do
1988 # If the definition is not imported by the module, then skip
1989 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1990 # If the definition is not inherited by the type, then skip
1991 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1992 # Else, we keep it
1993 candidates.add(mpropdef)
1994 end
1995 # Fast track for only one candidate
1996 if candidates.length <= 1 then
1997 self.lookup_definitions_cache[mmodule, mtype] = candidates
1998 return candidates
1999 end
2000
2001 # Second, filter the most specific ones
2002 return select_most_specific(mmodule, candidates)
2003 end
2004
2005 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2006
2007 # Return the most specific property definitions inherited by a type.
2008 # The selection knows that refinement is stronger than specialization;
2009 # however, in case of conflict more than one property are returned.
2010 # If mtype does not know mproperty then an empty array is returned.
2011 #
2012 # If you want the really most specific property, then look at `lookup_next_definition`
2013 #
2014 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2015 # ENSURE: `not mtype.has_mproperty(mmodule, self) implies result.is_empty`
2016 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2017 do
2018 assert not mtype.need_anchor
2019 mtype = mtype.undecorate
2020
2021 # First, select all candidates
2022 var candidates = new Array[MPROPDEF]
2023 for mpropdef in self.mpropdefs do
2024 # If the definition is not imported by the module, then skip
2025 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2026 # If the definition is not inherited by the type, then skip
2027 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2028 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
2029 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
2030 # Else, we keep it
2031 candidates.add(mpropdef)
2032 end
2033 # Fast track for only one candidate
2034 if candidates.length <= 1 then return candidates
2035
2036 # Second, filter the most specific ones
2037 return select_most_specific(mmodule, candidates)
2038 end
2039
2040 # Return an array containing olny the most specific property definitions
2041 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
2042 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
2043 do
2044 var res = new Array[MPROPDEF]
2045 for pd1 in candidates do
2046 var cd1 = pd1.mclassdef
2047 var c1 = cd1.mclass
2048 var keep = true
2049 for pd2 in candidates do
2050 if pd2 == pd1 then continue # do not compare with self!
2051 var cd2 = pd2.mclassdef
2052 var c2 = cd2.mclass
2053 if c2.mclass_type == c1.mclass_type then
2054 if cd2.mmodule.in_importation < cd1.mmodule then
2055 # cd2 refines cd1; therefore we skip pd1
2056 keep = false
2057 break
2058 end
2059 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
2060 # cd2 < cd1; therefore we skip pd1
2061 keep = false
2062 break
2063 end
2064 end
2065 if keep then
2066 res.add(pd1)
2067 end
2068 end
2069 if res.is_empty then
2070 print "All lost! {candidates.join(", ")}"
2071 # FIXME: should be abort!
2072 end
2073 return res
2074 end
2075
2076 # Return the most specific definition in the linearization of `mtype`.
2077 #
2078 # If you want to know the next properties in the linearization,
2079 # look at `MPropDef::lookup_next_definition`.
2080 #
2081 # FIXME: the linearization is still unspecified
2082 #
2083 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2084 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2085 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
2086 do
2087 return lookup_all_definitions(mmodule, mtype).first
2088 end
2089
2090 # Return all definitions in a linearization order
2091 # Most specific first, most general last
2092 #
2093 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2094 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2095 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2096 do
2097 mtype = mtype.undecorate
2098
2099 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
2100 if cache != null then return cache
2101
2102 assert not mtype.need_anchor
2103 assert mtype.has_mproperty(mmodule, self)
2104
2105 #print "select prop {mproperty} for {mtype} in {self}"
2106 # First, select all candidates
2107 var candidates = new Array[MPROPDEF]
2108 for mpropdef in self.mpropdefs do
2109 # If the definition is not imported by the module, then skip
2110 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2111 # If the definition is not inherited by the type, then skip
2112 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2113 # Else, we keep it
2114 candidates.add(mpropdef)
2115 end
2116 # Fast track for only one candidate
2117 if candidates.length <= 1 then
2118 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2119 return candidates
2120 end
2121
2122 mmodule.linearize_mpropdefs(candidates)
2123 candidates = candidates.reversed
2124 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2125 return candidates
2126 end
2127
2128 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2129 end
2130
2131 # A global method
2132 class MMethod
2133 super MProperty
2134
2135 redef type MPROPDEF: MMethodDef
2136
2137 # Is the property defined at the top_level of the module?
2138 # Currently such a property are stored in `Object`
2139 var is_toplevel: Bool = false is writable
2140
2141 # Is the property a constructor?
