model: provide direct methods to access primitive types
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class Model
34 # All known classes
35 var mclasses = new Array[MClass]
36
37 # All known properties
38 var mproperties = new Array[MProperty]
39
40 # Hierarchy of class definition.
41 #
42 # Each classdef is associated with its super-classdefs in regard to
43 # its module of definition.
44 var mclassdef_hierarchy = new POSet[MClassDef]
45
46 # Class-type hierarchy restricted to the introduction.
47 #
48 # The idea is that what is true on introduction is always true whatever
49 # the module considered.
50 # Therefore, this hierarchy is used for a fast positive subtype check.
51 #
52 # This poset will evolve in a monotonous way:
53 # * Two non connected nodes will remain unconnected
54 # * New nodes can appear with new edges
55 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
56
57 # Global overlapped class-type hierarchy.
58 # The hierarchy when all modules are combined.
59 # Therefore, this hierarchy is used for a fast negative subtype check.
60 #
61 # This poset will evolve in an anarchic way. Loops can even be created.
62 #
63 # FIXME decide what to do on loops
64 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
65
66 # Collections of classes grouped by their short name
67 private var mclasses_by_name = new MultiHashMap[String, MClass]
68
69 # Return all class named `name`.
70 #
71 # If such a class does not exist, null is returned
72 # (instead of an empty array)
73 #
74 # Visibility or modules are not considered
75 fun get_mclasses_by_name(name: String): nullable Array[MClass]
76 do
77 return mclasses_by_name.get_or_null(name)
78 end
79
80 # Collections of properties grouped by their short name
81 private var mproperties_by_name = new MultiHashMap[String, MProperty]
82
83 # Return all properties named `name`.
84 #
85 # If such a property does not exist, null is returned
86 # (instead of an empty array)
87 #
88 # Visibility or modules are not considered
89 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
90 do
91 return mproperties_by_name.get_or_null(name)
92 end
93
94 # The only null type
95 var null_type = new MNullType(self)
96
97 # Build an ordered tree with from `concerns`
98 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
99 var seen = new HashSet[MConcern]
100 var res = new ConcernsTree
101
102 var todo = new Array[MConcern]
103 todo.add_all mconcerns
104
105 while not todo.is_empty do
106 var c = todo.pop
107 if seen.has(c) then continue
108 var pc = c.parent_concern
109 if pc == null then
110 res.add(null, c)
111 else
112 res.add(pc, c)
113 todo.add(pc)
114 end
115 seen.add(c)
116 end
117
118 return res
119 end
120 end
121
122 # An OrderedTree that can be easily refined for display purposes
123 class ConcernsTree
124 super OrderedTree[MConcern]
125 end
126
127 redef class MModule
128 # All the classes introduced in the module
129 var intro_mclasses = new Array[MClass]
130
131 # All the class definitions of the module
132 # (introduction and refinement)
133 var mclassdefs = new Array[MClassDef]
134
135 # Does the current module has a given class `mclass`?
136 # Return true if the mmodule introduces, refines or imports a class.
137 # Visibility is not considered.
138 fun has_mclass(mclass: MClass): Bool
139 do
140 return self.in_importation <= mclass.intro_mmodule
141 end
142
143 # Full hierarchy of introduced ans imported classes.
144 #
145 # Create a new hierarchy got by flattening the classes for the module
146 # and its imported modules.
147 # Visibility is not considered.
148 #
149 # Note: this function is expensive and is usually used for the main
150 # module of a program only. Do not use it to do you own subtype
151 # functions.
152 fun flatten_mclass_hierarchy: POSet[MClass]
153 do
154 var res = self.flatten_mclass_hierarchy_cache
155 if res != null then return res
156 res = new POSet[MClass]
157 for m in self.in_importation.greaters do
158 for cd in m.mclassdefs do
159 var c = cd.mclass
160 res.add_node(c)
161 for s in cd.supertypes do
162 res.add_edge(c, s.mclass)
163 end
164 end
165 end
166 self.flatten_mclass_hierarchy_cache = res
167 return res
168 end
169
170 # Sort a given array of classes using the linearization order of the module
171 # The most general is first, the most specific is last
172 fun linearize_mclasses(mclasses: Array[MClass])
173 do
174 self.flatten_mclass_hierarchy.sort(mclasses)
175 end
176
177 # Sort a given array of class definitions using the linearization order of the module
178 # the refinement link is stronger than the specialisation link
179 # The most general is first, the most specific is last
180 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
181 do
182 var sorter = new MClassDefSorter(self)
183 sorter.sort(mclassdefs)
184 end
185
186 # Sort a given array of property definitions using the linearization order of the module
187 # the refinement link is stronger than the specialisation link
188 # The most general is first, the most specific is last
189 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
190 do
191 var sorter = new MPropDefSorter(self)
192 sorter.sort(mpropdefs)
193 end
194
195 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
196
197 # The primitive type `Object`, the root of the class hierarchy
198 var object_type: MClassType = self.get_primitive_class("Object").mclass_type is lazy
199
200 # The type `Pointer`, super class to all extern classes
201 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
202
203 # The primitive type `Bool`
204 var bool_type: MClassType = self.get_primitive_class("Bool").mclass_type is lazy
205
206 # The primitive type `Int`
207 var int_type: MClassType = self.get_primitive_class("Int").mclass_type is lazy
208
209 # The primitive type `Char`
210 var char_type: MClassType = self.get_primitive_class("Char").mclass_type is lazy
211
212 # The primitive type `Float`
213 var float_type: MClassType = self.get_primitive_class("Float").mclass_type is lazy
214
215 # The primitive type `String`
216 var string_type: MClassType = self.get_primitive_class("String").mclass_type is lazy
217
218 # The primitive type `NativeString`
219 var native_string_type: MClassType = self.get_primitive_class("NativeString").mclass_type is lazy
220
221 # A primitive type of `Array`
222 fun array_type(elt_type: MType): MClassType do return array_class.get_mtype([elt_type])
223
224 # The primitive class `Array`
225 var array_class: MClass = self.get_primitive_class("Array") is lazy
226
227 # A primitive type of `NativeArray`
228 fun native_array_type(elt_type: MType): MClassType do return native_array_class.get_mtype([elt_type])
229
230 # The primitive class `NativeArray`
231 var native_array_class: MClass = self.get_primitive_class("NativeArray") is lazy
232
233 # The primitive type `Sys`, the main type of the program, if any
234 fun sys_type: nullable MClassType
235 do
236 var clas = self.model.get_mclasses_by_name("Sys")
237 if clas == null then return null
238 return get_primitive_class("Sys").mclass_type
239 end
240
241 # The primitive type `Finalizable`
242 # Used to tag classes that need to be finalized.
243 fun finalizable_type: nullable MClassType
244 do
245 var clas = self.model.get_mclasses_by_name("Finalizable")
246 if clas == null then return null
247 return get_primitive_class("Finalizable").mclass_type
248 end
249
250 # Force to get the primitive class named `name` or abort
251 fun get_primitive_class(name: String): MClass
252 do
253 var cla = self.model.get_mclasses_by_name(name)
254 if cla == null then
255 if name == "Bool" and self.model.get_mclasses_by_name("Object") != null then
256 # Bool is injected because it is needed by engine to code the result
257 # of the implicit casts.
258 var c = new MClass(self, name, null, enum_kind, public_visibility)
259 var cladef = new MClassDef(self, c.mclass_type, new Location(null, 0,0,0,0))
260 cladef.set_supertypes([object_type])
261 cladef.add_in_hierarchy
262 return c
263 end
264 print("Fatal Error: no primitive class {name}")
265 exit(1)
266 end
267 if cla.length != 1 then
268 var msg = "Fatal Error: more than one primitive class {name}:"
269 for c in cla do msg += " {c.full_name}"
270 print msg
271 #exit(1)
272 end
273 return cla.first
274 end
275
276 # Try to get the primitive method named `name` on the type `recv`
277 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
278 do
279 var props = self.model.get_mproperties_by_name(name)
280 if props == null then return null
281 var res: nullable MMethod = null
282 for mprop in props do
283 assert mprop isa MMethod
284 var intro = mprop.intro_mclassdef
285 for mclassdef in recv.mclassdefs do
286 if not self.in_importation.greaters.has(mclassdef.mmodule) then continue
287 if not mclassdef.in_hierarchy.greaters.has(intro) then continue
288 if res == null then
289 res = mprop
290 else if res != mprop then
291 print("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
292 abort
293 end
294 end
295 end
296 return res
297 end
298 end
299
300 private class MClassDefSorter
301 super Comparator
302 redef type COMPARED: MClassDef
303 var mmodule: MModule
304 redef fun compare(a, b)
305 do
306 var ca = a.mclass
307 var cb = b.mclass
308 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
309 return mmodule.model.mclassdef_hierarchy.compare(a, b)
310 end
311 end
312
313 private class MPropDefSorter
314 super Comparator
315 redef type COMPARED: MPropDef
316 var mmodule: MModule
317 redef fun compare(pa, pb)
318 do
319 var a = pa.mclassdef
320 var b = pb.mclassdef
321 var ca = a.mclass
322 var cb = b.mclass
323 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
324 return mmodule.model.mclassdef_hierarchy.compare(a, b)
325 end
326 end
327
328 # A named class
329 #
330 # `MClass` are global to the model; it means that a `MClass` is not bound to a
331 # specific `MModule`.
