Merge: Kill `model_utils`
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class Model
34 # All known classes
35 var mclasses = new Array[MClass]
36
37 # All known properties
38 var mproperties = new Array[MProperty]
39
40 # Hierarchy of class definition.
41 #
42 # Each classdef is associated with its super-classdefs in regard to
43 # its module of definition.
44 var mclassdef_hierarchy = new POSet[MClassDef]
45
46 # Class-type hierarchy restricted to the introduction.
47 #
48 # The idea is that what is true on introduction is always true whatever
49 # the module considered.
50 # Therefore, this hierarchy is used for a fast positive subtype check.
51 #
52 # This poset will evolve in a monotonous way:
53 # * Two non connected nodes will remain unconnected
54 # * New nodes can appear with new edges
55 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
56
57 # Global overlapped class-type hierarchy.
58 # The hierarchy when all modules are combined.
59 # Therefore, this hierarchy is used for a fast negative subtype check.
60 #
61 # This poset will evolve in an anarchic way. Loops can even be created.
62 #
63 # FIXME decide what to do on loops
64 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
65
66 # Collections of classes grouped by their short name
67 private var mclasses_by_name = new MultiHashMap[String, MClass]
68
69 # Return all class named `name`.
70 #
71 # If such a class does not exist, null is returned
72 # (instead of an empty array)
73 #
74 # Visibility or modules are not considered
75 fun get_mclasses_by_name(name: String): nullable Array[MClass]
76 do
77 return mclasses_by_name.get_or_null(name)
78 end
79
80 # Collections of properties grouped by their short name
81 private var mproperties_by_name = new MultiHashMap[String, MProperty]
82
83 # Return all properties named `name`.
84 #
85 # If such a property does not exist, null is returned
86 # (instead of an empty array)
87 #
88 # Visibility or modules are not considered
89 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
90 do
91 return mproperties_by_name.get_or_null(name)
92 end
93
94 # The only null type
95 var null_type = new MNullType(self)
96
97 # Build an ordered tree with from `concerns`
98 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
99 var seen = new HashSet[MConcern]
100 var res = new ConcernsTree
101
102 var todo = new Array[MConcern]
103 todo.add_all mconcerns
104
105 while not todo.is_empty do
106 var c = todo.pop
107 if seen.has(c) then continue
108 var pc = c.parent_concern
109 if pc == null then
110 res.add(null, c)
111 else
112 res.add(pc, c)
113 todo.add(pc)
114 end
115 seen.add(c)
116 end
117
118 return res
119 end
120 end
121
122 # An OrderedTree that can be easily refined for display purposes
123 class ConcernsTree
124 super OrderedTree[MConcern]
125 end
126
127 redef class MModule
128 # All the classes introduced in the module
129 var intro_mclasses = new Array[MClass]
130
131 # All the class definitions of the module
132 # (introduction and refinement)
133 var mclassdefs = new Array[MClassDef]
134
135 # Does the current module has a given class `mclass`?
136 # Return true if the mmodule introduces, refines or imports a class.
137 # Visibility is not considered.
138 fun has_mclass(mclass: MClass): Bool
139 do
140 return self.in_importation <= mclass.intro_mmodule
141 end
142
143 # Full hierarchy of introduced ans imported classes.
144 #
145 # Create a new hierarchy got by flattening the classes for the module
146 # and its imported modules.
147 # Visibility is not considered.
148 #
149 # Note: this function is expensive and is usually used for the main
150 # module of a program only. Do not use it to do you own subtype
151 # functions.
152 fun flatten_mclass_hierarchy: POSet[MClass]
153 do
154 var res = self.flatten_mclass_hierarchy_cache
155 if res != null then return res
156 res = new POSet[MClass]
157 for m in self.in_importation.greaters do
158 for cd in m.mclassdefs do
159 var c = cd.mclass
160 res.add_node(c)
161 for s in cd.supertypes do
162 res.add_edge(c, s.mclass)
163 end
164 end
165 end
166 self.flatten_mclass_hierarchy_cache = res
167 return res
168 end
169
170 # Sort a given array of classes using the linearization order of the module
171 # The most general is first, the most specific is last
172 fun linearize_mclasses(mclasses: Array[MClass])
173 do
174 self.flatten_mclass_hierarchy.sort(mclasses)
175 end
176
177 # Sort a given array of class definitions using the linearization order of the module
178 # the refinement link is stronger than the specialisation link
179 # The most general is first, the most specific is last
180 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
181 do
182 var sorter = new MClassDefSorter(self)
183 sorter.sort(mclassdefs)
184 end
185
186 # Sort a given array of property definitions using the linearization order of the module
187 # the refinement link is stronger than the specialisation link
188 # The most general is first, the most specific is last
189 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
190 do
191 var sorter = new MPropDefSorter(self)
192 sorter.sort(mpropdefs)
193 end
194
195 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
196
197 # The primitive type `Object`, the root of the class hierarchy
198 var object_type: MClassType = self.get_primitive_class("Object").mclass_type is lazy
199
200 # The type `Pointer`, super class to all extern classes
201 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
202
203 # The primitive type `Bool`
204 var bool_type: MClassType = self.get_primitive_class("Bool").mclass_type is lazy
205
206 # The primitive type `Int`
207 var int_type: MClassType = self.get_primitive_class("Int").mclass_type is lazy
208
209 # The primitive type `Byte`
210 var byte_type: MClassType = self.get_primitive_class("Byte").mclass_type is lazy
211
212 # The primitive type `Char`
213 var char_type: MClassType = self.get_primitive_class("Char").mclass_type is lazy
214
215 # The primitive type `Float`
216 var float_type: MClassType = self.get_primitive_class("Float").mclass_type is lazy
217
218 # The primitive type `String`
219 var string_type: MClassType = self.get_primitive_class("String").mclass_type is lazy
220
221 # The primitive type `NativeString`
222 var native_string_type: MClassType = self.get_primitive_class("NativeString").mclass_type is lazy
223
224 # A primitive type of `Array`
225 fun array_type(elt_type: MType): MClassType do return array_class.get_mtype([elt_type])
226
227 # The primitive class `Array`
228 var array_class: MClass = self.get_primitive_class("Array") is lazy
229
230 # A primitive type of `NativeArray`
231 fun native_array_type(elt_type: MType): MClassType do return native_array_class.get_mtype([elt_type])
232
233 # The primitive class `NativeArray`
234 var native_array_class: MClass = self.get_primitive_class("NativeArray") is lazy
235
236 # The primitive type `Sys`, the main type of the program, if any
237 fun sys_type: nullable MClassType
238 do
239 var clas = self.model.get_mclasses_by_name("Sys")
240 if clas == null then return null
241 return get_primitive_class("Sys").mclass_type
242 end
243
244 # The primitive type `Finalizable`
245 # Used to tag classes that need to be finalized.
246 fun finalizable_type: nullable MClassType
247 do
248 var clas = self.model.get_mclasses_by_name("Finalizable")
249 if clas == null then return null
250 return get_primitive_class("Finalizable").mclass_type
251 end
252
253 # Force to get the primitive class named `name` or abort
254 fun get_primitive_class(name: String): MClass
255 do
256 var cla = self.model.get_mclasses_by_name(name)
257 # Filter classes by introducing module
258 if cla != null then cla = [for c in cla do if self.in_importation <= c.intro_mmodule then c]
259 if cla == null or cla.is_empty then
260 if name == "Bool" and self.model.get_mclasses_by_name("Object") != null then
261 # Bool is injected because it is needed by engine to code the result
262 # of the implicit casts.
263 var c = new MClass(self, name, null, enum_kind, public_visibility)
264 var cladef = new MClassDef(self, c.mclass_type, new Location(null, 0,0,0,0))
265 cladef.set_supertypes([object_type])
266 cladef.add_in_hierarchy
267 return c
268 end
269 print("Fatal Error: no primitive class {name} in {self}")
270 exit(1)
271 end
272 if cla.length != 1 then
273 var msg = "Fatal Error: more than one primitive class {name} in {self}:"
274 for c in cla do msg += " {c.full_name}"
275 print msg
276 #exit(1)
277 end
278 return cla.first
279 end
280
281 # Try to get the primitive method named `name` on the type `recv`
282 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
283 do
284 var props = self.model.get_mproperties_by_name(name)
285 if props == null then return null
286 var res: nullable MMethod = null
287 for mprop in props do
288 assert mprop isa MMethod
289 var intro = mprop.intro_mclassdef
290 for mclassdef in recv.mclassdefs do
291 if not self.in_importation.greaters.has(mclassdef.mmodule) then continue
292 if not mclassdef.in_hierarchy.greaters.has(intro) then continue
293 if res == null then
294 res = mprop
295 else if res != mprop then
296 print("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
297 abort
298 end
299 end
300 end
301 return res
302 end
303 end
304
305 private class MClassDefSorter
306 super Comparator
307 redef type COMPARED: MClassDef
308 var mmodule: MModule
309 redef fun compare(a, b)
310 do
311 var ca = a.mclass
312 var cb = b.mclass
313 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
314 return mmodule.model.mclassdef_hierarchy.compare(a, b)
315 end
316 end
317
318 private class MPropDefSorter
319 super Comparator
320 redef type COMPARED: MPropDef
321 var mmodule: MModule
322 redef fun compare(pa, pb)
323 do
324 var a = pa.mclassdef
325 var b = pb.mclassdef
326 var ca = a.mclass
327 var cb = b.mclass
328 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
329 return mmodule.model.mclassdef_hierarchy.compare(a, b)
330 end
331 end
332
333 # A named class
334 #
335 # `MClass` are global to the model; it means that a `MClass` is not bound to a
336 # specific `MModule`.
