src: Update init
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class MEntity
34 # The visibility of the MEntity.
35 #
36 # MPackages, MGroups and MModules are always public.
37 # The visibility of `MClass` and `MProperty` is defined by the keyword used.
38 # `MClassDef` and `MPropDef` return the visibility of `MClass` and `MProperty`.
39 fun visibility: MVisibility do return public_visibility
40 end
41
42 redef class Model
43 # All known classes
44 var mclasses = new Array[MClass]
45
46 # All known properties
47 var mproperties = new Array[MProperty]
48
49 # Hierarchy of class definition.
50 #
51 # Each classdef is associated with its super-classdefs in regard to
52 # its module of definition.
53 #
54 # ~~~
55 # var m = new ModelDiamond
56 # assert m.mclassdef_hierarchy.has_edge(m.mclassdef_b, m.mclassdef_a)
57 # assert not m.mclassdef_hierarchy.has_edge(m.mclassdef_a, m.mclassdef_b)
58 # assert not m.mclassdef_hierarchy.has_edge(m.mclassdef_b, m.mclassdef_c)
59 # ~~~
60 var mclassdef_hierarchy = new POSet[MClassDef]
61
62 # Class-type hierarchy restricted to the introduction.
63 #
64 # The idea is that what is true on introduction is always true whatever
65 # the module considered.
66 # Therefore, this hierarchy is used for a fast positive subtype check.
67 #
68 # This poset will evolve in a monotonous way:
69 # * Two non connected nodes will remain unconnected
70 # * New nodes can appear with new edges
71 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
72
73 # Global overlapped class-type hierarchy.
74 # The hierarchy when all modules are combined.
75 # Therefore, this hierarchy is used for a fast negative subtype check.
76 #
77 # This poset will evolve in an anarchic way. Loops can even be created.
78 #
79 # FIXME decide what to do on loops
80 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
81
82 # Collections of classes grouped by their short name
83 private var mclasses_by_name = new MultiHashMap[String, MClass]
84
85 # Return all classes named `name`.
86 #
87 # If such a class does not exist, null is returned
88 # (instead of an empty array)
89 #
90 # Visibility or modules are not considered
91 #
92 # ~~~
93 # var m = new ModelStandalone
94 # assert m.get_mclasses_by_name("Object") == [m.mclass_o]
95 # assert m.get_mclasses_by_name("Fail") == null
96 # ~~~
97 fun get_mclasses_by_name(name: String): nullable Array[MClass]
98 do
99 return mclasses_by_name.get_or_null(name)
100 end
101
102 # Collections of properties grouped by their short name
103 private var mproperties_by_name = new MultiHashMap[String, MProperty]
104
105 # Return all properties named `name`.
106 #
107 # If such a property does not exist, null is returned
108 # (instead of an empty array)
109 #
110 # Visibility or modules are not considered
111 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
112 do
113 return mproperties_by_name.get_or_null(name)
114 end
115
116 # The only null type
117 var null_type = new MNullType(self)
118
119 # The only bottom type
120 var bottom_type: MBottomType = null_type.as_notnull
121
122 # Build an ordered tree with from `concerns`
123 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
124 var seen = new HashSet[MConcern]
125 var res = new ConcernsTree
126
127 var todo = new Array[MConcern]
128 todo.add_all mconcerns
129
130 while not todo.is_empty do
131 var c = todo.pop
132 if seen.has(c) then continue
133 var pc = c.parent_concern
134 if pc == null then
135 res.add(null, c)
136 else
137 res.add(pc, c)
138 todo.add(pc)
139 end
140 seen.add(c)
141 end
142
143 return res
144 end
145 end
146
147 # An OrderedTree bound to MEntity.
148 #
149 # We introduce a new class so it can be easily refined by tools working
150 # with a Model.
151 class MEntityTree
152 super OrderedTree[MEntity]
153 end
154
155 # A MEntityTree borned to MConcern.
156 #
157 # TODO remove when nitdoc is fully merged with model_collect
158 class ConcernsTree
159 super OrderedTree[MConcern]
160 end
161
162 redef class MGroup
163 redef var is_test is lazy do
164 var parent = self.parent
165 if parent != null and parent.is_test then return true
166 return name == "tests"
167 end
168 end
169
170 redef class MModule
171 # All the classes introduced in the module
172 var intro_mclasses = new Array[MClass]
173
174 # All the class definitions of the module
175 # (introduction and refinement)
176 var mclassdefs = new Array[MClassDef]
177
178 private var mclassdef_sorter: MClassDefSorter is lazy do
179 return new MClassDefSorter(self)
180 end
181
182 private var mpropdef_sorter: MPropDefSorter is lazy do
183 return new MPropDefSorter(self)
184 end
185
186 # Does the current module has a given class `mclass`?
187 # Return true if the mmodule introduces, refines or imports a class.
188 # Visibility is not considered.
189 fun has_mclass(mclass: MClass): Bool
190 do
191 return self.in_importation <= mclass.intro_mmodule
192 end
193
194 # Full hierarchy of introduced and imported classes.
195 #
196 # Create a new hierarchy got by flattening the classes for the module
197 # and its imported modules.
198 # Visibility is not considered.
199 #
200 # Note: this function is expensive and is usually used for the main
201 # module of a program only. Do not use it to do your own subtype
202 # functions.
203 fun flatten_mclass_hierarchy: POSet[MClass]
204 do
205 var res = self.flatten_mclass_hierarchy_cache
206 if res != null then return res
207 self.flatten_mclass_hierarchy_cache = new POSet[MClass]
208 for m in self.in_importation.greaters do
209 for cd in m.mclassdefs do
210 unsafe_update_hierarchy_cache(cd)
211 end
212 end
213 return self.flatten_mclass_hierarchy_cache.as(not null)
214 end
215
216 # Adds another class definition in the modue.
217 # Updates the class hierarchy cache.
218 fun add_mclassdef(mclassdef: MClassDef)
219 do
220 self.mclassdefs.add(mclassdef)
221 if self.flatten_mclass_hierarchy_cache != null then
222 unsafe_update_hierarchy_cache(mclassdef)
223 end
224 end
225
226 # Adds a class definition inside `flatten_mclass_hierarchy_cache` without
227 # null check. The caller must have initialized the cache.
228 protected fun unsafe_update_hierarchy_cache(mclassdef: MClassDef)
229 do
230 var hierarchy = self.flatten_mclass_hierarchy_cache.as(not null)
231 # Update the cache
232 var c = mclassdef.mclass
233 hierarchy.add_node(c)
234 for s in mclassdef.supertypes do
235 hierarchy.add_edge(c, s.mclass)
236 end
237 end
238
239 # Sort a given array of classes using the linearization order of the module
240 # The most general is first, the most specific is last
241 fun linearize_mclasses(mclasses: Array[MClass])
242 do
243 self.flatten_mclass_hierarchy.sort(mclasses)
244 end
245
246 # Sort a given array of class definitions using the linearization order of the module
247 # the refinement link is stronger than the specialisation link
248 # The most general is first, the most specific is last
249 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
250 do
251 mclassdef_sorter.sort(mclassdefs)
252 end
253
254 # Sort a given array of property definitions using the linearization order of the module
255 # the refinement link is stronger than the specialisation link
256 # The most general is first, the most specific is last
257 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
258 do
259 mpropdef_sorter.sort(mpropdefs)
260 end
261
262 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
263
264 # The primitive type `Object`, the root of the class hierarchy
265 var object_type: MClassType = self.get_primitive_class("Object").mclass_type is lazy
266
267 # The type `Pointer`, super class to all extern classes
268 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
269
270 # The primitive type `Bool`
271 var bool_type: MClassType = self.get_primitive_class("Bool").mclass_type is lazy
272
273 # The primitive type `Int`
274 var int_type: MClassType = self.get_primitive_class("Int").mclass_type is lazy
275
276 # The primitive type `Byte`
277 var byte_type: MClassType = self.get_primitive_class("Byte").mclass_type is lazy
278
279 # The primitive type `Int8`
280 var int8_type: MClassType = self.get_primitive_class("Int8").mclass_type is lazy
281
282 # The primitive type `Int16`
283 var int16_type: MClassType = self.get_primitive_class("Int16").mclass_type is lazy
284
285 # The primitive type `UInt16`
286 var uint16_type: MClassType = self.get_primitive_class("UInt16").mclass_type is lazy
287
288 # The primitive type `Int32`
289 var int32_type: MClassType = self.get_primitive_class("Int32").mclass_type is lazy
290
291 # The primitive type `UInt32`
292 var uint32_type: MClassType = self.get_primitive_class("UInt32").mclass_type is lazy
293
294 # The primitive type `Char`
295 var char_type: MClassType = self.get_primitive_class("Char").mclass_type is lazy
296
297 # The primitive type `Float`
298 var float_type: MClassType = self.get_primitive_class("Float").mclass_type is lazy
299
300 # The primitive type `String`
301 var string_type: MClassType = self.get_primitive_class("String").mclass_type is lazy
302
303 # The primitive type `CString`
304 var c_string_type: MClassType = self.get_primitive_class("CString").mclass_type is lazy
305
306 # A primitive type of `Array`
307 fun array_type(elt_type: MType): MClassType do return array_class.get_mtype([elt_type])
308
309 # The primitive class `Array`
310 var array_class: MClass = self.get_primitive_class("Array") is lazy
311
312 # A primitive type of `NativeArray`
313 fun native_array_type(elt_type: MType): MClassType do return native_array_class.get_mtype([elt_type])
314
315 # The primitive class `NativeArray`
316 var native_array_class: MClass = self.get_primitive_class("NativeArray") is lazy
317
318 # The primitive type `Sys`, the main type of the program, if any
319 fun sys_type: nullable MClassType
320 do
321 var clas = self.model.get_mclasses_by_name("Sys")
322 if clas == null then return null
323 return get_primitive_class("Sys").mclass_type
324 end
325
326 # The primitive type `Finalizable`
327 # Used to tag classes that need to be finalized.
328 fun finalizable_type: nullable MClassType
329 do
330 var clas = self.model.get_mclasses_by_name("Finalizable")
331 if clas == null then return null
332 return get_primitive_class("Finalizable").mclass_type
333 end
334
335 # Force to get the primitive class named `name` or abort
336 fun get_primitive_class(name: String): MClass
337 do
338 var cla = self.model.get_mclasses_by_name(name)
339 # Filter classes by introducing module
340 if cla != null then cla = [for c in cla do if self.in_importation <= c.intro_mmodule then c]
341 if cla == null or cla.is_empty then
342 if name == "Bool" and self.model.get_mclasses_by_name("Object") != null then
343 # Bool is injected because it is needed by engine to code the result
344 # of the implicit casts.