2142 # Warning, this property can be inherited by subclasses with or without being a constructor
2143 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
2144 var is_init: Bool = false is writable
2145
2146 # The constructor is a (the) root init with empty signature but a set of initializers
2147 var is_root_init: Bool = false is writable
2148
2149 # Is the property a 'new' constructor?
2150 var is_new: Bool = false is writable
2151
2152 # Is the property a legal constructor for a given class?
2153 # As usual, visibility is not considered.
2154 # FIXME not implemented
2155 fun is_init_for(mclass: MClass): Bool
2156 do
2157 return self.is_init
2158 end
2159
2160 # A specific method that is safe to call on null.
2161 # Currently, only `==`, `!=` and `is_same_instance` are safe
2162 fun is_null_safe: Bool do return name == "==" or name == "!=" or name == "is_same_instance"
2163 end
2164
2165 # A global attribute
2166 class MAttribute
2167 super MProperty
2168
2169 redef type MPROPDEF: MAttributeDef
2170
2171 end
2172
2173 # A global virtual type
2174 class MVirtualTypeProp
2175 super MProperty
2176
2177 redef type MPROPDEF: MVirtualTypeDef
2178
2179 # The formal type associated to the virtual type property
2180 var mvirtualtype = new MVirtualType(self)
2181 end
2182
2183 # A definition of a property (local property)
2184 #
2185 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
2186 # specific class definition (which belong to a specific module)
2187 abstract class MPropDef
2188 super MEntity
2189
2190 # The associated `MProperty` subclass.
2191 # the two specialization hierarchy are symmetric
2192 type MPROPERTY: MProperty
2193
2194 # Self class
2195 type MPROPDEF: MPropDef
2196
2197 # The class definition where the property definition is
2198 var mclassdef: MClassDef
2199
2200 # The associated global property
2201 var mproperty: MPROPERTY
2202
2203 # The origin of the definition
2204 var location: Location
2205
2206 init
2207 do
2208 mclassdef.mpropdefs.add(self)
2209 mproperty.mpropdefs.add(self)
2210 if mproperty.intro_mclassdef == mclassdef then
2211 assert not isset mproperty._intro
2212 mproperty.intro = self
2213 end
2214 self.to_s = "{mclassdef}#{mproperty}"
2215 end
2216
2217 # Actually the name of the `mproperty`
2218 redef fun name do return mproperty.name
2219
2220 # The full-name of mpropdefs combine the information about the `classdef` and the `mproperty`.
2221 #
2222 # Therefore the combination of identifiers is awful,
2223 # the worst case being
2224 #
2225 # * a property "p::m::A::x"
2226 # * redefined in a refinement of a class "q::n::B"
2227 # * in a module "r::o"
2228 # * so "r::o#q::n::B#p::m::A::x"
2229 #
2230 # Fortunately, the full-name is simplified when entities are repeated.
2231 # For the previous case, the simplest form is "p#A#x".
2232 redef var full_name is lazy do
2233 var res = new FlatBuffer
2234
2235 # The first part is the mclassdef. Worst case is "r::o#q::n::B"
2236 res.append mclassdef.full_name
2237
2238 res.append "#"
2239
2240 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2241 # intro are unambiguous in a class
2242 res.append name
2243 else
2244 # Just try to simplify each part
2245 if mclassdef.mmodule.mproject != mproperty.intro_mclassdef.mmodule.mproject then
2246 # precise "p::m" only if "p" != "r"
2247 res.append mproperty.intro_mclassdef.mmodule.full_name
2248 res.append "::"
2249 else if mproperty.visibility <= private_visibility then
2250 # Same project ("p"=="q"), but private visibility,
2251 # does the module part ("::m") need to be displayed
2252 if mclassdef.mmodule.namespace_for(mclassdef.mclass.visibility) != mproperty.intro_mclassdef.mmodule.mproject then
2253 res.append "::"
2254 res.append mproperty.intro_mclassdef.mmodule.name
2255 res.append "::"
2256 end
2257 end
2258 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2259 # precise "B" only if not the same class than "A"
2260 res.append mproperty.intro_mclassdef.name
2261 res.append "::"
2262 end
2263 # Always use the property name "x"
2264 res.append mproperty.name
2265 end
2266 return res.to_s
2267 end
2268
2269 redef var c_name is lazy do
2270 var res = new FlatBuffer
2271 res.append mclassdef.c_name
2272 res.append "___"
2273 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2274 res.append name.to_cmangle
2275 else
2276 if mclassdef.mmodule != mproperty.intro_mclassdef.mmodule then
2277 res.append mproperty.intro_mclassdef.mmodule.c_name
2278 res.append "__"
2279 end
2280 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2281 res.append mproperty.intro_mclassdef.name.to_cmangle
2282 res.append "__"
2283 end
2284 res.append mproperty.name.to_cmangle
2285 end
2286 return res.to_s
2287 end
2288
2289 redef fun model do return mclassdef.model
2290
2291 # Internal name combining the module, the class and the property
2292 # Example: "mymodule#MyClass#mymethod"
2293 redef var to_s: String is noinit
2294
2295 # Is self the definition that introduce the property?