337 #
338 # This characteristic helps the reasoning about classes in a program since a
339 # single `MClass` object always denote the same class.
340 #
341 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
342 # These do not really have properties nor belong to a hierarchy since the property and the
343 # hierarchy of a class depends of the refinement in the modules.
344 #
345 # Most services on classes require the precision of a module, and no one can asks what are
346 # the super-classes of a class nor what are properties of a class without precising what is
347 # the module considered.
348 #
349 # For instance, during the typing of a source-file, the module considered is the module of the file.
350 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
351 # *is the method `foo` exists in the class `Bar` in the current module?*
352 #
353 # During some global analysis, the module considered may be the main module of the program.
354 class MClass
355 super MEntity
356
357 # The module that introduce the class
358 # While classes are not bound to a specific module,
359 # the introducing module is used for naming an visibility
360 var intro_mmodule: MModule
361
362 # The short name of the class
363 # In Nit, the name of a class cannot evolve in refinements
364 redef var name: String
365
366 # The canonical name of the class
367 #
368 # It is the name of the class prefixed by the full_name of the `intro_mmodule`
369 # Example: `"owner::module::MyClass"`
370 redef var full_name is lazy do
371 return "{self.intro_mmodule.namespace_for(visibility)}::{name}"
372 end
373
374 redef var c_name is lazy do
375 return "{intro_mmodule.c_namespace_for(visibility)}__{name.to_cmangle}"
376 end
377
378 # The number of generic formal parameters
379 # 0 if the class is not generic
380 var arity: Int is noinit
381
382 # Each generic formal parameters in order.
383 # is empty if the class is not generic
384 var mparameters = new Array[MParameterType]
385
386 # A string version of the signature a generic class.
387 #
388 # eg. `Map[K: nullable Object, V: nullable Object]`
389 #
390 # If the class in non generic the name is just given.
391 #
392 # eg. `Object`
393 fun signature_to_s: String
394 do
395 if arity == 0 then return name
396 var res = new FlatBuffer
397 res.append name
398 res.append "["
399 for i in [0..arity[ do
400 if i > 0 then res.append ", "
401 res.append mparameters[i].name
402 res.append ": "
403 res.append intro.bound_mtype.arguments[i].to_s
404 end
405 res.append "]"
406 return res.to_s
407 end
408
409 # Initialize `mparameters` from their names.
410 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
411 autoinit
412 do
413 if parameter_names == null then
414 self.arity = 0
415 else
416 self.arity = parameter_names.length
417 end
418
419 # Create the formal parameter types
420 if arity > 0 then
421 assert parameter_names != null
422 var mparametertypes = new Array[MParameterType]
423 for i in [0..arity[ do
424 var mparametertype = new MParameterType(self, i, parameter_names[i])
425 mparametertypes.add(mparametertype)
426 end
427 self.mparameters = mparametertypes
428 var mclass_type = new MGenericType(self, mparametertypes)
429 self.mclass_type = mclass_type
430 self.get_mtype_cache[mparametertypes] = mclass_type
431 else
432 self.mclass_type = new MClassType(self)
433 end
434 end
435
436 # The kind of the class (interface, abstract class, etc.)
437 # In Nit, the kind of a class cannot evolve in refinements
438 var kind: MClassKind
439
440 # The visibility of the class
441 # In Nit, the visibility of a class cannot evolve in refinements
442 var visibility: MVisibility
443
444 init
445 do
446 intro_mmodule.intro_mclasses.add(self)
447 var model = intro_mmodule.model
448 model.mclasses_by_name.add_one(name, self)
449 model.mclasses.add(self)
450 end
451
452 redef fun model do return intro_mmodule.model
453
454 # All class definitions (introduction and refinements)
455 var mclassdefs = new Array[MClassDef]
456
457 # Alias for `name`
458 redef fun to_s do return self.name
459
460 # The definition that introduces the class.
461 #
462 # Warning: such a definition may not exist in the early life of the object.
463 # In this case, the method will abort.
464 #
465 # Use `try_intro` instead
466 var intro: MClassDef is noinit
467
468 # The definition that introduces the class or null if not yet known.
469 #
470 # See `intro`
471 fun try_intro: nullable MClassDef do
472 if isset _intro then return _intro else return null
473 end
474
475 # Return the class `self` in the class hierarchy of the module `mmodule`.
476 #
477 # SEE: `MModule::flatten_mclass_hierarchy`
478 # REQUIRE: `mmodule.has_mclass(self)`
479 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
480 do
481 return mmodule.flatten_mclass_hierarchy[self]
482 end
483
484 # The principal static type of the class.
485 #
486 # For non-generic class, mclass_type is the only `MClassType` based
487 # on self.
488 #
489 # For a generic class, the arguments are the formal parameters.
490 # i.e.: for the class Array[E:Object], the `mclass_type` is Array[E].
491 # If you want Array[Object] the see `MClassDef::bound_mtype`
492 #
493 # For generic classes, the mclass_type is also the way to get a formal
494 # generic parameter type.
495 #
496 # To get other types based on a generic class, see `get_mtype`.
497 #
498 # ENSURE: `mclass_type.mclass == self`
499 var mclass_type: MClassType is noinit
500
501 # Return a generic type based on the class
502 # Is the class is not generic, then the result is `mclass_type`
503 #
504 # REQUIRE: `mtype_arguments.length == self.arity`
505 fun get_mtype(mtype_arguments: Array[MType]): MClassType
506 do
507 assert mtype_arguments.length == self.arity
508 if self.arity == 0 then return self.mclass_type
509 var res = get_mtype_cache.get_or_null(mtype_arguments)
510 if res != null then return res
511 res = new MGenericType(self, mtype_arguments)
512 self.get_mtype_cache[mtype_arguments.to_a] = res
513 return res
514 end
515
516 private var get_mtype_cache = new HashMap[Array[MType], MGenericType]
517
518 # Is there a `new` factory to allow the pseudo instantiation?
519 var has_new_factory = false is writable
520
521 # Is `self` a standard or abstract class kind?
522 var is_class: Bool is lazy do return kind == concrete_kind or kind == abstract_kind
523
524 # Is `self` an interface kind?
525 var is_interface: Bool is lazy do return kind == interface_kind
526
527 # Is `self` an enum kind?
528 var is_enum: Bool is lazy do return kind == enum_kind
529
530 # Is `self` and abstract class?
531 var is_abstract: Bool is lazy do return kind == abstract_kind
532 end
533
534
535 # A definition (an introduction or a refinement) of a class in a module
536 #
537 # A `MClassDef` is associated with an explicit (or almost) definition of a
538 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
539 # a specific class and a specific module, and contains declarations like super-classes
540 # or properties.
541 #
542 # It is the class definitions that are the backbone of most things in the model:
543 # ClassDefs are defined with regard with other classdefs.
544 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
545 #
546 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
547 class MClassDef
548 super MEntity
549
550 # The module where the definition is
551 var mmodule: MModule
552
553 # The associated `MClass`
554 var mclass: MClass is noinit
555
556 # The bounded type associated to the mclassdef
557 #
558 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
559 # are the same type.
560 #
561 # Example:
562 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
563 # If you want Array[E], then see `mclass.mclass_type`
564 #
565 # ENSURE: `bound_mtype.mclass == self.mclass`
566 var bound_mtype: MClassType
567
568 # The origin of the definition
569 var location: Location
570
571 # Internal name combining the module and the class
572 # Example: "mymodule#MyClass"
573 redef var to_s: String is noinit
574
575 init
576 do
577 self.mclass = bound_mtype.mclass
578 mmodule.mclassdefs.add(self)
579 mclass.mclassdefs.add(self)
580 if mclass.intro_mmodule == mmodule then
581 assert not isset mclass._intro
582 mclass.intro = self
583 end
584 self.to_s = "{mmodule}#{mclass}"
585 end
586
587 # Actually the name of the `mclass`
588 redef fun name do return mclass.name
589
590 # The module and class name separated by a '#'.
591 #
592 # The short-name of the class is used for introduction.
593 # Example: "my_module#MyClass"
594 #
595 # The full-name of the class is used for refinement.