332 #
333 # This characteristic helps the reasoning about classes in a program since a
334 # single `MClass` object always denote the same class.
335 #
336 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
337 # These do not really have properties nor belong to a hierarchy since the property and the
338 # hierarchy of a class depends of the refinement in the modules.
339 #
340 # Most services on classes require the precision of a module, and no one can asks what are
341 # the super-classes of a class nor what are properties of a class without precising what is
342 # the module considered.
343 #
344 # For instance, during the typing of a source-file, the module considered is the module of the file.
345 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
346 # *is the method `foo` exists in the class `Bar` in the current module?*
347 #
348 # During some global analysis, the module considered may be the main module of the program.
349 class MClass
350 super MEntity
351
352 # The module that introduce the class
353 # While classes are not bound to a specific module,
354 # the introducing module is used for naming an visibility
355 var intro_mmodule: MModule
356
357 # The short name of the class
358 # In Nit, the name of a class cannot evolve in refinements
359 redef var name: String
360
361 # The canonical name of the class
362 #
363 # It is the name of the class prefixed by the full_name of the `intro_mmodule`
364 # Example: `"owner::module::MyClass"`
365 redef var full_name is lazy do
366 return "{self.intro_mmodule.namespace_for(visibility)}::{name}"
367 end
368
369 redef var c_name is lazy do
370 return "{intro_mmodule.c_namespace_for(visibility)}__{name.to_cmangle}"
371 end
372
373 # The number of generic formal parameters
374 # 0 if the class is not generic
375 var arity: Int is noinit
376
377 # Each generic formal parameters in order.
378 # is empty if the class is not generic
379 var mparameters = new Array[MParameterType]
380
381 # Initialize `mparameters` from their names.
382 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
383 autoinit
384 do
385 if parameter_names == null then
386 self.arity = 0
387 else
388 self.arity = parameter_names.length
389 end
390
391 # Create the formal parameter types
392 if arity > 0 then
393 assert parameter_names != null
394 var mparametertypes = new Array[MParameterType]
395 for i in [0..arity[ do
396 var mparametertype = new MParameterType(self, i, parameter_names[i])
397 mparametertypes.add(mparametertype)
398 end
399 self.mparameters = mparametertypes
400 var mclass_type = new MGenericType(self, mparametertypes)
401 self.mclass_type = mclass_type
402 self.get_mtype_cache[mparametertypes] = mclass_type
403 else
404 self.mclass_type = new MClassType(self)
405 end
406 end
407
408 # The kind of the class (interface, abstract class, etc.)
409 # In Nit, the kind of a class cannot evolve in refinements
410 var kind: MClassKind
411
412 # The visibility of the class
413 # In Nit, the visibility of a class cannot evolve in refinements
414 var visibility: MVisibility
415
416 init
417 do
418 intro_mmodule.intro_mclasses.add(self)
419 var model = intro_mmodule.model
420 model.mclasses_by_name.add_one(name, self)
421 model.mclasses.add(self)
422 end
423
424 redef fun model do return intro_mmodule.model
425
426 # All class definitions (introduction and refinements)
427 var mclassdefs = new Array[MClassDef]
428
429 # Alias for `name`
430 redef fun to_s do return self.name
431
432 # The definition that introduces the class.
433 #
434 # Warning: such a definition may not exist in the early life of the object.
435 # In this case, the method will abort.
436 var intro: MClassDef is noinit
437
438 # Return the class `self` in the class hierarchy of the module `mmodule`.
439 #
440 # SEE: `MModule::flatten_mclass_hierarchy`
441 # REQUIRE: `mmodule.has_mclass(self)`
442 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
443 do
444 return mmodule.flatten_mclass_hierarchy[self]
445 end
446
447 # The principal static type of the class.
448 #
449 # For non-generic class, mclass_type is the only `MClassType` based
450 # on self.
451 #
452 # For a generic class, the arguments are the formal parameters.
453 # i.e.: for the class Array[E:Object], the `mclass_type` is Array[E].
454 # If you want Array[Object] the see `MClassDef::bound_mtype`
455 #
456 # For generic classes, the mclass_type is also the way to get a formal
457 # generic parameter type.
458 #
459 # To get other types based on a generic class, see `get_mtype`.
460 #
461 # ENSURE: `mclass_type.mclass == self`
462 var mclass_type: MClassType is noinit
463
464 # Return a generic type based on the class
465 # Is the class is not generic, then the result is `mclass_type`
466 #
467 # REQUIRE: `mtype_arguments.length == self.arity`
468 fun get_mtype(mtype_arguments: Array[MType]): MClassType
469 do
470 assert mtype_arguments.length == self.arity
471 if self.arity == 0 then return self.mclass_type
472 var res = get_mtype_cache.get_or_null(mtype_arguments)
473 if res != null then return res
474 res = new MGenericType(self, mtype_arguments)
475 self.get_mtype_cache[mtype_arguments.to_a] = res
476 return res
477 end
478
479 private var get_mtype_cache = new HashMap[Array[MType], MGenericType]
480 end
481
482
483 # A definition (an introduction or a refinement) of a class in a module
484 #
485 # A `MClassDef` is associated with an explicit (or almost) definition of a
486 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
487 # a specific class and a specific module, and contains declarations like super-classes
488 # or properties.
489 #
490 # It is the class definitions that are the backbone of most things in the model:
491 # ClassDefs are defined with regard with other classdefs.
492 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
493 #
494 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
495 class MClassDef
496 super MEntity
497
498 # The module where the definition is
499 var mmodule: MModule
500
501 # The associated `MClass`
502 var mclass: MClass is noinit
503
504 # The bounded type associated to the mclassdef
505 #
506 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
507 # are the same type.
508 #
509 # Example:
510 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
511 # If you want Array[E], then see `mclass.mclass_type`
512 #
513 # ENSURE: `bound_mtype.mclass == self.mclass`
514 var bound_mtype: MClassType
515
516 # The origin of the definition
517 var location: Location
518
519 # Internal name combining the module and the class
520 # Example: "mymodule#MyClass"
521 redef var to_s: String is noinit
522
523 init
524 do
525 self.mclass = bound_mtype.mclass
526 mmodule.mclassdefs.add(self)
527 mclass.mclassdefs.add(self)
528 if mclass.intro_mmodule == mmodule then
529 assert not isset mclass._intro
530 mclass.intro = self
531 end
532 self.to_s = "{mmodule}#{mclass}"
533 end
534
535 # Actually the name of the `mclass`
536 redef fun name do return mclass.name
537
538 # The module and class name separated by a '#'.
539 #
540 # The short-name of the class is used for introduction.
541 # Example: "my_module#MyClass"
542 #
543 # The full-name of the class is used for refinement.
