Merge: typing: new warning `useless-truism` to catch trainees.
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class MEntity
34 # The visibility of the MEntity.
35 #
36 # MPackages, MGroups and MModules are always public.
37 # The visibility of `MClass` and `MProperty` is defined by the keyword used.
38 # `MClassDef` and `MPropDef` return the visibility of `MClass` and `MProperty`.
39 fun visibility: MVisibility do return public_visibility
40 end
41
42 redef class Model
43 # All known classes
44 var mclasses = new Array[MClass]
45
46 # All known properties
47 var mproperties = new Array[MProperty]
48
49 # Hierarchy of class definition.
50 #
51 # Each classdef is associated with its super-classdefs in regard to
52 # its module of definition.
53 #
54 # ~~~
55 # var m = new ModelDiamond
56 # assert m.mclassdef_hierarchy.has_edge(m.mclassdef_b, m.mclassdef_a)
57 # assert not m.mclassdef_hierarchy.has_edge(m.mclassdef_a, m.mclassdef_b)
58 # assert not m.mclassdef_hierarchy.has_edge(m.mclassdef_b, m.mclassdef_c)
59 # ~~~
60 var mclassdef_hierarchy = new POSet[MClassDef]
61
62 # Class-type hierarchy restricted to the introduction.
63 #
64 # The idea is that what is true on introduction is always true whatever
65 # the module considered.
66 # Therefore, this hierarchy is used for a fast positive subtype check.
67 #
68 # This poset will evolve in a monotonous way:
69 # * Two non connected nodes will remain unconnected
70 # * New nodes can appear with new edges
71 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
72
73 # Global overlapped class-type hierarchy.
74 # The hierarchy when all modules are combined.
75 # Therefore, this hierarchy is used for a fast negative subtype check.
76 #
77 # This poset will evolve in an anarchic way. Loops can even be created.
78 #
79 # FIXME decide what to do on loops
80 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
81
82 # Collections of classes grouped by their short name
83 private var mclasses_by_name = new MultiHashMap[String, MClass]
84
85 # Return all classes named `name`.
86 #
87 # If such a class does not exist, null is returned
88 # (instead of an empty array)
89 #
90 # Visibility or modules are not considered
91 #
92 # ~~~
93 # var m = new ModelStandalone
94 # assert m.get_mclasses_by_name("Object") == [m.mclass_o]
95 # assert m.get_mclasses_by_name("Fail") == null
96 # ~~~
97 fun get_mclasses_by_name(name: String): nullable Array[MClass]
98 do
99 return mclasses_by_name.get_or_null(name)
100 end
101
102 # Collections of properties grouped by their short name
103 private var mproperties_by_name = new MultiHashMap[String, MProperty]
104
105 # Return all properties named `name`.
106 #
107 # If such a property does not exist, null is returned
108 # (instead of an empty array)
109 #
110 # Visibility or modules are not considered
111 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
112 do
113 return mproperties_by_name.get_or_null(name)
114 end
115
116 # The only null type
117 var null_type = new MNullType(self)
118
119 # The only bottom type
120 var bottom_type: MBottomType = null_type.as_notnull
121
122 # Build an ordered tree with from `concerns`
123 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
124 var seen = new HashSet[MConcern]
125 var res = new ConcernsTree
126
127 var todo = new Array[MConcern]
128 todo.add_all mconcerns
129
130 while not todo.is_empty do
131 var c = todo.pop
132 if seen.has(c) then continue
133 var pc = c.parent_concern
134 if pc == null then
135 res.add(null, c)
136 else
137 res.add(pc, c)
138 todo.add(pc)
139 end
140 seen.add(c)
141 end
142
143 return res
144 end
145 end
146
147 # An OrderedTree bound to MEntity.
148 #
149 # We introduce a new class so it can be easily refined by tools working
150 # with a Model.
151 class MEntityTree
152 super OrderedTree[MEntity]
153 end
154
155 # A MEntityTree borned to MConcern.
156 #
157 # TODO remove when nitdoc is fully merged with model_collect
158 class ConcernsTree
159 super OrderedTree[MConcern]
160 end
161
162 redef class MModule
163 # All the classes introduced in the module
164 var intro_mclasses = new Array[MClass]
165
166 # All the class definitions of the module
167 # (introduction and refinement)
168 var mclassdefs = new Array[MClassDef]
169
170 private var mclassdef_sorter: MClassDefSorter is lazy do
171 return new MClassDefSorter(self)
172 end
173
174 private var mpropdef_sorter: MPropDefSorter is lazy do
175 return new MPropDefSorter(self)
176 end
177
178 # Does the current module has a given class `mclass`?
179 # Return true if the mmodule introduces, refines or imports a class.
180 # Visibility is not considered.
181 fun has_mclass(mclass: MClass): Bool
182 do
183 return self.in_importation <= mclass.intro_mmodule
184 end
185
186 # Full hierarchy of introduced and imported classes.
187 #
188 # Create a new hierarchy got by flattening the classes for the module
189 # and its imported modules.
190 # Visibility is not considered.
191 #
192 # Note: this function is expensive and is usually used for the main
193 # module of a program only. Do not use it to do your own subtype
194 # functions.
195 fun flatten_mclass_hierarchy: POSet[MClass]
196 do
197 var res = self.flatten_mclass_hierarchy_cache
198 if res != null then return res
199 res = new POSet[MClass]
200 for m in self.in_importation.greaters do
201 for cd in m.mclassdefs do
202 var c = cd.mclass
203 res.add_node(c)
204 for s in cd.supertypes do
205 res.add_edge(c, s.mclass)
206 end
207 end
208 end
209 self.flatten_mclass_hierarchy_cache = res
210 return res
211 end
212
213 # Sort a given array of classes using the linearization order of the module
214 # The most general is first, the most specific is last
215 fun linearize_mclasses(mclasses: Array[MClass])
216 do
217 self.flatten_mclass_hierarchy.sort(mclasses)
218 end
219
220 # Sort a given array of class definitions using the linearization order of the module
221 # the refinement link is stronger than the specialisation link
222 # The most general is first, the most specific is last
223 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
224 do
225 mclassdef_sorter.sort(mclassdefs)
226 end
227
228 # Sort a given array of property definitions using the linearization order of the module
229 # the refinement link is stronger than the specialisation link
230 # The most general is first, the most specific is last
231 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
232 do
233 mpropdef_sorter.sort(mpropdefs)
234 end
235
236 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
237
238 # The primitive type `Object`, the root of the class hierarchy
239 var object_type: MClassType = self.get_primitive_class("Object").mclass_type is lazy
240
241 # The type `Pointer`, super class to all extern classes
242 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
243
244 # The primitive type `Bool`
245 var bool_type: MClassType = self.get_primitive_class("Bool").mclass_type is lazy
246
247 # The primitive type `Int`
248 var int_type: MClassType = self.get_primitive_class("Int").mclass_type is lazy
249
250 # The primitive type `Byte`
251 var byte_type: MClassType = self.get_primitive_class("Byte").mclass_type is lazy
252
253 # The primitive type `Int8`
254 var int8_type: MClassType = self.get_primitive_class("Int8").mclass_type is lazy
255
256 # The primitive type `Int16`
257 var int16_type: MClassType = self.get_primitive_class("Int16").mclass_type is lazy
258
259 # The primitive type `UInt16`
260 var uint16_type: MClassType = self.get_primitive_class("UInt16").mclass_type is lazy
261
262 # The primitive type `Int32`
263 var int32_type: MClassType = self.get_primitive_class("Int32").mclass_type is lazy
264
265 # The primitive type `UInt32`
266 var uint32_type: MClassType = self.get_primitive_class("UInt32").mclass_type is lazy
267
268 # The primitive type `Char`
269 var char_type: MClassType = self.get_primitive_class("Char").mclass_type is lazy
270
271 # The primitive type `Float`
272 var float_type: MClassType = self.get_primitive_class("Float").mclass_type is lazy
273
274 # The primitive type `String`
275 var string_type: MClassType = self.get_primitive_class("String").mclass_type is lazy
276
277 # The primitive type `CString`
278 var c_string_type: MClassType = self.get_primitive_class("CString").mclass_type is lazy
279
280 # A primitive type of `Array`
281 fun array_type(elt_type: MType): MClassType do return array_class.get_mtype([elt_type])
282
283 # The primitive class `Array`
284 var array_class: MClass = self.get_primitive_class("Array") is lazy
285
286 # A primitive type of `NativeArray`
287 fun native_array_type(elt_type: MType): MClassType do return native_array_class.get_mtype([elt_type])
288
289 # The primitive class `NativeArray`
290 var native_array_class: MClass = self.get_primitive_class("NativeArray") is lazy
291
292 # The primitive type `Sys`, the main type of the program, if any
293 fun sys_type: nullable MClassType
294 do
295 var clas = self.model.get_mclasses_by_name("Sys")
296 if clas == null then return null
297 return get_primitive_class("Sys").mclass_type
298 end
299
300 # The primitive type `Finalizable`
301 # Used to tag classes that need to be finalized.
302 fun finalizable_type: nullable MClassType
303 do
304 var clas = self.model.get_mclasses_by_name("Finalizable")
305 if clas == null then return null
306 return get_primitive_class("Finalizable").mclass_type
307 end
308
309 # Force to get the primitive class named `name` or abort
310 fun get_primitive_class(name: String): MClass
311 do
312 var cla = self.model.get_mclasses_by_name(name)
313 # Filter classes by introducing module
314 if cla != null then cla = [for c in cla do if self.in_importation <= c.intro_mmodule then c]
315 if cla == null or cla.is_empty then
316 if name == "Bool" and self.model.get_mclasses_by_name("Object") != null then
317 # Bool is injected because it is needed by engine to code the result
318 # of the implicit casts.