596 # Example: "my_module#intro_module::MyClass"
597 redef var full_name is lazy do
598 if is_intro then
599 # public gives 'p#A'
600 # private gives 'p::m#A'
601 return "{mmodule.namespace_for(mclass.visibility)}#{mclass.name}"
602 else if mclass.intro_mmodule.mproject != mmodule.mproject then
603 # public gives 'q::n#p::A'
604 # private gives 'q::n#p::m::A'
605 return "{mmodule.full_name}#{mclass.full_name}"
606 else if mclass.visibility > private_visibility then
607 # public gives 'p::n#A'
608 return "{mmodule.full_name}#{mclass.name}"
609 else
610 # private gives 'p::n#::m::A' (redundant p is omitted)
611 return "{mmodule.full_name}#::{mclass.intro_mmodule.name}::{mclass.name}"
612 end
613 end
614
615 redef var c_name is lazy do
616 if is_intro then
617 return "{mmodule.c_namespace_for(mclass.visibility)}___{mclass.c_name}"
618 else if mclass.intro_mmodule.mproject == mmodule.mproject and mclass.visibility > private_visibility then
619 return "{mmodule.c_name}___{mclass.name.to_cmangle}"
620 else
621 return "{mmodule.c_name}___{mclass.c_name}"
622 end
623 end
624
625 redef fun model do return mmodule.model
626
627 # All declared super-types
628 # FIXME: quite ugly but not better idea yet
629 var supertypes = new Array[MClassType]
630
631 # Register some super-types for the class (ie "super SomeType")
632 #
633 # The hierarchy must not already be set
634 # REQUIRE: `self.in_hierarchy == null`
635 fun set_supertypes(supertypes: Array[MClassType])
636 do
637 assert unique_invocation: self.in_hierarchy == null
638 var mmodule = self.mmodule
639 var model = mmodule.model
640 var mtype = self.bound_mtype
641
642 for supertype in supertypes do
643 self.supertypes.add(supertype)
644
645 # Register in full_type_specialization_hierarchy
646 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
647 # Register in intro_type_specialization_hierarchy
648 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
649 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
650 end
651 end
652
653 end
654
655 # Collect the super-types (set by set_supertypes) to build the hierarchy
656 #
657 # This function can only invoked once by class
658 # REQUIRE: `self.in_hierarchy == null`
659 # ENSURE: `self.in_hierarchy != null`
660 fun add_in_hierarchy
661 do
662 assert unique_invocation: self.in_hierarchy == null
663 var model = mmodule.model
664 var res = model.mclassdef_hierarchy.add_node(self)
665 self.in_hierarchy = res
666 var mtype = self.bound_mtype
667
668 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
669 # The simpliest way is to attach it to collect_mclassdefs
670 for mclassdef in mtype.collect_mclassdefs(mmodule) do
671 res.poset.add_edge(self, mclassdef)
672 end
673 end
674
675 # The view of the class definition in `mclassdef_hierarchy`
676 var in_hierarchy: nullable POSetElement[MClassDef] = null
677
678 # Is the definition the one that introduced `mclass`?
679 fun is_intro: Bool do return isset mclass._intro and mclass.intro == self
680
681 # All properties introduced by the classdef
682 var intro_mproperties = new Array[MProperty]
683
684 # All property definitions in the class (introductions and redefinitions)
685 var mpropdefs = new Array[MPropDef]
686 end
687
688 # A global static type
689 #
690 # MType are global to the model; it means that a `MType` is not bound to a
691 # specific `MModule`.
692 # This characteristic helps the reasoning about static types in a program
693 # since a single `MType` object always denote the same type.
694 #
695 # However, because a `MType` is global, it does not really have properties
696 # nor have subtypes to a hierarchy since the property and the class hierarchy
697 # depends of a module.
698 # Moreover, virtual types an formal generic parameter types also depends on
699 # a receiver to have sense.
700 #
701 # Therefore, most method of the types require a module and an anchor.
702 # The module is used to know what are the classes and the specialization
703 # links.
704 # The anchor is used to know what is the bound of the virtual types and formal
705 # generic parameter types.
706 #
707 # MType are not directly usable to get properties. See the `anchor_to` method
708 # and the `MClassType` class.
709 #
710 # FIXME: the order of the parameters is not the best. We mus pick on from:
711 # * foo(mmodule, anchor, othertype)
712 # * foo(othertype, anchor, mmodule)
713 # * foo(anchor, mmodule, othertype)
714 # * foo(othertype, mmodule, anchor)
715 abstract class MType
716 super MEntity
717
718 redef fun name do return to_s
719
720 # Return true if `self` is an subtype of `sup`.
721 # The typing is done using the standard typing policy of Nit.
722 #
723 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
724 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
725 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
726 do
727 var sub = self
728 if sub == sup then return true
729
730 #print "1.is {sub} a {sup}? ===="
731
732 if anchor == null then
733 assert not sub.need_anchor
734 assert not sup.need_anchor
735 else
736 # First, resolve the formal types to the simplest equivalent forms in the receiver
737 assert sub.can_resolve_for(anchor, null, mmodule)
738 sub = sub.lookup_fixed(mmodule, anchor)
739 assert sup.can_resolve_for(anchor, null, mmodule)
740 sup = sup.lookup_fixed(mmodule, anchor)
741 end
742
743 # Does `sup` accept null or not?
744 # Discard the nullable marker if it exists
745 var sup_accept_null = false
746 if sup isa MNullableType then
747 sup_accept_null = true
748 sup = sup.mtype
749 else if sup isa MNotNullType then
750 sup = sup.mtype
751 else if sup isa MNullType then
752 sup_accept_null = true
753 end
754
755 # Can `sub` provide null or not?
756 # Thus we can match with `sup_accept_null`
757 # Also discard the nullable marker if it exists
758 var sub_reject_null = false
759 if sub isa MNullableType then
760 if not sup_accept_null then return false
761 sub = sub.mtype
762 else if sub isa MNotNullType then
763 sub_reject_null = true
764 sub = sub.mtype
765 else if sub isa MNullType then
766 return sup_accept_null
767 end
768 # Now the case of direct null and nullable is over.
769
770 # If `sub` is a formal type, then it is accepted if its bound is accepted
771 while sub isa MFormalType do
772 #print "3.is {sub} a {sup}?"
773
774 # A unfixed formal type can only accept itself
775 if sub == sup then return true
776
777 assert anchor != null
778 sub = sub.lookup_bound(mmodule, anchor)
779 if sub_reject_null then sub = sub.as_notnull
780
781 #print "3.is {sub} a {sup}?"
782
783 # Manage the second layer of null/nullable
784 if sub isa MNullableType then
785 if not sup_accept_null and not sub_reject_null then return false
786 sub = sub.mtype
787 else if sub isa MNotNullType then
788 sub_reject_null = true
789 sub = sub.mtype
790 else if sub isa MNullType then
791 return sup_accept_null
792 end
793 end
794 #print "4.is {sub} a {sup}? <- no more resolution"
795
796 assert sub isa MClassType else print "{sub} <? {sub}" # It is the only remaining type
797
798 # A unfixed formal type can only accept itself
799 if sup isa MFormalType then
800 return false
801 end
802
803 if sup isa MNullType then
804 # `sup` accepts only null
805 return false
806 end
807
808 assert sup isa MClassType # It is the only remaining type
809
810 # Now both are MClassType, we need to dig
811
812 if sub == sup then return true
813
814 if anchor == null then anchor = sub # UGLY: any anchor will work
815 var resolved_sub = sub.anchor_to(mmodule, anchor)
816 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
817 if res == false then return false
818 if not sup isa MGenericType then return true
819 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
820 assert sub2.mclass == sup.mclass
821 for i in [0..sup.mclass.arity[ do
822 var sub_arg = sub2.arguments[i]
823 var sup_arg = sup.arguments[i]
824 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
825 if res == false then return false
826 end
827 return true
828 end
829
830 # The base class type on which self is based
831 #
832 # This base type is used to get property (an internally to perform
833 # unsafe type comparison).
834 #
835 # Beware: some types (like null) are not based on a class thus this
836 # method will crash
837 #
838 # Basically, this function transform the virtual types and parameter
839 # types to their bounds.
840 #
841 # Example
842 #
843 # class A end
844 # class B super A end
845 # class X end
846 # class Y super X end
847 # class G[T: A]
848 # type U: X
849 # end
850 # class H
851 # super G[B]
852 # redef type U: Y
853 # end
854 #
855 # Map[T,U] anchor_to H #-> Map[B,Y]
856 #
857 # Explanation of the example:
858 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
859 # because "redef type U: Y". Therefore, Map[T, U] is bound to
860 # Map[B, Y]
861 #
862 # ENSURE: `not self.need_anchor implies result == self`
863 # ENSURE: `not result.need_anchor`
864 fun anchor_to(mmodule: MModule, anchor: MClassType): MType
865 do
866 if not need_anchor then return self
867 assert not anchor.need_anchor
868 # Just resolve to the anchor and clear all the virtual types
869 var res = self.resolve_for(anchor, null, mmodule, true)
870 assert not res.need_anchor
871 return res
872 end
873
874 # Does `self` contain a virtual type or a formal generic parameter type?
875 # In order to remove those types, you usually want to use `anchor_to`.
876 fun need_anchor: Bool do return true
877
878 # Return the supertype when adapted to a class.
879 #
880 # In Nit, for each super-class of a type, there is a equivalent super-type.