345 var loc = model.no_location
346 var c = new MClass(self, name, loc, null, enum_kind, public_visibility)
347 var cladef = new MClassDef(self, c.mclass_type, loc)
348 cladef.set_supertypes([object_type])
349 cladef.add_in_hierarchy
350 return c
351 end
352 print_error("Fatal Error: no primitive class {name} in {self}")
353 exit(1)
354 abort
355 end
356 if cla.length != 1 then
357 var msg = "Fatal Error: more than one primitive class {name} in {self}:"
358 for c in cla do msg += " {c.full_name}"
359 print_error msg
360 #exit(1)
361 end
362 return cla.first
363 end
364
365 # Try to get the primitive method named `name` on the type `recv`
366 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
367 do
368 var props = self.model.get_mproperties_by_name(name)
369 if props == null then return null
370 var res: nullable MMethod = null
371 var recvtype = recv.intro.bound_mtype
372 for mprop in props do
373 assert mprop isa MMethod
374 if not recvtype.has_mproperty(self, mprop) then continue
375 if res == null then
376 res = mprop
377 else if res != mprop then
378 print_error("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
379 abort
380 end
381 end
382 return res
383 end
384 end
385
386 private class MClassDefSorter
387 super Comparator
388 redef type COMPARED: MClassDef
389 var mmodule: MModule
390 redef fun compare(a, b)
391 do
392 var ca = a.mclass
393 var cb = b.mclass
394 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
395 return mmodule.model.mclassdef_hierarchy.compare(a, b)
396 end
397 end
398
399 private class MPropDefSorter
400 super Comparator
401 redef type COMPARED: MPropDef
402 var mmodule: MModule
403
404 redef fun compare(pa, pb)
405 do
406 var a = pa.mclassdef
407 var b = pb.mclassdef
408 return mmodule.mclassdef_sorter.compare(a, b)
409 end
410 end
411
412 # A named class
413 #
414 # `MClass`es are global to the model; it means that a `MClass` is not bound
415 # to a specific `MModule`.
416 #
417 # This characteristic helps the reasoning about classes in a program since a
418 # single `MClass` object always denote the same class.
419 #
420 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
421 # These do not really have properties nor belong to a hierarchy since the property and the
422 # hierarchy of a class depends of the refinement in the modules.
423 #
424 # Most services on classes require the precision of a module, and no one can asks what are
425 # the super-classes of a class nor what are properties of a class without precising what is
426 # the module considered.
427 #
428 # For instance, during the typing of a source-file, the module considered is the module of the file.
429 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
430 # *is the method `foo` exists in the class `Bar` in the current module?*
431 #
432 # During some global analysis, the module considered may be the main module of the program.
433 class MClass
434 super MEntity
435
436 # The module that introduce the class
437 #
438 # While classes are not bound to a specific module,
439 # the introducing module is used for naming and visibility.
440 var intro_mmodule: MModule
441
442 # The short name of the class
443 # In Nit, the name of a class cannot evolve in refinements
444 redef var name
445
446 redef var location
447
448 # The canonical name of the class
449 #
450 # It is the name of the class prefixed by the full_name of the `intro_mmodule`
451 # Example: `"owner::module::MyClass"`
452 redef var full_name is lazy do
453 return "{self.intro_mmodule.namespace_for(visibility)}::{name}"
454 end
455
456 redef var c_name is lazy do
457 return "{intro_mmodule.c_namespace_for(visibility)}__{name.to_cmangle}"
458 end
459
460 # The number of generic formal parameters
461 # 0 if the class is not generic
462 var arity: Int is noinit
463
464 # Each generic formal parameters in order.
465 # is empty if the class is not generic
466 var mparameters = new Array[MParameterType]
467
468 # A string version of the signature a generic class.
469 #
470 # eg. `Map[K: nullable Object, V: nullable Object]`
471 #
472 # If the class in non generic the name is just given.
473 #
474 # eg. `Object`
475 fun signature_to_s: String
476 do
477 if arity == 0 then return name
478 var res = new FlatBuffer
479 res.append name
480 res.append "["
481 for i in [0..arity[ do
482 if i > 0 then res.append ", "
483 res.append mparameters[i].name
484 res.append ": "
485 res.append intro.bound_mtype.arguments[i].to_s
486 end
487 res.append "]"
488 return res.to_s
489 end
490
491 # Initialize `mparameters` from their names.
492 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
493 autoinit
494 do
495 if parameter_names == null then
496 self.arity = 0
497 else
498 self.arity = parameter_names.length
499 end
500
501 # Create the formal parameter types
502 if arity > 0 then
503 assert parameter_names != null
504 var mparametertypes = new Array[MParameterType]
505 for i in [0..arity[ do
506 var mparametertype = new MParameterType(self, i, parameter_names[i])
507 mparametertypes.add(mparametertype)
508 end
509 self.mparameters = mparametertypes
510 var mclass_type = new MGenericType(self, mparametertypes)
511 self.mclass_type = mclass_type
512 self.get_mtype_cache[mparametertypes] = mclass_type
513 else
514 self.mclass_type = new MClassType(self)
515 end
516 end
517
518 # The kind of the class (interface, abstract class, etc.)
519 #
520 # In Nit, the kind of a class cannot evolve in refinements.
521 var kind: MClassKind
522
523 # The visibility of the class
524 #
525 # In Nit, the visibility of a class cannot evolve in refinements.
526 redef var visibility
527
528 init
529 do
530 intro_mmodule.intro_mclasses.add(self)
531 var model = intro_mmodule.model
532 model.mclasses_by_name.add_one(name, self)
533 model.mclasses.add(self)
534 end
535
536 redef fun model do return intro_mmodule.model
537
538 # All class definitions (introduction and refinements)
539 var mclassdefs = new Array[MClassDef]
540
541 # Alias for `name`
542 redef fun to_s do return self.name
543
544 # The definition that introduces the class.
545 #
546 # Warning: such a definition may not exist in the early life of the object.
547 # In this case, the method will abort.
548 #
549 # Use `try_intro` instead.
550 var intro: MClassDef is noinit
551
552 # The definition that introduces the class or `null` if not yet known.
553 #
554 # SEE: `intro`
555 fun try_intro: nullable MClassDef do
556 if isset _intro then return _intro else return null
557 end
558
559 # Return the class `self` in the class hierarchy of the module `mmodule`.
560 #
561 # SEE: `MModule::flatten_mclass_hierarchy`
562 # REQUIRE: `mmodule.has_mclass(self)`
563 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
564 do
565 return mmodule.flatten_mclass_hierarchy[self]
566 end
567
568 # The principal static type of the class.
569 #
570 # For non-generic class, `mclass_type` is the only `MClassType` based
571 # on self.
572 #
573 # For a generic class, the arguments are the formal parameters.
574 # i.e.: for the class `Array[E:Object]`, the `mclass_type` is `Array[E]`.
575 # If you want `Array[Object]`, see `MClassDef::bound_mtype`.
576 #
577 # For generic classes, the mclass_type is also the way to get a formal
578 # generic parameter type.
579 #
580 # To get other types based on a generic class, see `get_mtype`.
581 #
582 # ENSURE: `mclass_type.mclass == self`
583 var mclass_type: MClassType is noinit
584
585 # Return a generic type based on the class
586 # Is the class is not generic, then the result is `mclass_type`
587 #
588 # REQUIRE: `mtype_arguments.length == self.arity`
589 fun get_mtype(mtype_arguments: Array[MType]): MClassType
590 do
591 assert mtype_arguments.length == self.arity
592 if self.arity == 0 then return self.mclass_type
593 var res = get_mtype_cache.get_or_null(mtype_arguments)
594 if res != null then return res
595 res = new MGenericType(self, mtype_arguments)
596 self.get_mtype_cache[mtype_arguments.to_a] = res
597 return res
598 end
599
600 private var get_mtype_cache = new HashMap[Array[MType], MGenericType]
601
602 # Is there a `new` factory to allow the pseudo instantiation?
603 var has_new_factory = false is writable
604
605 # Is `self` a standard or abstract class kind?
606 var is_class: Bool is lazy do return kind == concrete_kind or kind == abstract_kind
607
608 # Is `self` an interface kind?
609 var is_interface: Bool is lazy do return kind == interface_kind
610
611 # Is `self` an enum kind?
612 var is_enum: Bool is lazy do return kind == enum_kind
613
614 # Is `self` and abstract class?
615 var is_abstract: Bool is lazy do return kind == abstract_kind
616
617 redef var is_test is lazy do return intro.is_test
618
619 redef fun mdoc_or_fallback
620 do
621 # Don’t use `intro.mdoc_or_fallback` because it would create an infinite
622 # recursion.
623 return intro.mdoc
624 end
625 end
626
627
628 # A definition (an introduction or a refinement) of a class in a module
629 #
630 # A `MClassDef` is associated with an explicit (or almost) definition of a
631 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
632 # a specific class and a specific module, and contains declarations like super-classes
633 # or properties.
634 #
635 # It is the class definitions that are the backbone of most things in the model:
636 # ClassDefs are defined with regard with other classdefs.
637 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
638 #
639 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
640 class MClassDef
641 super MEntity
642
643 # The module where the definition is
644 var mmodule: MModule
645
646 # The associated `MClass`
647 var mclass: MClass is noinit
648
649 # The bounded type associated to the mclassdef
650 #
651 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
652 # are the same type.
653 #
654 # Example:
655 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
656 # If you want Array[E], then see `mclass.mclass_type`
657 #
658 # ENSURE: `bound_mtype.mclass == self.mclass`
659 var bound_mtype: MClassType
660
661 redef var location
662
663 redef fun visibility do return mclass.visibility
664
665 # Internal name combining the module and the class
666 # Example: "mymodule$MyClass"
667 redef var to_s is noinit
668
669 init
670 do
671 self.mclass = bound_mtype.mclass
672 mmodule.add_mclassdef(self)
673 mclass.mclassdefs.add(self)
674 if mclass.intro_mmodule == mmodule then
675 assert not isset mclass._intro
676 mclass.intro = self
677 end
678 self.to_s = "{mmodule}${mclass}"
679 end
680
681 # Actually the name of the `mclass`
682 redef fun name do return mclass.name
683
684 # The module and class name separated by a '$'.
685 #
686 # The short-name of the class is used for introduction.
687 # Example: "my_module$MyClass"
688 #
689 # The full-name of the class is used for refinement.