319 var loc = model.no_location
320 var c = new MClass(self, name, loc, null, enum_kind, public_visibility)
321 var cladef = new MClassDef(self, c.mclass_type, loc)
322 cladef.set_supertypes([object_type])
323 cladef.add_in_hierarchy
324 return c
325 end
326 print_error("Fatal Error: no primitive class {name} in {self}")
327 exit(1)
328 abort
329 end
330 if cla.length != 1 then
331 var msg = "Fatal Error: more than one primitive class {name} in {self}:"
332 for c in cla do msg += " {c.full_name}"
333 print_error msg
334 #exit(1)
335 end
336 return cla.first
337 end
338
339 # Try to get the primitive method named `name` on the type `recv`
340 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
341 do
342 var props = self.model.get_mproperties_by_name(name)
343 if props == null then return null
344 var res: nullable MMethod = null
345 var recvtype = recv.intro.bound_mtype
346 for mprop in props do
347 assert mprop isa MMethod
348 if not recvtype.has_mproperty(self, mprop) then continue
349 if res == null then
350 res = mprop
351 else if res != mprop then
352 print_error("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
353 abort
354 end
355 end
356 return res
357 end
358 end
359
360 private class MClassDefSorter
361 super Comparator
362 redef type COMPARED: MClassDef
363 var mmodule: MModule
364 redef fun compare(a, b)
365 do
366 var ca = a.mclass
367 var cb = b.mclass
368 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
369 return mmodule.model.mclassdef_hierarchy.compare(a, b)
370 end
371 end
372
373 private class MPropDefSorter
374 super Comparator
375 redef type COMPARED: MPropDef
376 var mmodule: MModule
377
378 redef fun compare(pa, pb)
379 do
380 var a = pa.mclassdef
381 var b = pb.mclassdef
382 return mmodule.mclassdef_sorter.compare(a, b)
383 end
384 end
385
386 # A named class
387 #
388 # `MClass`es are global to the model; it means that a `MClass` is not bound
389 # to a specific `MModule`.
390 #
391 # This characteristic helps the reasoning about classes in a program since a
392 # single `MClass` object always denote the same class.
393 #
394 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
395 # These do not really have properties nor belong to a hierarchy since the property and the
396 # hierarchy of a class depends of the refinement in the modules.
397 #
398 # Most services on classes require the precision of a module, and no one can asks what are
399 # the super-classes of a class nor what are properties of a class without precising what is
400 # the module considered.
401 #
402 # For instance, during the typing of a source-file, the module considered is the module of the file.
403 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
404 # *is the method `foo` exists in the class `Bar` in the current module?*
405 #
406 # During some global analysis, the module considered may be the main module of the program.
407 class MClass
408 super MEntity
409
410 # The module that introduce the class
411 #
412 # While classes are not bound to a specific module,
413 # the introducing module is used for naming and visibility.
414 var intro_mmodule: MModule
415
416 # The short name of the class
417 # In Nit, the name of a class cannot evolve in refinements
418 redef var name
419
420 redef var location
421
422 # The canonical name of the class
423 #
424 # It is the name of the class prefixed by the full_name of the `intro_mmodule`
425 # Example: `"owner::module::MyClass"`
426 redef var full_name is lazy do
427 return "{self.intro_mmodule.namespace_for(visibility)}::{name}"
428 end
429
430 redef var c_name is lazy do
431 return "{intro_mmodule.c_namespace_for(visibility)}__{name.to_cmangle}"
432 end
433
434 # The number of generic formal parameters
435 # 0 if the class is not generic
436 var arity: Int is noinit
437
438 # Each generic formal parameters in order.
439 # is empty if the class is not generic
440 var mparameters = new Array[MParameterType]
441
442 # A string version of the signature a generic class.
443 #
444 # eg. `Map[K: nullable Object, V: nullable Object]`
445 #
446 # If the class in non generic the name is just given.
447 #
448 # eg. `Object`
449 fun signature_to_s: String
450 do
451 if arity == 0 then return name
452 var res = new FlatBuffer
453 res.append name
454 res.append "["
455 for i in [0..arity[ do
456 if i > 0 then res.append ", "
457 res.append mparameters[i].name
458 res.append ": "
459 res.append intro.bound_mtype.arguments[i].to_s
460 end
461 res.append "]"
462 return res.to_s
463 end
464
465 # Initialize `mparameters` from their names.
466 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
467 autoinit
468 do
469 if parameter_names == null then
470 self.arity = 0
471 else
472 self.arity = parameter_names.length
473 end
474
475 # Create the formal parameter types
476 if arity > 0 then
477 assert parameter_names != null
478 var mparametertypes = new Array[MParameterType]
479 for i in [0..arity[ do
480 var mparametertype = new MParameterType(self, i, parameter_names[i])
481 mparametertypes.add(mparametertype)
482 end
483 self.mparameters = mparametertypes
484 var mclass_type = new MGenericType(self, mparametertypes)
485 self.mclass_type = mclass_type
486 self.get_mtype_cache[mparametertypes] = mclass_type
487 else
488 self.mclass_type = new MClassType(self)
489 end
490 end
491
492 # The kind of the class (interface, abstract class, etc.)
493 #
494 # In Nit, the kind of a class cannot evolve in refinements.
495 var kind: MClassKind
496
497 # The visibility of the class
498 #
499 # In Nit, the visibility of a class cannot evolve in refinements.
500 redef var visibility
501
502 init
503 do
504 intro_mmodule.intro_mclasses.add(self)
505 var model = intro_mmodule.model
506 model.mclasses_by_name.add_one(name, self)
507 model.mclasses.add(self)
508 end
509
510 redef fun model do return intro_mmodule.model
511
512 # All class definitions (introduction and refinements)
513 var mclassdefs = new Array[MClassDef]
514
515 # Alias for `name`
516 redef fun to_s do return self.name
517
518 # The definition that introduces the class.
519 #
520 # Warning: such a definition may not exist in the early life of the object.
521 # In this case, the method will abort.
522 #
523 # Use `try_intro` instead.
524 var intro: MClassDef is noinit
525
526 # The definition that introduces the class or `null` if not yet known.
527 #
528 # SEE: `intro`
529 fun try_intro: nullable MClassDef do
530 if isset _intro then return _intro else return null
531 end
532
533 # Return the class `self` in the class hierarchy of the module `mmodule`.
534 #
535 # SEE: `MModule::flatten_mclass_hierarchy`
536 # REQUIRE: `mmodule.has_mclass(self)`
537 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
538 do
539 return mmodule.flatten_mclass_hierarchy[self]
540 end
541
542 # The principal static type of the class.
543 #
544 # For non-generic class, `mclass_type` is the only `MClassType` based
545 # on self.
546 #
547 # For a generic class, the arguments are the formal parameters.
548 # i.e.: for the class `Array[E:Object]`, the `mclass_type` is `Array[E]`.
549 # If you want `Array[Object]`, see `MClassDef::bound_mtype`.
550 #
551 # For generic classes, the mclass_type is also the way to get a formal
552 # generic parameter type.
553 #
554 # To get other types based on a generic class, see `get_mtype`.
555 #
556 # ENSURE: `mclass_type.mclass == self`
557 var mclass_type: MClassType is noinit
558
559 # Return a generic type based on the class
560 # Is the class is not generic, then the result is `mclass_type`
561 #
562 # REQUIRE: `mtype_arguments.length == self.arity`
563 fun get_mtype(mtype_arguments: Array[MType]): MClassType
564 do
565 assert mtype_arguments.length == self.arity
566 if self.arity == 0 then return self.mclass_type
567 var res = get_mtype_cache.get_or_null(mtype_arguments)
568 if res != null then return res
569 res = new MGenericType(self, mtype_arguments)
570 self.get_mtype_cache[mtype_arguments.to_a] = res
571 return res
572 end
573
574 private var get_mtype_cache = new HashMap[Array[MType], MGenericType]
575
576 # Is there a `new` factory to allow the pseudo instantiation?
577 var has_new_factory = false is writable
578
579 # Is `self` a standard or abstract class kind?
580 var is_class: Bool is lazy do return kind == concrete_kind or kind == abstract_kind
581
582 # Is `self` an interface kind?
583 var is_interface: Bool is lazy do return kind == interface_kind
584
585 # Is `self` an enum kind?
586 var is_enum: Bool is lazy do return kind == enum_kind
587
588 # Is `self` and abstract class?
589 var is_abstract: Bool is lazy do return kind == abstract_kind
590
591 redef fun mdoc_or_fallback
592 do
593 # Don’t use `intro.mdoc_or_fallback` because it would create an infinite
594 # recursion.
595 return intro.mdoc
596 end
597 end
598
599
600 # A definition (an introduction or a refinement) of a class in a module
601 #
602 # A `MClassDef` is associated with an explicit (or almost) definition of a
603 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
604 # a specific class and a specific module, and contains declarations like super-classes
605 # or properties.
606 #
607 # It is the class definitions that are the backbone of most things in the model:
608 # ClassDefs are defined with regard with other classdefs.
609 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
610 #
611 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
612 class MClassDef
613 super MEntity
614
615 # The module where the definition is
616 var mmodule: MModule
617
618 # The associated `MClass`
619 var mclass: MClass is noinit
620
621 # The bounded type associated to the mclassdef
622 #
623 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
624 # are the same type.
625 #
626 # Example:
627 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
628 # If you want Array[E], then see `mclass.mclass_type`
629 #
630 # ENSURE: `bound_mtype.mclass == self.mclass`
631 var bound_mtype: MClassType
632
633 redef var location
634
635 redef fun visibility do return mclass.visibility
636
637 # Internal name combining the module and the class
638 # Example: "mymodule$MyClass"
639 redef var to_s is noinit
640
641 init
642 do
643 self.mclass = bound_mtype.mclass
644 mmodule.mclassdefs.add(self)
645 mclass.mclassdefs.add(self)
646 if mclass.intro_mmodule == mmodule then
647 assert not isset mclass._intro
648 mclass.intro = self
649 end
650 self.to_s = "{mmodule}${mclass}"
651 end
652
653 # Actually the name of the `mclass`
654 redef fun name do return mclass.name
655
656 # The module and class name separated by a '$'.
657 #
658 # The short-name of the class is used for introduction.
659 # Example: "my_module$MyClass"
660 #
661 # The full-name of the class is used for refinement.