544 # Example: "my_module#intro_module::MyClass"
545 redef var full_name is lazy do
546 if is_intro then
547 # public gives 'p#A'
548 # private gives 'p::m#A'
549 return "{mmodule.namespace_for(mclass.visibility)}#{mclass.name}"
550 else if mclass.intro_mmodule.mproject != mmodule.mproject then
551 # public gives 'q::n#p::A'
552 # private gives 'q::n#p::m::A'
553 return "{mmodule.full_name}#{mclass.full_name}"
554 else if mclass.visibility > private_visibility then
555 # public gives 'p::n#A'
556 return "{mmodule.full_name}#{mclass.name}"
557 else
558 # private gives 'p::n#::m::A' (redundant p is omitted)
559 return "{mmodule.full_name}#::{mclass.intro_mmodule.name}::{mclass.name}"
560 end
561 end
562
563 redef var c_name is lazy do
564 if is_intro then
565 return "{mmodule.c_namespace_for(mclass.visibility)}___{mclass.c_name}"
566 else if mclass.intro_mmodule.mproject == mmodule.mproject and mclass.visibility > private_visibility then
567 return "{mmodule.c_name}___{mclass.name.to_cmangle}"
568 else
569 return "{mmodule.c_name}___{mclass.c_name}"
570 end
571 end
572
573 redef fun model do return mmodule.model
574
575 # All declared super-types
576 # FIXME: quite ugly but not better idea yet
577 var supertypes = new Array[MClassType]
578
579 # Register some super-types for the class (ie "super SomeType")
580 #
581 # The hierarchy must not already be set
582 # REQUIRE: `self.in_hierarchy == null`
583 fun set_supertypes(supertypes: Array[MClassType])
584 do
585 assert unique_invocation: self.in_hierarchy == null
586 var mmodule = self.mmodule
587 var model = mmodule.model
588 var mtype = self.bound_mtype
589
590 for supertype in supertypes do
591 self.supertypes.add(supertype)
592
593 # Register in full_type_specialization_hierarchy
594 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
595 # Register in intro_type_specialization_hierarchy
596 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
597 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
598 end
599 end
600
601 end
602
603 # Collect the super-types (set by set_supertypes) to build the hierarchy
604 #
605 # This function can only invoked once by class
606 # REQUIRE: `self.in_hierarchy == null`
607 # ENSURE: `self.in_hierarchy != null`
608 fun add_in_hierarchy
609 do
610 assert unique_invocation: self.in_hierarchy == null
611 var model = mmodule.model
612 var res = model.mclassdef_hierarchy.add_node(self)
613 self.in_hierarchy = res
614 var mtype = self.bound_mtype
615
616 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
617 # The simpliest way is to attach it to collect_mclassdefs
618 for mclassdef in mtype.collect_mclassdefs(mmodule) do
619 res.poset.add_edge(self, mclassdef)
620 end
621 end
622
623 # The view of the class definition in `mclassdef_hierarchy`
624 var in_hierarchy: nullable POSetElement[MClassDef] = null
625
626 # Is the definition the one that introduced `mclass`?
627 fun is_intro: Bool do return mclass.intro == self
628
629 # All properties introduced by the classdef
630 var intro_mproperties = new Array[MProperty]
631
632 # All property definitions in the class (introductions and redefinitions)
633 var mpropdefs = new Array[MPropDef]
634 end
635
636 # A global static type
637 #
638 # MType are global to the model; it means that a `MType` is not bound to a
639 # specific `MModule`.
640 # This characteristic helps the reasoning about static types in a program
641 # since a single `MType` object always denote the same type.
642 #
643 # However, because a `MType` is global, it does not really have properties
644 # nor have subtypes to a hierarchy since the property and the class hierarchy
645 # depends of a module.
646 # Moreover, virtual types an formal generic parameter types also depends on
647 # a receiver to have sense.
648 #
649 # Therefore, most method of the types require a module and an anchor.
650 # The module is used to know what are the classes and the specialization
651 # links.
652 # The anchor is used to know what is the bound of the virtual types and formal
653 # generic parameter types.
654 #
655 # MType are not directly usable to get properties. See the `anchor_to` method
656 # and the `MClassType` class.
657 #
658 # FIXME: the order of the parameters is not the best. We mus pick on from:
659 # * foo(mmodule, anchor, othertype)
660 # * foo(othertype, anchor, mmodule)
661 # * foo(anchor, mmodule, othertype)
662 # * foo(othertype, mmodule, anchor)
663 abstract class MType
664 super MEntity
665
666 redef fun name do return to_s
667
668 # Return true if `self` is an subtype of `sup`.
669 # The typing is done using the standard typing policy of Nit.
670 #
671 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
672 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
673 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
674 do
675 var sub = self
676 if sub == sup then return true
677
678 #print "1.is {sub} a {sup}? ===="
679
680 if anchor == null then
681 assert not sub.need_anchor
682 assert not sup.need_anchor
683 else
684 # First, resolve the formal types to the simplest equivalent forms in the receiver
685 assert sub.can_resolve_for(anchor, null, mmodule)
686 sub = sub.lookup_fixed(mmodule, anchor)
687 assert sup.can_resolve_for(anchor, null, mmodule)
688 sup = sup.lookup_fixed(mmodule, anchor)
689 end
690
691 # Does `sup` accept null or not?
692 # Discard the nullable marker if it exists
693 var sup_accept_null = false
694 if sup isa MNullableType then
695 sup_accept_null = true
696 sup = sup.mtype
697 else if sup isa MNullType then
698 sup_accept_null = true
699 end
700
701 # Can `sub` provide null or not?
702 # Thus we can match with `sup_accept_null`
703 # Also discard the nullable marker if it exists
704 if sub isa MNullableType then
705 if not sup_accept_null then return false
706 sub = sub.mtype
707 else if sub isa MNullType then
708 return sup_accept_null
709 end
710 # Now the case of direct null and nullable is over.
711
712 # If `sub` is a formal type, then it is accepted if its bound is accepted
713 while sub isa MParameterType or sub isa MVirtualType do
714 #print "3.is {sub} a {sup}?"
715
716 # A unfixed formal type can only accept itself
717 if sub == sup then return true
718
719 assert anchor != null
720 sub = sub.lookup_bound(mmodule, anchor)
721
722 #print "3.is {sub} a {sup}?"
723
724 # Manage the second layer of null/nullable
725 if sub isa MNullableType then
726 if not sup_accept_null then return false
727 sub = sub.mtype
728 else if sub isa MNullType then
729 return sup_accept_null
730 end
731 end
732 #print "4.is {sub} a {sup}? <- no more resolution"
733
734 assert sub isa MClassType # It is the only remaining type
735
736 # A unfixed formal type can only accept itself
737 if sup isa MParameterType or sup isa MVirtualType then
738 return false
739 end
740
741 if sup isa MNullType then
742 # `sup` accepts only null
743 return false
744 end
745
746 assert sup isa MClassType # It is the only remaining type
747
748 # Now both are MClassType, we need to dig
749
750 if sub == sup then return true
751
752 if anchor == null then anchor = sub # UGLY: any anchor will work
753 var resolved_sub = sub.anchor_to(mmodule, anchor)
754 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
755 if res == false then return false
756 if not sup isa MGenericType then return true
757 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
758 assert sub2.mclass == sup.mclass
759 for i in [0..sup.mclass.arity[ do
760 var sub_arg = sub2.arguments[i]
761 var sup_arg = sup.arguments[i]
762 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
763 if res == false then return false
764 end
765 return true
766 end
767
768 # The base class type on which self is based
769 #
770 # This base type is used to get property (an internally to perform
771 # unsafe type comparison).
772 #
773 # Beware: some types (like null) are not based on a class thus this
774 # method will crash
775 #
776 # Basically, this function transform the virtual types and parameter
777 # types to their bounds.
778 #
779 # Example
780 #
781 # class A end
782 # class B super A end
783 # class X end
784 # class Y super X end
785 # class G[T: A]
786 # type U: X
787 # end
788 # class H
789 # super G[B]
790 # redef type U: Y
791 # end
792 #
793 # Map[T,U] anchor_to H #-> Map[B,Y]
794 #
795 # Explanation of the example:
796 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
797 # because "redef type U: Y". Therefore, Map[T, U] is bound to
798 # Map[B, Y]
799 #
800 # ENSURE: `not self.need_anchor implies result == self`
801 # ENSURE: `not result.need_anchor`
802 fun anchor_to(mmodule: MModule, anchor: MClassType): MType
803 do
804 if not need_anchor then return self
805 assert not anchor.need_anchor
806 # Just resolve to the anchor and clear all the virtual types
807 var res = self.resolve_for(anchor, null, mmodule, true)
808 assert not res.need_anchor
809 return res
810 end
811
812 # Does `self` contain a virtual type or a formal generic parameter type?
813 # In order to remove those types, you usually want to use `anchor_to`.
814 fun need_anchor: Bool do return true
815
816 # Return the supertype when adapted to a class.
817 #
818 # In Nit, for each super-class of a type, there is a equivalent super-type.