690 # Example: "my_module$intro_module::MyClass"
691 redef var full_name is lazy do
692 if is_intro then
693 # public gives 'p$A'
694 # private gives 'p::m$A'
695 return "{mmodule.namespace_for(mclass.visibility)}${mclass.name}"
696 else if mclass.intro_mmodule.mpackage != mmodule.mpackage then
697 # public gives 'q::n$p::A'
698 # private gives 'q::n$p::m::A'
699 return "{mmodule.full_name}${mclass.full_name}"
700 else if mclass.visibility > private_visibility then
701 # public gives 'p::n$A'
702 return "{mmodule.full_name}${mclass.name}"
703 else
704 # private gives 'p::n$::m::A' (redundant p is omitted)
705 return "{mmodule.full_name}$::{mclass.intro_mmodule.name}::{mclass.name}"
706 end
707 end
708
709 redef var c_name is lazy do
710 if is_intro then
711 return "{mmodule.c_namespace_for(mclass.visibility)}___{mclass.c_name}"
712 else if mclass.intro_mmodule.mpackage == mmodule.mpackage and mclass.visibility > private_visibility then
713 return "{mmodule.c_name}___{mclass.name.to_cmangle}"
714 else
715 return "{mmodule.c_name}___{mclass.c_name}"
716 end
717 end
718
719 redef fun model do return mmodule.model
720
721 # All declared super-types
722 # FIXME: quite ugly but not better idea yet
723 var supertypes = new Array[MClassType]
724
725 # Register some super-types for the class (ie "super SomeType")
726 #
727 # The hierarchy must not already be set
728 # REQUIRE: `self.in_hierarchy == null`
729 fun set_supertypes(supertypes: Array[MClassType])
730 do
731 assert unique_invocation: self.in_hierarchy == null
732 var mmodule = self.mmodule
733 var model = mmodule.model
734 var mtype = self.bound_mtype
735
736 for supertype in supertypes do
737 self.supertypes.add(supertype)
738
739 # Register in full_type_specialization_hierarchy
740 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
741 # Register in intro_type_specialization_hierarchy
742 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
743 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
744 end
745 end
746
747 end
748
749 # Collect the super-types (set by set_supertypes) to build the hierarchy
750 #
751 # This function can only invoked once by class
752 # REQUIRE: `self.in_hierarchy == null`
753 # ENSURE: `self.in_hierarchy != null`
754 fun add_in_hierarchy
755 do
756 assert unique_invocation: self.in_hierarchy == null
757 var model = mmodule.model
758 var res = model.mclassdef_hierarchy.add_node(self)
759 self.in_hierarchy = res
760 var mtype = self.bound_mtype
761
762 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
763 # The simpliest way is to attach it to collect_mclassdefs
764 for mclassdef in mtype.collect_mclassdefs(mmodule) do
765 res.poset.add_edge(self, mclassdef)
766 end
767 end
768
769 # The view of the class definition in `mclassdef_hierarchy`
770 var in_hierarchy: nullable POSetElement[MClassDef] = null
771
772 # Is the definition the one that introduced `mclass`?
773 fun is_intro: Bool do return isset mclass._intro and mclass.intro == self
774
775 # All properties introduced by the classdef
776 var intro_mproperties = new Array[MProperty]
777
778 # All property introductions and redefinitions in `self` (not inheritance).
779 var mpropdefs = new Array[MPropDef]
780
781 # The special default_init constructor
782 var default_init: nullable MMethodDef = null is writable
783
784 # All property introductions and redefinitions (not inheritance) in `self` by its associated property.
785 var mpropdefs_by_property = new HashMap[MProperty, MPropDef]
786
787 redef fun mdoc_or_fallback do return mdoc or else mclass.mdoc_or_fallback
788 end
789
790 # A global static type
791 #
792 # MType are global to the model; it means that a `MType` is not bound to a
793 # specific `MModule`.
794 # This characteristic helps the reasoning about static types in a program
795 # since a single `MType` object always denote the same type.
796 #
797 # However, because a `MType` is global, it does not really have properties
798 # nor have subtypes to a hierarchy since the property and the class hierarchy
799 # depends of a module.
800 # Moreover, virtual types an formal generic parameter types also depends on
801 # a receiver to have sense.
802 #
803 # Therefore, most method of the types require a module and an anchor.
804 # The module is used to know what are the classes and the specialization
805 # links.
806 # The anchor is used to know what is the bound of the virtual types and formal
807 # generic parameter types.
808 #
809 # MType are not directly usable to get properties. See the `anchor_to` method
810 # and the `MClassType` class.
811 #
812 # FIXME: the order of the parameters is not the best. We mus pick on from:
813 # * foo(mmodule, anchor, othertype)
814 # * foo(othertype, anchor, mmodule)
815 # * foo(anchor, mmodule, othertype)
816 # * foo(othertype, mmodule, anchor)
817 abstract class MType
818 super MEntity
819
820 redef fun name do return to_s
821
822 # Return true if `self` is an subtype of `sup`.
823 # The typing is done using the standard typing policy of Nit.
824 #
825 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
826 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
827 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
828 do
829 var sub = self
830 if sub == sup then return true
831
832 #print "1.is {sub} a {sup}? ===="
833
834 if anchor == null then
835 assert not sub.need_anchor
836 assert not sup.need_anchor
837 else
838 # First, resolve the formal types to the simplest equivalent forms in the receiver
839 assert sub.can_resolve_for(anchor, null, mmodule)
840 sub = sub.lookup_fixed(mmodule, anchor)
841 assert sup.can_resolve_for(anchor, null, mmodule)
842 sup = sup.lookup_fixed(mmodule, anchor)
843 end
844
845 # Does `sup` accept null or not?
846 # Discard the nullable marker if it exists
847 var sup_accept_null = false
848 if sup isa MNullableType then
849 sup_accept_null = true
850 sup = sup.mtype
851 else if sup isa MNotNullType then
852 sup = sup.mtype
853 else if sup isa MNullType then
854 sup_accept_null = true
855 end
856
857 # Can `sub` provide null or not?
858 # Thus we can match with `sup_accept_null`
859 # Also discard the nullable marker if it exists
860 var sub_reject_null = false
861 if sub isa MNullableType then
862 if not sup_accept_null then return false
863 sub = sub.mtype
864 else if sub isa MNotNullType then
865 sub_reject_null = true
866 sub = sub.mtype
867 else if sub isa MNullType then
868 return sup_accept_null
869 end
870 # Now the case of direct null and nullable is over.
871
872 # If `sub` is a formal type, then it is accepted if its bound is accepted
873 while sub isa MFormalType do
874 #print "3.is {sub} a {sup}?"
875
876 # A unfixed formal type can only accept itself
877 if sub == sup then return true
878
879 assert anchor != null
880 sub = sub.lookup_bound(mmodule, anchor)
881 if sub_reject_null then sub = sub.as_notnull
882
883 #print "3.is {sub} a {sup}?"
884
885 # Manage the second layer of null/nullable
886 if sub isa MNullableType then
887 if not sup_accept_null and not sub_reject_null then return false
888 sub = sub.mtype
889 else if sub isa MNotNullType then
890 sub_reject_null = true
891 sub = sub.mtype
892 else if sub isa MNullType then
893 return sup_accept_null
894 end
895 end
896 #print "4.is {sub} a {sup}? <- no more resolution"
897
898 if sub isa MBottomType or sub isa MErrorType then
899 return true
900 end
901
902 assert sub isa MClassType else print_error "{sub} <? {sup}" # It is the only remaining type
903
904 # Handle sup-type when the sub-type is class-based (other cases must have be identified before).
905 if sup isa MFormalType or sup isa MNullType or sup isa MBottomType or sup isa MErrorType then
906 # These types are not super-types of Class-based types.
907 return false
908 end
909
910 assert sup isa MClassType else print_error "got {sup} {sub.inspect}" # It is the only remaining type
911
912 # Now both are MClassType, we need to dig
913
914 if sub == sup then return true
915
916 if anchor == null then anchor = sub # UGLY: any anchor will work
917 var resolved_sub = sub.anchor_to(mmodule, anchor)
918 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
919 if not res then return false
920 if not sup isa MGenericType then return true
921 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
922 assert sub2.mclass == sup.mclass
923 for i in [0..sup.mclass.arity[ do
924 var sub_arg = sub2.arguments[i]
925 var sup_arg = sup.arguments[i]
926 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
927 if not res then return false
928 end
929 return true
930 end
931
932 # The base class type on which self is based
933 #
934 # This base type is used to get property (an internally to perform
935 # unsafe type comparison).
936 #
937 # Beware: some types (like null) are not based on a class thus this
938 # method will crash
939 #
940 # Basically, this function transform the virtual types and parameter
941 # types to their bounds.
942 #
943 # Example
944 #
945 # class A end
946 # class B super A end
947 # class X end
948 # class Y super X end
949 # class G[T: A]
950 # type U: X
951 # end
952 # class H
953 # super G[B]
954 # redef type U: Y
955 # end
956 #
957 # Map[T,U] anchor_to H #-> Map[B,Y]
958 #
959 # Explanation of the example:
960 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
961 # because "redef type U: Y". Therefore, Map[T, U] is bound to
962 # Map[B, Y]
963 #
964 # REQUIRE: `self.need_anchor implies anchor != null`
965 # ENSURE: `not self.need_anchor implies result == self`
966 # ENSURE: `not result.need_anchor`
967 fun anchor_to(mmodule: MModule, anchor: nullable MClassType): MType
968 do
969 if not need_anchor then return self
970 assert anchor != null and not anchor.need_anchor
971 # Just resolve to the anchor and clear all the virtual types
972 var res = self.resolve_for(anchor, null, mmodule, true)
973 assert not res.need_anchor
974 return res
975 end
976
977 # Does `self` contain a virtual type or a formal generic parameter type?
978 # In order to remove those types, you usually want to use `anchor_to`.
979 fun need_anchor: Bool do return true
980
981 # Return the supertype when adapted to a class.
982 #
983 # In Nit, for each super-class of a type, there is a equivalent super-type.
984 #
985 # Example:
986 #
987 # ~~~nitish
988 # class G[T, U] end
989 # class H[V] super G[V, Bool] end
990 #
991 # H[Int] supertype_to G #-> G[Int, Bool]
992 # ~~~
993 #
994 # REQUIRE: `super_mclass` is a super-class of `self`
995 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
996 # ENSURE: `result.mclass = super_mclass`
997 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
998 do
999 if super_mclass.arity == 0 then return super_mclass.mclass_type
1000 if self isa MClassType and self.mclass == super_mclass then return self
1001 var resolved_self
1002 if self.need_anchor then
1003 assert anchor != null
1004 resolved_self = self.anchor_to(mmodule, anchor)
1005 else
1006 resolved_self = self
1007 end
1008 var supertypes = resolved_self.collect_mtypes(mmodule)
1009 for supertype in supertypes do
1010 if supertype.mclass == super_mclass then
1011 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1012 return supertype.resolve_for(self, anchor, mmodule, false)
1013 end
1014 end
1015 abort
1016 end
1017
1018 # Replace formals generic types in self with resolved values in `mtype`
1019 # If `cleanup_virtual` is true, then virtual types are also replaced
1020 # with their bounds.
1021 #
1022 # This function returns self if `need_anchor` is false.
1023 #
1024 # ## Example 1
1025 #
1026 # ~~~
1027 # class G[E] end
1028 # class H[F] super G[F] end
1029 # class X[Z] end
1030 # ~~~
1031 #
1032 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
1033 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
1034 #
1035 # Explanation of the example:
1036 # * Array[E].need_anchor is true because there is a formal generic parameter type E
1037 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
1038 # * Since "H[F] super G[F]", E is in fact F for H
1039 # * More specifically, in H[Int], E is Int
1040 # * So, in H[Int], Array[E] is Array[Int]
1041 #
1042 # This function is mainly used to inherit a signature.
