model: add location to MClass and MProperty
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class Model
34 # All known classes
35 var mclasses = new Array[MClass]
36
37 # All known properties
38 var mproperties = new Array[MProperty]
39
40 # Hierarchy of class definition.
41 #
42 # Each classdef is associated with its super-classdefs in regard to
43 # its module of definition.
44 var mclassdef_hierarchy = new POSet[MClassDef]
45
46 # Class-type hierarchy restricted to the introduction.
47 #
48 # The idea is that what is true on introduction is always true whatever
49 # the module considered.
50 # Therefore, this hierarchy is used for a fast positive subtype check.
51 #
52 # This poset will evolve in a monotonous way:
53 # * Two non connected nodes will remain unconnected
54 # * New nodes can appear with new edges
55 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
56
57 # Global overlapped class-type hierarchy.
58 # The hierarchy when all modules are combined.
59 # Therefore, this hierarchy is used for a fast negative subtype check.
60 #
61 # This poset will evolve in an anarchic way. Loops can even be created.
62 #
63 # FIXME decide what to do on loops
64 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
65
66 # Collections of classes grouped by their short name
67 private var mclasses_by_name = new MultiHashMap[String, MClass]
68
69 # Return all class named `name`.
70 #
71 # If such a class does not exist, null is returned
72 # (instead of an empty array)
73 #
74 # Visibility or modules are not considered
75 fun get_mclasses_by_name(name: String): nullable Array[MClass]
76 do
77 return mclasses_by_name.get_or_null(name)
78 end
79
80 # Collections of properties grouped by their short name
81 private var mproperties_by_name = new MultiHashMap[String, MProperty]
82
83 # Return all properties named `name`.
84 #
85 # If such a property does not exist, null is returned
86 # (instead of an empty array)
87 #
88 # Visibility or modules are not considered
89 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
90 do
91 return mproperties_by_name.get_or_null(name)
92 end
93
94 # The only null type
95 var null_type = new MNullType(self)
96
97 # Build an ordered tree with from `concerns`
98 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
99 var seen = new HashSet[MConcern]
100 var res = new ConcernsTree
101
102 var todo = new Array[MConcern]
103 todo.add_all mconcerns
104
105 while not todo.is_empty do
106 var c = todo.pop
107 if seen.has(c) then continue
108 var pc = c.parent_concern
109 if pc == null then
110 res.add(null, c)
111 else
112 res.add(pc, c)
113 todo.add(pc)
114 end
115 seen.add(c)
116 end
117
118 return res
119 end
120 end
121
122 # An OrderedTree bound to MEntity.
123 #
124 # We introduce a new class so it can be easily refined by tools working
125 # with a Model.
126 class MEntityTree
127 super OrderedTree[MEntity]
128 end
129
130 # A MEntityTree borned to MConcern.
131 #
132 # TODO remove when nitdoc is fully merged with model_collect
133 class ConcernsTree
134 super OrderedTree[MConcern]
135 end
136
137 redef class MModule
138 # All the classes introduced in the module
139 var intro_mclasses = new Array[MClass]
140
141 # All the class definitions of the module
142 # (introduction and refinement)
143 var mclassdefs = new Array[MClassDef]
144
145 # Does the current module has a given class `mclass`?
146 # Return true if the mmodule introduces, refines or imports a class.
147 # Visibility is not considered.
148 fun has_mclass(mclass: MClass): Bool
149 do
150 return self.in_importation <= mclass.intro_mmodule
151 end
152
153 # Full hierarchy of introduced ans imported classes.
154 #
155 # Create a new hierarchy got by flattening the classes for the module
156 # and its imported modules.
157 # Visibility is not considered.
158 #
159 # Note: this function is expensive and is usually used for the main
160 # module of a program only. Do not use it to do you own subtype
161 # functions.
162 fun flatten_mclass_hierarchy: POSet[MClass]
163 do
164 var res = self.flatten_mclass_hierarchy_cache
165 if res != null then return res
166 res = new POSet[MClass]
167 for m in self.in_importation.greaters do
168 for cd in m.mclassdefs do
169 var c = cd.mclass
170 res.add_node(c)
171 for s in cd.supertypes do
172 res.add_edge(c, s.mclass)
173 end
174 end
175 end
176 self.flatten_mclass_hierarchy_cache = res
177 return res
178 end
179
180 # Sort a given array of classes using the linearization order of the module
181 # The most general is first, the most specific is last
182 fun linearize_mclasses(mclasses: Array[MClass])
183 do
184 self.flatten_mclass_hierarchy.sort(mclasses)
185 end
186
187 # Sort a given array of class definitions using the linearization order of the module
188 # the refinement link is stronger than the specialisation link
189 # The most general is first, the most specific is last
190 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
191 do
192 var sorter = new MClassDefSorter(self)
193 sorter.sort(mclassdefs)
194 end
195
196 # Sort a given array of property definitions using the linearization order of the module
197 # the refinement link is stronger than the specialisation link
198 # The most general is first, the most specific is last
199 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
200 do
201 var sorter = new MPropDefSorter(self)
202 sorter.sort(mpropdefs)
203 end
204
205 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
206
207 # The primitive type `Object`, the root of the class hierarchy
208 var object_type: MClassType = self.get_primitive_class("Object").mclass_type is lazy
209
210 # The type `Pointer`, super class to all extern classes
211 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
212
213 # The primitive type `Bool`
214 var bool_type: MClassType = self.get_primitive_class("Bool").mclass_type is lazy
215
216 # The primitive type `Int`
217 var int_type: MClassType = self.get_primitive_class("Int").mclass_type is lazy
218
219 # The primitive type `Byte`
220 var byte_type: MClassType = self.get_primitive_class("Byte").mclass_type is lazy
221
222 # The primitive type `Int8`
223 var int8_type: MClassType = self.get_primitive_class("Int8").mclass_type is lazy
224
225 # The primitive type `Int16`
226 var int16_type: MClassType = self.get_primitive_class("Int16").mclass_type is lazy
227
228 # The primitive type `UInt16`
229 var uint16_type: MClassType = self.get_primitive_class("UInt16").mclass_type is lazy
230
231 # The primitive type `Int32`
232 var int32_type: MClassType = self.get_primitive_class("Int32").mclass_type is lazy
233
234 # The primitive type `UInt32`
235 var uint32_type: MClassType = self.get_primitive_class("UInt32").mclass_type is lazy
236
237 # The primitive type `Char`
238 var char_type: MClassType = self.get_primitive_class("Char").mclass_type is lazy
239
240 # The primitive type `Float`
241 var float_type: MClassType = self.get_primitive_class("Float").mclass_type is lazy
242
243 # The primitive type `String`
244 var string_type: MClassType = self.get_primitive_class("String").mclass_type is lazy
245
246 # The primitive type `NativeString`
247 var native_string_type: MClassType = self.get_primitive_class("NativeString").mclass_type is lazy
248
249 # A primitive type of `Array`
250 fun array_type(elt_type: MType): MClassType do return array_class.get_mtype([elt_type])
251
252 # The primitive class `Array`
253 var array_class: MClass = self.get_primitive_class("Array") is lazy
254
255 # A primitive type of `NativeArray`
256 fun native_array_type(elt_type: MType): MClassType do return native_array_class.get_mtype([elt_type])
257
258 # The primitive class `NativeArray`
259 var native_array_class: MClass = self.get_primitive_class("NativeArray") is lazy
260
261 # The primitive type `Sys`, the main type of the program, if any
262 fun sys_type: nullable MClassType
263 do
264 var clas = self.model.get_mclasses_by_name("Sys")
265 if clas == null then return null
266 return get_primitive_class("Sys").mclass_type
267 end
268
269 # The primitive type `Finalizable`
270 # Used to tag classes that need to be finalized.
271 fun finalizable_type: nullable MClassType
272 do
273 var clas = self.model.get_mclasses_by_name("Finalizable")
274 if clas == null then return null
275 return get_primitive_class("Finalizable").mclass_type
276 end
277
278 # Force to get the primitive class named `name` or abort
279 fun get_primitive_class(name: String): MClass
280 do
281 var cla = self.model.get_mclasses_by_name(name)
282 # Filter classes by introducing module
283 if cla != null then cla = [for c in cla do if self.in_importation <= c.intro_mmodule then c]
284 if cla == null or cla.is_empty then
285 if name == "Bool" and self.model.get_mclasses_by_name("Object") != null then
286 # Bool is injected because it is needed by engine to code the result
287 # of the implicit casts.