662 # Example: "my_module$intro_module::MyClass"
663 redef var full_name is lazy do
664 if is_intro then
665 # public gives 'p$A'
666 # private gives 'p::m$A'
667 return "{mmodule.namespace_for(mclass.visibility)}${mclass.name}"
668 else if mclass.intro_mmodule.mpackage != mmodule.mpackage then
669 # public gives 'q::n$p::A'
670 # private gives 'q::n$p::m::A'
671 return "{mmodule.full_name}${mclass.full_name}"
672 else if mclass.visibility > private_visibility then
673 # public gives 'p::n$A'
674 return "{mmodule.full_name}${mclass.name}"
675 else
676 # private gives 'p::n$::m::A' (redundant p is omitted)
677 return "{mmodule.full_name}$::{mclass.intro_mmodule.name}::{mclass.name}"
678 end
679 end
680
681 redef var c_name is lazy do
682 if is_intro then
683 return "{mmodule.c_namespace_for(mclass.visibility)}___{mclass.c_name}"
684 else if mclass.intro_mmodule.mpackage == mmodule.mpackage and mclass.visibility > private_visibility then
685 return "{mmodule.c_name}___{mclass.name.to_cmangle}"
686 else
687 return "{mmodule.c_name}___{mclass.c_name}"
688 end
689 end
690
691 redef fun model do return mmodule.model
692
693 # All declared super-types
694 # FIXME: quite ugly but not better idea yet
695 var supertypes = new Array[MClassType]
696
697 # Register some super-types for the class (ie "super SomeType")
698 #
699 # The hierarchy must not already be set
700 # REQUIRE: `self.in_hierarchy == null`
701 fun set_supertypes(supertypes: Array[MClassType])
702 do
703 assert unique_invocation: self.in_hierarchy == null
704 var mmodule = self.mmodule
705 var model = mmodule.model
706 var mtype = self.bound_mtype
707
708 for supertype in supertypes do
709 self.supertypes.add(supertype)
710
711 # Register in full_type_specialization_hierarchy
712 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
713 # Register in intro_type_specialization_hierarchy
714 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
715 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
716 end
717 end
718
719 end
720
721 # Collect the super-types (set by set_supertypes) to build the hierarchy
722 #
723 # This function can only invoked once by class
724 # REQUIRE: `self.in_hierarchy == null`
725 # ENSURE: `self.in_hierarchy != null`
726 fun add_in_hierarchy
727 do
728 assert unique_invocation: self.in_hierarchy == null
729 var model = mmodule.model
730 var res = model.mclassdef_hierarchy.add_node(self)
731 self.in_hierarchy = res
732 var mtype = self.bound_mtype
733
734 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
735 # The simpliest way is to attach it to collect_mclassdefs
736 for mclassdef in mtype.collect_mclassdefs(mmodule) do
737 res.poset.add_edge(self, mclassdef)
738 end
739 end
740
741 # The view of the class definition in `mclassdef_hierarchy`
742 var in_hierarchy: nullable POSetElement[MClassDef] = null
743
744 # Is the definition the one that introduced `mclass`?
745 fun is_intro: Bool do return isset mclass._intro and mclass.intro == self
746
747 # All properties introduced by the classdef
748 var intro_mproperties = new Array[MProperty]
749
750 # All property introductions and redefinitions in `self` (not inheritance).
751 var mpropdefs = new Array[MPropDef]
752
753 # All property introductions and redefinitions (not inheritance) in `self` by its associated property.
754 var mpropdefs_by_property = new HashMap[MProperty, MPropDef]
755
756 redef fun mdoc_or_fallback do return mdoc or else mclass.mdoc_or_fallback
757 end
758
759 # A global static type
760 #
761 # MType are global to the model; it means that a `MType` is not bound to a
762 # specific `MModule`.
763 # This characteristic helps the reasoning about static types in a program
764 # since a single `MType` object always denote the same type.
765 #
766 # However, because a `MType` is global, it does not really have properties
767 # nor have subtypes to a hierarchy since the property and the class hierarchy
768 # depends of a module.
769 # Moreover, virtual types an formal generic parameter types also depends on
770 # a receiver to have sense.
771 #
772 # Therefore, most method of the types require a module and an anchor.
773 # The module is used to know what are the classes and the specialization
774 # links.
775 # The anchor is used to know what is the bound of the virtual types and formal
776 # generic parameter types.
777 #
778 # MType are not directly usable to get properties. See the `anchor_to` method
779 # and the `MClassType` class.
780 #
781 # FIXME: the order of the parameters is not the best. We mus pick on from:
782 # * foo(mmodule, anchor, othertype)
783 # * foo(othertype, anchor, mmodule)
784 # * foo(anchor, mmodule, othertype)
785 # * foo(othertype, mmodule, anchor)
786 abstract class MType
787 super MEntity
788
789 redef fun name do return to_s
790
791 # Return true if `self` is an subtype of `sup`.
792 # The typing is done using the standard typing policy of Nit.
793 #
794 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
795 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
796 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
797 do
798 var sub = self
799 if sub == sup then return true
800
801 #print "1.is {sub} a {sup}? ===="
802
803 if anchor == null then
804 assert not sub.need_anchor
805 assert not sup.need_anchor
806 else
807 # First, resolve the formal types to the simplest equivalent forms in the receiver
808 assert sub.can_resolve_for(anchor, null, mmodule)
809 sub = sub.lookup_fixed(mmodule, anchor)
810 assert sup.can_resolve_for(anchor, null, mmodule)
811 sup = sup.lookup_fixed(mmodule, anchor)
812 end
813
814 # Does `sup` accept null or not?
815 # Discard the nullable marker if it exists
816 var sup_accept_null = false
817 if sup isa MNullableType then
818 sup_accept_null = true
819 sup = sup.mtype
820 else if sup isa MNotNullType then
821 sup = sup.mtype
822 else if sup isa MNullType then
823 sup_accept_null = true
824 end
825
826 # Can `sub` provide null or not?
827 # Thus we can match with `sup_accept_null`
828 # Also discard the nullable marker if it exists
829 var sub_reject_null = false
830 if sub isa MNullableType then
831 if not sup_accept_null then return false
832 sub = sub.mtype
833 else if sub isa MNotNullType then
834 sub_reject_null = true
835 sub = sub.mtype
836 else if sub isa MNullType then
837 return sup_accept_null
838 end
839 # Now the case of direct null and nullable is over.
840
841 # If `sub` is a formal type, then it is accepted if its bound is accepted
842 while sub isa MFormalType do
843 #print "3.is {sub} a {sup}?"
844
845 # A unfixed formal type can only accept itself
846 if sub == sup then return true
847
848 assert anchor != null
849 sub = sub.lookup_bound(mmodule, anchor)
850 if sub_reject_null then sub = sub.as_notnull
851
852 #print "3.is {sub} a {sup}?"
853
854 # Manage the second layer of null/nullable
855 if sub isa MNullableType then
856 if not sup_accept_null and not sub_reject_null then return false
857 sub = sub.mtype
858 else if sub isa MNotNullType then
859 sub_reject_null = true
860 sub = sub.mtype
861 else if sub isa MNullType then
862 return sup_accept_null
863 end
864 end
865 #print "4.is {sub} a {sup}? <- no more resolution"
866
867 if sub isa MBottomType or sub isa MErrorType then
868 return true
869 end
870
871 assert sub isa MClassType else print_error "{sub} <? {sup}" # It is the only remaining type
872
873 # Handle sup-type when the sub-type is class-based (other cases must have be identified before).
874 if sup isa MFormalType or sup isa MNullType or sup isa MBottomType or sup isa MErrorType then
875 # These types are not super-types of Class-based types.
876 return false
877 end
878
879 assert sup isa MClassType else print_error "got {sup} {sub.inspect}" # It is the only remaining type
880
881 # Now both are MClassType, we need to dig
882
883 if sub == sup then return true
884
885 if anchor == null then anchor = sub # UGLY: any anchor will work
886 var resolved_sub = sub.anchor_to(mmodule, anchor)
887 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
888 if not res then return false
889 if not sup isa MGenericType then return true
890 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
891 assert sub2.mclass == sup.mclass
892 for i in [0..sup.mclass.arity[ do
893 var sub_arg = sub2.arguments[i]
894 var sup_arg = sup.arguments[i]
895 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
896 if not res then return false
897 end
898 return true
899 end
900
901 # The base class type on which self is based
902 #
903 # This base type is used to get property (an internally to perform
904 # unsafe type comparison).
905 #
906 # Beware: some types (like null) are not based on a class thus this
907 # method will crash
908 #
909 # Basically, this function transform the virtual types and parameter
910 # types to their bounds.
911 #
912 # Example
913 #
914 # class A end
915 # class B super A end
916 # class X end
917 # class Y super X end
918 # class G[T: A]
919 # type U: X
920 # end
921 # class H
922 # super G[B]
923 # redef type U: Y
924 # end
925 #
926 # Map[T,U] anchor_to H #-> Map[B,Y]
927 #
928 # Explanation of the example:
929 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
930 # because "redef type U: Y". Therefore, Map[T, U] is bound to
931 # Map[B, Y]
932 #
933 # REQUIRE: `self.need_anchor implies anchor != null`
934 # ENSURE: `not self.need_anchor implies result == self`
935 # ENSURE: `not result.need_anchor`
936 fun anchor_to(mmodule: MModule, anchor: nullable MClassType): MType
937 do
938 if not need_anchor then return self
939 assert anchor != null and not anchor.need_anchor
940 # Just resolve to the anchor and clear all the virtual types
941 var res = self.resolve_for(anchor, null, mmodule, true)
942 assert not res.need_anchor
943 return res
944 end
945
946 # Does `self` contain a virtual type or a formal generic parameter type?
947 # In order to remove those types, you usually want to use `anchor_to`.
948 fun need_anchor: Bool do return true
949
950 # Return the supertype when adapted to a class.
951 #
952 # In Nit, for each super-class of a type, there is a equivalent super-type.
953 #
954 # Example:
955 #
956 # ~~~nitish
957 # class G[T, U] end
958 # class H[V] super G[V, Bool] end
959 #
960 # H[Int] supertype_to G #-> G[Int, Bool]
961 # ~~~
962 #
963 # REQUIRE: `super_mclass` is a super-class of `self`
964 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
965 # ENSURE: `result.mclass = super_mclass`
966 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
967 do
968 if super_mclass.arity == 0 then return super_mclass.mclass_type
969 if self isa MClassType and self.mclass == super_mclass then return self
970 var resolved_self
971 if self.need_anchor then
972 assert anchor != null
973 resolved_self = self.anchor_to(mmodule, anchor)
974 else
975 resolved_self = self
976 end
977 var supertypes = resolved_self.collect_mtypes(mmodule)
978 for supertype in supertypes do
979 if supertype.mclass == super_mclass then
980 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
981 return supertype.resolve_for(self, anchor, mmodule, false)
982 end
983 end
984 abort
985 end
986
987 # Replace formals generic types in self with resolved values in `mtype`
988 # If `cleanup_virtual` is true, then virtual types are also replaced
989 # with their bounds.
990 #
991 # This function returns self if `need_anchor` is false.
992 #
993 # ## Example 1
994 #
995 # ~~~
996 # class G[E] end
997 # class H[F] super G[F] end
998 # class X[Z] end
999 # ~~~
1000 #
1001 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
1002 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
1003 #
1004 # Explanation of the example:
1005 # * Array[E].need_anchor is true because there is a formal generic parameter type E
1006 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
1007 # * Since "H[F] super G[F]", E is in fact F for H
1008 # * More specifically, in H[Int], E is Int
1009 # * So, in H[Int], Array[E] is Array[Int]
1010 #
1011 # This function is mainly used to inherit a signature.