1043 # Because, unlike `anchor_to`, we do not want a full resolution of
1044 # a type but only an adapted version of it.
1045 #
1046 # ## Example 2
1047 #
1048 # ~~~
1049 # class A[E]
1050 # fun foo(e:E):E is abstract
1051 # end
1052 # class B super A[Int] end
1053 # ~~~
1054 #
1055 # The signature on foo is (e: E): E
1056 # If we resolve the signature for B, we get (e:Int):Int
1057 #
1058 # ## Example 3
1059 #
1060 # ~~~nitish
1061 # class A[E]
1062 # fun foo(e:E):E is abstract
1063 # end
1064 # class C[F]
1065 # var a: A[Array[F]]
1066 # fun bar do a.foo(x) # <- x is here
1067 # end
1068 # ~~~
1069 #
1070 # The first question is: is foo available on `a`?
1071 #
1072 # The static type of a is `A[Array[F]]`, that is an open type.
1073 # in order to find a method `foo`, whe must look at a resolved type.
1074 #
1075 # A[Array[F]].anchor_to(C[nullable Object]) #-> A[Array[nullable Object]]
1076 #
1077 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
1078 #
1079 # The next question is: what is the accepted types for `x`?
1080 #
1081 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
1082 #
1083 # E.resolve_for(A[Array[F]],C[nullable Object]) #-> Array[F]
1084 #
1085 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
1086 #
1087 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
1088 # two function instead of one seems also to be a bad idea.
1089 #
1090 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
1091 # ENSURE: `not self.need_anchor implies result == self`
1092 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
1093
1094 # Resolve formal type to its verbatim bound.
1095 # If the type is not formal, just return self
1096 #
1097 # The result is returned exactly as declared in the "type" property (verbatim).
1098 # So it could be another formal type.
1099 #
1100 # In case of conflicts or inconsistencies in the model, the method returns a `MErrorType`.
1101 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self
1102
1103 # Resolve the formal type to its simplest equivalent form.
1104 #
1105 # Formal types are either free or fixed.
1106 # When it is fixed, it means that it is equivalent with a simpler type.
1107 # When a formal type is free, it means that it is only equivalent with itself.
1108 # This method return the most simple equivalent type of `self`.
1109 #
1110 # This method is mainly used for subtype test in order to sanely compare fixed.
1111 #
1112 # By default, return self.
1113 # See the redefinitions for specific behavior in each kind of type.
1114 #
1115 # In case of conflicts or inconsistencies in the model, the method returns a `MErrorType`.
1116 fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self
1117
1118 # Is the type a `MErrorType` or contains an `MErrorType`?
1119 #
1120 # `MErrorType` are used in result with conflict or inconsistencies.
1121 #
1122 # See `is_legal_in` to check conformity with generic bounds.
1123 fun is_ok: Bool do return true
1124
1125 # Is the type legal in a given `mmodule` (with an optional `anchor`)?
1126 #
1127 # A type is valid if:
1128 #
1129 # * it does not contain a `MErrorType` (see `is_ok`).
1130 # * its generic formal arguments are within their bounds.
1131 fun is_legal_in(mmodule: MModule, anchor: nullable MClassType): Bool do return is_ok
1132
1133 # Can the type be resolved?
1134 #
1135 # In order to resolve open types, the formal types must make sence.
1136 #
1137 # ## Example
1138 #
1139 # class A[E]
1140 # end
1141 # class B[F]
1142 # end
1143 #
1144 # ~~~nitish
1145 # E.can_resolve_for(A[Int]) #-> true, E make sense in A
1146 #
1147 # E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
1148 #
1149 # B[E].can_resolve_for(A[F], B[Object]) #-> true,
1150 # # B[E] is a red hearing only the E is important,
1151 # # E make sense in A
1152 # ~~~
1153 #
1154 # REQUIRE: `anchor != null implies not anchor.need_anchor`
1155 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
1156 # ENSURE: `not self.need_anchor implies result == true`
1157 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
1158
1159 # Return the nullable version of the type
1160 # If the type is already nullable then self is returned
1161 fun as_nullable: MType
1162 do
1163 var res = self.as_nullable_cache
1164 if res != null then return res
1165 res = new MNullableType(self)
1166 self.as_nullable_cache = res
1167 return res
1168 end
1169
1170 # Remove the base type of a decorated (proxy) type.
1171 # Is the type is not decorated, then self is returned.
1172 #
1173 # Most of the time it is used to return the not nullable version of a nullable type.
1174 # In this case, this just remove the `nullable` notation, but the result can still contains null.
1175 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
1176 # If you really want to exclude the `null` value, then use `as_notnull`
1177 fun undecorate: MType
1178 do
1179 return self
1180 end
1181
1182 # Returns the not null version of the type.
1183 # That is `self` minus the `null` value.
1184 #
1185 # For most types, this return `self`.
1186 # For formal types, this returns a special `MNotNullType`
1187 fun as_notnull: MType do return self
1188
1189 private var as_nullable_cache: nullable MType = null
1190
1191
1192 # The depth of the type seen as a tree.
1193 #
1194 # * A -> 1
1195 # * G[A] -> 2
1196 # * H[A, B] -> 2
1197 # * H[G[A], B] -> 3
1198 #
1199 # Formal types have a depth of 1.
1200 # Only `MClassType` and `MFormalType` nodes are counted.
1201 fun depth: Int
1202 do
1203 return 1
1204 end
1205
1206 # The length of the type seen as a tree.
1207 #
1208 # * A -> 1
1209 # * G[A] -> 2
1210 # * H[A, B] -> 3
1211 # * H[G[A], B] -> 4
1212 #
1213 # Formal types have a length of 1.
1214 # Only `MClassType` and `MFormalType` nodes are counted.
1215 fun length: Int
1216 do
1217 return 1
1218 end
1219
1220 # Compute all the classdefs inherited/imported.
1221 # The returned set contains:
1222 # * the class definitions from `mmodule` and its imported modules
1223 # * the class definitions of this type and its super-types
1224 #
1225 # This function is used mainly internally.
1226 #
1227 # REQUIRE: `not self.need_anchor`
1228 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
1229
1230 # Compute all the super-classes.
1231 # This function is used mainly internally.
1232 #
1233 # REQUIRE: `not self.need_anchor`
1234 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
1235
1236 # Compute all the declared super-types.
1237 # Super-types are returned as declared in the classdefs (verbatim).
1238 # This function is used mainly internally.
1239 #
1240 # REQUIRE: `not self.need_anchor`
1241 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
1242
1243 # Is the property in self for a given module
1244 # This method does not filter visibility or whatever
1245 #
1246 # REQUIRE: `not self.need_anchor`
1247 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
1248 do
1249 assert not self.need_anchor
1250 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
1251 end
1252 end
1253
1254 # A type based on a class.
1255 #
1256 # `MClassType` have properties (see `has_mproperty`).
1257 class MClassType
1258 super MType
1259
1260 # The associated class
1261 var mclass: MClass
1262
1263 redef fun model do return self.mclass.intro_mmodule.model
1264
1265 redef fun location do return mclass.location
1266
1267 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1268
1269 # The formal arguments of the type
1270 # ENSURE: `result.length == self.mclass.arity`
1271 var arguments = new Array[MType]
1272
1273 redef fun to_s do return mclass.to_s
1274
1275 redef fun full_name do return mclass.full_name
1276
1277 redef fun c_name do return mclass.c_name
1278
1279 redef fun need_anchor do return false
1280
1281 redef fun anchor_to(mmodule, anchor): MClassType
1282 do
1283 return super.as(MClassType)
1284 end
1285
1286 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1287
1288 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1289
1290 redef fun collect_mclassdefs(mmodule)
1291 do
1292 assert not self.need_anchor
1293 var cache = self.collect_mclassdefs_cache
1294 if not cache.has_key(mmodule) then
1295 self.collect_things(mmodule)
1296 end
1297 return cache[mmodule]
1298 end
1299
1300 redef fun collect_mclasses(mmodule)
1301 do
1302 if collect_mclasses_last_module == mmodule then return collect_mclasses_last_module_cache
1303 assert not self.need_anchor
1304 var cache = self.collect_mclasses_cache
1305 if not cache.has_key(mmodule) then
1306 self.collect_things(mmodule)
1307 end
1308 var res = cache[mmodule]
1309 collect_mclasses_last_module = mmodule
1310 collect_mclasses_last_module_cache = res
1311 return res
1312 end
1313
1314 private var collect_mclasses_last_module: nullable MModule = null
1315 private var collect_mclasses_last_module_cache: Set[MClass] is noinit
1316
1317 redef fun collect_mtypes(mmodule)
1318 do
1319 assert not self.need_anchor
1320 var cache = self.collect_mtypes_cache
1321 if not cache.has_key(mmodule) then
1322 self.collect_things(mmodule)
1323 end
1324 return cache[mmodule]
1325 end
1326
1327 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1328 private fun collect_things(mmodule: MModule)
1329 do
1330 var res = new HashSet[MClassDef]
1331 var seen = new HashSet[MClass]
1332 var types = new HashSet[MClassType]
1333 seen.add(self.mclass)
1334 var todo = [self.mclass]
1335 while not todo.is_empty do
1336 var mclass = todo.pop
1337 #print "process {mclass}"
1338 for mclassdef in mclass.mclassdefs do
1339 if not mmodule.in_importation <= mclassdef.mmodule then continue
1340 #print " process {mclassdef}"
1341 res.add(mclassdef)
1342 for supertype in mclassdef.supertypes do
1343 types.add(supertype)
1344 var superclass = supertype.mclass
1345 if seen.has(superclass) then continue
1346 #print " add {superclass}"
1347 seen.add(superclass)
1348 todo.add(superclass)
1349 end
1350 end
1351 end
1352 collect_mclassdefs_cache[mmodule] = res
1353 collect_mclasses_cache[mmodule] = seen
1354 collect_mtypes_cache[mmodule] = types
1355 end
1356
1357 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1358 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1359 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1360
1361 redef fun mdoc_or_fallback do return mclass.mdoc_or_fallback
1362 end
1363
1364 # A type based on a generic class.
1365 # A generic type a just a class with additional formal generic arguments.
1366 class MGenericType
1367 super MClassType
1368
1369 redef var arguments
1370
1371 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1372
1373 init
1374 do
1375 assert self.mclass.arity == arguments.length
1376
1377 self.need_anchor = false
1378 for t in arguments do
1379 if t.need_anchor then
1380 self.need_anchor = true
1381 break
1382 end
1383 end
1384
1385 self.to_s = "{mclass}[{arguments.join(", ")}]"
1386 end
1387
1388 # The short-name of the class, then the full-name of each type arguments within brackets.
1389 # Example: `"Map[String, List[Int]]"`
1390 redef var to_s is noinit
1391
1392 # The full-name of the class, then the full-name of each type arguments within brackets.