288 var loc = model.no_location
289 var c = new MClass(self, name, loc, null, enum_kind, public_visibility)
290 var cladef = new MClassDef(self, c.mclass_type, loc)
291 cladef.set_supertypes([object_type])
292 cladef.add_in_hierarchy
293 return c
294 end
295 print("Fatal Error: no primitive class {name} in {self}")
296 exit(1)
297 abort
298 end
299 if cla.length != 1 then
300 var msg = "Fatal Error: more than one primitive class {name} in {self}:"
301 for c in cla do msg += " {c.full_name}"
302 print msg
303 #exit(1)
304 end
305 return cla.first
306 end
307
308 # Try to get the primitive method named `name` on the type `recv`
309 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
310 do
311 var props = self.model.get_mproperties_by_name(name)
312 if props == null then return null
313 var res: nullable MMethod = null
314 var recvtype = recv.intro.bound_mtype
315 for mprop in props do
316 assert mprop isa MMethod
317 if not recvtype.has_mproperty(self, mprop) then continue
318 if res == null then
319 res = mprop
320 else if res != mprop then
321 print("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
322 abort
323 end
324 end
325 return res
326 end
327 end
328
329 private class MClassDefSorter
330 super Comparator
331 redef type COMPARED: MClassDef
332 var mmodule: MModule
333 redef fun compare(a, b)
334 do
335 var ca = a.mclass
336 var cb = b.mclass
337 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
338 return mmodule.model.mclassdef_hierarchy.compare(a, b)
339 end
340 end
341
342 private class MPropDefSorter
343 super Comparator
344 redef type COMPARED: MPropDef
345 var mmodule: MModule
346 redef fun compare(pa, pb)
347 do
348 var a = pa.mclassdef
349 var b = pb.mclassdef
350 var ca = a.mclass
351 var cb = b.mclass
352 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
353 return mmodule.model.mclassdef_hierarchy.compare(a, b)
354 end
355 end
356
357 # A named class
358 #
359 # `MClass` are global to the model; it means that a `MClass` is not bound to a
360 # specific `MModule`.
361 #
362 # This characteristic helps the reasoning about classes in a program since a
363 # single `MClass` object always denote the same class.
364 #
365 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
366 # These do not really have properties nor belong to a hierarchy since the property and the
367 # hierarchy of a class depends of the refinement in the modules.
368 #
369 # Most services on classes require the precision of a module, and no one can asks what are
370 # the super-classes of a class nor what are properties of a class without precising what is
371 # the module considered.
372 #
373 # For instance, during the typing of a source-file, the module considered is the module of the file.
374 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
375 # *is the method `foo` exists in the class `Bar` in the current module?*
376 #
377 # During some global analysis, the module considered may be the main module of the program.
378 class MClass
379 super MEntity
380
381 # The module that introduce the class
382 # While classes are not bound to a specific module,
383 # the introducing module is used for naming an visibility
384 var intro_mmodule: MModule
385
386 # The short name of the class
387 # In Nit, the name of a class cannot evolve in refinements
388 redef var name
389
390 redef var location
391
392 # The canonical name of the class
393 #
394 # It is the name of the class prefixed by the full_name of the `intro_mmodule`
395 # Example: `"owner::module::MyClass"`
396 redef var full_name is lazy do
397 return "{self.intro_mmodule.namespace_for(visibility)}::{name}"
398 end
399
400 redef var c_name is lazy do
401 return "{intro_mmodule.c_namespace_for(visibility)}__{name.to_cmangle}"
402 end
403
404 # The number of generic formal parameters
405 # 0 if the class is not generic
406 var arity: Int is noinit
407
408 # Each generic formal parameters in order.
409 # is empty if the class is not generic
410 var mparameters = new Array[MParameterType]
411
412 # A string version of the signature a generic class.
413 #
414 # eg. `Map[K: nullable Object, V: nullable Object]`
415 #
416 # If the class in non generic the name is just given.
417 #
418 # eg. `Object`
419 fun signature_to_s: String
420 do
421 if arity == 0 then return name
422 var res = new FlatBuffer
423 res.append name
424 res.append "["
425 for i in [0..arity[ do
426 if i > 0 then res.append ", "
427 res.append mparameters[i].name
428 res.append ": "
429 res.append intro.bound_mtype.arguments[i].to_s
430 end
431 res.append "]"
432 return res.to_s
433 end
434
435 # Initialize `mparameters` from their names.
436 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
437 autoinit
438 do
439 if parameter_names == null then
440 self.arity = 0
441 else
442 self.arity = parameter_names.length
443 end
444
445 # Create the formal parameter types
446 if arity > 0 then
447 assert parameter_names != null
448 var mparametertypes = new Array[MParameterType]
449 for i in [0..arity[ do
450 var mparametertype = new MParameterType(self, i, parameter_names[i])
451 mparametertypes.add(mparametertype)
452 end
453 self.mparameters = mparametertypes
454 var mclass_type = new MGenericType(self, mparametertypes)
455 self.mclass_type = mclass_type
456 self.get_mtype_cache[mparametertypes] = mclass_type
457 else
458 self.mclass_type = new MClassType(self)
459 end
460 end
461
462 # The kind of the class (interface, abstract class, etc.)
463 # In Nit, the kind of a class cannot evolve in refinements
464 var kind: MClassKind
465
466 # The visibility of the class
467 # In Nit, the visibility of a class cannot evolve in refinements
468 var visibility: MVisibility
469
470 init
471 do
472 intro_mmodule.intro_mclasses.add(self)
473 var model = intro_mmodule.model
474 model.mclasses_by_name.add_one(name, self)
475 model.mclasses.add(self)
476 end
477
478 redef fun model do return intro_mmodule.model
479
480 # All class definitions (introduction and refinements)
481 var mclassdefs = new Array[MClassDef]
482
483 # Alias for `name`
484 redef fun to_s do return self.name
485
486 # The definition that introduces the class.
487 #
488 # Warning: such a definition may not exist in the early life of the object.
489 # In this case, the method will abort.
490 #
491 # Use `try_intro` instead
492 var intro: MClassDef is noinit
493
494 # The definition that introduces the class or null if not yet known.
495 #
496 # See `intro`
497 fun try_intro: nullable MClassDef do
498 if isset _intro then return _intro else return null
499 end
500
501 # Return the class `self` in the class hierarchy of the module `mmodule`.
502 #
503 # SEE: `MModule::flatten_mclass_hierarchy`
504 # REQUIRE: `mmodule.has_mclass(self)`
505 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
506 do
507 return mmodule.flatten_mclass_hierarchy[self]
508 end
509
510 # The principal static type of the class.
511 #
512 # For non-generic class, mclass_type is the only `MClassType` based
513 # on self.
514 #
515 # For a generic class, the arguments are the formal parameters.
516 # i.e.: for the class Array[E:Object], the `mclass_type` is Array[E].
517 # If you want Array[Object] the see `MClassDef::bound_mtype`
518 #
519 # For generic classes, the mclass_type is also the way to get a formal
520 # generic parameter type.
521 #
522 # To get other types based on a generic class, see `get_mtype`.
523 #
524 # ENSURE: `mclass_type.mclass == self`
525 var mclass_type: MClassType is noinit
526
527 # Return a generic type based on the class
528 # Is the class is not generic, then the result is `mclass_type`
529 #
530 # REQUIRE: `mtype_arguments.length == self.arity`
531 fun get_mtype(mtype_arguments: Array[MType]): MClassType
532 do
533 assert mtype_arguments.length == self.arity
534 if self.arity == 0 then return self.mclass_type
535 var res = get_mtype_cache.get_or_null(mtype_arguments)
536 if res != null then return res
537 res = new MGenericType(self, mtype_arguments)
538 self.get_mtype_cache[mtype_arguments.to_a] = res
539 return res
540 end
541
542 private var get_mtype_cache = new HashMap[Array[MType], MGenericType]
543
544 # Is there a `new` factory to allow the pseudo instantiation?
545 var has_new_factory = false is writable
546
547 # Is `self` a standard or abstract class kind?
548 var is_class: Bool is lazy do return kind == concrete_kind or kind == abstract_kind
549
550 # Is `self` an interface kind?
551 var is_interface: Bool is lazy do return kind == interface_kind
552
553 # Is `self` an enum kind?
554 var is_enum: Bool is lazy do return kind == enum_kind
555
556 # Is `self` and abstract class?
557 var is_abstract: Bool is lazy do return kind == abstract_kind
558 end
559
560
561 # A definition (an introduction or a refinement) of a class in a module
562 #
563 # A `MClassDef` is associated with an explicit (or almost) definition of a
564 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
565 # a specific class and a specific module, and contains declarations like super-classes
566 # or properties.
567 #
568 # It is the class definitions that are the backbone of most things in the model:
569 # ClassDefs are defined with regard with other classdefs.
570 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
571 #
572 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
573 class MClassDef
574 super MEntity
575
576 # The module where the definition is
577 var mmodule: MModule
578
579 # The associated `MClass`
580 var mclass: MClass is noinit
581
582 # The bounded type associated to the mclassdef
583 #
584 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
585 # are the same type.
586 #
587 # Example:
588 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
589 # If you want Array[E], then see `mclass.mclass_type`
590 #
591 # ENSURE: `bound_mtype.mclass == self.mclass`
592 var bound_mtype: MClassType
593
594 redef var location: Location
595
596 # Internal name combining the module and the class
597 # Example: "mymodule$MyClass"
598 redef var to_s is noinit
599
600 init
601 do
602 self.mclass = bound_mtype.mclass
603 mmodule.mclassdefs.add(self)
604 mclass.mclassdefs.add(self)
605 if mclass.intro_mmodule == mmodule then
606 assert not isset mclass._intro
607 mclass.intro = self
608 end
609 self.to_s = "{mmodule}${mclass}"
610 end
611
612 # Actually the name of the `mclass`
613 redef fun name do return mclass.name
614
615 # The module and class name separated by a '$'.
616 #
617 # The short-name of the class is used for introduction.
618 # Example: "my_module$MyClass"
619 #
620 # The full-name of the class is used for refinement.