819 #
820 # Example:
821 #
822 # ~~~nitish
823 # class G[T, U] end
824 # class H[V] super G[V, Bool] end
825 #
826 # H[Int] supertype_to G #-> G[Int, Bool]
827 # ~~~
828 #
829 # REQUIRE: `super_mclass` is a super-class of `self`
830 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
831 # ENSURE: `result.mclass = super_mclass`
832 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
833 do
834 if super_mclass.arity == 0 then return super_mclass.mclass_type
835 if self isa MClassType and self.mclass == super_mclass then return self
836 var resolved_self
837 if self.need_anchor then
838 assert anchor != null
839 resolved_self = self.anchor_to(mmodule, anchor)
840 else
841 resolved_self = self
842 end
843 var supertypes = resolved_self.collect_mtypes(mmodule)
844 for supertype in supertypes do
845 if supertype.mclass == super_mclass then
846 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
847 return supertype.resolve_for(self, anchor, mmodule, false)
848 end
849 end
850 abort
851 end
852
853 # Replace formals generic types in self with resolved values in `mtype`
854 # If `cleanup_virtual` is true, then virtual types are also replaced
855 # with their bounds.
856 #
857 # This function returns self if `need_anchor` is false.
858 #
859 # ## Example 1
860 #
861 # ~~~
862 # class G[E] end
863 # class H[F] super G[F] end
864 # class X[Z] end
865 # ~~~
866 #
867 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
868 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
869 #
870 # Explanation of the example:
871 # * Array[E].need_anchor is true because there is a formal generic parameter type E
872 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
873 # * Since "H[F] super G[F]", E is in fact F for H
874 # * More specifically, in H[Int], E is Int
875 # * So, in H[Int], Array[E] is Array[Int]
876 #
877 # This function is mainly used to inherit a signature.
878 # Because, unlike `anchor_to`, we do not want a full resolution of
879 # a type but only an adapted version of it.
880 #
881 # ## Example 2
882 #
883 # ~~~
884 # class A[E]
885 # fun foo(e:E):E is abstract
886 # end
887 # class B super A[Int] end
888 # ~~~
889 #
890 # The signature on foo is (e: E): E
891 # If we resolve the signature for B, we get (e:Int):Int
892 #
893 # ## Example 3
894 #
895 # ~~~nitish
896 # class A[E]
897 # fun foo(e:E):E is abstract
898 # end
899 # class C[F]
900 # var a: A[Array[F]]
901 # fun bar do a.foo(x) # <- x is here
902 # end
903 # ~~~
904 #
905 # The first question is: is foo available on `a`?
906 #
907 # The static type of a is `A[Array[F]]`, that is an open type.
908 # in order to find a method `foo`, whe must look at a resolved type.
909 #
910 # A[Array[F]].anchor_to(C[nullable Object]) #-> A[Array[nullable Object]]
911 #
912 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
913 #
914 # The next question is: what is the accepted types for `x`?
915 #
916 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
917 #
918 # E.resolve_for(A[Array[F]],C[nullable Object]) #-> Array[F]
919 #
920 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
921 #
922 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
923 # two function instead of one seems also to be a bad idea.
924 #
925 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
926 # ENSURE: `not self.need_anchor implies result == self`
927 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
928
929 # Resolve formal type to its verbatim bound.
930 # If the type is not formal, just return self
931 #
932 # The result is returned exactly as declared in the "type" property (verbatim).
933 # So it could be another formal type.
934 #
935 # In case of conflict, the method aborts.
936 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self
937
938 # Resolve the formal type to its simplest equivalent form.
939 #
940 # Formal types are either free or fixed.
941 # When it is fixed, it means that it is equivalent with a simpler type.
942 # When a formal type is free, it means that it is only equivalent with itself.
943 # This method return the most simple equivalent type of `self`.
944 #
945 # This method is mainly used for subtype test in order to sanely compare fixed.
946 #
947 # By default, return self.
948 # See the redefinitions for specific behavior in each kind of type.
949 fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self
950
951 # Can the type be resolved?
952 #
953 # In order to resolve open types, the formal types must make sence.
954 #
955 # ## Example
956 #
957 # class A[E]
958 # end
959 # class B[F]
960 # end
961 #
962 # ~~~nitish
963 # E.can_resolve_for(A[Int]) #-> true, E make sense in A
964 #
965 # E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
966 #
967 # B[E].can_resolve_for(A[F], B[Object]) #-> true,
968 # # B[E] is a red hearing only the E is important,
969 # # E make sense in A
970 # ~~~
971 #
972 # REQUIRE: `anchor != null implies not anchor.need_anchor`
973 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
974 # ENSURE: `not self.need_anchor implies result == true`
975 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
976
977 # Return the nullable version of the type
978 # If the type is already nullable then self is returned
979 fun as_nullable: MType
980 do
981 var res = self.as_nullable_cache
982 if res != null then return res
983 res = new MNullableType(self)
984 self.as_nullable_cache = res
985 return res
986 end
987
988 # Return the not nullable version of the type
989 # Is the type is already not nullable, then self is returned.
990 #
991 # Note: this just remove the `nullable` notation, but the result can still contains null.
992 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
993 fun as_notnullable: MType
994 do
995 return self
996 end
997
998 private var as_nullable_cache: nullable MType = null
999
1000
1001 # The depth of the type seen as a tree.
1002 #
1003 # * A -> 1
1004 # * G[A] -> 2
1005 # * H[A, B] -> 2
1006 # * H[G[A], B] -> 3
1007 #
1008 # Formal types have a depth of 1.
1009 fun depth: Int
1010 do
1011 return 1
1012 end
1013
1014 # The length of the type seen as a tree.
1015 #
1016 # * A -> 1
1017 # * G[A] -> 2
1018 # * H[A, B] -> 3
1019 # * H[G[A], B] -> 4
1020 #
1021 # Formal types have a length of 1.
1022 fun length: Int
1023 do
1024 return 1
1025 end
1026
1027 # Compute all the classdefs inherited/imported.
1028 # The returned set contains:
1029 # * the class definitions from `mmodule` and its imported modules
1030 # * the class definitions of this type and its super-types
1031 #
1032 # This function is used mainly internally.
1033 #
1034 # REQUIRE: `not self.need_anchor`
1035 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
1036
1037 # Compute all the super-classes.
1038 # This function is used mainly internally.
1039 #
1040 # REQUIRE: `not self.need_anchor`
1041 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
1042
1043 # Compute all the declared super-types.
1044 # Super-types are returned as declared in the classdefs (verbatim).
1045 # This function is used mainly internally.
1046 #
1047 # REQUIRE: `not self.need_anchor`
1048 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
1049
1050 # Is the property in self for a given module
1051 # This method does not filter visibility or whatever
1052 #
1053 # REQUIRE: `not self.need_anchor`
1054 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
1055 do
1056 assert not self.need_anchor
1057 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
1058 end
1059 end
1060
1061 # A type based on a class.
1062 #
1063 # `MClassType` have properties (see `has_mproperty`).
1064 class MClassType
1065 super MType
1066
1067 # The associated class
1068 var mclass: MClass
1069
1070 redef fun model do return self.mclass.intro_mmodule.model
1071
1072 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1073
1074 # The formal arguments of the type
1075 # ENSURE: `result.length == self.mclass.arity`
1076 var arguments = new Array[MType]
1077
1078 redef fun to_s do return mclass.to_s
1079
1080 redef fun full_name do return mclass.full_name
1081
1082 redef fun c_name do return mclass.c_name
1083
1084 redef fun need_anchor do return false
1085
1086 redef fun anchor_to(mmodule: MModule, anchor: MClassType): MClassType
1087 do
1088 return super.as(MClassType)
1089 end
1090
1091 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1092
1093 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1094
1095 redef fun collect_mclassdefs(mmodule)
1096 do
1097 assert not self.need_anchor
1098 var cache = self.collect_mclassdefs_cache
1099 if not cache.has_key(mmodule) then
1100 self.collect_things(mmodule)
1101 end
1102 return cache[mmodule]
1103 end
1104
1105 redef fun collect_mclasses(mmodule)
1106 do
1107 if collect_mclasses_last_module == mmodule then return collect_mclasses_last_module_cache
1108 assert not self.need_anchor
1109 var cache = self.collect_mclasses_cache
1110 if not cache.has_key(mmodule) then
1111 self.collect_things(mmodule)
1112 end
1113 var res = cache[mmodule]
1114 collect_mclasses_last_module = mmodule
1115 collect_mclasses_last_module_cache = res
1116 return res
1117 end
1118
1119 private var collect_mclasses_last_module: nullable MModule = null
1120 private var collect_mclasses_last_module_cache: Set[MClass] is noinit
1121
1122 redef fun collect_mtypes(mmodule)
1123 do
1124 assert not self.need_anchor
1125 var cache = self.collect_mtypes_cache
1126 if not cache.has_key(mmodule) then
1127 self.collect_things(mmodule)
1128 end
1129 return cache[mmodule]
1130 end
1131
1132 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1133 private fun collect_things(mmodule: MModule)
1134 do
1135 var res = new HashSet[MClassDef]
1136 var seen = new HashSet[MClass]
1137 var types = new HashSet[MClassType]
1138 seen.add(self.mclass)
1139 var todo = [self.mclass]
1140 while not todo.is_empty do
1141 var mclass = todo.pop
1142 #print "process {mclass}"
1143 for mclassdef in mclass.mclassdefs do
1144 if not mmodule.in_importation <= mclassdef.mmodule then continue
1145 #print " process {mclassdef}"
1146 res.add(mclassdef)
1147 for supertype in mclassdef.supertypes do
1148 types.add(supertype)
1149 var superclass = supertype.mclass
1150 if seen.has(superclass) then continue
1151 #print " add {superclass}"
1152 seen.add(superclass)
1153 todo.add(superclass)
1154 end
1155 end
1156 end
1157 collect_mclassdefs_cache[mmodule] = res
1158 collect_mclasses_cache[mmodule] = seen
1159 collect_mtypes_cache[mmodule] = types
1160 end
1161
1162 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1163 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1164 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1165
1166 end
1167
1168 # A type based on a generic class.