1393 # Example: `"core::Map[core::String, core::List[core::Int]]"`
1394 redef var full_name is lazy do
1395 var args = new Array[String]
1396 for t in arguments do
1397 args.add t.full_name
1398 end
1399 return "{mclass.full_name}[{args.join(", ")}]"
1400 end
1401
1402 redef var c_name is lazy do
1403 var res = mclass.c_name
1404 # Note: because the arity is known, a prefix notation is enough
1405 for t in arguments do
1406 res += "__"
1407 res += t.c_name
1408 end
1409 return res.to_s
1410 end
1411
1412 redef var need_anchor is noinit
1413
1414 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1415 do
1416 if not need_anchor then return self
1417 assert can_resolve_for(mtype, anchor, mmodule)
1418 var types = new Array[MType]
1419 for t in arguments do
1420 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1421 end
1422 return mclass.get_mtype(types)
1423 end
1424
1425 redef fun can_resolve_for(mtype, anchor, mmodule)
1426 do
1427 if not need_anchor then return true
1428 for t in arguments do
1429 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1430 end
1431 return true
1432 end
1433
1434 redef fun is_ok
1435 do
1436 for t in arguments do if not t.is_ok then return false
1437 return super
1438 end
1439
1440 redef fun is_legal_in(mmodule, anchor)
1441 do
1442 var mtype
1443 if need_anchor then
1444 assert anchor != null
1445 mtype = anchor_to(mmodule, anchor)
1446 else
1447 mtype = self
1448 end
1449 if not mtype.is_ok then return false
1450 return mtype.is_subtype(mmodule, null, mtype.mclass.intro.bound_mtype)
1451 end
1452
1453 redef fun depth
1454 do
1455 var dmax = 0
1456 for a in self.arguments do
1457 var d = a.depth
1458 if d > dmax then dmax = d
1459 end
1460 return dmax + 1
1461 end
1462
1463 redef fun length
1464 do
1465 var res = 1
1466 for a in self.arguments do
1467 res += a.length
1468 end
1469 return res
1470 end
1471 end
1472
1473 # A formal type (either virtual of parametric).
1474 #
1475 # The main issue with formal types is that they offer very little information on their own
1476 # and need a context (anchor and mmodule) to be useful.
1477 abstract class MFormalType
1478 super MType
1479
1480 redef var as_notnull = new MNotNullType(self) is lazy
1481 end
1482
1483 # A virtual formal type.
1484 class MVirtualType
1485 super MFormalType
1486
1487 # The property associated with the type.
1488 # Its the definitions of this property that determine the bound or the virtual type.
1489 var mproperty: MVirtualTypeProp
1490
1491 redef fun location do return mproperty.location
1492
1493 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1494
1495 redef fun lookup_bound(mmodule, resolved_receiver)
1496 do
1497 # There is two possible invalid cases: the vt does not exists in resolved_receiver or the bound is broken
1498 if not resolved_receiver.has_mproperty(mmodule, mproperty) then return new MErrorType(model)
1499 return lookup_single_definition(mmodule, resolved_receiver).bound or else new MErrorType(model)
1500 end
1501
1502 private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef
1503 do
1504 assert not resolved_receiver.need_anchor
1505 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1506 if props.is_empty then
1507 abort
1508 else if props.length == 1 then
1509 return props.first
1510 end
1511 var types = new ArraySet[MType]
1512 var res = props.first
1513 for p in props do
1514 types.add(p.bound.as(not null))
1515 if not res.is_fixed then res = p
1516 end
1517 if types.length == 1 then
1518 return res
1519 end
1520 abort
1521 end
1522
1523 # A VT is fixed when:
1524 # * the VT is (re-)defined with the annotation `is fixed`
1525 # * the receiver is an enum class since there is no subtype that can
1526 # redefine this virtual type
1527 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1528 do
1529 assert not resolved_receiver.need_anchor
1530 resolved_receiver = resolved_receiver.undecorate
1531 assert resolved_receiver isa MClassType # It is the only remaining type
1532
1533 var prop = lookup_single_definition(mmodule, resolved_receiver)
1534 var res = prop.bound
1535 if res == null then return new MErrorType(model)
1536
1537 # Recursively lookup the fixed result
1538 res = res.lookup_fixed(mmodule, resolved_receiver)
1539
1540 # For a fixed VT, return the resolved bound
1541 if prop.is_fixed then return res
1542
1543 # For a enum receiver return the bound
1544 if resolved_receiver.mclass.kind == enum_kind then return res
1545
1546 return self
1547 end
1548
1549 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1550 do
1551 if not cleanup_virtual then return self
1552 assert can_resolve_for(mtype, anchor, mmodule)
1553
1554 if mproperty.is_selftype then return mtype
1555
1556 # self is a virtual type declared (or inherited) in mtype
1557 # The point of the function it to get the bound of the virtual type that make sense for mtype
1558 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1559 #print "{class_name}: {self}/{mtype}/{anchor}?"
1560 var resolved_receiver
1561 if mtype.need_anchor then
1562 assert anchor != null
1563 resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true)
1564 else
1565 resolved_receiver = mtype
1566 end
1567 # Now, we can get the bound
1568 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1569 # The bound is exactly as declared in the "type" property, so we must resolve it again
1570 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1571
1572 return res
1573 end
1574
1575 redef fun can_resolve_for(mtype, anchor, mmodule)
1576 do
1577 if mtype.need_anchor then
1578 assert anchor != null
1579 mtype = mtype.anchor_to(mmodule, anchor)
1580 end
1581 return mtype.has_mproperty(mmodule, mproperty)
1582 end
1583
1584 redef fun to_s do return self.mproperty.to_s
1585
1586 redef fun full_name do return self.mproperty.full_name
1587
1588 redef fun c_name do return self.mproperty.c_name
1589
1590 redef fun mdoc_or_fallback do return mproperty.mdoc_or_fallback
1591 end
1592
1593 # The type associated to a formal parameter generic type of a class
1594 #
1595 # Each parameter type is associated to a specific class.
1596 # It means that all refinements of a same class "share" the parameter type,
1597 # but that a generic subclass has its own parameter types.
1598 #
1599 # However, in the sense of the meta-model, a parameter type of a class is
1600 # a valid type in a subclass. The "in the sense of the meta-model" is
1601 # important because, in the Nit language, the programmer cannot refers
1602 # directly to the parameter types of the super-classes.
1603 #
1604 # Example:
1605 #
1606 # class A[E]
1607 # fun e: E is abstract
1608 # end
1609 # class B[F]
1610 # super A[Array[F]]
1611 # end
1612 #
1613 # In the class definition B[F], `F` is a valid type but `E` is not.
1614 # However, `self.e` is a valid method call, and the signature of `e` is
1615 # declared `e: E`.
1616 #
1617 # Note that parameter types are shared among class refinements.
1618 # Therefore parameter only have an internal name (see `to_s` for details).
1619 class MParameterType
1620 super MFormalType
1621
1622 # The generic class where the parameter belong
1623 var mclass: MClass
1624
1625 redef fun model do return self.mclass.intro_mmodule.model
1626
1627 redef fun location do return mclass.location
1628
1629 # The position of the parameter (0 for the first parameter)
1630 # FIXME: is `position` a better name?
1631 var rank: Int
1632
1633 redef var name
1634
1635 redef fun to_s do return name
1636
1637 redef var full_name is lazy do return "{mclass.full_name}::{name}"
1638
1639 redef var c_name is lazy do return mclass.c_name + "__" + "#{name}".to_cmangle
1640
1641 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1642 do
1643 assert not resolved_receiver.need_anchor
1644 resolved_receiver = resolved_receiver.undecorate
1645 assert resolved_receiver isa MClassType # It is the only remaining type
1646 var goalclass = self.mclass
1647 if resolved_receiver.mclass == goalclass then
1648 return resolved_receiver.arguments[self.rank]
1649 end
1650 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1651 for t in supertypes do
1652 if t.mclass == goalclass then
1653 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1654 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1655 var res = t.arguments[self.rank]
1656 return res
1657 end
1658 end
1659 # Cannot found `self` in `resolved_receiver`
1660 return new MErrorType(model)
1661 end
1662
1663 # A PT is fixed when:
1664 # * The `resolved_receiver` is a subclass of `self.mclass`,
1665 # so it is necessarily fixed in a `super` clause, either with a normal type
1666 # or with another PT.
1667 # See `resolve_for` for examples about related issues.
1668 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1669 do
1670 assert not resolved_receiver.need_anchor
1671 resolved_receiver = resolved_receiver.undecorate
1672 assert resolved_receiver isa MClassType # It is the only remaining type
1673 var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false)
1674 return res
1675 end
1676
1677 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1678 do
1679 assert can_resolve_for(mtype, anchor, mmodule)
1680 #print "{class_name}: {self}/{mtype}/{anchor}?"
1681
1682 if mtype isa MGenericType and mtype.mclass == self.mclass then
1683 return mtype.arguments[self.rank]
1684 end
1685
1686 # self is a parameter type of mtype (or of a super-class of mtype)
1687 # The point of the function it to get the bound of the virtual type that make sense for mtype
1688 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1689 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1690 var resolved_receiver
1691 if mtype.need_anchor then
1692 assert anchor != null
1693 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1694 else
1695 resolved_receiver = mtype
1696 end
1697 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1698 if resolved_receiver isa MParameterType then
1699 assert anchor != null
1700 assert resolved_receiver.mclass == anchor.mclass
1701 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1702 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1703 end
1704 assert resolved_receiver isa MClassType # It is the only remaining type
1705
1706 # Eh! The parameter is in the current class.
1707 # So we return the corresponding argument, no mater what!
1708 if resolved_receiver.mclass == self.mclass then
1709 var res = resolved_receiver.arguments[self.rank]
1710 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1711 return res
1712 end
1713
1714 if resolved_receiver.need_anchor then
1715 assert anchor != null
1716 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1717 end
1718 # Now, we can get the bound
1719 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1720 # The bound is exactly as declared in the "type" property, so we must resolve it again
1721 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1722
1723 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1724
1725 return res
1726 end
1727
1728 redef fun can_resolve_for(mtype, anchor, mmodule)
1729 do
1730 if mtype.need_anchor then
1731 assert anchor != null
1732 mtype = mtype.anchor_to(mmodule, anchor)
1733 end
1734 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1735 end
1736 end
1737
1738 # A type that decorates another type.
1739 #
1740 # The point of this class is to provide a common implementation of sevices that just forward to the original type.
1741 # Specific decorator are expected to redefine (or to extend) the default implementation as this suit them.