881 #
882 # Example:
883 #
884 # ~~~nitish
885 # class G[T, U] end
886 # class H[V] super G[V, Bool] end
887 #
888 # H[Int] supertype_to G #-> G[Int, Bool]
889 # ~~~
890 #
891 # REQUIRE: `super_mclass` is a super-class of `self`
892 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
893 # ENSURE: `result.mclass = super_mclass`
894 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
895 do
896 if super_mclass.arity == 0 then return super_mclass.mclass_type
897 if self isa MClassType and self.mclass == super_mclass then return self
898 var resolved_self
899 if self.need_anchor then
900 assert anchor != null
901 resolved_self = self.anchor_to(mmodule, anchor)
902 else
903 resolved_self = self
904 end
905 var supertypes = resolved_self.collect_mtypes(mmodule)
906 for supertype in supertypes do
907 if supertype.mclass == super_mclass then
908 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
909 return supertype.resolve_for(self, anchor, mmodule, false)
910 end
911 end
912 abort
913 end
914
915 # Replace formals generic types in self with resolved values in `mtype`
916 # If `cleanup_virtual` is true, then virtual types are also replaced
917 # with their bounds.
918 #
919 # This function returns self if `need_anchor` is false.
920 #
921 # ## Example 1
922 #
923 # ~~~
924 # class G[E] end
925 # class H[F] super G[F] end
926 # class X[Z] end
927 # ~~~
928 #
929 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
930 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
931 #
932 # Explanation of the example:
933 # * Array[E].need_anchor is true because there is a formal generic parameter type E
934 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
935 # * Since "H[F] super G[F]", E is in fact F for H
936 # * More specifically, in H[Int], E is Int
937 # * So, in H[Int], Array[E] is Array[Int]
938 #
939 # This function is mainly used to inherit a signature.
940 # Because, unlike `anchor_to`, we do not want a full resolution of
941 # a type but only an adapted version of it.
942 #
943 # ## Example 2
944 #
945 # ~~~
946 # class A[E]
947 # fun foo(e:E):E is abstract
948 # end
949 # class B super A[Int] end
950 # ~~~
951 #
952 # The signature on foo is (e: E): E
953 # If we resolve the signature for B, we get (e:Int):Int
954 #
955 # ## Example 3
956 #
957 # ~~~nitish
958 # class A[E]
959 # fun foo(e:E):E is abstract
960 # end
961 # class C[F]
962 # var a: A[Array[F]]
963 # fun bar do a.foo(x) # <- x is here
964 # end
965 # ~~~
966 #
967 # The first question is: is foo available on `a`?
968 #
969 # The static type of a is `A[Array[F]]`, that is an open type.
970 # in order to find a method `foo`, whe must look at a resolved type.
971 #
972 # A[Array[F]].anchor_to(C[nullable Object]) #-> A[Array[nullable Object]]
973 #
974 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
975 #
976 # The next question is: what is the accepted types for `x`?
977 #
978 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
979 #
980 # E.resolve_for(A[Array[F]],C[nullable Object]) #-> Array[F]
981 #
982 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
983 #
984 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
985 # two function instead of one seems also to be a bad idea.
986 #
987 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
988 # ENSURE: `not self.need_anchor implies result == self`
989 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
990
991 # Resolve formal type to its verbatim bound.
992 # If the type is not formal, just return self
993 #
994 # The result is returned exactly as declared in the "type" property (verbatim).
995 # So it could be another formal type.
996 #
997 # In case of conflict, the method aborts.
998 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self
999
1000 # Resolve the formal type to its simplest equivalent form.
1001 #
1002 # Formal types are either free or fixed.
1003 # When it is fixed, it means that it is equivalent with a simpler type.
1004 # When a formal type is free, it means that it is only equivalent with itself.
1005 # This method return the most simple equivalent type of `self`.
1006 #
1007 # This method is mainly used for subtype test in order to sanely compare fixed.
1008 #
1009 # By default, return self.
1010 # See the redefinitions for specific behavior in each kind of type.
1011 fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self
1012
1013 # Can the type be resolved?
1014 #
1015 # In order to resolve open types, the formal types must make sence.
1016 #
1017 # ## Example
1018 #
1019 # class A[E]
1020 # end
1021 # class B[F]
1022 # end
1023 #
1024 # ~~~nitish
1025 # E.can_resolve_for(A[Int]) #-> true, E make sense in A
1026 #
1027 # E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
1028 #
1029 # B[E].can_resolve_for(A[F], B[Object]) #-> true,
1030 # # B[E] is a red hearing only the E is important,
1031 # # E make sense in A
1032 # ~~~
1033 #
1034 # REQUIRE: `anchor != null implies not anchor.need_anchor`
1035 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
1036 # ENSURE: `not self.need_anchor implies result == true`
1037 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
1038
1039 # Return the nullable version of the type
1040 # If the type is already nullable then self is returned
1041 fun as_nullable: MType
1042 do
1043 var res = self.as_nullable_cache
1044 if res != null then return res
1045 res = new MNullableType(self)
1046 self.as_nullable_cache = res
1047 return res
1048 end
1049
1050 # Remove the base type of a decorated (proxy) type.
1051 # Is the type is not decorated, then self is returned.
1052 #
1053 # Most of the time it is used to return the not nullable version of a nullable type.
1054 # In this case, this just remove the `nullable` notation, but the result can still contains null.
1055 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
1056 # If you really want to exclude the `null` value, then use `as_notnull`
1057 fun undecorate: MType
1058 do
1059 return self
1060 end
1061
1062 # Returns the not null version of the type.
1063 # That is `self` minus the `null` value.
1064 #
1065 # For most types, this return `self`.
1066 # For formal types, this returns a special `MNotNullType`
1067 fun as_notnull: MType do return self
1068
1069 private var as_nullable_cache: nullable MType = null
1070
1071
1072 # The depth of the type seen as a tree.
1073 #
1074 # * A -> 1
1075 # * G[A] -> 2
1076 # * H[A, B] -> 2
1077 # * H[G[A], B] -> 3
1078 #
1079 # Formal types have a depth of 1.
1080 fun depth: Int
1081 do
1082 return 1
1083 end
1084
1085 # The length of the type seen as a tree.
1086 #
1087 # * A -> 1
1088 # * G[A] -> 2
1089 # * H[A, B] -> 3
1090 # * H[G[A], B] -> 4
1091 #
1092 # Formal types have a length of 1.
1093 fun length: Int
1094 do
1095 return 1
1096 end
1097
1098 # Compute all the classdefs inherited/imported.
1099 # The returned set contains:
1100 # * the class definitions from `mmodule` and its imported modules
1101 # * the class definitions of this type and its super-types
1102 #
1103 # This function is used mainly internally.
1104 #
1105 # REQUIRE: `not self.need_anchor`
1106 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
1107
1108 # Compute all the super-classes.
1109 # This function is used mainly internally.
1110 #
1111 # REQUIRE: `not self.need_anchor`
1112 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
1113
1114 # Compute all the declared super-types.
1115 # Super-types are returned as declared in the classdefs (verbatim).
1116 # This function is used mainly internally.
1117 #
1118 # REQUIRE: `not self.need_anchor`
1119 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
1120
1121 # Is the property in self for a given module
1122 # This method does not filter visibility or whatever
1123 #
1124 # REQUIRE: `not self.need_anchor`
1125 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
1126 do
1127 assert not self.need_anchor
1128 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
1129 end
1130 end
1131
1132 # A type based on a class.
1133 #
1134 # `MClassType` have properties (see `has_mproperty`).
1135 class MClassType
1136 super MType
1137
1138 # The associated class
1139 var mclass: MClass
1140
1141 redef fun model do return self.mclass.intro_mmodule.model
1142
1143 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1144
1145 # The formal arguments of the type
1146 # ENSURE: `result.length == self.mclass.arity`
1147 var arguments = new Array[MType]
1148
1149 redef fun to_s do return mclass.to_s
1150
1151 redef fun full_name do return mclass.full_name
1152
1153 redef fun c_name do return mclass.c_name
1154
1155 redef fun need_anchor do return false
1156
1157 redef fun anchor_to(mmodule: MModule, anchor: MClassType): MClassType
1158 do
1159 return super.as(MClassType)
1160 end
1161
1162 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1163
1164 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1165
1166 redef fun collect_mclassdefs(mmodule)
1167 do
1168 assert not self.need_anchor
1169 var cache = self.collect_mclassdefs_cache
1170 if not cache.has_key(mmodule) then
1171 self.collect_things(mmodule)
1172 end
1173 return cache[mmodule]
1174 end
1175
1176 redef fun collect_mclasses(mmodule)
1177 do
1178 if collect_mclasses_last_module == mmodule then return collect_mclasses_last_module_cache
1179 assert not self.need_anchor
1180 var cache = self.collect_mclasses_cache
1181 if not cache.has_key(mmodule) then
1182 self.collect_things(mmodule)
1183 end
1184 var res = cache[mmodule]
1185 collect_mclasses_last_module = mmodule
1186 collect_mclasses_last_module_cache = res
1187 return res
1188 end
1189
1190 private var collect_mclasses_last_module: nullable MModule = null
1191 private var collect_mclasses_last_module_cache: Set[MClass] is noinit
1192
1193 redef fun collect_mtypes(mmodule)
1194 do
1195 assert not self.need_anchor
1196 var cache = self.collect_mtypes_cache
1197 if not cache.has_key(mmodule) then
1198 self.collect_things(mmodule)
1199 end
1200 return cache[mmodule]
1201 end
1202
1203 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1204 private fun collect_things(mmodule: MModule)
1205 do
1206 var res = new HashSet[MClassDef]
1207 var seen = new HashSet[MClass]
1208 var types = new HashSet[MClassType]
1209 seen.add(self.mclass)
1210 var todo = [self.mclass]
1211 while not todo.is_empty do
1212 var mclass = todo.pop
1213 #print "process {mclass}"
1214 for mclassdef in mclass.mclassdefs do
1215 if not mmodule.in_importation <= mclassdef.mmodule then continue
1216 #print " process {mclassdef}"
1217 res.add(mclassdef)
1218 for supertype in mclassdef.supertypes do
1219 types.add(supertype)
1220 var superclass = supertype.mclass
1221 if seen.has(superclass) then continue
1222 #print " add {superclass}"
1223 seen.add(superclass)
1224 todo.add(superclass)
1225 end
1226 end
1227 end
1228 collect_mclassdefs_cache[mmodule] = res
1229 collect_mclasses_cache[mmodule] = seen
1230 collect_mtypes_cache[mmodule] = types
1231 end
1232
1233 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1234 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1235 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1236
1237 end
1238
1239 # A type based on a generic class.