1169 # A generic type a just a class with additional formal generic arguments.
1170 class MGenericType
1171 super MClassType
1172
1173 redef var arguments
1174
1175 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1176
1177 init
1178 do
1179 assert self.mclass.arity == arguments.length
1180
1181 self.need_anchor = false
1182 for t in arguments do
1183 if t.need_anchor then
1184 self.need_anchor = true
1185 break
1186 end
1187 end
1188
1189 self.to_s = "{mclass}[{arguments.join(", ")}]"
1190 end
1191
1192 # The short-name of the class, then the full-name of each type arguments within brackets.
1193 # Example: `"Map[String, List[Int]]"`
1194 redef var to_s: String is noinit
1195
1196 # The full-name of the class, then the full-name of each type arguments within brackets.
1197 # Example: `"standard::Map[standard::String, standard::List[standard::Int]]"`
1198 redef var full_name is lazy do
1199 var args = new Array[String]
1200 for t in arguments do
1201 args.add t.full_name
1202 end
1203 return "{mclass.full_name}[{args.join(", ")}]"
1204 end
1205
1206 redef var c_name is lazy do
1207 var res = mclass.c_name
1208 # Note: because the arity is known, a prefix notation is enough
1209 for t in arguments do
1210 res += "__"
1211 res += t.c_name
1212 end
1213 return res.to_s
1214 end
1215
1216 redef var need_anchor: Bool is noinit
1217
1218 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1219 do
1220 if not need_anchor then return self
1221 assert can_resolve_for(mtype, anchor, mmodule)
1222 var types = new Array[MType]
1223 for t in arguments do
1224 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1225 end
1226 return mclass.get_mtype(types)
1227 end
1228
1229 redef fun can_resolve_for(mtype, anchor, mmodule)
1230 do
1231 if not need_anchor then return true
1232 for t in arguments do
1233 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1234 end
1235 return true
1236 end
1237
1238
1239 redef fun depth
1240 do
1241 var dmax = 0
1242 for a in self.arguments do
1243 var d = a.depth
1244 if d > dmax then dmax = d
1245 end
1246 return dmax + 1
1247 end
1248
1249 redef fun length
1250 do
1251 var res = 1
1252 for a in self.arguments do
1253 res += a.length
1254 end
1255 return res
1256 end
1257 end
1258
1259 # A virtual formal type.
1260 class MVirtualType
1261 super MType
1262
1263 # The property associated with the type.
1264 # Its the definitions of this property that determine the bound or the virtual type.
1265 var mproperty: MVirtualTypeProp
1266
1267 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1268
1269 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1270 do
1271 return lookup_single_definition(mmodule, resolved_receiver).bound.as(not null)
1272 end
1273
1274 private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef
1275 do
1276 assert not resolved_receiver.need_anchor
1277 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1278 if props.is_empty then
1279 abort
1280 else if props.length == 1 then
1281 return props.first
1282 end
1283 var types = new ArraySet[MType]
1284 var res = props.first
1285 for p in props do
1286 types.add(p.bound.as(not null))
1287 if not res.is_fixed then res = p
1288 end
1289 if types.length == 1 then
1290 return res
1291 end
1292 abort
1293 end
1294
1295 # A VT is fixed when:
1296 # * the VT is (re-)defined with the annotation `is fixed`
1297 # * the VT is (indirectly) bound to an enum class (see `enum_kind`) since there is no subtype possible
1298 # * the receiver is an enum class since there is no subtype possible
1299 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1300 do
1301 assert not resolved_receiver.need_anchor
1302 resolved_receiver = resolved_receiver.as_notnullable
1303 assert resolved_receiver isa MClassType # It is the only remaining type
1304
1305 var prop = lookup_single_definition(mmodule, resolved_receiver)
1306 var res = prop.bound.as(not null)
1307
1308 # Recursively lookup the fixed result
1309 res = res.lookup_fixed(mmodule, resolved_receiver)
1310
1311 # 1. For a fixed VT, return the resolved bound
1312 if prop.is_fixed then return res
1313
1314 # 2. For a enum boud, return the bound
1315 if res isa MClassType and res.mclass.kind == enum_kind then return res
1316
1317 # 3. for a enum receiver return the bound
1318 if resolved_receiver.mclass.kind == enum_kind then return res
1319
1320 return self
1321 end
1322
1323 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1324 do
1325 if not cleanup_virtual then return self
1326 assert can_resolve_for(mtype, anchor, mmodule)
1327 # self is a virtual type declared (or inherited) in mtype
1328 # The point of the function it to get the bound of the virtual type that make sense for mtype
1329 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1330 #print "{class_name}: {self}/{mtype}/{anchor}?"
1331 var resolved_receiver
1332 if mtype.need_anchor then
1333 assert anchor != null
1334 resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true)
1335 else
1336 resolved_receiver = mtype
1337 end
1338 # Now, we can get the bound
1339 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1340 # The bound is exactly as declared in the "type" property, so we must resolve it again
1341 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1342
1343 return res
1344 end
1345
1346 redef fun can_resolve_for(mtype, anchor, mmodule)
1347 do
1348 if mtype.need_anchor then
1349 assert anchor != null
1350 mtype = mtype.anchor_to(mmodule, anchor)
1351 end
1352 return mtype.has_mproperty(mmodule, mproperty)
1353 end
1354
1355 redef fun to_s do return self.mproperty.to_s
1356
1357 redef fun full_name do return self.mproperty.full_name
1358
1359 redef fun c_name do return self.mproperty.c_name
1360 end
1361
1362 # The type associated to a formal parameter generic type of a class
1363 #
1364 # Each parameter type is associated to a specific class.
1365 # It means that all refinements of a same class "share" the parameter type,
1366 # but that a generic subclass has its own parameter types.
1367 #
1368 # However, in the sense of the meta-model, a parameter type of a class is
1369 # a valid type in a subclass. The "in the sense of the meta-model" is
1370 # important because, in the Nit language, the programmer cannot refers
1371 # directly to the parameter types of the super-classes.
1372 #
1373 # Example:
1374 #
1375 # class A[E]
1376 # fun e: E is abstract
1377 # end
1378 # class B[F]
1379 # super A[Array[F]]
1380 # end
1381 #
1382 # In the class definition B[F], `F` is a valid type but `E` is not.
1383 # However, `self.e` is a valid method call, and the signature of `e` is
1384 # declared `e: E`.
1385 #
1386 # Note that parameter types are shared among class refinements.
1387 # Therefore parameter only have an internal name (see `to_s` for details).
1388 class MParameterType
1389 super MType
1390
1391 # The generic class where the parameter belong
1392 var mclass: MClass
1393
1394 redef fun model do return self.mclass.intro_mmodule.model
1395
1396 # The position of the parameter (0 for the first parameter)
1397 # FIXME: is `position` a better name?