621 # Example: "my_module$intro_module::MyClass"
622 redef var full_name is lazy do
623 if is_intro then
624 # public gives 'p$A'
625 # private gives 'p::m$A'
626 return "{mmodule.namespace_for(mclass.visibility)}${mclass.name}"
627 else if mclass.intro_mmodule.mpackage != mmodule.mpackage then
628 # public gives 'q::n$p::A'
629 # private gives 'q::n$p::m::A'
630 return "{mmodule.full_name}${mclass.full_name}"
631 else if mclass.visibility > private_visibility then
632 # public gives 'p::n$A'
633 return "{mmodule.full_name}${mclass.name}"
634 else
635 # private gives 'p::n$::m::A' (redundant p is omitted)
636 return "{mmodule.full_name}$::{mclass.intro_mmodule.name}::{mclass.name}"
637 end
638 end
639
640 redef var c_name is lazy do
641 if is_intro then
642 return "{mmodule.c_namespace_for(mclass.visibility)}___{mclass.c_name}"
643 else if mclass.intro_mmodule.mpackage == mmodule.mpackage and mclass.visibility > private_visibility then
644 return "{mmodule.c_name}___{mclass.name.to_cmangle}"
645 else
646 return "{mmodule.c_name}___{mclass.c_name}"
647 end
648 end
649
650 redef fun model do return mmodule.model
651
652 # All declared super-types
653 # FIXME: quite ugly but not better idea yet
654 var supertypes = new Array[MClassType]
655
656 # Register some super-types for the class (ie "super SomeType")
657 #
658 # The hierarchy must not already be set
659 # REQUIRE: `self.in_hierarchy == null`
660 fun set_supertypes(supertypes: Array[MClassType])
661 do
662 assert unique_invocation: self.in_hierarchy == null
663 var mmodule = self.mmodule
664 var model = mmodule.model
665 var mtype = self.bound_mtype
666
667 for supertype in supertypes do
668 self.supertypes.add(supertype)
669
670 # Register in full_type_specialization_hierarchy
671 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
672 # Register in intro_type_specialization_hierarchy
673 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
674 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
675 end
676 end
677
678 end
679
680 # Collect the super-types (set by set_supertypes) to build the hierarchy
681 #
682 # This function can only invoked once by class
683 # REQUIRE: `self.in_hierarchy == null`
684 # ENSURE: `self.in_hierarchy != null`
685 fun add_in_hierarchy
686 do
687 assert unique_invocation: self.in_hierarchy == null
688 var model = mmodule.model
689 var res = model.mclassdef_hierarchy.add_node(self)
690 self.in_hierarchy = res
691 var mtype = self.bound_mtype
692
693 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
694 # The simpliest way is to attach it to collect_mclassdefs
695 for mclassdef in mtype.collect_mclassdefs(mmodule) do
696 res.poset.add_edge(self, mclassdef)
697 end
698 end
699
700 # The view of the class definition in `mclassdef_hierarchy`
701 var in_hierarchy: nullable POSetElement[MClassDef] = null
702
703 # Is the definition the one that introduced `mclass`?
704 fun is_intro: Bool do return isset mclass._intro and mclass.intro == self
705
706 # All properties introduced by the classdef
707 var intro_mproperties = new Array[MProperty]
708
709 # All property definitions in the class (introductions and redefinitions)
710 var mpropdefs = new Array[MPropDef]
711 end
712
713 # A global static type
714 #
715 # MType are global to the model; it means that a `MType` is not bound to a
716 # specific `MModule`.
717 # This characteristic helps the reasoning about static types in a program
718 # since a single `MType` object always denote the same type.
719 #
720 # However, because a `MType` is global, it does not really have properties
721 # nor have subtypes to a hierarchy since the property and the class hierarchy
722 # depends of a module.
723 # Moreover, virtual types an formal generic parameter types also depends on
724 # a receiver to have sense.
725 #
726 # Therefore, most method of the types require a module and an anchor.
727 # The module is used to know what are the classes and the specialization
728 # links.
729 # The anchor is used to know what is the bound of the virtual types and formal
730 # generic parameter types.
731 #
732 # MType are not directly usable to get properties. See the `anchor_to` method
733 # and the `MClassType` class.
734 #
735 # FIXME: the order of the parameters is not the best. We mus pick on from:
736 # * foo(mmodule, anchor, othertype)
737 # * foo(othertype, anchor, mmodule)
738 # * foo(anchor, mmodule, othertype)
739 # * foo(othertype, mmodule, anchor)
740 abstract class MType
741 super MEntity
742
743 redef fun name do return to_s
744
745 # Return true if `self` is an subtype of `sup`.
746 # The typing is done using the standard typing policy of Nit.
747 #
748 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
749 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
750 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
751 do
752 var sub = self
753 if sub == sup then return true
754
755 #print "1.is {sub} a {sup}? ===="
756
757 if anchor == null then
758 assert not sub.need_anchor
759 assert not sup.need_anchor
760 else
761 # First, resolve the formal types to the simplest equivalent forms in the receiver
762 assert sub.can_resolve_for(anchor, null, mmodule)
763 sub = sub.lookup_fixed(mmodule, anchor)
764 assert sup.can_resolve_for(anchor, null, mmodule)
765 sup = sup.lookup_fixed(mmodule, anchor)
766 end
767
768 # Does `sup` accept null or not?
769 # Discard the nullable marker if it exists
770 var sup_accept_null = false
771 if sup isa MNullableType then
772 sup_accept_null = true
773 sup = sup.mtype
774 else if sup isa MNotNullType then
775 sup = sup.mtype
776 else if sup isa MNullType then
777 sup_accept_null = true
778 end
779
780 # Can `sub` provide null or not?
781 # Thus we can match with `sup_accept_null`
782 # Also discard the nullable marker if it exists
783 var sub_reject_null = false
784 if sub isa MNullableType then
785 if not sup_accept_null then return false
786 sub = sub.mtype
787 else if sub isa MNotNullType then
788 sub_reject_null = true
789 sub = sub.mtype
790 else if sub isa MNullType then
791 return sup_accept_null
792 end
793 # Now the case of direct null and nullable is over.
794
795 # If `sub` is a formal type, then it is accepted if its bound is accepted
796 while sub isa MFormalType do
797 #print "3.is {sub} a {sup}?"
798
799 # A unfixed formal type can only accept itself
800 if sub == sup then return true
801
802 assert anchor != null
803 sub = sub.lookup_bound(mmodule, anchor)
804 if sub_reject_null then sub = sub.as_notnull
805
806 #print "3.is {sub} a {sup}?"
807
808 # Manage the second layer of null/nullable
809 if sub isa MNullableType then
810 if not sup_accept_null and not sub_reject_null then return false
811 sub = sub.mtype
812 else if sub isa MNotNullType then
813 sub_reject_null = true
814 sub = sub.mtype
815 else if sub isa MNullType then
816 return sup_accept_null
817 end
818 end
819 #print "4.is {sub} a {sup}? <- no more resolution"
820
821 if sub isa MBottomType then
822 return true
823 end
824
825 assert sub isa MClassType else print "{sub} <? {sub}" # It is the only remaining type
826
827 # Handle sup-type when the sub-type is class-based (other cases must have be identified before).
828 if sup isa MFormalType or sup isa MNullType or sup isa MBottomType then
829 # These types are not super-types of Class-based types.
830 return false
831 end
832
833 assert sup isa MClassType else print "got {sup} {sub.inspect}" # It is the only remaining type
834
835 # Now both are MClassType, we need to dig
836
837 if sub == sup then return true
838
839 if anchor == null then anchor = sub # UGLY: any anchor will work
840 var resolved_sub = sub.anchor_to(mmodule, anchor)
841 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
842 if res == false then return false
843 if not sup isa MGenericType then return true
844 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
845 assert sub2.mclass == sup.mclass
846 for i in [0..sup.mclass.arity[ do
847 var sub_arg = sub2.arguments[i]
848 var sup_arg = sup.arguments[i]
849 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
850 if res == false then return false
851 end
852 return true
853 end
854
855 # The base class type on which self is based
856 #
857 # This base type is used to get property (an internally to perform
858 # unsafe type comparison).
859 #
860 # Beware: some types (like null) are not based on a class thus this
861 # method will crash
862 #
863 # Basically, this function transform the virtual types and parameter
864 # types to their bounds.
865 #
866 # Example
867 #
868 # class A end
869 # class B super A end
870 # class X end
871 # class Y super X end
872 # class G[T: A]
873 # type U: X
874 # end
875 # class H
876 # super G[B]
877 # redef type U: Y
878 # end
879 #
880 # Map[T,U] anchor_to H #-> Map[B,Y]
881 #
882 # Explanation of the example:
883 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
884 # because "redef type U: Y". Therefore, Map[T, U] is bound to
885 # Map[B, Y]
886 #
887 # ENSURE: `not self.need_anchor implies result == self`
888 # ENSURE: `not result.need_anchor`
889 fun anchor_to(mmodule: MModule, anchor: MClassType): MType
890 do
891 if not need_anchor then return self
892 assert not anchor.need_anchor
893 # Just resolve to the anchor and clear all the virtual types
894 var res = self.resolve_for(anchor, null, mmodule, true)
895 assert not res.need_anchor
896 return res
897 end
898
899 # Does `self` contain a virtual type or a formal generic parameter type?
900 # In order to remove those types, you usually want to use `anchor_to`.
901 fun need_anchor: Bool do return true
902
903 # Return the supertype when adapted to a class.
904 #
905 # In Nit, for each super-class of a type, there is a equivalent super-type.