1240 # A generic type a just a class with additional formal generic arguments.
1241 class MGenericType
1242 super MClassType
1243
1244 redef var arguments
1245
1246 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1247
1248 init
1249 do
1250 assert self.mclass.arity == arguments.length
1251
1252 self.need_anchor = false
1253 for t in arguments do
1254 if t.need_anchor then
1255 self.need_anchor = true
1256 break
1257 end
1258 end
1259
1260 self.to_s = "{mclass}[{arguments.join(", ")}]"
1261 end
1262
1263 # The short-name of the class, then the full-name of each type arguments within brackets.
1264 # Example: `"Map[String, List[Int]]"`
1265 redef var to_s: String is noinit
1266
1267 # The full-name of the class, then the full-name of each type arguments within brackets.
1268 # Example: `"standard::Map[standard::String, standard::List[standard::Int]]"`
1269 redef var full_name is lazy do
1270 var args = new Array[String]
1271 for t in arguments do
1272 args.add t.full_name
1273 end
1274 return "{mclass.full_name}[{args.join(", ")}]"
1275 end
1276
1277 redef var c_name is lazy do
1278 var res = mclass.c_name
1279 # Note: because the arity is known, a prefix notation is enough
1280 for t in arguments do
1281 res += "__"
1282 res += t.c_name
1283 end
1284 return res.to_s
1285 end
1286
1287 redef var need_anchor: Bool is noinit
1288
1289 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1290 do
1291 if not need_anchor then return self
1292 assert can_resolve_for(mtype, anchor, mmodule)
1293 var types = new Array[MType]
1294 for t in arguments do
1295 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1296 end
1297 return mclass.get_mtype(types)
1298 end
1299
1300 redef fun can_resolve_for(mtype, anchor, mmodule)
1301 do
1302 if not need_anchor then return true
1303 for t in arguments do
1304 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1305 end
1306 return true
1307 end
1308
1309
1310 redef fun depth
1311 do
1312 var dmax = 0
1313 for a in self.arguments do
1314 var d = a.depth
1315 if d > dmax then dmax = d
1316 end
1317 return dmax + 1
1318 end
1319
1320 redef fun length
1321 do
1322 var res = 1
1323 for a in self.arguments do
1324 res += a.length
1325 end
1326 return res
1327 end
1328 end
1329
1330 # A formal type (either virtual of parametric).
1331 #
1332 # The main issue with formal types is that they offer very little information on their own
1333 # and need a context (anchor and mmodule) to be useful.
1334 abstract class MFormalType
1335 super MType
1336
1337 redef var as_notnull = new MNotNullType(self) is lazy
1338 end
1339
1340 # A virtual formal type.
1341 class MVirtualType
1342 super MFormalType
1343
1344 # The property associated with the type.
1345 # Its the definitions of this property that determine the bound or the virtual type.
1346 var mproperty: MVirtualTypeProp
1347
1348 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1349
1350 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1351 do
1352 return lookup_single_definition(mmodule, resolved_receiver).bound.as(not null)
1353 end
1354
1355 private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef
1356 do
1357 assert not resolved_receiver.need_anchor
1358 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1359 if props.is_empty then
1360 abort
1361 else if props.length == 1 then
1362 return props.first
1363 end
1364 var types = new ArraySet[MType]
1365 var res = props.first
1366 for p in props do
1367 types.add(p.bound.as(not null))
1368 if not res.is_fixed then res = p
1369 end
1370 if types.length == 1 then
1371 return res
1372 end
1373 abort
1374 end
1375
1376 # A VT is fixed when:
1377 # * the VT is (re-)defined with the annotation `is fixed`
1378 # * the VT is (indirectly) bound to an enum class (see `enum_kind`) since there is no subtype possible
1379 # * the receiver is an enum class since there is no subtype possible
1380 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1381 do
1382 assert not resolved_receiver.need_anchor
1383 resolved_receiver = resolved_receiver.undecorate
1384 assert resolved_receiver isa MClassType # It is the only remaining type
1385
1386 var prop = lookup_single_definition(mmodule, resolved_receiver)
1387 var res = prop.bound.as(not null)
1388
1389 # Recursively lookup the fixed result
1390 res = res.lookup_fixed(mmodule, resolved_receiver)
1391
1392 # 1. For a fixed VT, return the resolved bound
1393 if prop.is_fixed then return res
1394
1395 # 2. For a enum boud, return the bound
1396 if res isa MClassType and res.mclass.kind == enum_kind then return res
1397
1398 # 3. for a enum receiver return the bound
1399 if resolved_receiver.mclass.kind == enum_kind then return res
1400
1401 return self
1402 end
1403
1404 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1405 do
1406 if not cleanup_virtual then return self
1407 assert can_resolve_for(mtype, anchor, mmodule)
1408 # self is a virtual type declared (or inherited) in mtype
1409 # The point of the function it to get the bound of the virtual type that make sense for mtype
1410 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1411 #print "{class_name}: {self}/{mtype}/{anchor}?"
1412 var resolved_receiver
1413 if mtype.need_anchor then
1414 assert anchor != null
1415 resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true)
1416 else
1417 resolved_receiver = mtype
1418 end
1419 # Now, we can get the bound
1420 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1421 # The bound is exactly as declared in the "type" property, so we must resolve it again
1422 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1423
1424 return res
1425 end
1426
1427 redef fun can_resolve_for(mtype, anchor, mmodule)
1428 do
1429 if mtype.need_anchor then
1430 assert anchor != null
1431 mtype = mtype.anchor_to(mmodule, anchor)
1432 end
1433 return mtype.has_mproperty(mmodule, mproperty)
1434 end
1435
1436 redef fun to_s do return self.mproperty.to_s
1437
1438 redef fun full_name do return self.mproperty.full_name
1439
1440 redef fun c_name do return self.mproperty.c_name
1441 end
1442
1443 # The type associated to a formal parameter generic type of a class
1444 #
1445 # Each parameter type is associated to a specific class.
1446 # It means that all refinements of a same class "share" the parameter type,
1447 # but that a generic subclass has its own parameter types.
1448 #
1449 # However, in the sense of the meta-model, a parameter type of a class is
1450 # a valid type in a subclass. The "in the sense of the meta-model" is
1451 # important because, in the Nit language, the programmer cannot refers
1452 # directly to the parameter types of the super-classes.
1453 #
1454 # Example:
1455 #
1456 # class A[E]
1457 # fun e: E is abstract
1458 # end
1459 # class B[F]
1460 # super A[Array[F]]
1461 # end
1462 #
1463 # In the class definition B[F], `F` is a valid type but `E` is not.
1464 # However, `self.e` is a valid method call, and the signature of `e` is
1465 # declared `e: E`.
1466 #
1467 # Note that parameter types are shared among class refinements.
1468 # Therefore parameter only have an internal name (see `to_s` for details).
1469 class MParameterType
1470 super MFormalType
1471
1472 # The generic class where the parameter belong
1473 var mclass: MClass
1474
1475 redef fun model do return self.mclass.intro_mmodule.model
1476
1477 # The position of the parameter (0 for the first parameter)
1478 # FIXME: is `position` a better name?
1479 var rank: Int
1480
1481 redef var name
1482
1483 redef fun to_s do return name
1484
1485 redef var full_name is lazy do return "{mclass.full_name}::{name}"
1486
1487 redef var c_name is lazy do return mclass.c_name + "__" + "#{name}".to_cmangle
1488
1489 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1490 do
1491 assert not resolved_receiver.need_anchor
1492 resolved_receiver = resolved_receiver.undecorate
1493 assert resolved_receiver isa MClassType # It is the only remaining type
1494 var goalclass = self.mclass
1495 if resolved_receiver.mclass == goalclass then
1496 return resolved_receiver.arguments[self.rank]
1497 end
1498 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1499 for t in supertypes do
1500 if t.mclass == goalclass then
1501 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1502 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1503 var res = t.arguments[self.rank]
1504 return res
1505 end
1506 end
1507 abort
1508 end
1509
1510 # A PT is fixed when:
1511 # * Its bound is a enum class (see `enum_kind`).
1512 # The PT is just useless, but it is still a case.
1513 # * More usually, the `resolved_receiver` is a subclass of `self.mclass`,
1514 # so it is necessarily fixed in a `super` clause, either with a normal type
1515 # or with another PT.