1012 # Because, unlike `anchor_to`, we do not want a full resolution of
1013 # a type but only an adapted version of it.
1014 #
1015 # ## Example 2
1016 #
1017 # ~~~
1018 # class A[E]
1019 # fun foo(e:E):E is abstract
1020 # end
1021 # class B super A[Int] end
1022 # ~~~
1023 #
1024 # The signature on foo is (e: E): E
1025 # If we resolve the signature for B, we get (e:Int):Int
1026 #
1027 # ## Example 3
1028 #
1029 # ~~~nitish
1030 # class A[E]
1031 # fun foo(e:E):E is abstract
1032 # end
1033 # class C[F]
1034 # var a: A[Array[F]]
1035 # fun bar do a.foo(x) # <- x is here
1036 # end
1037 # ~~~
1038 #
1039 # The first question is: is foo available on `a`?
1040 #
1041 # The static type of a is `A[Array[F]]`, that is an open type.
1042 # in order to find a method `foo`, whe must look at a resolved type.
1043 #
1044 # A[Array[F]].anchor_to(C[nullable Object]) #-> A[Array[nullable Object]]
1045 #
1046 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
1047 #
1048 # The next question is: what is the accepted types for `x`?
1049 #
1050 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
1051 #
1052 # E.resolve_for(A[Array[F]],C[nullable Object]) #-> Array[F]
1053 #
1054 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
1055 #
1056 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
1057 # two function instead of one seems also to be a bad idea.
1058 #
1059 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
1060 # ENSURE: `not self.need_anchor implies result == self`
1061 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
1062
1063 # Resolve formal type to its verbatim bound.
1064 # If the type is not formal, just return self
1065 #
1066 # The result is returned exactly as declared in the "type" property (verbatim).
1067 # So it could be another formal type.
1068 #
1069 # In case of conflicts or inconsistencies in the model, the method returns a `MErrorType`.
1070 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self
1071
1072 # Resolve the formal type to its simplest equivalent form.
1073 #
1074 # Formal types are either free or fixed.
1075 # When it is fixed, it means that it is equivalent with a simpler type.
1076 # When a formal type is free, it means that it is only equivalent with itself.
1077 # This method return the most simple equivalent type of `self`.
1078 #
1079 # This method is mainly used for subtype test in order to sanely compare fixed.
1080 #
1081 # By default, return self.
1082 # See the redefinitions for specific behavior in each kind of type.
1083 #
1084 # In case of conflicts or inconsistencies in the model, the method returns a `MErrorType`.
1085 fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self
1086
1087 # Is the type a `MErrorType` or contains an `MErrorType`?
1088 #
1089 # `MErrorType` are used in result with conflict or inconsistencies.
1090 #
1091 # See `is_legal_in` to check conformity with generic bounds.
1092 fun is_ok: Bool do return true
1093
1094 # Is the type legal in a given `mmodule` (with an optional `anchor`)?
1095 #
1096 # A type is valid if:
1097 #
1098 # * it does not contain a `MErrorType` (see `is_ok`).
1099 # * its generic formal arguments are within their bounds.
1100 fun is_legal_in(mmodule: MModule, anchor: nullable MClassType): Bool do return is_ok
1101
1102 # Can the type be resolved?
1103 #
1104 # In order to resolve open types, the formal types must make sence.
1105 #
1106 # ## Example
1107 #
1108 # class A[E]
1109 # end
1110 # class B[F]
1111 # end
1112 #
1113 # ~~~nitish
1114 # E.can_resolve_for(A[Int]) #-> true, E make sense in A
1115 #
1116 # E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
1117 #
1118 # B[E].can_resolve_for(A[F], B[Object]) #-> true,
1119 # # B[E] is a red hearing only the E is important,
1120 # # E make sense in A
1121 # ~~~
1122 #
1123 # REQUIRE: `anchor != null implies not anchor.need_anchor`
1124 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
1125 # ENSURE: `not self.need_anchor implies result == true`
1126 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
1127
1128 # Return the nullable version of the type
1129 # If the type is already nullable then self is returned
1130 fun as_nullable: MType
1131 do
1132 var res = self.as_nullable_cache
1133 if res != null then return res
1134 res = new MNullableType(self)
1135 self.as_nullable_cache = res
1136 return res
1137 end
1138
1139 # Remove the base type of a decorated (proxy) type.
1140 # Is the type is not decorated, then self is returned.
1141 #
1142 # Most of the time it is used to return the not nullable version of a nullable type.
1143 # In this case, this just remove the `nullable` notation, but the result can still contains null.
1144 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
1145 # If you really want to exclude the `null` value, then use `as_notnull`
1146 fun undecorate: MType
1147 do
1148 return self
1149 end
1150
1151 # Returns the not null version of the type.
1152 # That is `self` minus the `null` value.
1153 #
1154 # For most types, this return `self`.
1155 # For formal types, this returns a special `MNotNullType`
1156 fun as_notnull: MType do return self
1157
1158 private var as_nullable_cache: nullable MType = null
1159
1160
1161 # The depth of the type seen as a tree.
1162 #
1163 # * A -> 1
1164 # * G[A] -> 2
1165 # * H[A, B] -> 2
1166 # * H[G[A], B] -> 3
1167 #
1168 # Formal types have a depth of 1.
1169 # Only `MClassType` and `MFormalType` nodes are counted.
1170 fun depth: Int
1171 do
1172 return 1
1173 end
1174
1175 # The length of the type seen as a tree.
1176 #
1177 # * A -> 1
1178 # * G[A] -> 2
1179 # * H[A, B] -> 3
1180 # * H[G[A], B] -> 4
1181 #
1182 # Formal types have a length of 1.
1183 # Only `MClassType` and `MFormalType` nodes are counted.
1184 fun length: Int
1185 do
1186 return 1
1187 end
1188
1189 # Compute all the classdefs inherited/imported.
1190 # The returned set contains:
1191 # * the class definitions from `mmodule` and its imported modules
1192 # * the class definitions of this type and its super-types
1193 #
1194 # This function is used mainly internally.
1195 #
1196 # REQUIRE: `not self.need_anchor`
1197 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
1198
1199 # Compute all the super-classes.
1200 # This function is used mainly internally.
1201 #
1202 # REQUIRE: `not self.need_anchor`
1203 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
1204
1205 # Compute all the declared super-types.
1206 # Super-types are returned as declared in the classdefs (verbatim).
1207 # This function is used mainly internally.
1208 #
1209 # REQUIRE: `not self.need_anchor`
1210 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
1211
1212 # Is the property in self for a given module
1213 # This method does not filter visibility or whatever
1214 #
1215 # REQUIRE: `not self.need_anchor`
1216 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
1217 do
1218 assert not self.need_anchor
1219 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
1220 end
1221 end
1222
1223 # A type based on a class.
1224 #
1225 # `MClassType` have properties (see `has_mproperty`).
1226 class MClassType
1227 super MType
1228
1229 # The associated class
1230 var mclass: MClass
1231
1232 redef fun model do return self.mclass.intro_mmodule.model
1233
1234 redef fun location do return mclass.location
1235
1236 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1237
1238 # The formal arguments of the type
1239 # ENSURE: `result.length == self.mclass.arity`
1240 var arguments = new Array[MType]
1241
1242 redef fun to_s do return mclass.to_s
1243
1244 redef fun full_name do return mclass.full_name
1245
1246 redef fun c_name do return mclass.c_name
1247
1248 redef fun need_anchor do return false
1249
1250 redef fun anchor_to(mmodule, anchor): MClassType
1251 do
1252 return super.as(MClassType)
1253 end
1254
1255 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1256
1257 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1258
1259 redef fun collect_mclassdefs(mmodule)
1260 do
1261 assert not self.need_anchor
1262 var cache = self.collect_mclassdefs_cache
1263 if not cache.has_key(mmodule) then
1264 self.collect_things(mmodule)
1265 end
1266 return cache[mmodule]
1267 end
1268
1269 redef fun collect_mclasses(mmodule)
1270 do
1271 if collect_mclasses_last_module == mmodule then return collect_mclasses_last_module_cache
1272 assert not self.need_anchor
1273 var cache = self.collect_mclasses_cache
1274 if not cache.has_key(mmodule) then
1275 self.collect_things(mmodule)
1276 end
1277 var res = cache[mmodule]
1278 collect_mclasses_last_module = mmodule
1279 collect_mclasses_last_module_cache = res
1280 return res
1281 end
1282
1283 private var collect_mclasses_last_module: nullable MModule = null
1284 private var collect_mclasses_last_module_cache: Set[MClass] is noinit
1285
1286 redef fun collect_mtypes(mmodule)
1287 do
1288 assert not self.need_anchor
1289 var cache = self.collect_mtypes_cache
1290 if not cache.has_key(mmodule) then
1291 self.collect_things(mmodule)
1292 end
1293 return cache[mmodule]
1294 end
1295
1296 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1297 private fun collect_things(mmodule: MModule)
1298 do
1299 var res = new HashSet[MClassDef]
1300 var seen = new HashSet[MClass]
1301 var types = new HashSet[MClassType]
1302 seen.add(self.mclass)
1303 var todo = [self.mclass]
1304 while not todo.is_empty do
1305 var mclass = todo.pop
1306 #print "process {mclass}"
1307 for mclassdef in mclass.mclassdefs do
1308 if not mmodule.in_importation <= mclassdef.mmodule then continue
1309 #print " process {mclassdef}"
1310 res.add(mclassdef)
1311 for supertype in mclassdef.supertypes do
1312 types.add(supertype)
1313 var superclass = supertype.mclass
1314 if seen.has(superclass) then continue
1315 #print " add {superclass}"
1316 seen.add(superclass)
1317 todo.add(superclass)
1318 end
1319 end
1320 end
1321 collect_mclassdefs_cache[mmodule] = res
1322 collect_mclasses_cache[mmodule] = seen
1323 collect_mtypes_cache[mmodule] = types
1324 end
1325
1326 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1327 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1328 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1329
1330 redef fun mdoc_or_fallback do return mclass.mdoc_or_fallback
1331 end
1332
1333 # A type based on a generic class.
1334 # A generic type a just a class with additional formal generic arguments.
1335 class MGenericType
1336 super MClassType
1337
1338 redef var arguments
1339
1340 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1341
1342 init
1343 do
1344 assert self.mclass.arity == arguments.length
1345
1346 self.need_anchor = false
1347 for t in arguments do
1348 if t.need_anchor then
1349 self.need_anchor = true
1350 break
1351 end
1352 end
1353
1354 self.to_s = "{mclass}[{arguments.join(", ")}]"
1355 end
1356
1357 # The short-name of the class, then the full-name of each type arguments within brackets.