906 #
907 # Example:
908 #
909 # ~~~nitish
910 # class G[T, U] end
911 # class H[V] super G[V, Bool] end
912 #
913 # H[Int] supertype_to G #-> G[Int, Bool]
914 # ~~~
915 #
916 # REQUIRE: `super_mclass` is a super-class of `self`
917 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
918 # ENSURE: `result.mclass = super_mclass`
919 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
920 do
921 if super_mclass.arity == 0 then return super_mclass.mclass_type
922 if self isa MClassType and self.mclass == super_mclass then return self
923 var resolved_self
924 if self.need_anchor then
925 assert anchor != null
926 resolved_self = self.anchor_to(mmodule, anchor)
927 else
928 resolved_self = self
929 end
930 var supertypes = resolved_self.collect_mtypes(mmodule)
931 for supertype in supertypes do
932 if supertype.mclass == super_mclass then
933 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
934 return supertype.resolve_for(self, anchor, mmodule, false)
935 end
936 end
937 abort
938 end
939
940 # Replace formals generic types in self with resolved values in `mtype`
941 # If `cleanup_virtual` is true, then virtual types are also replaced
942 # with their bounds.
943 #
944 # This function returns self if `need_anchor` is false.
945 #
946 # ## Example 1
947 #
948 # ~~~
949 # class G[E] end
950 # class H[F] super G[F] end
951 # class X[Z] end
952 # ~~~
953 #
954 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
955 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
956 #
957 # Explanation of the example:
958 # * Array[E].need_anchor is true because there is a formal generic parameter type E
959 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
960 # * Since "H[F] super G[F]", E is in fact F for H
961 # * More specifically, in H[Int], E is Int
962 # * So, in H[Int], Array[E] is Array[Int]
963 #
964 # This function is mainly used to inherit a signature.
965 # Because, unlike `anchor_to`, we do not want a full resolution of
966 # a type but only an adapted version of it.
967 #
968 # ## Example 2
969 #
970 # ~~~
971 # class A[E]
972 # fun foo(e:E):E is abstract
973 # end
974 # class B super A[Int] end
975 # ~~~
976 #
977 # The signature on foo is (e: E): E
978 # If we resolve the signature for B, we get (e:Int):Int
979 #
980 # ## Example 3
981 #
982 # ~~~nitish
983 # class A[E]
984 # fun foo(e:E):E is abstract
985 # end
986 # class C[F]
987 # var a: A[Array[F]]
988 # fun bar do a.foo(x) # <- x is here
989 # end
990 # ~~~
991 #
992 # The first question is: is foo available on `a`?
993 #
994 # The static type of a is `A[Array[F]]`, that is an open type.
995 # in order to find a method `foo`, whe must look at a resolved type.
996 #
997 # A[Array[F]].anchor_to(C[nullable Object]) #-> A[Array[nullable Object]]
998 #
999 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
1000 #
1001 # The next question is: what is the accepted types for `x`?
1002 #
1003 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
1004 #
1005 # E.resolve_for(A[Array[F]],C[nullable Object]) #-> Array[F]
1006 #
1007 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
1008 #
1009 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
1010 # two function instead of one seems also to be a bad idea.
1011 #
1012 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
1013 # ENSURE: `not self.need_anchor implies result == self`
1014 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
1015
1016 # Resolve formal type to its verbatim bound.
1017 # If the type is not formal, just return self
1018 #
1019 # The result is returned exactly as declared in the "type" property (verbatim).
1020 # So it could be another formal type.
1021 #
1022 # In case of conflicts or inconsistencies in the model, the method returns a `MBottomType`.
1023 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self
1024
1025 # Resolve the formal type to its simplest equivalent form.
1026 #
1027 # Formal types are either free or fixed.
1028 # When it is fixed, it means that it is equivalent with a simpler type.
1029 # When a formal type is free, it means that it is only equivalent with itself.
1030 # This method return the most simple equivalent type of `self`.
1031 #
1032 # This method is mainly used for subtype test in order to sanely compare fixed.
1033 #
1034 # By default, return self.
1035 # See the redefinitions for specific behavior in each kind of type.
1036 #
1037 # In case of conflicts or inconsistencies in the model, the method returns a `MBottomType`.
1038 fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self
1039
1040 # Can the type be resolved?
1041 #
1042 # In order to resolve open types, the formal types must make sence.
1043 #
1044 # ## Example
1045 #
1046 # class A[E]
1047 # end
1048 # class B[F]
1049 # end
1050 #
1051 # ~~~nitish
1052 # E.can_resolve_for(A[Int]) #-> true, E make sense in A
1053 #
1054 # E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
1055 #
1056 # B[E].can_resolve_for(A[F], B[Object]) #-> true,
1057 # # B[E] is a red hearing only the E is important,
1058 # # E make sense in A
1059 # ~~~
1060 #
1061 # REQUIRE: `anchor != null implies not anchor.need_anchor`
1062 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
1063 # ENSURE: `not self.need_anchor implies result == true`
1064 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
1065
1066 # Return the nullable version of the type
1067 # If the type is already nullable then self is returned
1068 fun as_nullable: MType
1069 do
1070 var res = self.as_nullable_cache
1071 if res != null then return res
1072 res = new MNullableType(self)
1073 self.as_nullable_cache = res
1074 return res
1075 end
1076
1077 # Remove the base type of a decorated (proxy) type.
1078 # Is the type is not decorated, then self is returned.
1079 #
1080 # Most of the time it is used to return the not nullable version of a nullable type.
1081 # In this case, this just remove the `nullable` notation, but the result can still contains null.
1082 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
1083 # If you really want to exclude the `null` value, then use `as_notnull`
1084 fun undecorate: MType
1085 do
1086 return self
1087 end
1088
1089 # Returns the not null version of the type.
1090 # That is `self` minus the `null` value.
1091 #
1092 # For most types, this return `self`.
1093 # For formal types, this returns a special `MNotNullType`
1094 fun as_notnull: MType do return self
1095
1096 private var as_nullable_cache: nullable MType = null
1097
1098
1099 # The depth of the type seen as a tree.
1100 #
1101 # * A -> 1
1102 # * G[A] -> 2
1103 # * H[A, B] -> 2
1104 # * H[G[A], B] -> 3
1105 #
1106 # Formal types have a depth of 1.
1107 fun depth: Int
1108 do
1109 return 1
1110 end
1111
1112 # The length of the type seen as a tree.
1113 #
1114 # * A -> 1
1115 # * G[A] -> 2
1116 # * H[A, B] -> 3
1117 # * H[G[A], B] -> 4
1118 #
1119 # Formal types have a length of 1.
1120 fun length: Int
1121 do
1122 return 1
1123 end
1124
1125 # Compute all the classdefs inherited/imported.
1126 # The returned set contains:
1127 # * the class definitions from `mmodule` and its imported modules
1128 # * the class definitions of this type and its super-types
1129 #
1130 # This function is used mainly internally.
1131 #
1132 # REQUIRE: `not self.need_anchor`
1133 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
1134
1135 # Compute all the super-classes.
1136 # This function is used mainly internally.
1137 #
1138 # REQUIRE: `not self.need_anchor`
1139 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
1140
1141 # Compute all the declared super-types.
1142 # Super-types are returned as declared in the classdefs (verbatim).
1143 # This function is used mainly internally.
1144 #
1145 # REQUIRE: `not self.need_anchor`
1146 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
1147
1148 # Is the property in self for a given module
1149 # This method does not filter visibility or whatever
1150 #
1151 # REQUIRE: `not self.need_anchor`
1152 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
1153 do
1154 assert not self.need_anchor
1155 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
1156 end
1157 end
1158
1159 # A type based on a class.
1160 #
1161 # `MClassType` have properties (see `has_mproperty`).
1162 class MClassType
1163 super MType
1164
1165 # The associated class
1166 var mclass: MClass
1167
1168 redef fun model do return self.mclass.intro_mmodule.model
1169
1170 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1171
1172 # The formal arguments of the type
1173 # ENSURE: `result.length == self.mclass.arity`
1174 var arguments = new Array[MType]
1175
1176 redef fun to_s do return mclass.to_s
1177
1178 redef fun full_name do return mclass.full_name
1179
1180 redef fun c_name do return mclass.c_name
1181
1182 redef fun need_anchor do return false
1183
1184 redef fun anchor_to(mmodule: MModule, anchor: MClassType): MClassType
1185 do
1186 return super.as(MClassType)
1187 end
1188
1189 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1190
1191 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1192
1193 redef fun collect_mclassdefs(mmodule)
1194 do
1195 assert not self.need_anchor
1196 var cache = self.collect_mclassdefs_cache
1197 if not cache.has_key(mmodule) then
1198 self.collect_things(mmodule)
1199 end
1200 return cache[mmodule]
1201 end
1202
1203 redef fun collect_mclasses(mmodule)
1204 do
1205 if collect_mclasses_last_module == mmodule then return collect_mclasses_last_module_cache
1206 assert not self.need_anchor
1207 var cache = self.collect_mclasses_cache
1208 if not cache.has_key(mmodule) then
1209 self.collect_things(mmodule)
1210 end
1211 var res = cache[mmodule]
1212 collect_mclasses_last_module = mmodule
1213 collect_mclasses_last_module_cache = res
1214 return res
1215 end
1216
1217 private var collect_mclasses_last_module: nullable MModule = null
1218 private var collect_mclasses_last_module_cache: Set[MClass] is noinit
1219
1220 redef fun collect_mtypes(mmodule)
1221 do
1222 assert not self.need_anchor
1223 var cache = self.collect_mtypes_cache
1224 if not cache.has_key(mmodule) then
1225 self.collect_things(mmodule)
1226 end
1227 return cache[mmodule]
1228 end
1229
1230 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1231 private fun collect_things(mmodule: MModule)
1232 do
1233 var res = new HashSet[MClassDef]
1234 var seen = new HashSet[MClass]
1235 var types = new HashSet[MClassType]
1236 seen.add(self.mclass)
1237 var todo = [self.mclass]
1238 while not todo.is_empty do
1239 var mclass = todo.pop
1240 #print "process {mclass}"
1241 for mclassdef in mclass.mclassdefs do
1242 if not mmodule.in_importation <= mclassdef.mmodule then continue
1243 #print " process {mclassdef}"
1244 res.add(mclassdef)
1245 for supertype in mclassdef.supertypes do
1246 types.add(supertype)
1247 var superclass = supertype.mclass
1248 if seen.has(superclass) then continue
1249 #print " add {superclass}"
1250 seen.add(superclass)
1251 todo.add(superclass)
1252 end
1253 end
1254 end
1255 collect_mclassdefs_cache[mmodule] = res
1256 collect_mclasses_cache[mmodule] = seen
1257 collect_mtypes_cache[mmodule] = types
1258 end
1259
1260 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1261 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1262 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1263
1264 end
1265
1266 # A type based on a generic class.