2296 fun is_intro: Bool do return mproperty.intro == self
2297
2298 # Return the next definition in linearization of `mtype`.
2299 #
2300 # This method is used to determine what method is called by a super.
2301 #
2302 # REQUIRE: `not mtype.need_anchor`
2303 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
2304 do
2305 assert not mtype.need_anchor
2306
2307 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
2308 var i = mpropdefs.iterator
2309 while i.is_ok and i.item != self do i.next
2310 assert has_property: i.is_ok
2311 i.next
2312 assert has_next_property: i.is_ok
2313 return i.item
2314 end
2315 end
2316
2317 # A local definition of a method
2318 class MMethodDef
2319 super MPropDef
2320
2321 redef type MPROPERTY: MMethod
2322 redef type MPROPDEF: MMethodDef
2323
2324 # The signature attached to the property definition
2325 var msignature: nullable MSignature = null is writable
2326
2327 # The signature attached to the `new` call on a root-init
2328 # This is a concatenation of the signatures of the initializers
2329 #
2330 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2331 var new_msignature: nullable MSignature = null is writable
2332
2333 # List of initialisers to call in root-inits
2334 #
2335 # They could be setters or attributes
2336 #
2337 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2338 var initializers = new Array[MProperty]
2339
2340 # Is the method definition abstract?
2341 var is_abstract: Bool = false is writable
2342
2343 # Is the method definition intern?
2344 var is_intern = false is writable
2345
2346 # Is the method definition extern?
2347 var is_extern = false is writable
2348
2349 # An optional constant value returned in functions.
2350 #
2351 # Only some specific primitife value are accepted by engines.
2352 # Is used when there is no better implementation available.
2353 #
2354 # Currently used only for the implementation of the `--define`
2355 # command-line option.
2356 # SEE: module `mixin`.
2357 var constant_value: nullable Object = null is writable
2358 end
2359
2360 # A local definition of an attribute
2361 class MAttributeDef
2362 super MPropDef
2363
2364 redef type MPROPERTY: MAttribute
2365 redef type MPROPDEF: MAttributeDef
2366
2367 # The static type of the attribute
2368 var static_mtype: nullable MType = null is writable
2369 end
2370
2371 # A local definition of a virtual type
2372 class MVirtualTypeDef
2373 super MPropDef
2374
2375 redef type MPROPERTY: MVirtualTypeProp
2376 redef type MPROPDEF: MVirtualTypeDef
2377
2378 # The bound of the virtual type
2379 var bound: nullable MType = null is writable
2380
2381 # Is the bound fixed?
2382 var is_fixed = false is writable
2383 end
2384
2385 # A kind of class.
2386 #
2387 # * `abstract_kind`
2388 # * `concrete_kind`
2389 # * `interface_kind`
2390 # * `enum_kind`
2391 # * `extern_kind`
2392 #
2393 # Note this class is basically an enum.
2394 # FIXME: use a real enum once user-defined enums are available
2395 class MClassKind
2396 redef var to_s: String
2397
2398 # Is a constructor required?
2399 var need_init: Bool
2400
2401 # TODO: private init because enumeration.
2402
2403 # Can a class of kind `self` specializes a class of kine `other`?
2404 fun can_specialize(other: MClassKind): Bool
2405 do
2406 if other == interface_kind then return true # everybody can specialize interfaces
2407 if self == interface_kind or self == enum_kind then
2408 # no other case for interfaces
2409 return false
2410 else if self == extern_kind then
2411 # only compatible with themselves
2412 return self == other
2413 else if other == enum_kind or other == extern_kind then
2414 # abstract_kind and concrete_kind are incompatible
2415 return false
2416 end
2417 # remain only abstract_kind and concrete_kind
2418 return true
2419 end
2420 end
2421
2422 # The class kind `abstract`
2423 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", true)
2424 # The class kind `concrete`
2425 fun concrete_kind: MClassKind do return once new MClassKind("class", true)
2426 # The class kind `interface`
2427 fun interface_kind: MClassKind do return once new MClassKind("interface", false)
2428 # The class kind `enum`
2429 fun enum_kind: MClassKind do return once new MClassKind("enum", false)
2430 # The class kind `extern`
2431 fun extern_kind: MClassKind do return once new MClassKind("extern class", false)