1742 abstract class MProxyType
1743 super MType
1744 # The base type
1745 var mtype: MType
1746
1747 redef fun location do return mtype.location
1748
1749 redef fun model do return self.mtype.model
1750 redef fun need_anchor do return mtype.need_anchor
1751 redef fun as_nullable do return mtype.as_nullable
1752 redef fun as_notnull do return mtype.as_notnull
1753 redef fun undecorate do return mtype.undecorate
1754 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1755 do
1756 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1757 return res
1758 end
1759
1760 redef fun can_resolve_for(mtype, anchor, mmodule)
1761 do
1762 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1763 end
1764
1765 redef fun is_ok do return mtype.is_ok
1766
1767 redef fun is_legal_in(mmodule, anchor) do return mtype.is_legal_in(mmodule, anchor)
1768
1769 redef fun lookup_fixed(mmodule, resolved_receiver)
1770 do
1771 var t = mtype.lookup_fixed(mmodule, resolved_receiver)
1772 return t
1773 end
1774
1775 redef fun depth do return self.mtype.depth
1776
1777 redef fun length do return self.mtype.length
1778
1779 redef fun collect_mclassdefs(mmodule)
1780 do
1781 assert not self.need_anchor
1782 return self.mtype.collect_mclassdefs(mmodule)
1783 end
1784
1785 redef fun collect_mclasses(mmodule)
1786 do
1787 assert not self.need_anchor
1788 return self.mtype.collect_mclasses(mmodule)
1789 end
1790
1791 redef fun collect_mtypes(mmodule)
1792 do
1793 assert not self.need_anchor
1794 return self.mtype.collect_mtypes(mmodule)
1795 end
1796 end
1797
1798 # A type prefixed with "nullable"
1799 class MNullableType
1800 super MProxyType
1801
1802 init
1803 do
1804 self.to_s = "nullable {mtype}"
1805 end
1806
1807 redef var to_s is noinit
1808
1809 redef var full_name is lazy do return "nullable {mtype.full_name}"
1810
1811 redef var c_name is lazy do return "nullable__{mtype.c_name}"
1812
1813 redef fun as_nullable do return self
1814 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1815 do
1816 var res = super
1817 return res.as_nullable
1818 end
1819
1820 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable`
1821 redef fun lookup_fixed(mmodule, resolved_receiver)
1822 do
1823 var t = super
1824 if t == mtype then return self
1825 return t.as_nullable
1826 end
1827
1828 redef fun mdoc_or_fallback do return mtype.mdoc_or_fallback
1829 end
1830
1831 # A non-null version of a formal type.
1832 #
1833 # When a formal type in bounded to a nullable type, this is the type of the not null version of it.
1834 class MNotNullType
1835 super MProxyType
1836
1837 redef fun to_s do return "not null {mtype}"
1838 redef var full_name is lazy do return "not null {mtype.full_name}"
1839 redef var c_name is lazy do return "notnull__{mtype.c_name}"
1840
1841 redef fun as_notnull do return self
1842
1843 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1844 do
1845 var res = super
1846 return res.as_notnull
1847 end
1848
1849 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_notnull`
1850 redef fun lookup_fixed(mmodule, resolved_receiver)
1851 do
1852 var t = super
1853 if t == mtype then return self
1854 return t.as_notnull
1855 end
1856 end
1857
1858 # The type of the only value null
1859 #
1860 # The is only one null type per model, see `MModel::null_type`.
1861 class MNullType
1862 super MType
1863 redef var model
1864 redef fun to_s do return "null"
1865 redef fun full_name do return "null"
1866 redef fun c_name do return "null"
1867 redef fun as_nullable do return self
1868
1869 redef var as_notnull: MBottomType = new MBottomType(model) is lazy
1870 redef fun need_anchor do return false
1871 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1872 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1873
1874 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1875
1876 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1877
1878 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1879 end
1880
1881 # The special universal most specific type.
1882 #
1883 # This type is intended to be only used internally for type computation or analysis and should not be exposed to the user.
1884 # The bottom type can de used to denote things that are dead (no instance).
1885 #
1886 # Semantically it is the singleton `null.as_notnull`.
1887 # Is also means that `self.as_nullable == null`.
1888 class MBottomType
1889 super MType
1890 redef var model
1891 redef fun to_s do return "bottom"
1892 redef fun full_name do return "bottom"
1893 redef fun c_name do return "bottom"
1894 redef fun as_nullable do return model.null_type
1895 redef fun as_notnull do return self
1896 redef fun need_anchor do return false
1897 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1898 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1899
1900 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1901
1902 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1903
1904 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1905 end
1906
1907 # A special type used as a silent error marker when building types.
1908 #
1909 # This type is intended to be only used internally for type operation and should not be exposed to the user.
1910 # The error type can de used to denote things that are conflicting or inconsistent.
1911 #
1912 # Some methods on types can return a `MErrorType` to denote a broken or a conflicting result.
1913 # Use `is_ok` to check if a type is (or contains) a `MErrorType` .
1914 class MErrorType
1915 super MType
1916 redef var model
1917 redef fun to_s do return "error"
1918 redef fun full_name do return "error"
1919 redef fun c_name do return "error"
1920 redef fun need_anchor do return false
1921 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1922 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1923 redef fun is_ok do return false
1924
1925 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1926
1927 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1928
1929 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1930 end
1931
1932 # A signature of a method
1933 class MSignature
1934 super MType
1935
1936 # The each parameter (in order)
1937 var mparameters: Array[MParameter]
1938
1939 # Returns a parameter named `name`, if any.
1940 fun mparameter_by_name(name: String): nullable MParameter
1941 do
1942 for p in mparameters do
1943 if p.name == name then return p
1944 end
1945 return null
1946 end
1947
1948 # The return type (null for a procedure)
1949 var return_mtype: nullable MType
1950
1951 redef fun depth
1952 do
1953 var dmax = 0
1954 var t = self.return_mtype
1955 if t != null then dmax = t.depth
1956 for p in mparameters do
1957 var d = p.mtype.depth
1958 if d > dmax then dmax = d
1959 end
1960 return dmax + 1
1961 end
1962
1963 redef fun length
1964 do
1965 var res = 1
1966 var t = self.return_mtype
1967 if t != null then res += t.length
1968 for p in mparameters do
1969 res += p.mtype.length
1970 end
1971 return res
1972 end
1973
1974 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1975 init
1976 do
1977 var vararg_rank = -1
1978 for i in [0..mparameters.length[ do
1979 var parameter = mparameters[i]
1980 if parameter.is_vararg then
1981 if vararg_rank >= 0 then
1982 # If there is more than one vararg,
1983 # consider that additional arguments cannot be mapped.
1984 vararg_rank = -1
1985 break
1986 end
1987 vararg_rank = i
1988 end
1989 end
1990 self.vararg_rank = vararg_rank
1991 end
1992
1993 # The rank of the main ellipsis (`...`) for vararg (starting from 0).
1994 # value is -1 if there is no vararg.
1995 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1996 #
1997 # From a model POV, a signature can contain more than one vararg parameter,
1998 # the `vararg_rank` just indicates the one that will receive the additional arguments.
1999 # However, currently, if there is more that one vararg parameter, no one will be the main one,
2000 # and additional arguments will be refused.
2001 var vararg_rank: Int is noinit
2002
2003 # The number of parameters
2004 fun arity: Int do return mparameters.length
2005
2006 redef fun to_s
2007 do
2008 var b = new FlatBuffer
2009 if not mparameters.is_empty then
2010 b.append("(")
2011 var last_mtype = null
2012 for i in [0..mparameters.length[ do
2013 var mparameter = mparameters[i]
2014
2015 # Group types that are common to contiguous parameters
2016 if mparameter.mtype != last_mtype and last_mtype != null then
2017 b.append(": ")
2018 b.append(last_mtype.to_s)
2019 end
2020
2021 if i > 0 then b.append(", ")
2022 b.append(mparameter.name)
2023
2024 if mparameter.is_vararg then
2025 b.append(": ")
2026 b.append(mparameter.mtype.to_s)
2027 b.append("...")
2028 last_mtype = null
2029 else
2030 last_mtype = mparameter.mtype
2031 end
2032 end
2033
2034 if last_mtype != null then
2035 b.append(": ")
2036 b.append(last_mtype.to_s)
2037 end
2038
2039 b.append(")")
2040 end
2041 var ret = self.return_mtype
2042 if ret != null then
2043 b.append(": ")
2044 b.append(ret.to_s)
2045 end
2046 return b.to_s
2047 end
2048
2049 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
2050 do
2051 var params = new Array[MParameter]
2052 for p in self.mparameters do
2053 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
2054 end
2055 var ret = self.return_mtype
2056 if ret != null then
2057 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
2058 end
2059 var res = new MSignature(params, ret)
2060 return res
2061 end
2062 end
2063
2064 # A parameter in a signature
2065 class MParameter
2066 super MEntity
2067
2068 # The name of the parameter
2069 redef var name
2070
2071 # The static type of the parameter
2072 var mtype: MType
2073
2074 # Is the parameter a vararg?
2075 var is_vararg: Bool
2076
2077 redef fun to_s
2078 do
2079 if is_vararg then
2080 return "{name}: {mtype}..."
2081 else
2082 return "{name}: {mtype}"
2083 end
2084 end
2085
2086 # Returns a new parameter with the `mtype` resolved.
2087 # See `MType::resolve_for` for details.
2088 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
2089 do
2090 if not self.mtype.need_anchor then return self
2091 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
2092 var res = new MParameter(self.name, newtype, self.is_vararg)
2093 return res
2094 end
2095
2096 redef fun model do return mtype.model
2097 end
2098
2099 # A service (global property) that generalize method, attribute, etc.
2100 #
2101 # `MProperty` are global to the model; it means that a `MProperty` is not bound
2102 # to a specific `MModule` nor a specific `MClass`.
2103 #
2104 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
2105 # and the other in subclasses and in refinements.
2106 #
2107 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
2108 # of any dynamic type).
2109 # For instance, a call site "x.foo" is associated to a `MProperty`.
2110 abstract class MProperty
2111 super MEntity
2112
2113 # The associated MPropDef subclass.
2114 # The two specialization hierarchy are symmetric.
2115 type MPROPDEF: MPropDef
2116
2117 # The classdef that introduce the property
2118 # While a property is not bound to a specific module, or class,
2119 # the introducing mclassdef is used for naming and visibility
2120 var intro_mclassdef: MClassDef
2121
2122 # The (short) name of the property
2123 redef var name
2124
2125 redef var location
2126
2127 redef fun mdoc_or_fallback
2128 do
2129 # Don’t use `intro.mdoc_or_fallback` because it would create an infinite
2130 # recursion.
2131 return intro.mdoc
2132 end
2133
2134 # The canonical name of the property.
2135 #
2136 # It is currently the short-`name` prefixed by the short-name of the class and the full-name of the module.
2137 # Example: "my_package::my_module::MyClass::my_method"
2138 #
2139 # The full-name of the module is needed because two distinct modules of the same package can
2140 # still refine the same class and introduce homonym properties.
2141 #
2142 # For public properties not introduced by refinement, the module name is not used.
2143 #
2144 # Example: `my_package::MyClass::My_method`
2145 redef var full_name is lazy do
2146 if intro_mclassdef.is_intro then
2147 return "{intro_mclassdef.mmodule.namespace_for(visibility)}::{intro_mclassdef.mclass.name}::{name}"
2148 else
2149 return "{intro_mclassdef.mmodule.full_name}::{intro_mclassdef.mclass.name}::{name}"
2150 end
2151 end
2152
2153 redef var c_name is lazy do
2154 # FIXME use `namespace_for`
2155 return "{intro_mclassdef.mmodule.c_name}__{intro_mclassdef.mclass.name.to_cmangle}__{name.to_cmangle}"
2156 end
2157
2158 # The visibility of the property
2159 redef var visibility
2160
2161 # Is the property usable as an initializer?