1267 # A generic type a just a class with additional formal generic arguments.
1268 class MGenericType
1269 super MClassType
1270
1271 redef var arguments
1272
1273 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1274
1275 init
1276 do
1277 assert self.mclass.arity == arguments.length
1278
1279 self.need_anchor = false
1280 for t in arguments do
1281 if t.need_anchor then
1282 self.need_anchor = true
1283 break
1284 end
1285 end
1286
1287 self.to_s = "{mclass}[{arguments.join(", ")}]"
1288 end
1289
1290 # The short-name of the class, then the full-name of each type arguments within brackets.
1291 # Example: `"Map[String, List[Int]]"`
1292 redef var to_s is noinit
1293
1294 # The full-name of the class, then the full-name of each type arguments within brackets.
1295 # Example: `"core::Map[core::String, core::List[core::Int]]"`
1296 redef var full_name is lazy do
1297 var args = new Array[String]
1298 for t in arguments do
1299 args.add t.full_name
1300 end
1301 return "{mclass.full_name}[{args.join(", ")}]"
1302 end
1303
1304 redef var c_name is lazy do
1305 var res = mclass.c_name
1306 # Note: because the arity is known, a prefix notation is enough
1307 for t in arguments do
1308 res += "__"
1309 res += t.c_name
1310 end
1311 return res.to_s
1312 end
1313
1314 redef var need_anchor is noinit
1315
1316 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1317 do
1318 if not need_anchor then return self
1319 assert can_resolve_for(mtype, anchor, mmodule)
1320 var types = new Array[MType]
1321 for t in arguments do
1322 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1323 end
1324 return mclass.get_mtype(types)
1325 end
1326
1327 redef fun can_resolve_for(mtype, anchor, mmodule)
1328 do
1329 if not need_anchor then return true
1330 for t in arguments do
1331 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1332 end
1333 return true
1334 end
1335
1336
1337 redef fun depth
1338 do
1339 var dmax = 0
1340 for a in self.arguments do
1341 var d = a.depth
1342 if d > dmax then dmax = d
1343 end
1344 return dmax + 1
1345 end
1346
1347 redef fun length
1348 do
1349 var res = 1
1350 for a in self.arguments do
1351 res += a.length
1352 end
1353 return res
1354 end
1355 end
1356
1357 # A formal type (either virtual of parametric).
1358 #
1359 # The main issue with formal types is that they offer very little information on their own
1360 # and need a context (anchor and mmodule) to be useful.
1361 abstract class MFormalType
1362 super MType
1363
1364 redef var as_notnull = new MNotNullType(self) is lazy
1365 end
1366
1367 # A virtual formal type.
1368 class MVirtualType
1369 super MFormalType
1370
1371 # The property associated with the type.
1372 # Its the definitions of this property that determine the bound or the virtual type.
1373 var mproperty: MVirtualTypeProp
1374
1375 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1376
1377 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1378 do
1379 return lookup_single_definition(mmodule, resolved_receiver).bound or else new MBottomType(model)
1380 end
1381
1382 private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef
1383 do
1384 assert not resolved_receiver.need_anchor
1385 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1386 if props.is_empty then
1387 abort
1388 else if props.length == 1 then
1389 return props.first
1390 end
1391 var types = new ArraySet[MType]
1392 var res = props.first
1393 for p in props do
1394 types.add(p.bound.as(not null))
1395 if not res.is_fixed then res = p
1396 end
1397 if types.length == 1 then
1398 return res
1399 end
1400 abort
1401 end
1402
1403 # A VT is fixed when:
1404 # * the VT is (re-)defined with the annotation `is fixed`
1405 # * the VT is (indirectly) bound to an enum class (see `enum_kind`) since there is no subtype possible
1406 # * the receiver is an enum class since there is no subtype possible
1407 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1408 do
1409 assert not resolved_receiver.need_anchor
1410 resolved_receiver = resolved_receiver.undecorate
1411 assert resolved_receiver isa MClassType # It is the only remaining type
1412
1413 var prop = lookup_single_definition(mmodule, resolved_receiver)
1414 var res = prop.bound
1415 if res == null then return new MBottomType(model)
1416
1417 # Recursively lookup the fixed result
1418 res = res.lookup_fixed(mmodule, resolved_receiver)
1419
1420 # 1. For a fixed VT, return the resolved bound
1421 if prop.is_fixed then return res
1422
1423 # 2. For a enum boud, return the bound
1424 if res isa MClassType and res.mclass.kind == enum_kind then return res
1425
1426 # 3. for a enum receiver return the bound
1427 if resolved_receiver.mclass.kind == enum_kind then return res
1428
1429 return self
1430 end
1431
1432 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1433 do
1434 if not cleanup_virtual then return self
1435 assert can_resolve_for(mtype, anchor, mmodule)
1436 # self is a virtual type declared (or inherited) in mtype
1437 # The point of the function it to get the bound of the virtual type that make sense for mtype
1438 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1439 #print "{class_name}: {self}/{mtype}/{anchor}?"
1440 var resolved_receiver
1441 if mtype.need_anchor then
1442 assert anchor != null
1443 resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true)
1444 else
1445 resolved_receiver = mtype
1446 end
1447 # Now, we can get the bound
1448 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1449 # The bound is exactly as declared in the "type" property, so we must resolve it again
1450 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1451
1452 return res
1453 end
1454
1455 redef fun can_resolve_for(mtype, anchor, mmodule)
1456 do
1457 if mtype.need_anchor then
1458 assert anchor != null
1459 mtype = mtype.anchor_to(mmodule, anchor)
1460 end
1461 return mtype.has_mproperty(mmodule, mproperty)
1462 end
1463
1464 redef fun to_s do return self.mproperty.to_s
1465
1466 redef fun full_name do return self.mproperty.full_name
1467
1468 redef fun c_name do return self.mproperty.c_name
1469 end
1470
1471 # The type associated to a formal parameter generic type of a class
1472 #
1473 # Each parameter type is associated to a specific class.
1474 # It means that all refinements of a same class "share" the parameter type,
1475 # but that a generic subclass has its own parameter types.
1476 #
1477 # However, in the sense of the meta-model, a parameter type of a class is
1478 # a valid type in a subclass. The "in the sense of the meta-model" is
1479 # important because, in the Nit language, the programmer cannot refers
1480 # directly to the parameter types of the super-classes.
1481 #
1482 # Example:
1483 #
1484 # class A[E]
1485 # fun e: E is abstract
1486 # end
1487 # class B[F]
1488 # super A[Array[F]]
1489 # end
1490 #
1491 # In the class definition B[F], `F` is a valid type but `E` is not.
1492 # However, `self.e` is a valid method call, and the signature of `e` is
1493 # declared `e: E`.
1494 #
1495 # Note that parameter types are shared among class refinements.
1496 # Therefore parameter only have an internal name (see `to_s` for details).
1497 class MParameterType
1498 super MFormalType
1499
1500 # The generic class where the parameter belong
1501 var mclass: MClass
1502
1503 redef fun model do return self.mclass.intro_mmodule.model
1504
1505 # The position of the parameter (0 for the first parameter)
1506 # FIXME: is `position` a better name?
1507 var rank: Int
1508
1509 redef var name
1510
1511 redef fun to_s do return name
1512
1513 redef var full_name is lazy do return "{mclass.full_name}::{name}"
1514
1515 redef var c_name is lazy do return mclass.c_name + "__" + "#{name}".to_cmangle
1516
1517 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1518 do
1519 assert not resolved_receiver.need_anchor
1520 resolved_receiver = resolved_receiver.undecorate
1521 assert resolved_receiver isa MClassType # It is the only remaining type
1522 var goalclass = self.mclass
1523 if resolved_receiver.mclass == goalclass then
1524 return resolved_receiver.arguments[self.rank]
1525 end
1526 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1527 for t in supertypes do
1528 if t.mclass == goalclass then
1529 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1530 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1531 var res = t.arguments[self.rank]
1532 return res
1533 end
1534 end
1535 abort
1536 end
1537
1538 # A PT is fixed when:
1539 # * Its bound is a enum class (see `enum_kind`).
1540 # The PT is just useless, but it is still a case.