1516 # See `resolve_for` for examples about related issues.
1517 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1518 do
1519 assert not resolved_receiver.need_anchor
1520 resolved_receiver = resolved_receiver.undecorate
1521 assert resolved_receiver isa MClassType # It is the only remaining type
1522 var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false)
1523 return res
1524 end
1525
1526 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1527 do
1528 assert can_resolve_for(mtype, anchor, mmodule)
1529 #print "{class_name}: {self}/{mtype}/{anchor}?"
1530
1531 if mtype isa MGenericType and mtype.mclass == self.mclass then
1532 var res = mtype.arguments[self.rank]
1533 if anchor != null and res.need_anchor then
1534 # Maybe the result can be resolved more if are bound to a final class
1535 var r2 = res.anchor_to(mmodule, anchor)
1536 if r2 isa MClassType and r2.mclass.kind == enum_kind then return r2
1537 end
1538 return res
1539 end
1540
1541 # self is a parameter type of mtype (or of a super-class of mtype)
1542 # The point of the function it to get the bound of the virtual type that make sense for mtype
1543 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1544 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1545 var resolved_receiver
1546 if mtype.need_anchor then
1547 assert anchor != null
1548 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1549 else
1550 resolved_receiver = mtype
1551 end
1552 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1553 if resolved_receiver isa MParameterType then
1554 assert resolved_receiver.mclass == anchor.mclass
1555 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1556 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1557 end
1558 assert resolved_receiver isa MClassType # It is the only remaining type
1559
1560 # Eh! The parameter is in the current class.
1561 # So we return the corresponding argument, no mater what!
1562 if resolved_receiver.mclass == self.mclass then
1563 var res = resolved_receiver.arguments[self.rank]
1564 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1565 return res
1566 end
1567
1568 if resolved_receiver.need_anchor then
1569 assert anchor != null
1570 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1571 end
1572 # Now, we can get the bound
1573 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1574 # The bound is exactly as declared in the "type" property, so we must resolve it again
1575 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1576
1577 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1578
1579 return res
1580 end
1581
1582 redef fun can_resolve_for(mtype, anchor, mmodule)
1583 do
1584 if mtype.need_anchor then
1585 assert anchor != null
1586 mtype = mtype.anchor_to(mmodule, anchor)
1587 end
1588 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1589 end
1590 end
1591
1592 # A type that decorates another type.
1593 #
1594 # The point of this class is to provide a common implementation of sevices that just forward to the original type.
1595 # Specific decorator are expected to redefine (or to extend) the default implementation as this suit them.
1596 abstract class MProxyType
1597 super MType
1598 # The base type
1599 var mtype: MType
1600
1601 redef fun model do return self.mtype.model
1602 redef fun need_anchor do return mtype.need_anchor
1603 redef fun as_nullable do return mtype.as_nullable
1604 redef fun as_notnull do return mtype.as_notnull
1605 redef fun undecorate do return mtype.undecorate
1606 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1607 do
1608 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1609 return res
1610 end
1611
1612 redef fun can_resolve_for(mtype, anchor, mmodule)
1613 do
1614 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1615 end
1616
1617 redef fun lookup_fixed(mmodule, resolved_receiver)
1618 do
1619 var t = mtype.lookup_fixed(mmodule, resolved_receiver)
1620 return t
1621 end
1622
1623 redef fun depth do return self.mtype.depth
1624
1625 redef fun length do return self.mtype.length
1626
1627 redef fun collect_mclassdefs(mmodule)
1628 do
1629 assert not self.need_anchor
1630 return self.mtype.collect_mclassdefs(mmodule)
1631 end
1632
1633 redef fun collect_mclasses(mmodule)
1634 do
1635 assert not self.need_anchor
1636 return self.mtype.collect_mclasses(mmodule)
1637 end
1638
1639 redef fun collect_mtypes(mmodule)
1640 do
1641 assert not self.need_anchor
1642 return self.mtype.collect_mtypes(mmodule)
1643 end
1644 end
1645
1646 # A type prefixed with "nullable"
1647 class MNullableType
1648 super MProxyType
1649
1650 init
1651 do
1652 self.to_s = "nullable {mtype}"
1653 end
1654
1655 redef var to_s: String is noinit
1656
1657 redef var full_name is lazy do return "nullable {mtype.full_name}"
1658
1659 redef var c_name is lazy do return "nullable__{mtype.c_name}"
1660
1661 redef fun as_nullable do return self
1662 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1663 do
1664 var res = super
1665 return res.as_nullable
1666 end
1667
1668 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable`
1669 redef fun lookup_fixed(mmodule, resolved_receiver)
1670 do
1671 var t = super
1672 if t == mtype then return self
1673 return t.as_nullable
1674 end
1675 end
1676
1677 # A non-null version of a formal type.
1678 #
1679 # When a formal type in bounded to a nullable type, this is the type of the not null version of it.
1680 class MNotNullType
1681 super MProxyType
1682
1683 redef fun to_s do return "not null {mtype}"
1684 redef var full_name is lazy do return "not null {mtype.full_name}"
1685 redef var c_name is lazy do return "notnull__{mtype.c_name}"
1686
1687 redef fun as_notnull do return self
1688
1689 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1690 do
1691 var res = super
1692 return res.as_notnull
1693 end
1694
1695 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_notnull`
1696 redef fun lookup_fixed(mmodule, resolved_receiver)
1697 do
1698 var t = super
1699 if t == mtype then return self
1700 return t.as_notnull
1701 end
1702 end
1703
1704 # The type of the only value null
1705 #
1706 # The is only one null type per model, see `MModel::null_type`.
1707 class MNullType
1708 super MType
1709 redef var model: Model
1710 redef fun to_s do return "null"
1711 redef fun full_name do return "null"
1712 redef fun c_name do return "null"
1713 redef fun as_nullable do return self
1714
1715 redef var as_notnull = new MBottomType(model) is lazy
1716 redef fun need_anchor do return false
1717 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1718 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1719
1720 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1721
1722 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1723
1724 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1725 end
1726
1727 # The special universal most specific type.
1728 #
1729 # This type is intended to be only used internally for type computation or analysis and should not be exposed to the user.
1730 # The bottom type can de used to denote things that are absurd, dead, or the absence of knowledge.
1731 #
1732 # Semantically it is the singleton `null.as_notnull`.
1733 class MBottomType
1734 super MType
1735 redef var model: Model
1736 redef fun to_s do return "bottom"
1737 redef fun full_name do return "bottom"
1738 redef fun c_name do return "bottom"
1739 redef fun as_nullable do return model.null_type
1740 redef fun as_notnull do return self
1741 redef fun need_anchor do return false
1742 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1743 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1744
1745 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1746
1747 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1748
1749 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1750 end
1751
1752 # A signature of a method
1753 class MSignature
1754 super MType
1755
1756 # The each parameter (in order)
1757 var mparameters: Array[MParameter]
1758
1759 # Returns a parameter named `name`, if any.
1760 fun mparameter_by_name(name: String): nullable MParameter
1761 do
1762 for p in mparameters do
1763 if p.name == name then return p
1764 end
1765 return null
1766 end
1767
1768 # The return type (null for a procedure)
1769 var return_mtype: nullable MType
1770
1771 redef fun depth
1772 do
1773 var dmax = 0
1774 var t = self.return_mtype
1775 if t != null then dmax = t.depth
1776 for p in mparameters do
1777 var d = p.mtype.depth
1778 if d > dmax then dmax = d
1779 end
1780 return dmax + 1
1781 end
1782
1783 redef fun length
1784 do
1785 var res = 1
1786 var t = self.return_mtype
1787 if t != null then res += t.length
1788 for p in mparameters do
1789 res += p.mtype.length
1790 end
1791 return res
1792 end
1793
1794 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1795 init
1796 do
1797 var vararg_rank = -1
1798 for i in [0..mparameters.length[ do
1799 var parameter = mparameters[i]
1800 if parameter.is_vararg then
1801 assert vararg_rank == -1
1802 vararg_rank = i
1803 end
1804 end
1805 self.vararg_rank = vararg_rank
1806 end
1807
1808 # The rank of the ellipsis (`...`) for vararg (starting from 0).
1809 # value is -1 if there is no vararg.
1810 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1811 var vararg_rank: Int is noinit
1812
1813 # The number of parameters
1814 fun arity: Int do return mparameters.length
1815
1816 # The number of non-default parameters
1817 #
1818 # The number of default parameters is then `arity-min_arity`.
1819 #
1820 # Note that there cannot be both varargs and default prameters, thus
1821 # if `vararg_rank != -1` then `min_arity` == `arity`
1822 fun min_arity: Int
1823 do
1824 if vararg_rank != -1 then return arity
1825 var res = 0
1826 for p in mparameters do
1827 if not p.is_default then res += 1
1828 end
1829 return res
1830 end
1831
1832 redef fun to_s
1833 do
1834 var b = new FlatBuffer
1835 if not mparameters.is_empty then
1836 b.append("(")
1837 for i in [0..mparameters.length[ do
1838 var mparameter = mparameters[i]
1839 if i > 0 then b.append(", ")
1840 b.append(mparameter.name)
1841 b.append(": ")
1842 b.append(mparameter.mtype.to_s)
1843 if mparameter.is_vararg then
1844 b.append("...")