1358 # Example: `"Map[String, List[Int]]"`
1359 redef var to_s is noinit
1360
1361 # The full-name of the class, then the full-name of each type arguments within brackets.
1362 # Example: `"core::Map[core::String, core::List[core::Int]]"`
1363 redef var full_name is lazy do
1364 var args = new Array[String]
1365 for t in arguments do
1366 args.add t.full_name
1367 end
1368 return "{mclass.full_name}[{args.join(", ")}]"
1369 end
1370
1371 redef var c_name is lazy do
1372 var res = mclass.c_name
1373 # Note: because the arity is known, a prefix notation is enough
1374 for t in arguments do
1375 res += "__"
1376 res += t.c_name
1377 end
1378 return res.to_s
1379 end
1380
1381 redef var need_anchor is noinit
1382
1383 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1384 do
1385 if not need_anchor then return self
1386 assert can_resolve_for(mtype, anchor, mmodule)
1387 var types = new Array[MType]
1388 for t in arguments do
1389 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1390 end
1391 return mclass.get_mtype(types)
1392 end
1393
1394 redef fun can_resolve_for(mtype, anchor, mmodule)
1395 do
1396 if not need_anchor then return true
1397 for t in arguments do
1398 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1399 end
1400 return true
1401 end
1402
1403 redef fun is_ok
1404 do
1405 for t in arguments do if not t.is_ok then return false
1406 return super
1407 end
1408
1409 redef fun is_legal_in(mmodule, anchor)
1410 do
1411 var mtype
1412 if need_anchor then
1413 assert anchor != null
1414 mtype = anchor_to(mmodule, anchor)
1415 else
1416 mtype = self
1417 end
1418 if not mtype.is_ok then return false
1419 return mtype.is_subtype(mmodule, null, mtype.mclass.intro.bound_mtype)
1420 end
1421
1422 redef fun depth
1423 do
1424 var dmax = 0
1425 for a in self.arguments do
1426 var d = a.depth
1427 if d > dmax then dmax = d
1428 end
1429 return dmax + 1
1430 end
1431
1432 redef fun length
1433 do
1434 var res = 1
1435 for a in self.arguments do
1436 res += a.length
1437 end
1438 return res
1439 end
1440 end
1441
1442 # A formal type (either virtual of parametric).
1443 #
1444 # The main issue with formal types is that they offer very little information on their own
1445 # and need a context (anchor and mmodule) to be useful.
1446 abstract class MFormalType
1447 super MType
1448
1449 redef var as_notnull = new MNotNullType(self) is lazy
1450 end
1451
1452 # A virtual formal type.
1453 class MVirtualType
1454 super MFormalType
1455
1456 # The property associated with the type.
1457 # Its the definitions of this property that determine the bound or the virtual type.
1458 var mproperty: MVirtualTypeProp
1459
1460 redef fun location do return mproperty.location
1461
1462 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1463
1464 redef fun lookup_bound(mmodule, resolved_receiver)
1465 do
1466 # There is two possible invalid cases: the vt does not exists in resolved_receiver or the bound is broken
1467 if not resolved_receiver.has_mproperty(mmodule, mproperty) then return new MErrorType(model)
1468 return lookup_single_definition(mmodule, resolved_receiver).bound or else new MErrorType(model)
1469 end
1470
1471 private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef
1472 do
1473 assert not resolved_receiver.need_anchor
1474 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1475 if props.is_empty then
1476 abort
1477 else if props.length == 1 then
1478 return props.first
1479 end
1480 var types = new ArraySet[MType]
1481 var res = props.first
1482 for p in props do
1483 types.add(p.bound.as(not null))
1484 if not res.is_fixed then res = p
1485 end
1486 if types.length == 1 then
1487 return res
1488 end
1489 abort
1490 end
1491
1492 # A VT is fixed when:
1493 # * the VT is (re-)defined with the annotation `is fixed`
1494 # * the receiver is an enum class since there is no subtype that can
1495 # redefine this virtual type
1496 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1497 do
1498 assert not resolved_receiver.need_anchor
1499 resolved_receiver = resolved_receiver.undecorate
1500 assert resolved_receiver isa MClassType # It is the only remaining type
1501
1502 var prop = lookup_single_definition(mmodule, resolved_receiver)
1503 var res = prop.bound
1504 if res == null then return new MErrorType(model)
1505
1506 # Recursively lookup the fixed result
1507 res = res.lookup_fixed(mmodule, resolved_receiver)
1508
1509 # For a fixed VT, return the resolved bound
1510 if prop.is_fixed then return res
1511
1512 # For a enum receiver return the bound
1513 if resolved_receiver.mclass.kind == enum_kind then return res
1514
1515 return self
1516 end
1517
1518 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1519 do
1520 if not cleanup_virtual then return self
1521 assert can_resolve_for(mtype, anchor, mmodule)
1522
1523 if mproperty.is_selftype then return mtype
1524
1525 # self is a virtual type declared (or inherited) in mtype
1526 # The point of the function it to get the bound of the virtual type that make sense for mtype
1527 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1528 #print "{class_name}: {self}/{mtype}/{anchor}?"
1529 var resolved_receiver
1530 if mtype.need_anchor then
1531 assert anchor != null
1532 resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true)
1533 else
1534 resolved_receiver = mtype
1535 end
1536 # Now, we can get the bound
1537 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1538 # The bound is exactly as declared in the "type" property, so we must resolve it again
1539 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1540
1541 return res
1542 end
1543
1544 redef fun can_resolve_for(mtype, anchor, mmodule)
1545 do
1546 if mtype.need_anchor then
1547 assert anchor != null
1548 mtype = mtype.anchor_to(mmodule, anchor)
1549 end
1550 return mtype.has_mproperty(mmodule, mproperty)
1551 end
1552
1553 redef fun to_s do return self.mproperty.to_s
1554
1555 redef fun full_name do return self.mproperty.full_name
1556
1557 redef fun c_name do return self.mproperty.c_name
1558
1559 redef fun mdoc_or_fallback do return mproperty.mdoc_or_fallback
1560 end
1561
1562 # The type associated to a formal parameter generic type of a class
1563 #
1564 # Each parameter type is associated to a specific class.
1565 # It means that all refinements of a same class "share" the parameter type,
1566 # but that a generic subclass has its own parameter types.
1567 #
1568 # However, in the sense of the meta-model, a parameter type of a class is
1569 # a valid type in a subclass. The "in the sense of the meta-model" is
1570 # important because, in the Nit language, the programmer cannot refers
1571 # directly to the parameter types of the super-classes.
1572 #
1573 # Example:
1574 #
1575 # class A[E]
1576 # fun e: E is abstract
1577 # end
1578 # class B[F]
1579 # super A[Array[F]]
1580 # end
1581 #
1582 # In the class definition B[F], `F` is a valid type but `E` is not.
1583 # However, `self.e` is a valid method call, and the signature of `e` is
1584 # declared `e: E`.
1585 #
1586 # Note that parameter types are shared among class refinements.
1587 # Therefore parameter only have an internal name (see `to_s` for details).
1588 class MParameterType
1589 super MFormalType
1590
1591 # The generic class where the parameter belong
1592 var mclass: MClass
1593
1594 redef fun model do return self.mclass.intro_mmodule.model
1595
1596 redef fun location do return mclass.location
1597
1598 # The position of the parameter (0 for the first parameter)
1599 # FIXME: is `position` a better name?
1600 var rank: Int
1601
1602 redef var name
1603
1604 redef fun to_s do return name
1605
1606 redef var full_name is lazy do return "{mclass.full_name}::{name}"
1607
1608 redef var c_name is lazy do return mclass.c_name + "__" + "#{name}".to_cmangle
1609
1610 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1611 do
1612 assert not resolved_receiver.need_anchor
1613 resolved_receiver = resolved_receiver.undecorate
1614 assert resolved_receiver isa MClassType # It is the only remaining type
1615 var goalclass = self.mclass
1616 if resolved_receiver.mclass == goalclass then
1617 return resolved_receiver.arguments[self.rank]
1618 end
1619 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1620 for t in supertypes do
1621 if t.mclass == goalclass then
1622 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1623 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1624 var res = t.arguments[self.rank]
1625 return res
1626 end
1627 end
1628 # Cannot found `self` in `resolved_receiver`
1629 return new MErrorType(model)
1630 end
1631
1632 # A PT is fixed when:
1633 # * The `resolved_receiver` is a subclass of `self.mclass`,
1634 # so it is necessarily fixed in a `super` clause, either with a normal type
1635 # or with another PT.
1636 # See `resolve_for` for examples about related issues.
1637 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1638 do
1639 assert not resolved_receiver.need_anchor
1640 resolved_receiver = resolved_receiver.undecorate
1641 assert resolved_receiver isa MClassType # It is the only remaining type
1642 var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false)
1643 return res
1644 end
1645
1646 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1647 do
1648 assert can_resolve_for(mtype, anchor, mmodule)
1649 #print "{class_name}: {self}/{mtype}/{anchor}?"
1650
1651 if mtype isa MGenericType and mtype.mclass == self.mclass then
1652 return mtype.arguments[self.rank]
1653 end
1654
1655 # self is a parameter type of mtype (or of a super-class of mtype)
1656 # The point of the function it to get the bound of the virtual type that make sense for mtype
1657 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1658 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1659 var resolved_receiver
1660 if mtype.need_anchor then
1661 assert anchor != null
1662 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1663 else
1664 resolved_receiver = mtype
1665 end
1666 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1667 if resolved_receiver isa MParameterType then
1668 assert anchor != null
1669 assert resolved_receiver.mclass == anchor.mclass
1670 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1671 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1672 end
1673 assert resolved_receiver isa MClassType # It is the only remaining type
1674
1675 # Eh! The parameter is in the current class.
1676 # So we return the corresponding argument, no mater what!
1677 if resolved_receiver.mclass == self.mclass then
1678 var res = resolved_receiver.arguments[self.rank]
1679 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1680 return res
1681 end
1682
1683 if resolved_receiver.need_anchor then
1684 assert anchor != null
1685 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1686 end
1687 # Now, we can get the bound
1688 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1689 # The bound is exactly as declared in the "type" property, so we must resolve it again
1690 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1691
1692 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1693
1694 return res
1695 end
1696
1697 redef fun can_resolve_for(mtype, anchor, mmodule)
1698 do
1699 if mtype.need_anchor then
1700 assert anchor != null
1701 mtype = mtype.anchor_to(mmodule, anchor)
1702 end
1703 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1704 end
1705 end
1706
1707 # A type that decorates another type.