1398 var rank: Int
1399
1400 redef var name
1401
1402 redef fun to_s do return name
1403
1404 redef var full_name is lazy do return "{mclass.full_name}::{name}"
1405
1406 redef var c_name is lazy do return mclass.c_name + "__" + "#{name}".to_cmangle
1407
1408 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1409 do
1410 assert not resolved_receiver.need_anchor
1411 resolved_receiver = resolved_receiver.as_notnullable
1412 assert resolved_receiver isa MClassType # It is the only remaining type
1413 var goalclass = self.mclass
1414 if resolved_receiver.mclass == goalclass then
1415 return resolved_receiver.arguments[self.rank]
1416 end
1417 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1418 for t in supertypes do
1419 if t.mclass == goalclass then
1420 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1421 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1422 var res = t.arguments[self.rank]
1423 return res
1424 end
1425 end
1426 abort
1427 end
1428
1429 # A PT is fixed when:
1430 # * Its bound is a enum class (see `enum_kind`).
1431 # The PT is just useless, but it is still a case.
1432 # * More usually, the `resolved_receiver` is a subclass of `self.mclass`,
1433 # so it is necessarily fixed in a `super` clause, either with a normal type
1434 # or with another PT.
1435 # See `resolve_for` for examples about related issues.
1436 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1437 do
1438 assert not resolved_receiver.need_anchor
1439 resolved_receiver = resolved_receiver.as_notnullable
1440 assert resolved_receiver isa MClassType # It is the only remaining type
1441 var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false)
1442 return res
1443 end
1444
1445 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1446 do
1447 assert can_resolve_for(mtype, anchor, mmodule)
1448 #print "{class_name}: {self}/{mtype}/{anchor}?"
1449
1450 if mtype isa MGenericType and mtype.mclass == self.mclass then
1451 var res = mtype.arguments[self.rank]
1452 if anchor != null and res.need_anchor then
1453 # Maybe the result can be resolved more if are bound to a final class
1454 var r2 = res.anchor_to(mmodule, anchor)
1455 if r2 isa MClassType and r2.mclass.kind == enum_kind then return r2
1456 end
1457 return res
1458 end
1459
1460 # self is a parameter type of mtype (or of a super-class of mtype)
1461 # The point of the function it to get the bound of the virtual type that make sense for mtype
1462 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1463 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1464 var resolved_receiver
1465 if mtype.need_anchor then
1466 assert anchor != null
1467 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1468 else
1469 resolved_receiver = mtype
1470 end
1471 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1472 if resolved_receiver isa MParameterType then
1473 assert resolved_receiver.mclass == anchor.mclass
1474 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1475 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1476 end
1477 assert resolved_receiver isa MClassType # It is the only remaining type
1478
1479 # Eh! The parameter is in the current class.
1480 # So we return the corresponding argument, no mater what!
1481 if resolved_receiver.mclass == self.mclass then
1482 var res = resolved_receiver.arguments[self.rank]
1483 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1484 return res
1485 end
1486
1487 if resolved_receiver.need_anchor then
1488 assert anchor != null
1489 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1490 end
1491 # Now, we can get the bound
1492 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1493 # The bound is exactly as declared in the "type" property, so we must resolve it again
1494 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1495
1496 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1497
1498 return res
1499 end
1500
1501 redef fun can_resolve_for(mtype, anchor, mmodule)
1502 do
1503 if mtype.need_anchor then
1504 assert anchor != null
1505 mtype = mtype.anchor_to(mmodule, anchor)
1506 end
1507 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1508 end
1509 end
1510
1511 # A type prefixed with "nullable"
1512 class MNullableType
1513 super MType
1514
1515 # The base type of the nullable type
1516 var mtype: MType
1517
1518 redef fun model do return self.mtype.model
1519
1520 init
1521 do
1522 self.to_s = "nullable {mtype}"
1523 end
1524
1525 redef var to_s: String is noinit
1526
1527 redef var full_name is lazy do return "nullable {mtype.full_name}"
1528
1529 redef var c_name is lazy do return "nullable__{mtype.c_name}"
1530
1531 redef fun need_anchor do return mtype.need_anchor
1532 redef fun as_nullable do return self
1533 redef fun as_notnullable do return mtype
1534 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1535 do
1536 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1537 return res.as_nullable
1538 end
1539
1540 redef fun can_resolve_for(mtype, anchor, mmodule)
1541 do
1542 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1543 end
1544
1545 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable`
1546 redef fun lookup_fixed(mmodule, resolved_receiver)
1547 do
1548 var t = mtype.lookup_fixed(mmodule, resolved_receiver)
1549 if t == mtype then return self
1550 return t.as_nullable
1551 end
1552
1553 redef fun depth do return self.mtype.depth
1554
1555 redef fun length do return self.mtype.length
1556
1557 redef fun collect_mclassdefs(mmodule)
1558 do
1559 assert not self.need_anchor
1560 return self.mtype.collect_mclassdefs(mmodule)
1561 end
1562
1563 redef fun collect_mclasses(mmodule)
1564 do
1565 assert not self.need_anchor
1566 return self.mtype.collect_mclasses(mmodule)
1567 end
1568
1569 redef fun collect_mtypes(mmodule)
1570 do
1571 assert not self.need_anchor
1572 return self.mtype.collect_mtypes(mmodule)
1573 end
1574 end
1575
1576 # The type of the only value null
1577 #
1578 # The is only one null type per model, see `MModel::null_type`.
1579 class MNullType
1580 super MType
1581 redef var model: Model
1582 redef fun to_s do return "null"
1583 redef fun full_name do return "null"
1584 redef fun c_name do return "null"
1585 redef fun as_nullable do return self
1586 redef fun need_anchor do return false
1587 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1588 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1589
1590 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1591
1592 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1593
1594 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1595 end
1596
1597 # A signature of a method
1598 class MSignature
1599 super MType
1600
1601 # The each parameter (in order)
1602 var mparameters: Array[MParameter]
1603
1604 # The return type (null for a procedure)
1605 var return_mtype: nullable MType
1606
1607 redef fun depth
1608 do
1609 var dmax = 0
1610 var t = self.return_mtype
1611 if t != null then dmax = t.depth
1612 for p in mparameters do
1613 var d = p.mtype.depth
1614 if d > dmax then dmax = d
1615 end
1616 return dmax + 1
1617 end
1618
1619 redef fun length
1620 do
1621 var res = 1
1622 var t = self.return_mtype
1623 if t != null then res += t.length
1624 for p in mparameters do
1625 res += p.mtype.length
1626 end
1627 return res
1628 end
1629
1630 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1631 init
1632 do
1633 var vararg_rank = -1
1634 for i in [0..mparameters.length[ do
1635 var parameter = mparameters[i]
1636 if parameter.is_vararg then
1637 assert vararg_rank == -1
1638 vararg_rank = i
1639 end
1640 end
1641 self.vararg_rank = vararg_rank
1642 end
1643
1644 # The rank of the ellipsis (`...`) for vararg (starting from 0).
1645 # value is -1 if there is no vararg.
1646 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1647 var vararg_rank: Int is noinit
1648
1649 # The number or parameters
1650 fun arity: Int do return mparameters.length
1651
1652 redef fun to_s
1653 do
1654 var b = new FlatBuffer
1655 if not mparameters.is_empty then
1656 b.append("(")
1657 for i in [0..mparameters.length[ do
1658 var mparameter = mparameters[i]
1659 if i > 0 then b.append(", ")
1660 b.append(mparameter.name)
1661 b.append(": ")
1662 b.append(mparameter.mtype.to_s)
1663 if mparameter.is_vararg then
1664 b.append("...")
1665 end
1666 end
1667 b.append(")")
1668 end
1669 var ret = self.return_mtype
1670 if ret != null then
1671 b.append(": ")
1672 b.append(ret.to_s)
1673 end
1674 return b.to_s
1675 end
1676
1677 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
1678 do
1679 var params = new Array[MParameter]
1680 for p in self.mparameters do
1681 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1682 end
1683 var ret = self.return_mtype
1684 if ret != null then
1685 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1686 end
1687 var res = new MSignature(params, ret)
1688 return res
1689 end
1690 end
1691
1692 # A parameter in a signature
1693 class MParameter
1694 super MEntity
1695
1696 # The name of the parameter
1697 redef var name: String
1698
1699 # The static type of the parameter
1700 var mtype: MType
1701
1702 # Is the parameter a vararg?
1703 var is_vararg: Bool
1704
1705 redef fun to_s
1706 do
1707 if is_vararg then
1708 return "{name}: {mtype}..."
1709 else
1710 return "{name}: {mtype}"
1711 end
1712 end
1713
1714 # Returns a new parameter with the `mtype` resolved.
1715 # See `MType::resolve_for` for details.