1845 end
1846 end
1847 b.append(")")
1848 end
1849 var ret = self.return_mtype
1850 if ret != null then
1851 b.append(": ")
1852 b.append(ret.to_s)
1853 end
1854 return b.to_s
1855 end
1856
1857 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
1858 do
1859 var params = new Array[MParameter]
1860 for p in self.mparameters do
1861 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1862 end
1863 var ret = self.return_mtype
1864 if ret != null then
1865 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1866 end
1867 var res = new MSignature(params, ret)
1868 return res
1869 end
1870 end
1871
1872 # A parameter in a signature
1873 class MParameter
1874 super MEntity
1875
1876 # The name of the parameter
1877 redef var name: String
1878
1879 # The static type of the parameter
1880 var mtype: MType
1881
1882 # Is the parameter a vararg?
1883 var is_vararg: Bool
1884
1885 # Is the parameter a default one?
1886 var is_default: Bool
1887
1888 redef fun to_s
1889 do
1890 if is_vararg then
1891 return "{name}: {mtype}..."
1892 else
1893 return "{name}: {mtype}"
1894 end
1895 end
1896
1897 # Returns a new parameter with the `mtype` resolved.
1898 # See `MType::resolve_for` for details.
1899 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
1900 do
1901 if not self.mtype.need_anchor then return self
1902 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1903 var res = new MParameter(self.name, newtype, self.is_vararg, self.is_default)
1904 return res
1905 end
1906
1907 redef fun model do return mtype.model
1908 end
1909
1910 # A service (global property) that generalize method, attribute, etc.
1911 #
1912 # `MProperty` are global to the model; it means that a `MProperty` is not bound
1913 # to a specific `MModule` nor a specific `MClass`.
1914 #
1915 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
1916 # and the other in subclasses and in refinements.
1917 #
1918 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
1919 # of any dynamic type).
1920 # For instance, a call site "x.foo" is associated to a `MProperty`.
1921 abstract class MProperty
1922 super MEntity
1923
1924 # The associated MPropDef subclass.
1925 # The two specialization hierarchy are symmetric.
1926 type MPROPDEF: MPropDef
1927
1928 # The classdef that introduce the property
1929 # While a property is not bound to a specific module, or class,
1930 # the introducing mclassdef is used for naming and visibility
1931 var intro_mclassdef: MClassDef
1932
1933 # The (short) name of the property
1934 redef var name: String
1935
1936 # The canonical name of the property.
1937 #
1938 # It is the short-`name` prefixed by the short-name of the class and the full-name of the module.
1939 # Example: "my_project::my_module::MyClass::my_method"
1940 redef var full_name is lazy do
1941 return "{intro_mclassdef.mmodule.namespace_for(visibility)}::{intro_mclassdef.mclass.name}::{name}"
1942 end
1943
1944 redef var c_name is lazy do
1945 # FIXME use `namespace_for`
1946 return "{intro_mclassdef.mmodule.c_name}__{intro_mclassdef.mclass.name.to_cmangle}__{name.to_cmangle}"
1947 end
1948
1949 # The visibility of the property
1950 var visibility: MVisibility
1951
1952 # Is the property usable as an initializer?
1953 var is_autoinit = false is writable
1954
1955 init
1956 do
1957 intro_mclassdef.intro_mproperties.add(self)
1958 var model = intro_mclassdef.mmodule.model
1959 model.mproperties_by_name.add_one(name, self)
1960 model.mproperties.add(self)
1961 end
1962
1963 # All definitions of the property.
1964 # The first is the introduction,
1965 # The other are redefinitions (in refinements and in subclasses)
1966 var mpropdefs = new Array[MPROPDEF]
1967
1968 # The definition that introduces the property.
1969 #
1970 # Warning: such a definition may not exist in the early life of the object.
1971 # In this case, the method will abort.
1972 var intro: MPROPDEF is noinit
1973
1974 redef fun model do return intro.model
1975
1976 # Alias for `name`
1977 redef fun to_s do return name
1978
1979 # Return the most specific property definitions defined or inherited by a type.
1980 # The selection knows that refinement is stronger than specialization;
1981 # however, in case of conflict more than one property are returned.
1982 # If mtype does not know mproperty then an empty array is returned.
1983 #
1984 # If you want the really most specific property, then look at `lookup_first_definition`
1985 #
1986 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
1987 # ENSURE: `not mtype.has_mproperty(mmodule, self) == result.is_empty`
1988 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1989 do
1990 assert not mtype.need_anchor
1991 mtype = mtype.undecorate
1992
1993 var cache = self.lookup_definitions_cache[mmodule, mtype]
1994 if cache != null then return cache
1995
1996 #print "select prop {mproperty} for {mtype} in {self}"
1997 # First, select all candidates
1998 var candidates = new Array[MPROPDEF]
1999 for mpropdef in self.mpropdefs do
2000 # If the definition is not imported by the module, then skip
2001 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2002 # If the definition is not inherited by the type, then skip
2003 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2004 # Else, we keep it
2005 candidates.add(mpropdef)
2006 end
2007 # Fast track for only one candidate
2008 if candidates.length <= 1 then
2009 self.lookup_definitions_cache[mmodule, mtype] = candidates
2010 return candidates
2011 end
2012
2013 # Second, filter the most specific ones
2014 return select_most_specific(mmodule, candidates)
2015 end
2016
2017 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2018
2019 # Return the most specific property definitions inherited by a type.
2020 # The selection knows that refinement is stronger than specialization;
2021 # however, in case of conflict more than one property are returned.
2022 # If mtype does not know mproperty then an empty array is returned.
2023 #
2024 # If you want the really most specific property, then look at `lookup_next_definition`
2025 #
2026 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2027 # ENSURE: `not mtype.has_mproperty(mmodule, self) implies result.is_empty`
2028 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2029 do
2030 assert not mtype.need_anchor
2031 mtype = mtype.undecorate
2032
2033 # First, select all candidates
2034 var candidates = new Array[MPROPDEF]
2035 for mpropdef in self.mpropdefs do
2036 # If the definition is not imported by the module, then skip
2037 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2038 # If the definition is not inherited by the type, then skip
2039 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2040 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
2041 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
2042 # Else, we keep it
2043 candidates.add(mpropdef)
2044 end
2045 # Fast track for only one candidate
2046 if candidates.length <= 1 then return candidates
2047
2048 # Second, filter the most specific ones
2049 return select_most_specific(mmodule, candidates)
2050 end
2051
2052 # Return an array containing olny the most specific property definitions
2053 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
2054 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
2055 do
2056 var res = new Array[MPROPDEF]
2057 for pd1 in candidates do
2058 var cd1 = pd1.mclassdef
2059 var c1 = cd1.mclass
2060 var keep = true
2061 for pd2 in candidates do
2062 if pd2 == pd1 then continue # do not compare with self!
2063 var cd2 = pd2.mclassdef
2064 var c2 = cd2.mclass
2065 if c2.mclass_type == c1.mclass_type then
2066 if cd2.mmodule.in_importation < cd1.mmodule then
2067 # cd2 refines cd1; therefore we skip pd1
2068 keep = false
2069 break
2070 end
2071 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
2072 # cd2 < cd1; therefore we skip pd1
2073 keep = false
2074 break
2075 end
2076 end
2077 if keep then
2078 res.add(pd1)
2079 end
2080 end
2081 if res.is_empty then
2082 print "All lost! {candidates.join(", ")}"
2083 # FIXME: should be abort!
2084 end
2085 return res
2086 end
2087
2088 # Return the most specific definition in the linearization of `mtype`.
2089 #
2090 # If you want to know the next properties in the linearization,
2091 # look at `MPropDef::lookup_next_definition`.
2092 #
2093 # FIXME: the linearization is still unspecified
2094 #
2095 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2096 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2097 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
2098 do
2099 return lookup_all_definitions(mmodule, mtype).first
2100 end
2101
2102 # Return all definitions in a linearization order
2103 # Most specific first, most general last
2104 #
2105 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2106 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2107 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2108 do
2109 mtype = mtype.undecorate
2110
2111 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
2112 if cache != null then return cache
2113
2114 assert not mtype.need_anchor
2115 assert mtype.has_mproperty(mmodule, self)
2116
2117 #print "select prop {mproperty} for {mtype} in {self}"
2118 # First, select all candidates
2119 var candidates = new Array[MPROPDEF]
2120 for mpropdef in self.mpropdefs do
2121 # If the definition is not imported by the module, then skip
2122 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2123 # If the definition is not inherited by the type, then skip
2124 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2125 # Else, we keep it
2126 candidates.add(mpropdef)
2127 end
2128 # Fast track for only one candidate
2129 if candidates.length <= 1 then
2130 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2131 return candidates
2132 end
2133
2134 mmodule.linearize_mpropdefs(candidates)
2135 candidates = candidates.reversed
2136 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2137 return candidates
2138 end
2139
2140 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2141 end
2142
2143 # A global method
2144 class MMethod
2145 super MProperty
2146
2147 redef type MPROPDEF: MMethodDef
2148
2149 # Is the property defined at the top_level of the module?
2150 # Currently such a property are stored in `Object`
2151 var is_toplevel: Bool = false is writable
2152
2153 # Is the property a constructor?