1708 #
1709 # The point of this class is to provide a common implementation of sevices that just forward to the original type.
1710 # Specific decorator are expected to redefine (or to extend) the default implementation as this suit them.
1711 abstract class MProxyType
1712 super MType
1713 # The base type
1714 var mtype: MType
1715
1716 redef fun location do return mtype.location
1717
1718 redef fun model do return self.mtype.model
1719 redef fun need_anchor do return mtype.need_anchor
1720 redef fun as_nullable do return mtype.as_nullable
1721 redef fun as_notnull do return mtype.as_notnull
1722 redef fun undecorate do return mtype.undecorate
1723 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1724 do
1725 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1726 return res
1727 end
1728
1729 redef fun can_resolve_for(mtype, anchor, mmodule)
1730 do
1731 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1732 end
1733
1734 redef fun is_ok do return mtype.is_ok
1735
1736 redef fun is_legal_in(mmodule, anchor) do return mtype.is_legal_in(mmodule, anchor)
1737
1738 redef fun lookup_fixed(mmodule, resolved_receiver)
1739 do
1740 var t = mtype.lookup_fixed(mmodule, resolved_receiver)
1741 return t
1742 end
1743
1744 redef fun depth do return self.mtype.depth
1745
1746 redef fun length do return self.mtype.length
1747
1748 redef fun collect_mclassdefs(mmodule)
1749 do
1750 assert not self.need_anchor
1751 return self.mtype.collect_mclassdefs(mmodule)
1752 end
1753
1754 redef fun collect_mclasses(mmodule)
1755 do
1756 assert not self.need_anchor
1757 return self.mtype.collect_mclasses(mmodule)
1758 end
1759
1760 redef fun collect_mtypes(mmodule)
1761 do
1762 assert not self.need_anchor
1763 return self.mtype.collect_mtypes(mmodule)
1764 end
1765 end
1766
1767 # A type prefixed with "nullable"
1768 class MNullableType
1769 super MProxyType
1770
1771 init
1772 do
1773 self.to_s = "nullable {mtype}"
1774 end
1775
1776 redef var to_s is noinit
1777
1778 redef var full_name is lazy do return "nullable {mtype.full_name}"
1779
1780 redef var c_name is lazy do return "nullable__{mtype.c_name}"
1781
1782 redef fun as_nullable do return self
1783 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1784 do
1785 var res = super
1786 return res.as_nullable
1787 end
1788
1789 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable`
1790 redef fun lookup_fixed(mmodule, resolved_receiver)
1791 do
1792 var t = super
1793 if t == mtype then return self
1794 return t.as_nullable
1795 end
1796 end
1797
1798 # A non-null version of a formal type.
1799 #
1800 # When a formal type in bounded to a nullable type, this is the type of the not null version of it.
1801 class MNotNullType
1802 super MProxyType
1803
1804 redef fun to_s do return "not null {mtype}"
1805 redef var full_name is lazy do return "not null {mtype.full_name}"
1806 redef var c_name is lazy do return "notnull__{mtype.c_name}"
1807
1808 redef fun as_notnull do return self
1809
1810 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1811 do
1812 var res = super
1813 return res.as_notnull
1814 end
1815
1816 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_notnull`
1817 redef fun lookup_fixed(mmodule, resolved_receiver)
1818 do
1819 var t = super
1820 if t == mtype then return self
1821 return t.as_notnull
1822 end
1823 end
1824
1825 # The type of the only value null
1826 #
1827 # The is only one null type per model, see `MModel::null_type`.
1828 class MNullType
1829 super MType
1830 redef var model
1831 redef fun to_s do return "null"
1832 redef fun full_name do return "null"
1833 redef fun c_name do return "null"
1834 redef fun as_nullable do return self
1835
1836 redef var as_notnull: MBottomType = new MBottomType(model) is lazy
1837 redef fun need_anchor do return false
1838 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1839 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1840
1841 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1842
1843 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1844
1845 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1846 end
1847
1848 # The special universal most specific type.
1849 #
1850 # This type is intended to be only used internally for type computation or analysis and should not be exposed to the user.
1851 # The bottom type can de used to denote things that are dead (no instance).
1852 #
1853 # Semantically it is the singleton `null.as_notnull`.
1854 # Is also means that `self.as_nullable == null`.
1855 class MBottomType
1856 super MType
1857 redef var model
1858 redef fun to_s do return "bottom"
1859 redef fun full_name do return "bottom"
1860 redef fun c_name do return "bottom"
1861 redef fun as_nullable do return model.null_type
1862 redef fun as_notnull do return self
1863 redef fun need_anchor do return false
1864 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1865 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1866
1867 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1868
1869 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1870
1871 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1872 end
1873
1874 # A special type used as a silent error marker when building types.
1875 #
1876 # This type is intended to be only used internally for type operation and should not be exposed to the user.
1877 # The error type can de used to denote things that are conflicting or inconsistent.
1878 #
1879 # Some methods on types can return a `MErrorType` to denote a broken or a conflicting result.
1880 # Use `is_ok` to check if a type is (or contains) a `MErrorType` .
1881 class MErrorType
1882 super MType
1883 redef var model
1884 redef fun to_s do return "error"
1885 redef fun full_name do return "error"
1886 redef fun c_name do return "error"
1887 redef fun need_anchor do return false
1888 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1889 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1890 redef fun is_ok do return false
1891
1892 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1893
1894 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1895
1896 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1897 end
1898
1899 # A signature of a method
1900 class MSignature
1901 super MType
1902
1903 # The each parameter (in order)
1904 var mparameters: Array[MParameter]
1905
1906 # Returns a parameter named `name`, if any.
1907 fun mparameter_by_name(name: String): nullable MParameter
1908 do
1909 for p in mparameters do
1910 if p.name == name then return p
1911 end
1912 return null
1913 end
1914
1915 # The return type (null for a procedure)
1916 var return_mtype: nullable MType
1917
1918 redef fun depth
1919 do
1920 var dmax = 0
1921 var t = self.return_mtype
1922 if t != null then dmax = t.depth
1923 for p in mparameters do
1924 var d = p.mtype.depth
1925 if d > dmax then dmax = d
1926 end
1927 return dmax + 1
1928 end
1929
1930 redef fun length
1931 do
1932 var res = 1
1933 var t = self.return_mtype
1934 if t != null then res += t.length
1935 for p in mparameters do
1936 res += p.mtype.length
1937 end
1938 return res
1939 end
1940
1941 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1942 init
1943 do
1944 var vararg_rank = -1
1945 for i in [0..mparameters.length[ do
1946 var parameter = mparameters[i]
1947 if parameter.is_vararg then
1948 if vararg_rank >= 0 then
1949 # If there is more than one vararg,
1950 # consider that additional arguments cannot be mapped.
1951 vararg_rank = -1
1952 break
1953 end
1954 vararg_rank = i
1955 end
1956 end
1957 self.vararg_rank = vararg_rank
1958 end
1959
1960 # The rank of the main ellipsis (`...`) for vararg (starting from 0).
1961 # value is -1 if there is no vararg.
1962 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1963 #
1964 # From a model POV, a signature can contain more than one vararg parameter,
1965 # the `vararg_rank` just indicates the one that will receive the additional arguments.
1966 # However, currently, if there is more that one vararg parameter, no one will be the main one,
1967 # and additional arguments will be refused.
1968 var vararg_rank: Int is noinit
1969
1970 # The number of parameters
1971 fun arity: Int do return mparameters.length
1972
1973 redef fun to_s
1974 do
1975 var b = new FlatBuffer
1976 if not mparameters.is_empty then
1977 b.append("(")
1978 var last_mtype = null
1979 for i in [0..mparameters.length[ do
1980 var mparameter = mparameters[i]
1981
1982 # Group types that are common to contiguous parameters
1983 if mparameter.mtype != last_mtype and last_mtype != null then
1984 b.append(": ")
1985 b.append(last_mtype.to_s)
1986 end
1987
1988 if i > 0 then b.append(", ")
1989 b.append(mparameter.name)
1990
1991 if mparameter.is_vararg then
1992 b.append(": ")
1993 b.append(mparameter.mtype.to_s)
1994 b.append("...")
1995 last_mtype = null
1996 else
1997 last_mtype = mparameter.mtype
1998 end
1999 end
2000
2001 if last_mtype != null then
2002 b.append(": ")
2003 b.append(last_mtype.to_s)
2004 end
2005
2006 b.append(")")
2007 end
2008 var ret = self.return_mtype
2009 if ret != null then
2010 b.append(": ")
2011 b.append(ret.to_s)
2012 end
2013 return b.to_s
2014 end
2015
2016 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
2017 do
2018 var params = new Array[MParameter]
2019 for p in self.mparameters do
2020 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
2021 end
2022 var ret = self.return_mtype
2023 if ret != null then
2024 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
2025 end
2026 var res = new MSignature(params, ret)
2027 return res
2028 end
2029 end
2030
2031 # A parameter in a signature
2032 class MParameter
2033 super MEntity
2034
2035 # The name of the parameter
2036 redef var name
2037
2038 # The static type of the parameter
2039 var mtype: MType
2040
2041 # Is the parameter a vararg?
2042 var is_vararg: Bool
2043
2044 redef fun to_s
2045 do
2046 if is_vararg then
2047 return "{name}: {mtype}..."
2048 else
2049 return "{name}: {mtype}"
2050 end
2051 end
2052
2053 # Returns a new parameter with the `mtype` resolved.
2054 # See `MType::resolve_for` for details.
2055 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
2056 do
2057 if not self.mtype.need_anchor then return self
2058 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
2059 var res = new MParameter(self.name, newtype, self.is_vararg)
2060 return res
2061 end
2062
2063 redef fun model do return mtype.model
2064 end
2065
2066 # A service (global property) that generalize method, attribute, etc.
2067 #
2068 # `MProperty` are global to the model; it means that a `MProperty` is not bound
2069 # to a specific `MModule` nor a specific `MClass`.
2070 #
2071 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
2072 # and the other in subclasses and in refinements.
2073 #
2074 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
2075 # of any dynamic type).
2076 # For instance, a call site "x.foo" is associated to a `MProperty`.
2077 abstract class MProperty
2078 super MEntity
2079
2080 # The associated MPropDef subclass.
2081 # The two specialization hierarchy are symmetric.