1716 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
1717 do
1718 if not self.mtype.need_anchor then return self
1719 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1720 var res = new MParameter(self.name, newtype, self.is_vararg)
1721 return res
1722 end
1723
1724 redef fun model do return mtype.model
1725 end
1726
1727 # A service (global property) that generalize method, attribute, etc.
1728 #
1729 # `MProperty` are global to the model; it means that a `MProperty` is not bound
1730 # to a specific `MModule` nor a specific `MClass`.
1731 #
1732 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
1733 # and the other in subclasses and in refinements.
1734 #
1735 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
1736 # of any dynamic type).
1737 # For instance, a call site "x.foo" is associated to a `MProperty`.
1738 abstract class MProperty
1739 super MEntity
1740
1741 # The associated MPropDef subclass.
1742 # The two specialization hierarchy are symmetric.
1743 type MPROPDEF: MPropDef
1744
1745 # The classdef that introduce the property
1746 # While a property is not bound to a specific module, or class,
1747 # the introducing mclassdef is used for naming and visibility
1748 var intro_mclassdef: MClassDef
1749
1750 # The (short) name of the property
1751 redef var name: String
1752
1753 # The canonical name of the property.
1754 #
1755 # It is the short-`name` prefixed by the short-name of the class and the full-name of the module.
1756 # Example: "my_project::my_module::MyClass::my_method"
1757 redef var full_name is lazy do
1758 return "{intro_mclassdef.mmodule.namespace_for(visibility)}::{intro_mclassdef.mclass.name}::{name}"
1759 end
1760
1761 redef var c_name is lazy do
1762 # FIXME use `namespace_for`
1763 return "{intro_mclassdef.mmodule.c_name}__{intro_mclassdef.mclass.name.to_cmangle}__{name.to_cmangle}"
1764 end
1765
1766 # The visibility of the property
1767 var visibility: MVisibility
1768
1769 # Is the property usable as an initializer?
1770 var is_autoinit = false is writable
1771
1772 init
1773 do
1774 intro_mclassdef.intro_mproperties.add(self)
1775 var model = intro_mclassdef.mmodule.model
1776 model.mproperties_by_name.add_one(name, self)
1777 model.mproperties.add(self)
1778 end
1779
1780 # All definitions of the property.
1781 # The first is the introduction,
1782 # The other are redefinitions (in refinements and in subclasses)
1783 var mpropdefs = new Array[MPROPDEF]
1784
1785 # The definition that introduces the property.
1786 #
1787 # Warning: such a definition may not exist in the early life of the object.
1788 # In this case, the method will abort.
1789 var intro: MPROPDEF is noinit
1790
1791 redef fun model do return intro.model
1792
1793 # Alias for `name`
1794 redef fun to_s do return name
1795
1796 # Return the most specific property definitions defined or inherited by a type.
1797 # The selection knows that refinement is stronger than specialization;
1798 # however, in case of conflict more than one property are returned.
1799 # If mtype does not know mproperty then an empty array is returned.
1800 #
1801 # If you want the really most specific property, then look at `lookup_first_definition`
1802 #
1803 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
1804 # ENSURE: `not mtype.has_mproperty(mmodule, self) == result.is_empty`
1805 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1806 do
1807 assert not mtype.need_anchor
1808 mtype = mtype.as_notnullable
1809
1810 var cache = self.lookup_definitions_cache[mmodule, mtype]
1811 if cache != null then return cache
1812
1813 #print "select prop {mproperty} for {mtype} in {self}"
1814 # First, select all candidates
1815 var candidates = new Array[MPROPDEF]
1816 for mpropdef in self.mpropdefs do
1817 # If the definition is not imported by the module, then skip
1818 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1819 # If the definition is not inherited by the type, then skip
1820 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1821 # Else, we keep it
1822 candidates.add(mpropdef)
1823 end
1824 # Fast track for only one candidate
1825 if candidates.length <= 1 then
1826 self.lookup_definitions_cache[mmodule, mtype] = candidates
1827 return candidates
1828 end
1829
1830 # Second, filter the most specific ones
1831 return select_most_specific(mmodule, candidates)
1832 end
1833
1834 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
1835
1836 # Return the most specific property definitions inherited by a type.
1837 # The selection knows that refinement is stronger than specialization;
1838 # however, in case of conflict more than one property are returned.
1839 # If mtype does not know mproperty then an empty array is returned.
1840 #
1841 # If you want the really most specific property, then look at `lookup_next_definition`
1842 #
1843 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
1844 # ENSURE: `not mtype.has_mproperty(mmodule, self) implies result.is_empty`
1845 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1846 do
1847 assert not mtype.need_anchor
1848 mtype = mtype.as_notnullable
1849
1850 # First, select all candidates
1851 var candidates = new Array[MPROPDEF]
1852 for mpropdef in self.mpropdefs do
1853 # If the definition is not imported by the module, then skip
1854 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1855 # If the definition is not inherited by the type, then skip
1856 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1857 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
1858 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
1859 # Else, we keep it
1860 candidates.add(mpropdef)
1861 end
1862 # Fast track for only one candidate
1863 if candidates.length <= 1 then return candidates
1864
1865 # Second, filter the most specific ones
1866 return select_most_specific(mmodule, candidates)
1867 end
1868
1869 # Return an array containing olny the most specific property definitions
1870 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
1871 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
1872 do
1873 var res = new Array[MPROPDEF]
1874 for pd1 in candidates do
1875 var cd1 = pd1.mclassdef
1876 var c1 = cd1.mclass
1877 var keep = true
1878 for pd2 in candidates do
1879 if pd2 == pd1 then continue # do not compare with self!
1880 var cd2 = pd2.mclassdef
1881 var c2 = cd2.mclass
1882 if c2.mclass_type == c1.mclass_type then
1883 if cd2.mmodule.in_importation < cd1.mmodule then
1884 # cd2 refines cd1; therefore we skip pd1
1885 keep = false
1886 break
1887 end
1888 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
1889 # cd2 < cd1; therefore we skip pd1
1890 keep = false
1891 break
1892 end
1893 end
1894 if keep then
1895 res.add(pd1)
1896 end
1897 end
1898 if res.is_empty then
1899 print "All lost! {candidates.join(", ")}"
1900 # FIXME: should be abort!
1901 end
1902 return res
1903 end
1904
1905 # Return the most specific definition in the linearization of `mtype`.
1906 #
1907 # If you want to know the next properties in the linearization,
1908 # look at `MPropDef::lookup_next_definition`.
1909 #
1910 # FIXME: the linearization is still unspecified
1911 #
1912 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
1913 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
1914 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
1915 do
1916 return lookup_all_definitions(mmodule, mtype).first
1917 end
1918
1919 # Return all definitions in a linearization order
1920 # Most specific first, most general last
1921 #
1922 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
1923 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
1924 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1925 do
1926 mtype = mtype.as_notnullable
1927
1928 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
1929 if cache != null then return cache
1930
1931 assert not mtype.need_anchor
1932 assert mtype.has_mproperty(mmodule, self)
1933
1934 #print "select prop {mproperty} for {mtype} in {self}"
1935 # First, select all candidates
1936 var candidates = new Array[MPROPDEF]
1937 for mpropdef in self.mpropdefs do
1938 # If the definition is not imported by the module, then skip
1939 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1940 # If the definition is not inherited by the type, then skip
1941 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1942 # Else, we keep it
1943 candidates.add(mpropdef)
1944 end
1945 # Fast track for only one candidate
1946 if candidates.length <= 1 then
1947 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
1948 return candidates
1949 end
1950
1951 mmodule.linearize_mpropdefs(candidates)
1952 candidates = candidates.reversed
1953 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
1954 return candidates
1955 end
1956
1957 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
1958 end
1959
1960 # A global method
1961 class MMethod
1962 super MProperty
1963
1964 redef type MPROPDEF: MMethodDef
1965
1966 # Is the property defined at the top_level of the module?
1967 # Currently such a property are stored in `Object`
1968 var is_toplevel: Bool = false is writable
1969
1970 # Is the property a constructor?
1971 # Warning, this property can be inherited by subclasses with or without being a constructor
1972 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
1973 var is_init: Bool = false is writable
1974
1975 # The constructor is a (the) root init with empty signature but a set of initializers
1976 var is_root_init: Bool = false is writable
1977
1978 # Is the property a 'new' constructor?
1979 var is_new: Bool = false is writable
1980
1981 # Is the property a legal constructor for a given class?
1982 # As usual, visibility is not considered.