2162 var is_autoinit = false is writable
2163
2164 init
2165 do
2166 intro_mclassdef.intro_mproperties.add(self)
2167 var model = intro_mclassdef.mmodule.model
2168 model.mproperties_by_name.add_one(name, self)
2169 model.mproperties.add(self)
2170 end
2171
2172 # All definitions of the property.
2173 # The first is the introduction,
2174 # The other are redefinitions (in refinements and in subclasses)
2175 var mpropdefs = new Array[MPROPDEF]
2176
2177 # The definition that introduces the property.
2178 #
2179 # Warning: such a definition may not exist in the early life of the object.
2180 # In this case, the method will abort.
2181 var intro: MPROPDEF is noinit
2182
2183 redef fun model do return intro.model
2184
2185 # Alias for `name`
2186 redef fun to_s do return name
2187
2188 # Return the most specific property definitions defined or inherited by a type.
2189 # The selection knows that refinement is stronger than specialization;
2190 # however, in case of conflict more than one property are returned.
2191 # If mtype does not know mproperty then an empty array is returned.
2192 #
2193 # If you want the really most specific property, then look at `lookup_first_definition`
2194 #
2195 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2196 # ENSURE: `not mtype.has_mproperty(mmodule, self) == result.is_empty`
2197 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2198 do
2199 assert not mtype.need_anchor
2200 mtype = mtype.undecorate
2201
2202 var cache = self.lookup_definitions_cache[mmodule, mtype]
2203 if cache != null then return cache
2204
2205 #print "select prop {mproperty} for {mtype} in {self}"
2206 # First, select all candidates
2207 var candidates = new Array[MPROPDEF]
2208
2209 # Here we have two strategies: iterate propdefs or iterate classdefs.
2210 var mpropdefs = self.mpropdefs
2211 if mpropdefs.length <= 1 or mpropdefs.length < mtype.collect_mclassdefs(mmodule).length then
2212 # Iterate on all definitions of `self`, keep only those inherited by `mtype` in `mmodule`
2213 for mpropdef in mpropdefs do
2214 # If the definition is not imported by the module, then skip
2215 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2216 # If the definition is not inherited by the type, then skip
2217 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2218 # Else, we keep it
2219 candidates.add(mpropdef)
2220 end
2221 else
2222 # Iterate on all super-classdefs of `mtype`, keep only the definitions of `self`, if any.
2223 for mclassdef in mtype.collect_mclassdefs(mmodule) do
2224 var p = mclassdef.mpropdefs_by_property.get_or_null(self)
2225 if p != null then candidates.add p
2226 end
2227 end
2228
2229 # Fast track for only one candidate
2230 if candidates.length <= 1 then
2231 self.lookup_definitions_cache[mmodule, mtype] = candidates
2232 return candidates
2233 end
2234
2235 # Second, filter the most specific ones
2236 return select_most_specific(mmodule, candidates)
2237 end
2238
2239 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2240
2241 # Return the most specific property definitions inherited by a type.
2242 # The selection knows that refinement is stronger than specialization;
2243 # however, in case of conflict more than one property are returned.
2244 # If mtype does not know mproperty then an empty array is returned.
2245 #
2246 # If you want the really most specific property, then look at `lookup_next_definition`
2247 #
2248 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2249 # ENSURE: `not mtype.has_mproperty(mmodule, self) implies result.is_empty`
2250 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2251 do
2252 assert not mtype.need_anchor
2253 mtype = mtype.undecorate
2254
2255 # First, select all candidates
2256 var candidates = new Array[MPROPDEF]
2257 for mpropdef in self.mpropdefs do
2258 # If the definition is not imported by the module, then skip
2259 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2260 # If the definition is not inherited by the type, then skip
2261 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2262 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
2263 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
2264 # Else, we keep it
2265 candidates.add(mpropdef)
2266 end
2267 # Fast track for only one candidate
2268 if candidates.length <= 1 then return candidates
2269
2270 # Second, filter the most specific ones
2271 return select_most_specific(mmodule, candidates)
2272 end
2273
2274 # Return an array containing olny the most specific property definitions
2275 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
2276 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
2277 do
2278 var res = new Array[MPROPDEF]
2279 for pd1 in candidates do
2280 var cd1 = pd1.mclassdef
2281 var c1 = cd1.mclass
2282 var keep = true
2283 for pd2 in candidates do
2284 if pd2 == pd1 then continue # do not compare with self!
2285 var cd2 = pd2.mclassdef
2286 var c2 = cd2.mclass
2287 if c2.mclass_type == c1.mclass_type then
2288 if cd2.mmodule.in_importation < cd1.mmodule then
2289 # cd2 refines cd1; therefore we skip pd1
2290 keep = false
2291 break
2292 end
2293 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
2294 # cd2 < cd1; therefore we skip pd1
2295 keep = false
2296 break
2297 end
2298 end
2299 if keep then
2300 res.add(pd1)
2301 end
2302 end
2303 if res.is_empty then
2304 print_error "All lost! {candidates.join(", ")}"
2305 # FIXME: should be abort!
2306 end
2307 return res
2308 end
2309
2310 # Return the most specific definition in the linearization of `mtype`.
2311 #
2312 # If you want to know the next properties in the linearization,
2313 # look at `MPropDef::lookup_next_definition`.
2314 #
2315 # FIXME: the linearization is still unspecified
2316 #
2317 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2318 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2319 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
2320 do
2321 return lookup_all_definitions(mmodule, mtype).first
2322 end
2323
2324 # Return all definitions in a linearization order
2325 # Most specific first, most general last
2326 #
2327 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2328 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2329 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2330 do
2331 mtype = mtype.undecorate
2332
2333 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
2334 if cache != null then return cache
2335
2336 assert not mtype.need_anchor
2337 assert mtype.has_mproperty(mmodule, self)
2338
2339 #print "select prop {mproperty} for {mtype} in {self}"
2340 # First, select all candidates
2341 var candidates = new Array[MPROPDEF]
2342 for mpropdef in self.mpropdefs do
2343 # If the definition is not imported by the module, then skip
2344 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2345 # If the definition is not inherited by the type, then skip
2346 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2347 # Else, we keep it
2348 candidates.add(mpropdef)
2349 end
2350 # Fast track for only one candidate
2351 if candidates.length <= 1 then
2352 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2353 return candidates
2354 end
2355
2356 mmodule.linearize_mpropdefs(candidates)
2357 candidates = candidates.reversed
2358 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2359 return candidates
2360 end
2361
2362 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2363
2364 redef var is_test is lazy do return intro.is_test
2365
2366 # Does self have the `before` annotation?
2367 var is_before: Bool is lazy do return intro.is_before
2368
2369 # Does self have the `before_all` annotation?
2370 var is_before_all: Bool is lazy do return intro.is_before_all
2371
2372 # Does self have the `after` annotation?
2373 var is_after: Bool is lazy do return intro.is_after
2374
2375 # Does self have the `after_all` annotation?
2376 var is_after_all: Bool is lazy do return intro.is_after_all
2377 end
2378
2379 # A global method
2380 class MMethod
2381 super MProperty
2382
2383 redef type MPROPDEF: MMethodDef
2384
2385 # Is the property defined at the top_level of the module?
2386 # Currently such a property are stored in `Object`
2387 var is_toplevel: Bool = false is writable
2388
2389 # Is the property a constructor?
2390 # Warning, this property can be inherited by subclasses with or without being a constructor
2391 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
2392 var is_init: Bool = false is writable
2393
2394 # The constructor is a (the) root init with empty signature but a set of initializers
2395 var is_root_init: Bool = false is writable
2396
2397 # Is the property a 'new' constructor?
2398 var is_new: Bool = false is writable
2399
2400 # Is the property a legal constructor for a given class?
2401 # As usual, visibility is not considered.
2402 # FIXME not implemented
2403 fun is_init_for(mclass: MClass): Bool
2404 do
2405 return self.is_init
2406 end
2407
2408 # A specific method that is safe to call on null.
2409 # Currently, only `==`, `!=` and `is_same_instance` are safe
2410 fun is_null_safe: Bool do return name == "==" or name == "!=" or name == "is_same_instance"
2411
2412 # Is this method a getter (auto or not)?
2413 #
2414 # See `getter_for`.
2415 fun is_getter: Bool do return getter_for != null
2416
2417 # The attribute this getter is for
2418 #
2419 # Return `null` is this method is not a getter.
2420 var getter_for: nullable MAttribute = null is writable
2421
2422 # Is this method a setter (auto or not)?
2423 #
2424 # See `setter_for`.
2425 fun is_setter: Bool do return setter_for != null
2426
2427 # The attribute this setter is for
2428 #
2429 # Return `null` is this method is not a setter.
2430 var setter_for: nullable MAttribute = null is writable
2431
2432 # Is this method a getter or a setter?
2433 fun is_accessor: Bool do return is_getter or is_setter
2434 end
2435
2436 # A global attribute
2437 class MAttribute
2438 super MProperty
2439
2440 redef type MPROPDEF: MAttributeDef
2441
2442 # Does this attribute have a getter (auto or not)?
2443 #
2444 # See `getter`.
2445 fun has_getter: Bool do return getter != null
2446
2447 # The getter of this attribute (if any)
2448 var getter: nullable MProperty = null is writable
2449
2450 # Does this attribute have a setter (auto or not)?
2451 #
2452 # See `setter`.
2453 fun has_setter: Bool do return setter != null
2454
2455 # The setter of this attribute (if any)
2456 var setter: nullable MProperty = null is writable
2457 end
2458
2459 # A global virtual type
2460 class MVirtualTypeProp
2461 super MProperty
2462
2463 redef type MPROPDEF: MVirtualTypeDef
2464
2465 # The formal type associated to the virtual type property
2466 var mvirtualtype = new MVirtualType(self)
2467
2468 # Is `self` the special virtual type `SELF`?
2469 var is_selftype: Bool is lazy do return name == "SELF"
2470 end
2471
2472 # A definition of a property (local property)
2473 #
2474 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
2475 # specific class definition (which belong to a specific module)
2476 abstract class MPropDef
2477 super MEntity
2478
2479 # The associated `MProperty` subclass.
2480 # the two specialization hierarchy are symmetric
2481 type MPROPERTY: MProperty
2482
2483 # Self class
2484 type MPROPDEF: MPropDef
2485
2486 # The class definition where the property definition is
2487 var mclassdef: MClassDef
2488
2489 # The associated global property
2490 var mproperty: MPROPERTY
2491
2492 redef var location
2493
2494 redef fun visibility do return mproperty.visibility
2495
2496 init
2497 do
2498 mclassdef.mpropdefs.add(self)
2499 mproperty.mpropdefs.add(self)
2500 mclassdef.mpropdefs_by_property[mproperty] = self
2501 if mproperty.intro_mclassdef == mclassdef then
2502 assert not isset mproperty._intro
2503 mproperty.intro = self
2504 end
2505 self.to_s = "{mclassdef}${mproperty}"
2506 end
2507
2508 # Actually the name of the `mproperty`
2509 redef fun name do return mproperty.name
2510
2511 # The full-name of mpropdefs combine the information about the `classdef` and the `mproperty`.