2154 # Warning, this property can be inherited by subclasses with or without being a constructor
2155 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
2156 var is_init: Bool = false is writable
2157
2158 # The constructor is a (the) root init with empty signature but a set of initializers
2159 var is_root_init: Bool = false is writable
2160
2161 # Is the property a 'new' constructor?
2162 var is_new: Bool = false is writable
2163
2164 # Is the property a legal constructor for a given class?
2165 # As usual, visibility is not considered.
2166 # FIXME not implemented
2167 fun is_init_for(mclass: MClass): Bool
2168 do
2169 return self.is_init
2170 end
2171
2172 # A specific method that is safe to call on null.
2173 # Currently, only `==`, `!=` and `is_same_instance` are safe
2174 fun is_null_safe: Bool do return name == "==" or name == "!=" or name == "is_same_instance"
2175 end
2176
2177 # A global attribute
2178 class MAttribute
2179 super MProperty
2180
2181 redef type MPROPDEF: MAttributeDef
2182
2183 end
2184
2185 # A global virtual type
2186 class MVirtualTypeProp
2187 super MProperty
2188
2189 redef type MPROPDEF: MVirtualTypeDef
2190
2191 # The formal type associated to the virtual type property
2192 var mvirtualtype = new MVirtualType(self)
2193 end
2194
2195 # A definition of a property (local property)
2196 #
2197 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
2198 # specific class definition (which belong to a specific module)
2199 abstract class MPropDef
2200 super MEntity
2201
2202 # The associated `MProperty` subclass.
2203 # the two specialization hierarchy are symmetric
2204 type MPROPERTY: MProperty
2205
2206 # Self class
2207 type MPROPDEF: MPropDef
2208
2209 # The class definition where the property definition is
2210 var mclassdef: MClassDef
2211
2212 # The associated global property
2213 var mproperty: MPROPERTY
2214
2215 # The origin of the definition
2216 var location: Location
2217
2218 init
2219 do
2220 mclassdef.mpropdefs.add(self)
2221 mproperty.mpropdefs.add(self)
2222 if mproperty.intro_mclassdef == mclassdef then
2223 assert not isset mproperty._intro
2224 mproperty.intro = self
2225 end
2226 self.to_s = "{mclassdef}#{mproperty}"
2227 end
2228
2229 # Actually the name of the `mproperty`
2230 redef fun name do return mproperty.name
2231
2232 # The full-name of mpropdefs combine the information about the `classdef` and the `mproperty`.
2233 #
2234 # Therefore the combination of identifiers is awful,
2235 # the worst case being
2236 #
2237 # * a property "p::m::A::x"
2238 # * redefined in a refinement of a class "q::n::B"
2239 # * in a module "r::o"
2240 # * so "r::o#q::n::B#p::m::A::x"
2241 #
2242 # Fortunately, the full-name is simplified when entities are repeated.
2243 # For the previous case, the simplest form is "p#A#x".
2244 redef var full_name is lazy do
2245 var res = new FlatBuffer
2246
2247 # The first part is the mclassdef. Worst case is "r::o#q::n::B"
2248 res.append mclassdef.full_name
2249
2250 res.append "#"
2251
2252 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2253 # intro are unambiguous in a class
2254 res.append name
2255 else
2256 # Just try to simplify each part
2257 if mclassdef.mmodule.mproject != mproperty.intro_mclassdef.mmodule.mproject then
2258 # precise "p::m" only if "p" != "r"
2259 res.append mproperty.intro_mclassdef.mmodule.full_name
2260 res.append "::"
2261 else if mproperty.visibility <= private_visibility then
2262 # Same project ("p"=="q"), but private visibility,
2263 # does the module part ("::m") need to be displayed
2264 if mclassdef.mmodule.namespace_for(mclassdef.mclass.visibility) != mproperty.intro_mclassdef.mmodule.mproject then
2265 res.append "::"
2266 res.append mproperty.intro_mclassdef.mmodule.name
2267 res.append "::"
2268 end
2269 end
2270 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2271 # precise "B" only if not the same class than "A"
2272 res.append mproperty.intro_mclassdef.name
2273 res.append "::"
2274 end
2275 # Always use the property name "x"
2276 res.append mproperty.name
2277 end
2278 return res.to_s
2279 end
2280
2281 redef var c_name is lazy do
2282 var res = new FlatBuffer
2283 res.append mclassdef.c_name
2284 res.append "___"
2285 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2286 res.append name.to_cmangle
2287 else
2288 if mclassdef.mmodule != mproperty.intro_mclassdef.mmodule then
2289 res.append mproperty.intro_mclassdef.mmodule.c_name
2290 res.append "__"
2291 end
2292 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2293 res.append mproperty.intro_mclassdef.name.to_cmangle
2294 res.append "__"
2295 end
2296 res.append mproperty.name.to_cmangle
2297 end
2298 return res.to_s
2299 end
2300
2301 redef fun model do return mclassdef.model
2302
2303 # Internal name combining the module, the class and the property
2304 # Example: "mymodule#MyClass#mymethod"
2305 redef var to_s: String is noinit
2306
2307 # Is self the definition that introduce the property?
2308 fun is_intro: Bool do return mproperty.intro == self
2309
2310 # Return the next definition in linearization of `mtype`.
2311 #
2312 # This method is used to determine what method is called by a super.
2313 #
2314 # REQUIRE: `not mtype.need_anchor`
2315 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
2316 do
2317 assert not mtype.need_anchor
2318
2319 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
2320 var i = mpropdefs.iterator
2321 while i.is_ok and i.item != self do i.next
2322 assert has_property: i.is_ok
2323 i.next
2324 assert has_next_property: i.is_ok
2325 return i.item
2326 end
2327 end
2328
2329 # A local definition of a method
2330 class MMethodDef
2331 super MPropDef
2332
2333 redef type MPROPERTY: MMethod
2334 redef type MPROPDEF: MMethodDef
2335
2336 # The signature attached to the property definition
2337 var msignature: nullable MSignature = null is writable
2338
2339 # The signature attached to the `new` call on a root-init
2340 # This is a concatenation of the signatures of the initializers
2341 #
2342 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2343 var new_msignature: nullable MSignature = null is writable
2344
2345 # List of initialisers to call in root-inits
2346 #
2347 # They could be setters or attributes
2348 #
2349 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2350 var initializers = new Array[MProperty]
2351
2352 # Is the method definition abstract?
2353 var is_abstract: Bool = false is writable
2354
2355 # Is the method definition intern?
2356 var is_intern = false is writable
2357
2358 # Is the method definition extern?
2359 var is_extern = false is writable
2360
2361 # An optional constant value returned in functions.
2362 #
2363 # Only some specific primitife value are accepted by engines.
2364 # Is used when there is no better implementation available.
2365 #
2366 # Currently used only for the implementation of the `--define`
2367 # command-line option.
2368 # SEE: module `mixin`.
2369 var constant_value: nullable Object = null is writable
2370 end
2371
2372 # A local definition of an attribute
2373 class MAttributeDef
2374 super MPropDef
2375
2376 redef type MPROPERTY: MAttribute
2377 redef type MPROPDEF: MAttributeDef
2378
2379 # The static type of the attribute
2380 var static_mtype: nullable MType = null is writable
2381 end
2382
2383 # A local definition of a virtual type
2384 class MVirtualTypeDef
2385 super MPropDef
2386
2387 redef type MPROPERTY: MVirtualTypeProp
2388 redef type MPROPDEF: MVirtualTypeDef
2389
2390 # The bound of the virtual type
2391 var bound: nullable MType = null is writable
2392
2393 # Is the bound fixed?
2394 var is_fixed = false is writable
2395 end
2396
2397 # A kind of class.
2398 #
2399 # * `abstract_kind`
2400 # * `concrete_kind`
2401 # * `interface_kind`
2402 # * `enum_kind`
2403 # * `extern_kind`
2404 #
2405 # Note this class is basically an enum.
2406 # FIXME: use a real enum once user-defined enums are available
2407 class MClassKind
2408 redef var to_s: String
2409
2410 # Is a constructor required?
2411 var need_init: Bool
2412
2413 # TODO: private init because enumeration.
2414
2415 # Can a class of kind `self` specializes a class of kine `other`?
2416 fun can_specialize(other: MClassKind): Bool
2417 do
2418 if other == interface_kind then return true # everybody can specialize interfaces
2419 if self == interface_kind or self == enum_kind then
2420 # no other case for interfaces
2421 return false
2422 else if self == extern_kind then
2423 # only compatible with themselves
2424 return self == other
2425 else if other == enum_kind or other == extern_kind then
2426 # abstract_kind and concrete_kind are incompatible
2427 return false
2428 end
2429 # remain only abstract_kind and concrete_kind
2430 return true
2431 end
2432 end
2433
2434 # The class kind `abstract`
2435 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", true)
2436 # The class kind `concrete`
2437 fun concrete_kind: MClassKind do return once new MClassKind("class", true)
2438 # The class kind `interface`
2439 fun interface_kind: MClassKind do return once new MClassKind("interface", false)
2440 # The class kind `enum`
2441 fun enum_kind: MClassKind do return once new MClassKind("enum", false)
2442 # The class kind `extern`
2443 fun extern_kind: MClassKind do return once new MClassKind("extern class", false)