1983 # FIXME not implemented
1984 fun is_init_for(mclass: MClass): Bool
1985 do
1986 return self.is_init
1987 end
1988 end
1989
1990 # A global attribute
1991 class MAttribute
1992 super MProperty
1993
1994 redef type MPROPDEF: MAttributeDef
1995
1996 end
1997
1998 # A global virtual type
1999 class MVirtualTypeProp
2000 super MProperty
2001
2002 redef type MPROPDEF: MVirtualTypeDef
2003
2004 # The formal type associated to the virtual type property
2005 var mvirtualtype = new MVirtualType(self)
2006 end
2007
2008 # A definition of a property (local property)
2009 #
2010 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
2011 # specific class definition (which belong to a specific module)
2012 abstract class MPropDef
2013 super MEntity
2014
2015 # The associated `MProperty` subclass.
2016 # the two specialization hierarchy are symmetric
2017 type MPROPERTY: MProperty
2018
2019 # Self class
2020 type MPROPDEF: MPropDef
2021
2022 # The class definition where the property definition is
2023 var mclassdef: MClassDef
2024
2025 # The associated global property
2026 var mproperty: MPROPERTY
2027
2028 # The origin of the definition
2029 var location: Location
2030
2031 init
2032 do
2033 mclassdef.mpropdefs.add(self)
2034 mproperty.mpropdefs.add(self)
2035 if mproperty.intro_mclassdef == mclassdef then
2036 assert not isset mproperty._intro
2037 mproperty.intro = self
2038 end
2039 self.to_s = "{mclassdef}#{mproperty}"
2040 end
2041
2042 # Actually the name of the `mproperty`
2043 redef fun name do return mproperty.name
2044
2045 # The full-name of mpropdefs combine the information about the `classdef` and the `mproperty`.
2046 #
2047 # Therefore the combination of identifiers is awful,
2048 # the worst case being
2049 #
2050 # * a property "p::m::A::x"
2051 # * redefined in a refinement of a class "q::n::B"
2052 # * in a module "r::o"
2053 # * so "r::o#q::n::B#p::m::A::x"
2054 #
2055 # Fortunately, the full-name is simplified when entities are repeated.
2056 # For the previous case, the simplest form is "p#A#x".
2057 redef var full_name is lazy do
2058 var res = new FlatBuffer
2059
2060 # The first part is the mclassdef. Worst case is "r::o#q::n::B"
2061 res.append mclassdef.full_name
2062
2063 res.append "#"
2064
2065 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2066 # intro are unambiguous in a class
2067 res.append name
2068 else
2069 # Just try to simplify each part
2070 if mclassdef.mmodule.mproject != mproperty.intro_mclassdef.mmodule.mproject then
2071 # precise "p::m" only if "p" != "r"
2072 res.append mproperty.intro_mclassdef.mmodule.full_name
2073 res.append "::"
2074 else if mproperty.visibility <= private_visibility then
2075 # Same project ("p"=="q"), but private visibility,
2076 # does the module part ("::m") need to be displayed
2077 if mclassdef.mmodule.namespace_for(mclassdef.mclass.visibility) != mproperty.intro_mclassdef.mmodule.mproject then
2078 res.append "::"
2079 res.append mproperty.intro_mclassdef.mmodule.name
2080 res.append "::"
2081 end
2082 end
2083 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2084 # precise "B" only if not the same class than "A"
2085 res.append mproperty.intro_mclassdef.name
2086 res.append "::"
2087 end
2088 # Always use the property name "x"
2089 res.append mproperty.name
2090 end
2091 return res.to_s
2092 end
2093
2094 redef var c_name is lazy do
2095 var res = new FlatBuffer
2096 res.append mclassdef.c_name
2097 res.append "___"
2098 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2099 res.append name.to_cmangle
2100 else
2101 if mclassdef.mmodule != mproperty.intro_mclassdef.mmodule then
2102 res.append mproperty.intro_mclassdef.mmodule.c_name
2103 res.append "__"
2104 end
2105 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2106 res.append mproperty.intro_mclassdef.name.to_cmangle
2107 res.append "__"
2108 end
2109 res.append mproperty.name.to_cmangle
2110 end
2111 return res.to_s
2112 end
2113
2114 redef fun model do return mclassdef.model
2115
2116 # Internal name combining the module, the class and the property
2117 # Example: "mymodule#MyClass#mymethod"
2118 redef var to_s: String is noinit
2119
2120 # Is self the definition that introduce the property?
2121 fun is_intro: Bool do return mproperty.intro == self
2122
2123 # Return the next definition in linearization of `mtype`.
2124 #
2125 # This method is used to determine what method is called by a super.
2126 #
2127 # REQUIRE: `not mtype.need_anchor`
2128 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
2129 do
2130 assert not mtype.need_anchor
2131
2132 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
2133 var i = mpropdefs.iterator
2134 while i.is_ok and i.item != self do i.next
2135 assert has_property: i.is_ok
2136 i.next
2137 assert has_next_property: i.is_ok
2138 return i.item
2139 end
2140 end
2141
2142 # A local definition of a method
2143 class MMethodDef
2144 super MPropDef
2145
2146 redef type MPROPERTY: MMethod
2147 redef type MPROPDEF: MMethodDef
2148
2149 # The signature attached to the property definition
2150 var msignature: nullable MSignature = null is writable
2151
2152 # The signature attached to the `new` call on a root-init
2153 # This is a concatenation of the signatures of the initializers
2154 #
2155 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2156 var new_msignature: nullable MSignature = null is writable
2157
2158 # List of initialisers to call in root-inits
2159 #
2160 # They could be setters or attributes
2161 #
2162 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2163 var initializers = new Array[MProperty]
2164
2165 # Is the method definition abstract?
2166 var is_abstract: Bool = false is writable
2167
2168 # Is the method definition intern?
2169 var is_intern = false is writable
2170
2171 # Is the method definition extern?
2172 var is_extern = false is writable
2173
2174 # An optional constant value returned in functions.
2175 #
2176 # Only some specific primitife value are accepted by engines.
2177 # Is used when there is no better implementation available.
2178 #
2179 # Currently used only for the implementation of the `--define`
2180 # command-line option.
2181 # SEE: module `mixin`.
2182 var constant_value: nullable Object = null is writable
2183 end
2184
2185 # A local definition of an attribute
2186 class MAttributeDef
2187 super MPropDef
2188
2189 redef type MPROPERTY: MAttribute
2190 redef type MPROPDEF: MAttributeDef
2191
2192 # The static type of the attribute
2193 var static_mtype: nullable MType = null is writable
2194 end
2195
2196 # A local definition of a virtual type
2197 class MVirtualTypeDef
2198 super MPropDef
2199
2200 redef type MPROPERTY: MVirtualTypeProp
2201 redef type MPROPDEF: MVirtualTypeDef
2202
2203 # The bound of the virtual type
2204 var bound: nullable MType = null is writable
2205
2206 # Is the bound fixed?
2207 var is_fixed = false is writable
2208 end
2209
2210 # A kind of class.
2211 #
2212 # * `abstract_kind`
2213 # * `concrete_kind`
2214 # * `interface_kind`
2215 # * `enum_kind`
2216 # * `extern_kind`
2217 #
2218 # Note this class is basically an enum.
2219 # FIXME: use a real enum once user-defined enums are available
2220 class MClassKind
2221 redef var to_s: String
2222
2223 # Is a constructor required?
2224 var need_init: Bool
2225
2226 # TODO: private init because enumeration.
2227
2228 # Can a class of kind `self` specializes a class of kine `other`?
2229 fun can_specialize(other: MClassKind): Bool
2230 do
2231 if other == interface_kind then return true # everybody can specialize interfaces
2232 if self == interface_kind or self == enum_kind then
2233 # no other case for interfaces
2234 return false
2235 else if self == extern_kind then
2236 # only compatible with themselves
2237 return self == other
2238 else if other == enum_kind or other == extern_kind then
2239 # abstract_kind and concrete_kind are incompatible
2240 return false
2241 end
2242 # remain only abstract_kind and concrete_kind
2243 return true
2244 end
2245 end
2246
2247 # The class kind `abstract`
2248 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", true)
2249 # The class kind `concrete`
2250 fun concrete_kind: MClassKind do return once new MClassKind("class", true)
2251 # The class kind `interface`
2252 fun interface_kind: MClassKind do return once new MClassKind("interface", false)
2253 # The class kind `enum`
2254 fun enum_kind: MClassKind do return once new MClassKind("enum", false)
2255 # The class kind `extern`
2256 fun extern_kind: MClassKind do return once new MClassKind("extern class", false)