2082 type MPROPDEF: MPropDef
2083
2084 # The classdef that introduce the property
2085 # While a property is not bound to a specific module, or class,
2086 # the introducing mclassdef is used for naming and visibility
2087 var intro_mclassdef: MClassDef
2088
2089 # The (short) name of the property
2090 redef var name
2091
2092 redef var location
2093
2094 redef fun mdoc_or_fallback
2095 do
2096 # Don’t use `intro.mdoc_or_fallback` because it would create an infinite
2097 # recursion.
2098 return intro.mdoc
2099 end
2100
2101 # The canonical name of the property.
2102 #
2103 # It is currently the short-`name` prefixed by the short-name of the class and the full-name of the module.
2104 # Example: "my_package::my_module::MyClass::my_method"
2105 #
2106 # The full-name of the module is needed because two distinct modules of the same package can
2107 # still refine the same class and introduce homonym properties.
2108 #
2109 # For public properties not introduced by refinement, the module name is not used.
2110 #
2111 # Example: `my_package::MyClass::My_method`
2112 redef var full_name is lazy do
2113 if intro_mclassdef.is_intro then
2114 return "{intro_mclassdef.mmodule.namespace_for(visibility)}::{intro_mclassdef.mclass.name}::{name}"
2115 else
2116 return "{intro_mclassdef.mmodule.full_name}::{intro_mclassdef.mclass.name}::{name}"
2117 end
2118 end
2119
2120 redef var c_name is lazy do
2121 # FIXME use `namespace_for`
2122 return "{intro_mclassdef.mmodule.c_name}__{intro_mclassdef.mclass.name.to_cmangle}__{name.to_cmangle}"
2123 end
2124
2125 # The visibility of the property
2126 redef var visibility
2127
2128 # Is the property usable as an initializer?
2129 var is_autoinit = false is writable
2130
2131 init
2132 do
2133 intro_mclassdef.intro_mproperties.add(self)
2134 var model = intro_mclassdef.mmodule.model
2135 model.mproperties_by_name.add_one(name, self)
2136 model.mproperties.add(self)
2137 end
2138
2139 # All definitions of the property.
2140 # The first is the introduction,
2141 # The other are redefinitions (in refinements and in subclasses)
2142 var mpropdefs = new Array[MPROPDEF]
2143
2144 # The definition that introduces the property.
2145 #
2146 # Warning: such a definition may not exist in the early life of the object.
2147 # In this case, the method will abort.
2148 var intro: MPROPDEF is noinit
2149
2150 redef fun model do return intro.model
2151
2152 # Alias for `name`
2153 redef fun to_s do return name
2154
2155 # Return the most specific property definitions defined or inherited by a type.
2156 # The selection knows that refinement is stronger than specialization;
2157 # however, in case of conflict more than one property are returned.
2158 # If mtype does not know mproperty then an empty array is returned.
2159 #
2160 # If you want the really most specific property, then look at `lookup_first_definition`
2161 #
2162 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2163 # ENSURE: `not mtype.has_mproperty(mmodule, self) == result.is_empty`
2164 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2165 do
2166 assert not mtype.need_anchor
2167 mtype = mtype.undecorate
2168
2169 var cache = self.lookup_definitions_cache[mmodule, mtype]
2170 if cache != null then return cache
2171
2172 #print "select prop {mproperty} for {mtype} in {self}"
2173 # First, select all candidates
2174 var candidates = new Array[MPROPDEF]
2175
2176 # Here we have two strategies: iterate propdefs or iterate classdefs.
2177 var mpropdefs = self.mpropdefs
2178 if mpropdefs.length <= 1 or mpropdefs.length < mtype.collect_mclassdefs(mmodule).length then
2179 # Iterate on all definitions of `self`, keep only those inherited by `mtype` in `mmodule`
2180 for mpropdef in mpropdefs do
2181 # If the definition is not imported by the module, then skip
2182 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2183 # If the definition is not inherited by the type, then skip
2184 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2185 # Else, we keep it
2186 candidates.add(mpropdef)
2187 end
2188 else
2189 # Iterate on all super-classdefs of `mtype`, keep only the definitions of `self`, if any.
2190 for mclassdef in mtype.collect_mclassdefs(mmodule) do
2191 var p = mclassdef.mpropdefs_by_property.get_or_null(self)
2192 if p != null then candidates.add p
2193 end
2194 end
2195
2196 # Fast track for only one candidate
2197 if candidates.length <= 1 then
2198 self.lookup_definitions_cache[mmodule, mtype] = candidates
2199 return candidates
2200 end
2201
2202 # Second, filter the most specific ones
2203 return select_most_specific(mmodule, candidates)
2204 end
2205
2206 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2207
2208 # Return the most specific property definitions inherited by a type.
2209 # The selection knows that refinement is stronger than specialization;
2210 # however, in case of conflict more than one property are returned.
2211 # If mtype does not know mproperty then an empty array is returned.
2212 #
2213 # If you want the really most specific property, then look at `lookup_next_definition`
2214 #
2215 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2216 # ENSURE: `not mtype.has_mproperty(mmodule, self) implies result.is_empty`
2217 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2218 do
2219 assert not mtype.need_anchor
2220 mtype = mtype.undecorate
2221
2222 # First, select all candidates
2223 var candidates = new Array[MPROPDEF]
2224 for mpropdef in self.mpropdefs do
2225 # If the definition is not imported by the module, then skip
2226 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2227 # If the definition is not inherited by the type, then skip
2228 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2229 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
2230 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
2231 # Else, we keep it
2232 candidates.add(mpropdef)
2233 end
2234 # Fast track for only one candidate
2235 if candidates.length <= 1 then return candidates
2236
2237 # Second, filter the most specific ones
2238 return select_most_specific(mmodule, candidates)
2239 end
2240
2241 # Return an array containing olny the most specific property definitions
2242 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
2243 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
2244 do
2245 var res = new Array[MPROPDEF]
2246 for pd1 in candidates do
2247 var cd1 = pd1.mclassdef
2248 var c1 = cd1.mclass
2249 var keep = true
2250 for pd2 in candidates do
2251 if pd2 == pd1 then continue # do not compare with self!
2252 var cd2 = pd2.mclassdef
2253 var c2 = cd2.mclass
2254 if c2.mclass_type == c1.mclass_type then
2255 if cd2.mmodule.in_importation < cd1.mmodule then
2256 # cd2 refines cd1; therefore we skip pd1
2257 keep = false
2258 break
2259 end
2260 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
2261 # cd2 < cd1; therefore we skip pd1
2262 keep = false
2263 break
2264 end
2265 end
2266 if keep then
2267 res.add(pd1)
2268 end
2269 end
2270 if res.is_empty then
2271 print_error "All lost! {candidates.join(", ")}"
2272 # FIXME: should be abort!
2273 end
2274 return res
2275 end
2276
2277 # Return the most specific definition in the linearization of `mtype`.
2278 #
2279 # If you want to know the next properties in the linearization,
2280 # look at `MPropDef::lookup_next_definition`.
2281 #
2282 # FIXME: the linearization is still unspecified
2283 #
2284 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2285 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2286 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
2287 do
2288 return lookup_all_definitions(mmodule, mtype).first
2289 end
2290
2291 # Return all definitions in a linearization order
2292 # Most specific first, most general last
2293 #
2294 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2295 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2296 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2297 do
2298 mtype = mtype.undecorate
2299
2300 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
2301 if cache != null then return cache
2302
2303 assert not mtype.need_anchor
2304 assert mtype.has_mproperty(mmodule, self)
2305
2306 #print "select prop {mproperty} for {mtype} in {self}"
2307 # First, select all candidates
2308 var candidates = new Array[MPROPDEF]
2309 for mpropdef in self.mpropdefs do
2310 # If the definition is not imported by the module, then skip
2311 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2312 # If the definition is not inherited by the type, then skip
2313 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2314 # Else, we keep it
2315 candidates.add(mpropdef)
2316 end
2317 # Fast track for only one candidate
2318 if candidates.length <= 1 then
2319 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2320 return candidates
2321 end
2322
2323 mmodule.linearize_mpropdefs(candidates)
2324 candidates = candidates.reversed
2325 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2326 return candidates
2327 end
2328
2329 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2330 end
2331
2332 # A global method
2333 class MMethod
2334 super MProperty
2335
2336 redef type MPROPDEF: MMethodDef
2337
2338 # Is the property defined at the top_level of the module?
2339 # Currently such a property are stored in `Object`
2340 var is_toplevel: Bool = false is writable
2341
2342 # Is the property a constructor?
2343 # Warning, this property can be inherited by subclasses with or without being a constructor
2344 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
2345 var is_init: Bool = false is writable
2346
2347 # The constructor is a (the) root init with empty signature but a set of initializers
2348 var is_root_init: Bool = false is writable
2349
2350 # Is the property a 'new' constructor?
2351 var is_new: Bool = false is writable
2352
2353 # Is the property a legal constructor for a given class?
2354 # As usual, visibility is not considered.
2355 # FIXME not implemented
2356 fun is_init_for(mclass: MClass): Bool
2357 do
2358 return self.is_init
2359 end
2360
2361 # A specific method that is safe to call on null.
2362 # Currently, only `==`, `!=` and `is_same_instance` are safe
2363 fun is_null_safe: Bool do return name == "==" or name == "!=" or name == "is_same_instance"
2364 end
2365
2366 # A global attribute
2367 class MAttribute
2368 super MProperty
2369
2370 redef type MPROPDEF: MAttributeDef
2371
2372 end
2373
2374 # A global virtual type
2375 class MVirtualTypeProp
2376 super MProperty
2377
2378 redef type MPROPDEF: MVirtualTypeDef
2379
2380 # The formal type associated to the virtual type property
2381 var mvirtualtype = new MVirtualType(self)
2382
2383 # Is `self` the special virtual type `SELF`?
2384 var is_selftype: Bool is lazy do return name == "SELF"
2385 end
2386
2387 # A definition of a property (local property)
2388 #
2389 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
2390 # specific class definition (which belong to a specific module)
2391 abstract class MPropDef
2392 super MEntity
2393
2394 # The associated `MProperty` subclass.
2395 # the two specialization hierarchy are symmetric
2396 type MPROPERTY: MProperty
2397
2398 # Self class
2399 type MPROPDEF: MPropDef
2400
2401 # The class definition where the property definition is
2402 var mclassdef: MClassDef
2403
2404 # The associated global property
2405 var mproperty: MPROPERTY
2406
2407 redef var location: Location
2408
2409 redef fun visibility do return mproperty.visibility
2410
2411 init
2412 do
2413 mclassdef.mpropdefs.add(self)
2414 mproperty.mpropdefs.add(self)
2415 mclassdef.mpropdefs_by_property[mproperty] = self
2416 if mproperty.intro_mclassdef == mclassdef then
2417 assert not isset mproperty._intro
2418 mproperty.intro = self
2419 end
2420 self.to_s = "{mclassdef}${mproperty}"
2421 end
2422
2423 # Actually the name of the `mproperty`
2424 redef fun name do return mproperty.name
2425
2426 # The full-name of mpropdefs combine the information about the `classdef` and the `mproperty`.