1541 # * More usually, the `resolved_receiver` is a subclass of `self.mclass`,
1542 # so it is necessarily fixed in a `super` clause, either with a normal type
1543 # or with another PT.
1544 # See `resolve_for` for examples about related issues.
1545 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1546 do
1547 assert not resolved_receiver.need_anchor
1548 resolved_receiver = resolved_receiver.undecorate
1549 assert resolved_receiver isa MClassType # It is the only remaining type
1550 var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false)
1551 return res
1552 end
1553
1554 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1555 do
1556 assert can_resolve_for(mtype, anchor, mmodule)
1557 #print "{class_name}: {self}/{mtype}/{anchor}?"
1558
1559 if mtype isa MGenericType and mtype.mclass == self.mclass then
1560 var res = mtype.arguments[self.rank]
1561 if anchor != null and res.need_anchor then
1562 # Maybe the result can be resolved more if are bound to a final class
1563 var r2 = res.anchor_to(mmodule, anchor)
1564 if r2 isa MClassType and r2.mclass.kind == enum_kind then return r2
1565 end
1566 return res
1567 end
1568
1569 # self is a parameter type of mtype (or of a super-class of mtype)
1570 # The point of the function it to get the bound of the virtual type that make sense for mtype
1571 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1572 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1573 var resolved_receiver
1574 if mtype.need_anchor then
1575 assert anchor != null
1576 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1577 else
1578 resolved_receiver = mtype
1579 end
1580 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1581 if resolved_receiver isa MParameterType then
1582 assert anchor != null
1583 assert resolved_receiver.mclass == anchor.mclass
1584 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1585 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1586 end
1587 assert resolved_receiver isa MClassType # It is the only remaining type
1588
1589 # Eh! The parameter is in the current class.
1590 # So we return the corresponding argument, no mater what!
1591 if resolved_receiver.mclass == self.mclass then
1592 var res = resolved_receiver.arguments[self.rank]
1593 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1594 return res
1595 end
1596
1597 if resolved_receiver.need_anchor then
1598 assert anchor != null
1599 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1600 end
1601 # Now, we can get the bound
1602 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1603 # The bound is exactly as declared in the "type" property, so we must resolve it again
1604 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1605
1606 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1607
1608 return res
1609 end
1610
1611 redef fun can_resolve_for(mtype, anchor, mmodule)
1612 do
1613 if mtype.need_anchor then
1614 assert anchor != null
1615 mtype = mtype.anchor_to(mmodule, anchor)
1616 end
1617 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1618 end
1619 end
1620
1621 # A type that decorates another type.
1622 #
1623 # The point of this class is to provide a common implementation of sevices that just forward to the original type.
1624 # Specific decorator are expected to redefine (or to extend) the default implementation as this suit them.
1625 abstract class MProxyType
1626 super MType
1627 # The base type
1628 var mtype: MType
1629
1630 redef fun model do return self.mtype.model
1631 redef fun need_anchor do return mtype.need_anchor
1632 redef fun as_nullable do return mtype.as_nullable
1633 redef fun as_notnull do return mtype.as_notnull
1634 redef fun undecorate do return mtype.undecorate
1635 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1636 do
1637 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1638 return res
1639 end
1640
1641 redef fun can_resolve_for(mtype, anchor, mmodule)
1642 do
1643 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1644 end
1645
1646 redef fun lookup_fixed(mmodule, resolved_receiver)
1647 do
1648 var t = mtype.lookup_fixed(mmodule, resolved_receiver)
1649 return t
1650 end
1651
1652 redef fun depth do return self.mtype.depth
1653
1654 redef fun length do return self.mtype.length
1655
1656 redef fun collect_mclassdefs(mmodule)
1657 do
1658 assert not self.need_anchor
1659 return self.mtype.collect_mclassdefs(mmodule)
1660 end
1661
1662 redef fun collect_mclasses(mmodule)
1663 do
1664 assert not self.need_anchor
1665 return self.mtype.collect_mclasses(mmodule)
1666 end
1667
1668 redef fun collect_mtypes(mmodule)
1669 do
1670 assert not self.need_anchor
1671 return self.mtype.collect_mtypes(mmodule)
1672 end
1673 end
1674
1675 # A type prefixed with "nullable"
1676 class MNullableType
1677 super MProxyType
1678
1679 init
1680 do
1681 self.to_s = "nullable {mtype}"
1682 end
1683
1684 redef var to_s is noinit
1685
1686 redef var full_name is lazy do return "nullable {mtype.full_name}"
1687
1688 redef var c_name is lazy do return "nullable__{mtype.c_name}"
1689
1690 redef fun as_nullable do return self
1691 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1692 do
1693 var res = super
1694 return res.as_nullable
1695 end
1696
1697 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable`
1698 redef fun lookup_fixed(mmodule, resolved_receiver)
1699 do
1700 var t = super
1701 if t == mtype then return self
1702 return t.as_nullable
1703 end
1704 end
1705
1706 # A non-null version of a formal type.
1707 #
1708 # When a formal type in bounded to a nullable type, this is the type of the not null version of it.
1709 class MNotNullType
1710 super MProxyType
1711
1712 redef fun to_s do return "not null {mtype}"
1713 redef var full_name is lazy do return "not null {mtype.full_name}"
1714 redef var c_name is lazy do return "notnull__{mtype.c_name}"
1715
1716 redef fun as_notnull do return self
1717
1718 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1719 do
1720 var res = super
1721 return res.as_notnull
1722 end
1723
1724 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_notnull`
1725 redef fun lookup_fixed(mmodule, resolved_receiver)
1726 do
1727 var t = super
1728 if t == mtype then return self
1729 return t.as_notnull
1730 end
1731 end
1732
1733 # The type of the only value null
1734 #
1735 # The is only one null type per model, see `MModel::null_type`.
1736 class MNullType
1737 super MType
1738 redef var model
1739 redef fun to_s do return "null"
1740 redef fun full_name do return "null"
1741 redef fun c_name do return "null"
1742 redef fun as_nullable do return self
1743
1744 redef var as_notnull = new MBottomType(model) is lazy
1745 redef fun need_anchor do return false
1746 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1747 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1748
1749 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1750
1751 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1752
1753 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1754 end
1755
1756 # The special universal most specific type.
1757 #
1758 # This type is intended to be only used internally for type computation or analysis and should not be exposed to the user.
1759 # The bottom type can de used to denote things that are absurd, dead, or the absence of knowledge.
1760 #
1761 # Semantically it is the singleton `null.as_notnull`.
1762 class MBottomType
1763 super MType
1764 redef var model
1765 redef fun to_s do return "bottom"
1766 redef fun full_name do return "bottom"
1767 redef fun c_name do return "bottom"
1768 redef fun as_nullable do return model.null_type
1769 redef fun as_notnull do return self
1770 redef fun need_anchor do return false
1771 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1772 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1773
1774 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1775
1776 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1777
1778 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1779 end
1780
1781 # A signature of a method
1782 class MSignature
1783 super MType
1784
1785 # The each parameter (in order)
1786 var mparameters: Array[MParameter]
1787
1788 # Returns a parameter named `name`, if any.
1789 fun mparameter_by_name(name: String): nullable MParameter
1790 do
1791 for p in mparameters do
1792 if p.name == name then return p
1793 end
1794 return null
1795 end
1796
1797 # The return type (null for a procedure)
1798 var return_mtype: nullable MType
1799
1800 redef fun depth
1801 do
1802 var dmax = 0
1803 var t = self.return_mtype
1804 if t != null then dmax = t.depth
1805 for p in mparameters do
1806 var d = p.mtype.depth
1807 if d > dmax then dmax = d
1808 end
1809 return dmax + 1
1810 end
1811
1812 redef fun length
1813 do
1814 var res = 1
1815 var t = self.return_mtype
1816 if t != null then res += t.length
1817 for p in mparameters do
1818 res += p.mtype.length
1819 end
1820 return res
1821 end
1822
1823 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1824 init
1825 do
1826 var vararg_rank = -1
1827 for i in [0..mparameters.length[ do
1828 var parameter = mparameters[i]
1829 if parameter.is_vararg then
1830 if vararg_rank >= 0 then
1831 # If there is more than one vararg,
1832 # consider that additional arguments cannot be mapped.
1833 vararg_rank = -1
1834 break
1835 end
1836 vararg_rank = i
1837 end
1838 end
1839 self.vararg_rank = vararg_rank
1840 end
1841
1842 # The rank of the main ellipsis (`...`) for vararg (starting from 0).
1843 # value is -1 if there is no vararg.
1844 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1845 #
1846 # From a model POV, a signature can contain more than one vararg parameter,
1847 # the `vararg_rank` just indicates the one that will receive the additional arguments.
1848 # However, currently, if there is more that one vararg parameter, no one will be the main one,
1849 # and additional arguments will be refused.
1850 var vararg_rank: Int is noinit
1851
1852 # The number of parameters
1853 fun arity: Int do return mparameters.length
1854
1855 redef fun to_s
1856 do
1857 var b = new FlatBuffer
1858 if not mparameters.is_empty then
1859 b.append("(")
1860 for i in [0..mparameters.length[ do
1861 var mparameter = mparameters[i]
1862 if i > 0 then b.append(", ")
1863 b.append(mparameter.name)
1864 b.append(": ")
1865 b.append(mparameter.mtype.to_s)
1866 if mparameter.is_vararg then
1867 b.append("...")