2512 #
2513 # Therefore the combination of identifiers is awful,
2514 # the worst case being
2515 #
2516 # * a property "p::m::A::x"
2517 # * redefined in a refinement of a class "q::n::B"
2518 # * in a module "r::o"
2519 # * so "r::o$q::n::B$p::m::A::x"
2520 #
2521 # Fortunately, the full-name is simplified when entities are repeated.
2522 # For the previous case, the simplest form is "p$A$x".
2523 redef var full_name is lazy do
2524 var res = new FlatBuffer
2525
2526 # The first part is the mclassdef. Worst case is "r::o$q::n::B"
2527 res.append mclassdef.full_name
2528
2529 res.append "$"
2530
2531 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2532 # intro are unambiguous in a class
2533 res.append name
2534 else
2535 # Just try to simplify each part
2536 if mclassdef.mmodule.mpackage != mproperty.intro_mclassdef.mmodule.mpackage then
2537 # precise "p::m" only if "p" != "r"
2538 res.append mproperty.intro_mclassdef.mmodule.namespace_for(mproperty.visibility)
2539 res.append "::"
2540 else if mproperty.visibility <= private_visibility then
2541 # Same package ("p"=="q"), but private visibility,
2542 # does the module part ("::m") need to be displayed
2543 if mclassdef.mmodule.namespace_for(mclassdef.mclass.visibility) != mproperty.intro_mclassdef.mmodule.mpackage then
2544 res.append "::"
2545 res.append mproperty.intro_mclassdef.mmodule.name
2546 res.append "::"
2547 end
2548 end
2549 # precise "B" because it is not the same class than "A"
2550 res.append mproperty.intro_mclassdef.name
2551 res.append "::"
2552 # Always use the property name "x"
2553 res.append mproperty.name
2554 end
2555 return res.to_s
2556 end
2557
2558 redef var c_name is lazy do
2559 var res = new FlatBuffer
2560 res.append mclassdef.c_name
2561 res.append "___"
2562 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2563 res.append name.to_cmangle
2564 else
2565 if mclassdef.mmodule != mproperty.intro_mclassdef.mmodule then
2566 res.append mproperty.intro_mclassdef.mmodule.c_name
2567 res.append "__"
2568 end
2569 res.append mproperty.intro_mclassdef.name.to_cmangle
2570 res.append "__"
2571 res.append mproperty.name.to_cmangle
2572 end
2573 return res.to_s
2574 end
2575
2576 redef fun model do return mclassdef.model
2577
2578 # Internal name combining the module, the class and the property
2579 # Example: "mymodule$MyClass$mymethod"
2580 redef var to_s is noinit
2581
2582 # Is self the definition that introduce the property?
2583 fun is_intro: Bool do return isset mproperty._intro and mproperty.intro == self
2584
2585 # Return the next definition in linearization of `mtype`.
2586 #
2587 # This method is used to determine what method is called by a super.
2588 #
2589 # REQUIRE: `not mtype.need_anchor`
2590 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
2591 do
2592 assert not mtype.need_anchor
2593
2594 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
2595 var i = mpropdefs.iterator
2596 while i.is_ok and i.item != self do i.next
2597 assert has_property: i.is_ok
2598 i.next
2599 assert has_next_property: i.is_ok
2600 return i.item
2601 end
2602
2603 redef fun mdoc_or_fallback do return mdoc or else mproperty.mdoc_or_fallback
2604
2605 # Does self have the `before` annotation?
2606 var is_before = false is writable
2607
2608 # Does self have the `before_all` annotation?
2609 var is_before_all = false is writable
2610
2611 # Does self have the `after` annotation?
2612 var is_after = false is writable
2613
2614 # Does self have the `after_all` annotation?
2615 var is_after_all = false is writable
2616 end
2617
2618 # A local definition of a method
2619 class MMethodDef
2620 super MPropDef
2621
2622 redef type MPROPERTY: MMethod
2623 redef type MPROPDEF: MMethodDef
2624
2625 # The signature attached to the property definition
2626 var msignature: nullable MSignature = null is writable
2627
2628 # List of initialisers to call in root-inits
2629 #
2630 # They could be setters or attributes
2631 var initializers = new Array[MProperty]
2632
2633 # Does the method take the responsibility to call `init`?
2634 #
2635 # If the method is used as an initializer, then
2636 # using this information prevents to call `init` twice.
2637 var is_calling_init = false is writable
2638
2639 # Does the method is a old_style_init?
2640 #
2641 var is_old_style_init = false is writable
2642
2643 # Is the method definition abstract?
2644 var is_abstract: Bool = false is writable
2645
2646 # Is the method definition intern?
2647 var is_intern = false is writable
2648
2649 # Is the method definition extern?
2650 var is_extern = false is writable
2651
2652 # An optional constant value returned in functions.
2653 #
2654 # Only some specific primitife value are accepted by engines.
2655 # Is used when there is no better implementation available.
2656 #
2657 # Currently used only for the implementation of the `--define`
2658 # command-line option.
2659 # SEE: module `mixin`.
2660 var constant_value: nullable Object = null is writable
2661 end
2662
2663 # A local definition of an attribute
2664 class MAttributeDef
2665 super MPropDef
2666
2667 redef type MPROPERTY: MAttribute
2668 redef type MPROPDEF: MAttributeDef
2669
2670 # The static type of the attribute
2671 var static_mtype: nullable MType = null is writable
2672 end
2673
2674 # A local definition of a virtual type
2675 class MVirtualTypeDef
2676 super MPropDef
2677
2678 redef type MPROPERTY: MVirtualTypeProp
2679 redef type MPROPDEF: MVirtualTypeDef
2680
2681 # The bound of the virtual type
2682 var bound: nullable MType = null is writable
2683
2684 # Is the bound fixed?
2685 var is_fixed = false is writable
2686 end
2687
2688 # A kind of class.
2689 #
2690 # * `abstract_kind`
2691 # * `concrete_kind`
2692 # * `interface_kind`
2693 # * `enum_kind`
2694 # * `extern_kind`
2695 #
2696 # Note this class is basically an enum.
2697 # FIXME: use a real enum once user-defined enums are available
2698 class MClassKind
2699 redef var to_s
2700
2701 # Can a class of kind `self` define a membership predicate?
2702 var can_customize_isa: Bool
2703
2704 # Can a class of kind `self` define a constructor?
2705 var can_init: Bool
2706
2707 # Is a constructor required?
2708 var need_init: Bool
2709
2710 # TODO: private init because enumeration.
2711
2712 # Can a class of kind `self` specializes a class of kind `other`?
2713 fun can_specialize(other: MClassKind): Bool
2714 do
2715 if other == interface_kind then
2716 # everybody can specialize interfaces
2717 return true
2718 else if self == interface_kind or self == enum_kind then
2719 # no other case for interfaces and enums
2720 return false
2721 else if self == subset_kind then
2722 # A subset may specialize anything, except another subset.
2723 # TODO: Allow sub-subsets once we can handle them.
2724 return other != subset_kind
2725 else if self == extern_kind then
2726 # only compatible with themselves
2727 return self == other
2728 else
2729 # assert self == abstract_kind or self == concrete_kind
2730 return other == abstract_kind or other == concrete_kind
2731 end
2732 end
2733 end
2734
2735 # The class kind `abstract`
2736 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", false, true, true)
2737 # The class kind `concrete`
2738 fun concrete_kind: MClassKind do return once new MClassKind("class", false, true, true)
2739 # The class kind `interface`
2740 fun interface_kind: MClassKind do return once new MClassKind("interface", false, true, false)
2741 # The class kind `enum`
2742 fun enum_kind: MClassKind do return once new MClassKind("enum", false, true, false)
2743 # The class kind `extern`
2744 fun extern_kind: MClassKind do return once new MClassKind("extern class", false, true, false)
2745 # The class kind `subset`
2746 fun subset_kind: MClassKind do return once new MClassKind("subset", true, false, false)
2747
2748 # A standalone pre-constructed model used to test various model-related methods.
2749 #
2750 # When instantiated, a standalone model is already filled with entities that are exposed as attributes.
2751 class ModelStandalone
2752 super Model
2753
2754 redef var location = new Location.opaque_file("ModelStandalone")
2755
2756 # The first module
2757 var mmodule0 = new MModule(self, null, "module0", location)
2758
2759 # The root Object class
2760 var mclass_o = new MClass(mmodule0, "Object", location, null, interface_kind, public_visibility)
2761
2762 # The introduction of `mclass_o`
2763 var mclassdef_o = new MClassDef(mmodule0, mclass_o.mclass_type, location)
2764 end
2765
2766 # A standalone model with the common class diamond-hierarchy ABCD
2767 class ModelDiamond
2768 super ModelStandalone
2769
2770 # A, a simple subclass of Object
2771 var mclass_a = new MClass(mmodule0, "A", location, null, concrete_kind, public_visibility)
2772
2773 # The introduction of `mclass_a`
2774 var mclassdef_a: MClassDef do
2775 var res = new MClassDef(mmodule0, mclass_a.mclass_type, location)
2776 res.set_supertypes([mclass_o.mclass_type])
2777 res.add_in_hierarchy
2778 return res
2779 end
2780
2781 # B, a subclass of A (`mclass_a`)
2782 var mclass_b = new MClass(mmodule0, "B", location, null, concrete_kind, public_visibility)
2783
2784 # The introduction of `mclass_b`
2785 var mclassdef_b: MClassDef do
2786 var res = new MClassDef(mmodule0, mclass_b.mclass_type, location)
2787 res.set_supertypes([mclass_a.mclass_type])
2788 res.add_in_hierarchy
2789 return res
2790 end
2791
2792 # C, another subclass of A (`mclass_a`)
2793 var mclass_c = new MClass(mmodule0, "C", location, null, concrete_kind, public_visibility)
2794
2795 # The introduction of `mclass_c`
2796 var mclassdef_c: MClassDef do
2797 var res = new MClassDef(mmodule0, mclass_c.mclass_type, location)
2798 res.set_supertypes([mclass_a.mclass_type])
2799 res.add_in_hierarchy
2800 return res
2801 end
2802
2803 # D, a multiple subclass of B (`mclass_b`) and C (`mclass_c`)
2804 var mclass_d = new MClass(mmodule0, "D", location, null, concrete_kind, public_visibility)
2805
2806 # The introduction of `mclass_d`
2807 var mclassdef_d: MClassDef do
2808 var res = new MClassDef(mmodule0, mclass_d.mclass_type, location)
2809 res.set_supertypes([mclass_b.mclass_type, mclass_c.mclass_type])
2810 res.add_in_hierarchy
2811 return res
2812 end
2813 end