2427 #
2428 # Therefore the combination of identifiers is awful,
2429 # the worst case being
2430 #
2431 # * a property "p::m::A::x"
2432 # * redefined in a refinement of a class "q::n::B"
2433 # * in a module "r::o"
2434 # * so "r::o$q::n::B$p::m::A::x"
2435 #
2436 # Fortunately, the full-name is simplified when entities are repeated.
2437 # For the previous case, the simplest form is "p$A$x".
2438 redef var full_name is lazy do
2439 var res = new FlatBuffer
2440
2441 # The first part is the mclassdef. Worst case is "r::o$q::n::B"
2442 res.append mclassdef.full_name
2443
2444 res.append "$"
2445
2446 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2447 # intro are unambiguous in a class
2448 res.append name
2449 else
2450 # Just try to simplify each part
2451 if mclassdef.mmodule.mpackage != mproperty.intro_mclassdef.mmodule.mpackage then
2452 # precise "p::m" only if "p" != "r"
2453 res.append mproperty.intro_mclassdef.mmodule.namespace_for(mproperty.visibility)
2454 res.append "::"
2455 else if mproperty.visibility <= private_visibility then
2456 # Same package ("p"=="q"), but private visibility,
2457 # does the module part ("::m") need to be displayed
2458 if mclassdef.mmodule.namespace_for(mclassdef.mclass.visibility) != mproperty.intro_mclassdef.mmodule.mpackage then
2459 res.append "::"
2460 res.append mproperty.intro_mclassdef.mmodule.name
2461 res.append "::"
2462 end
2463 end
2464 # precise "B" because it is not the same class than "A"
2465 res.append mproperty.intro_mclassdef.name
2466 res.append "::"
2467 # Always use the property name "x"
2468 res.append mproperty.name
2469 end
2470 return res.to_s
2471 end
2472
2473 redef var c_name is lazy do
2474 var res = new FlatBuffer
2475 res.append mclassdef.c_name
2476 res.append "___"
2477 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2478 res.append name.to_cmangle
2479 else
2480 if mclassdef.mmodule != mproperty.intro_mclassdef.mmodule then
2481 res.append mproperty.intro_mclassdef.mmodule.c_name
2482 res.append "__"
2483 end
2484 res.append mproperty.intro_mclassdef.name.to_cmangle
2485 res.append "__"
2486 res.append mproperty.name.to_cmangle
2487 end
2488 return res.to_s
2489 end
2490
2491 redef fun model do return mclassdef.model
2492
2493 # Internal name combining the module, the class and the property
2494 # Example: "mymodule$MyClass$mymethod"
2495 redef var to_s is noinit
2496
2497 # Is self the definition that introduce the property?
2498 fun is_intro: Bool do return isset mproperty._intro and mproperty.intro == self
2499
2500 # Return the next definition in linearization of `mtype`.
2501 #
2502 # This method is used to determine what method is called by a super.
2503 #
2504 # REQUIRE: `not mtype.need_anchor`
2505 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
2506 do
2507 assert not mtype.need_anchor
2508
2509 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
2510 var i = mpropdefs.iterator
2511 while i.is_ok and i.item != self do i.next
2512 assert has_property: i.is_ok
2513 i.next
2514 assert has_next_property: i.is_ok
2515 return i.item
2516 end
2517
2518 redef fun mdoc_or_fallback do return mdoc or else mproperty.mdoc_or_fallback
2519 end
2520
2521 # A local definition of a method
2522 class MMethodDef
2523 super MPropDef
2524
2525 redef type MPROPERTY: MMethod
2526 redef type MPROPDEF: MMethodDef
2527
2528 # The signature attached to the property definition
2529 var msignature: nullable MSignature = null is writable
2530
2531 # The signature attached to the `new` call on a root-init
2532 # This is a concatenation of the signatures of the initializers
2533 #
2534 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2535 var new_msignature: nullable MSignature = null is writable
2536
2537 # List of initialisers to call in root-inits
2538 #
2539 # They could be setters or attributes
2540 #
2541 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2542 var initializers = new Array[MProperty]
2543
2544 # Is the method definition abstract?
2545 var is_abstract: Bool = false is writable
2546
2547 # Is the method definition intern?
2548 var is_intern = false is writable
2549
2550 # Is the method definition extern?
2551 var is_extern = false is writable
2552
2553 # An optional constant value returned in functions.
2554 #
2555 # Only some specific primitife value are accepted by engines.
2556 # Is used when there is no better implementation available.
2557 #
2558 # Currently used only for the implementation of the `--define`
2559 # command-line option.
2560 # SEE: module `mixin`.
2561 var constant_value: nullable Object = null is writable
2562 end
2563
2564 # A local definition of an attribute
2565 class MAttributeDef
2566 super MPropDef
2567
2568 redef type MPROPERTY: MAttribute
2569 redef type MPROPDEF: MAttributeDef
2570
2571 # The static type of the attribute
2572 var static_mtype: nullable MType = null is writable
2573 end
2574
2575 # A local definition of a virtual type
2576 class MVirtualTypeDef
2577 super MPropDef
2578
2579 redef type MPROPERTY: MVirtualTypeProp
2580 redef type MPROPDEF: MVirtualTypeDef
2581
2582 # The bound of the virtual type
2583 var bound: nullable MType = null is writable
2584
2585 # Is the bound fixed?
2586 var is_fixed = false is writable
2587 end
2588
2589 # A kind of class.
2590 #
2591 # * `abstract_kind`
2592 # * `concrete_kind`
2593 # * `interface_kind`
2594 # * `enum_kind`
2595 # * `extern_kind`
2596 #
2597 # Note this class is basically an enum.
2598 # FIXME: use a real enum once user-defined enums are available
2599 class MClassKind
2600 redef var to_s
2601
2602 # Can a class of kind `self` define a membership predicate?
2603 var can_customize_isa: Bool
2604
2605 # Can a class of kind `self` define a constructor?
2606 var can_init: Bool
2607
2608 # Is a constructor required?
2609 var need_init: Bool
2610
2611 # TODO: private init because enumeration.
2612
2613 # Can a class of kind `self` specializes a class of kind `other`?
2614 fun can_specialize(other: MClassKind): Bool
2615 do
2616 if other == interface_kind then
2617 # everybody can specialize interfaces
2618 return true
2619 else if self == interface_kind or self == enum_kind then
2620 # no other case for interfaces and enums
2621 return false
2622 else if self == subset_kind then
2623 # A subset may specialize anything, except another subset.
2624 # TODO: Allow sub-subsets once we can handle them.
2625 return other != subset_kind
2626 else if self == extern_kind then
2627 # only compatible with themselves
2628 return self == other
2629 else
2630 # assert self == abstract_kind or self == concrete_kind
2631 return other == abstract_kind or other == concrete_kind
2632 end
2633 end
2634 end
2635
2636 # The class kind `abstract`
2637 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", false, true, true)
2638 # The class kind `concrete`
2639 fun concrete_kind: MClassKind do return once new MClassKind("class", false, true, true)
2640 # The class kind `interface`
2641 fun interface_kind: MClassKind do return once new MClassKind("interface", false, true, false)
2642 # The class kind `enum`
2643 fun enum_kind: MClassKind do return once new MClassKind("enum", false, true, false)
2644 # The class kind `extern`
2645 fun extern_kind: MClassKind do return once new MClassKind("extern class", false, true, false)
2646 # The class kind `subset`
2647 fun subset_kind: MClassKind do return once new MClassKind("subset", true, false, false)
2648
2649 # A standalone pre-constructed model used to test various model-related methods.
2650 #
2651 # When instantiated, a standalone model is already filled with entities that are exposed as attributes.
2652 class ModelStandalone
2653 super Model
2654
2655 redef var location = new Location.opaque_file("ModelStandalone")
2656
2657 # The first module
2658 var mmodule0 = new MModule(self, null, "module0", location)
2659
2660 # The root Object class
2661 var mclass_o = new MClass(mmodule0, "Object", location, null, interface_kind, public_visibility)
2662
2663 # The introduction of `mclass_o`
2664 var mclassdef_o = new MClassDef(mmodule0, mclass_o.mclass_type, location)
2665 end
2666
2667 # A standalone model with the common class diamond-hierarchy ABCD
2668 class ModelDiamond
2669 super ModelStandalone
2670
2671 # A, a simple subclass of Object
2672 var mclass_a = new MClass(mmodule0, "A", location, null, concrete_kind, public_visibility)
2673
2674 # The introduction of `mclass_a`
2675 var mclassdef_a: MClassDef do
2676 var res = new MClassDef(mmodule0, mclass_a.mclass_type, location)
2677 res.set_supertypes([mclass_o.mclass_type])
2678 res.add_in_hierarchy
2679 return res
2680 end
2681
2682 # B, a subclass of A (`mclass_a`)
2683 var mclass_b = new MClass(mmodule0, "B", location, null, concrete_kind, public_visibility)
2684
2685 # The introduction of `mclass_b`
2686 var mclassdef_b: MClassDef do
2687 var res = new MClassDef(mmodule0, mclass_b.mclass_type, location)
2688 res.set_supertypes([mclass_a.mclass_type])
2689 res.add_in_hierarchy
2690 return res
2691 end
2692
2693 # C, another subclass of A (`mclass_a`)
2694 var mclass_c = new MClass(mmodule0, "C", location, null, concrete_kind, public_visibility)
2695
2696 # The introduction of `mclass_c`
2697 var mclassdef_c: MClassDef do
2698 var res = new MClassDef(mmodule0, mclass_c.mclass_type, location)
2699 res.set_supertypes([mclass_a.mclass_type])
2700 res.add_in_hierarchy
2701 return res
2702 end
2703
2704 # D, a multiple subclass of B (`mclass_b`) and C (`mclass_c`)
2705 var mclass_d = new MClass(mmodule0, "D", location, null, concrete_kind, public_visibility)
2706
2707 # The introduction of `mclass_d`
2708 var mclassdef_d: MClassDef do
2709 var res = new MClassDef(mmodule0, mclass_d.mclass_type, location)
2710 res.set_supertypes([mclass_b.mclass_type, mclass_c.mclass_type])
2711 res.add_in_hierarchy
2712 return res
2713 end
2714 end