1868 end
1869 end
1870 b.append(")")
1871 end
1872 var ret = self.return_mtype
1873 if ret != null then
1874 b.append(": ")
1875 b.append(ret.to_s)
1876 end
1877 return b.to_s
1878 end
1879
1880 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
1881 do
1882 var params = new Array[MParameter]
1883 for p in self.mparameters do
1884 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1885 end
1886 var ret = self.return_mtype
1887 if ret != null then
1888 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1889 end
1890 var res = new MSignature(params, ret)
1891 return res
1892 end
1893 end
1894
1895 # A parameter in a signature
1896 class MParameter
1897 super MEntity
1898
1899 # The name of the parameter
1900 redef var name
1901
1902 # The static type of the parameter
1903 var mtype: MType
1904
1905 # Is the parameter a vararg?
1906 var is_vararg: Bool
1907
1908 redef fun to_s
1909 do
1910 if is_vararg then
1911 return "{name}: {mtype}..."
1912 else
1913 return "{name}: {mtype}"
1914 end
1915 end
1916
1917 # Returns a new parameter with the `mtype` resolved.
1918 # See `MType::resolve_for` for details.
1919 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
1920 do
1921 if not self.mtype.need_anchor then return self
1922 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1923 var res = new MParameter(self.name, newtype, self.is_vararg)
1924 return res
1925 end
1926
1927 redef fun model do return mtype.model
1928 end
1929
1930 # A service (global property) that generalize method, attribute, etc.
1931 #
1932 # `MProperty` are global to the model; it means that a `MProperty` is not bound
1933 # to a specific `MModule` nor a specific `MClass`.
1934 #
1935 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
1936 # and the other in subclasses and in refinements.
1937 #
1938 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
1939 # of any dynamic type).
1940 # For instance, a call site "x.foo" is associated to a `MProperty`.
1941 abstract class MProperty
1942 super MEntity
1943
1944 # The associated MPropDef subclass.
1945 # The two specialization hierarchy are symmetric.
1946 type MPROPDEF: MPropDef
1947
1948 # The classdef that introduce the property
1949 # While a property is not bound to a specific module, or class,
1950 # the introducing mclassdef is used for naming and visibility
1951 var intro_mclassdef: MClassDef
1952
1953 # The (short) name of the property
1954 redef var name
1955
1956 redef var location
1957
1958 # The canonical name of the property.
1959 #
1960 # It is currently the short-`name` prefixed by the short-name of the class and the full-name of the module.
1961 # Example: "my_package::my_module::MyClass::my_method"
1962 #
1963 # The full-name of the module is needed because two distinct modules of the same package can
1964 # still refine the same class and introduce homonym properties.
1965 #
1966 # For public properties not introduced by refinement, the module name is not used.
1967 #
1968 # Example: `my_package::MyClass::My_method`
1969 redef var full_name is lazy do
1970 if intro_mclassdef.is_intro then
1971 return "{intro_mclassdef.mmodule.namespace_for(visibility)}::{intro_mclassdef.mclass.name}::{name}"
1972 else
1973 return "{intro_mclassdef.mmodule.full_name}::{intro_mclassdef.mclass.name}::{name}"
1974 end
1975 end
1976
1977 redef var c_name is lazy do
1978 # FIXME use `namespace_for`
1979 return "{intro_mclassdef.mmodule.c_name}__{intro_mclassdef.mclass.name.to_cmangle}__{name.to_cmangle}"
1980 end
1981
1982 # The visibility of the property
1983 var visibility: MVisibility
1984
1985 # Is the property usable as an initializer?
1986 var is_autoinit = false is writable
1987
1988 init
1989 do
1990 intro_mclassdef.intro_mproperties.add(self)
1991 var model = intro_mclassdef.mmodule.model
1992 model.mproperties_by_name.add_one(name, self)
1993 model.mproperties.add(self)
1994 end
1995
1996 # All definitions of the property.
1997 # The first is the introduction,
1998 # The other are redefinitions (in refinements and in subclasses)
1999 var mpropdefs = new Array[MPROPDEF]
2000
2001 # The definition that introduces the property.
2002 #
2003 # Warning: such a definition may not exist in the early life of the object.
2004 # In this case, the method will abort.
2005 var intro: MPROPDEF is noinit
2006
2007 redef fun model do return intro.model
2008
2009 # Alias for `name`
2010 redef fun to_s do return name
2011
2012 # Return the most specific property definitions defined or inherited by a type.
2013 # The selection knows that refinement is stronger than specialization;
2014 # however, in case of conflict more than one property are returned.
2015 # If mtype does not know mproperty then an empty array is returned.
2016 #
2017 # If you want the really most specific property, then look at `lookup_first_definition`
2018 #
2019 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2020 # ENSURE: `not mtype.has_mproperty(mmodule, self) == result.is_empty`
2021 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2022 do
2023 assert not mtype.need_anchor
2024 mtype = mtype.undecorate
2025
2026 var cache = self.lookup_definitions_cache[mmodule, mtype]
2027 if cache != null then return cache
2028
2029 #print "select prop {mproperty} for {mtype} in {self}"
2030 # First, select all candidates
2031 var candidates = new Array[MPROPDEF]
2032 for mpropdef in self.mpropdefs do
2033 # If the definition is not imported by the module, then skip
2034 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2035 # If the definition is not inherited by the type, then skip
2036 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2037 # Else, we keep it
2038 candidates.add(mpropdef)
2039 end
2040 # Fast track for only one candidate
2041 if candidates.length <= 1 then
2042 self.lookup_definitions_cache[mmodule, mtype] = candidates
2043 return candidates
2044 end
2045
2046 # Second, filter the most specific ones
2047 return select_most_specific(mmodule, candidates)
2048 end
2049
2050 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2051
2052 # Return the most specific property definitions inherited by a type.
2053 # The selection knows that refinement is stronger than specialization;
2054 # however, in case of conflict more than one property are returned.
2055 # If mtype does not know mproperty then an empty array is returned.
2056 #
2057 # If you want the really most specific property, then look at `lookup_next_definition`
2058 #
2059 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2060 # ENSURE: `not mtype.has_mproperty(mmodule, self) implies result.is_empty`
2061 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2062 do
2063 assert not mtype.need_anchor
2064 mtype = mtype.undecorate
2065
2066 # First, select all candidates
2067 var candidates = new Array[MPROPDEF]
2068 for mpropdef in self.mpropdefs do
2069 # If the definition is not imported by the module, then skip
2070 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2071 # If the definition is not inherited by the type, then skip
2072 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2073 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
2074 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
2075 # Else, we keep it
2076 candidates.add(mpropdef)
2077 end
2078 # Fast track for only one candidate
2079 if candidates.length <= 1 then return candidates
2080
2081 # Second, filter the most specific ones
2082 return select_most_specific(mmodule, candidates)
2083 end
2084
2085 # Return an array containing olny the most specific property definitions
2086 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
2087 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
2088 do
2089 var res = new Array[MPROPDEF]
2090 for pd1 in candidates do
2091 var cd1 = pd1.mclassdef
2092 var c1 = cd1.mclass
2093 var keep = true
2094 for pd2 in candidates do
2095 if pd2 == pd1 then continue # do not compare with self!
2096 var cd2 = pd2.mclassdef
2097 var c2 = cd2.mclass
2098 if c2.mclass_type == c1.mclass_type then
2099 if cd2.mmodule.in_importation < cd1.mmodule then
2100 # cd2 refines cd1; therefore we skip pd1
2101 keep = false
2102 break
2103 end
2104 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
2105 # cd2 < cd1; therefore we skip pd1
2106 keep = false
2107 break
2108 end
2109 end
2110 if keep then
2111 res.add(pd1)
2112 end
2113 end
2114 if res.is_empty then
2115 print "All lost! {candidates.join(", ")}"
2116 # FIXME: should be abort!
2117 end
2118 return res
2119 end
2120
2121 # Return the most specific definition in the linearization of `mtype`.
2122 #
2123 # If you want to know the next properties in the linearization,
2124 # look at `MPropDef::lookup_next_definition`.
2125 #
2126 # FIXME: the linearization is still unspecified
2127 #
2128 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2129 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2130 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
2131 do
2132 return lookup_all_definitions(mmodule, mtype).first
2133 end
2134
2135 # Return all definitions in a linearization order
2136 # Most specific first, most general last
2137 #
2138 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2139 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2140 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2141 do
2142 mtype = mtype.undecorate
2143
2144 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
2145 if cache != null then return cache
2146
2147 assert not mtype.need_anchor
2148 assert mtype.has_mproperty(mmodule, self)
2149
2150 #print "select prop {mproperty} for {mtype} in {self}"
2151 # First, select all candidates
2152 var candidates = new Array[MPROPDEF]
2153 for mpropdef in self.mpropdefs do
2154 # If the definition is not imported by the module, then skip
2155 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2156 # If the definition is not inherited by the type, then skip
2157 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2158 # Else, we keep it
2159 candidates.add(mpropdef)
2160 end
2161 # Fast track for only one candidate
2162 if candidates.length <= 1 then
2163 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2164 return candidates
2165 end
2166
2167 mmodule.linearize_mpropdefs(candidates)
2168 candidates = candidates.reversed
2169 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2170 return candidates
2171 end
2172
2173 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2174 end
2175
2176 # A global method
2177 class MMethod
2178 super MProperty
2179
2180 redef type MPROPDEF: MMethodDef
2181
2182 # Is the property defined at the top_level of the module?
2183 # Currently such a property are stored in `Object`
2184 var is_toplevel: Bool = false is writable
2185
2186 # Is the property a constructor?
2187 # Warning, this property can be inherited by subclasses with or without being a constructor
2188 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
2189 var is_init: Bool = false is writable
2190
2191 # The constructor is a (the) root init with empty signature but a set of initializers
2192 var is_root_init: Bool = false is writable
2193
2194 # Is the property a 'new' constructor?
2195 var is_new: Bool = false is writable
2196
2197 # Is the property a legal constructor for a given class?
2198 # As usual, visibility is not considered.
2199 # FIXME not implemented
2200 fun is_init_for(mclass: MClass): Bool
2201 do
2202 return self.is_init
2203 end
2204
2205 # A specific method that is safe to call on null.
2206 # Currently, only `==`, `!=` and `is_same_instance` are safe
2207 fun is_null_safe: Bool do return name == "==" or name == "!=" or name == "is_same_instance"
2208 end
2209
2210 # A global attribute
2211 class MAttribute
2212 super MProperty
2213
2214 redef type MPROPDEF: MAttributeDef
2215
2216 end
2217
2218 # A global virtual type
2219 class MVirtualTypeProp
2220 super MProperty
2221
2222 redef type MPROPDEF: MVirtualTypeDef
2223
2224 # The formal type associated to the virtual type property
2225 var mvirtualtype = new MVirtualType(self)
2226 end
2227
2228 # A definition of a property (local property)
2229 #
2230 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
2231 # specific class definition (which belong to a specific module)
2232 abstract class MPropDef
2233 super MEntity
2234
2235 # The associated `MProperty` subclass.
2236 # the two specialization hierarchy are symmetric
2237 type MPROPERTY: MProperty
2238
2239 # Self class
2240 type MPROPDEF: MPropDef
2241
2242 # The class definition where the property definition is
2243 var mclassdef: MClassDef
2244
2245 # The associated global property
2246 var mproperty: MPROPERTY
2247
2248 redef var location: Location
2249
2250 init
2251 do
2252 mclassdef.mpropdefs.add(self)
2253 mproperty.mpropdefs.add(self)
2254 if mproperty.intro_mclassdef == mclassdef then
2255 assert not isset mproperty._intro
2256 mproperty.intro = self
2257 end
2258 self.to_s = "{mclassdef}${mproperty}"
2259 end
2260
2261 # Actually the name of the `mproperty`
2262 redef fun name do return mproperty.name
2263
2264 # The full-name of mpropdefs combine the information about the `classdef` and the `mproperty`.
2265 #
2266 # Therefore the combination of identifiers is awful,
2267 # the worst case being
2268 #
2269 # * a property "p::m::A::x"
2270 # * redefined in a refinement of a class "q::n::B"
2271 # * in a module "r::o"
2272 # * so "r::o$q::n::B$p::m::A::x"
2273 #
2274 # Fortunately, the full-name is simplified when entities are repeated.
2275 # For the previous case, the simplest form is "p$A$x".
2276 redef var full_name is lazy do
2277 var res = new FlatBuffer
2278
2279 # The first part is the mclassdef. Worst case is "r::o$q::n::B"
2280 res.append mclassdef.full_name
2281
2282 res.append "$"
2283
2284 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2285 # intro are unambiguous in a class
2286 res.append name
2287 else
2288 # Just try to simplify each part
2289 if mclassdef.mmodule.mpackage != mproperty.intro_mclassdef.mmodule.mpackage then
2290 # precise "p::m" only if "p" != "r"
2291 res.append mproperty.intro_mclassdef.mmodule.namespace_for(mproperty.visibility)
2292 res.append "::"
2293 else if mproperty.visibility <= private_visibility then
2294 # Same package ("p"=="q"), but private visibility,
2295 # does the module part ("::m") need to be displayed
2296 if mclassdef.mmodule.namespace_for(mclassdef.mclass.visibility) != mproperty.intro_mclassdef.mmodule.mpackage then
2297 res.append "::"
2298 res.append mproperty.intro_mclassdef.mmodule.name
2299 res.append "::"
2300 end
2301 end
2302 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2303 # precise "B" only if not the same class than "A"
2304 res.append mproperty.intro_mclassdef.name
2305 res.append "::"
2306 end
2307 # Always use the property name "x"
2308 res.append mproperty.name
2309 end
2310 return res.to_s
2311 end
2312
2313 redef var c_name is lazy do
2314 var res = new FlatBuffer
2315 res.append mclassdef.c_name
2316 res.append "___"
2317 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2318 res.append name.to_cmangle
2319 else
2320 if mclassdef.mmodule != mproperty.intro_mclassdef.mmodule then
2321 res.append mproperty.intro_mclassdef.mmodule.c_name
2322 res.append "__"
2323 end
2324 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2325 res.append mproperty.intro_mclassdef.name.to_cmangle
2326 res.append "__"
2327 end
2328 res.append mproperty.name.to_cmangle
2329 end
2330 return res.to_s
2331 end
2332
2333 redef fun model do return mclassdef.model
2334
2335 # Internal name combining the module, the class and the property
2336 # Example: "mymodule$MyClass$mymethod"
2337 redef var to_s is noinit
2338
2339 # Is self the definition that introduce the property?
2340 fun is_intro: Bool do return isset mproperty._intro and mproperty.intro == self
2341
2342 # Return the next definition in linearization of `mtype`.
2343 #
2344 # This method is used to determine what method is called by a super.
2345 #
2346 # REQUIRE: `not mtype.need_anchor`
2347 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
2348 do
2349 assert not mtype.need_anchor
2350
2351 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
2352 var i = mpropdefs.iterator
2353 while i.is_ok and i.item != self do i.next
2354 assert has_property: i.is_ok
2355 i.next
2356 assert has_next_property: i.is_ok
2357 return i.item
2358 end
2359 end
2360
2361 # A local definition of a method
2362 class MMethodDef
2363 super MPropDef
2364
2365 redef type MPROPERTY: MMethod
2366 redef type MPROPDEF: MMethodDef
2367
2368 # The signature attached to the property definition
2369 var msignature: nullable MSignature = null is writable
2370
2371 # The signature attached to the `new` call on a root-init
2372 # This is a concatenation of the signatures of the initializers
2373 #
2374 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2375 var new_msignature: nullable MSignature = null is writable
2376
2377 # List of initialisers to call in root-inits
2378 #
2379 # They could be setters or attributes
2380 #
2381 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2382 var initializers = new Array[MProperty]
2383
2384 # Is the method definition abstract?
2385 var is_abstract: Bool = false is writable
2386
2387 # Is the method definition intern?
2388 var is_intern = false is writable
2389
2390 # Is the method definition extern?
2391 var is_extern = false is writable
2392
2393 # An optional constant value returned in functions.
2394 #
2395 # Only some specific primitife value are accepted by engines.
2396 # Is used when there is no better implementation available.
2397 #
2398 # Currently used only for the implementation of the `--define`
2399 # command-line option.
2400 # SEE: module `mixin`.
2401 var constant_value: nullable Object = null is writable
2402 end
2403
2404 # A local definition of an attribute
2405 class MAttributeDef
2406 super MPropDef
2407
2408 redef type MPROPERTY: MAttribute
2409 redef type MPROPDEF: MAttributeDef
2410
2411 # The static type of the attribute
2412 var static_mtype: nullable MType = null is writable
2413 end
2414
2415 # A local definition of a virtual type
2416 class MVirtualTypeDef
2417 super MPropDef
2418
2419 redef type MPROPERTY: MVirtualTypeProp
2420 redef type MPROPDEF: MVirtualTypeDef
2421
2422 # The bound of the virtual type
2423 var bound: nullable MType = null is writable
2424
2425 # Is the bound fixed?
2426 var is_fixed = false is writable
2427 end
2428
2429 # A kind of class.
2430 #
2431 # * `abstract_kind`
2432 # * `concrete_kind`
2433 # * `interface_kind`
2434 # * `enum_kind`
2435 # * `extern_kind`
2436 #
2437 # Note this class is basically an enum.
2438 # FIXME: use a real enum once user-defined enums are available
2439 class MClassKind
2440 redef var to_s
2441
2442 # Is a constructor required?
2443 var need_init: Bool
2444
2445 # TODO: private init because enumeration.
2446
2447 # Can a class of kind `self` specializes a class of kine `other`?
2448 fun can_specialize(other: MClassKind): Bool
2449 do
2450 if other == interface_kind then return true # everybody can specialize interfaces
2451 if self == interface_kind or self == enum_kind then
2452 # no other case for interfaces
2453 return false
2454 else if self == extern_kind then
2455 # only compatible with themselves
2456 return self == other
2457 else if other == enum_kind or other == extern_kind then
2458 # abstract_kind and concrete_kind are incompatible
2459 return false
2460 end
2461 # remain only abstract_kind and concrete_kind
2462 return true
2463 end
2464 end
2465
2466 # The class kind `abstract`
2467 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", true)
2468 # The class kind `concrete`
2469 fun concrete_kind: MClassKind do return once new MClassKind("class", true)
2470 # The class kind `interface`
2471 fun interface_kind: MClassKind do return once new MClassKind("interface", false)
2472 # The class kind `enum`
2473 fun enum_kind: MClassKind do return once new MClassKind("enum", false)
2474 # The class kind `extern`
2475 fun extern_kind: MClassKind do return once new MClassKind("extern class", false)