This implementation differs from PerlinNoise
on two main points.
This noise is calculated for a 3D point, vs 2D in PerlinNoise
.
PerlinNoise
is based off a customizable seed, while this noise has a static data source.
noise :: ImprovedNoise :: defaultinit
noise $ ImprovedNoise :: SELF
Type of this instance, automatically specialized in every classnoise $ ImprovedNoise :: core_serialize_to
Actual serialization ofself
to serializer
noise $ ImprovedNoise :: from_deserializer
Create an instance of this class from thedeserializer
serialization :: Serializable :: accept_json_serializer
Refinable service to customize the serialization of this class to JSONserialization :: Serializable :: accept_msgpack_attribute_counter
Hook to customize the behavior of theAttributeCounter
serialization :: Serializable :: accept_msgpack_serializer
Hook to customize the serialization of this class to MessagePackserialization :: Serializable :: add_to_bundle
Called by[]=
to dynamically choose the appropriate method according
core :: Object :: class_factory
Implementation used byget_class
to create the specific class.
serialization :: Serializable :: core_serialize_to
Actual serialization ofself
to serializer
core :: Object :: defaultinit
noise :: ImprovedNoise :: defaultinit
serialization :: Serializable :: from_deserializer
Create an instance of this class from thedeserializer
core :: Object :: is_same_instance
Return true ifself
and other
are the same instance (i.e. same identity).
core :: Object :: is_same_serialized
Isself
the same as other
in a serialization context?
core :: Object :: is_same_type
Return true ifself
and other
have the same dynamic type.
serialization :: Serializable :: msgpack_extra_array_items
Hook to request a larger than usual metadata arraycore :: Object :: output_class_name
Display class name on stdout (debug only).serialization :: Serializable :: serialize_msgpack
Serializeself
to MessagePack bytes
serialization :: Serializable :: serialize_to
Serializeself
to serializer
serialization :: Serializable :: serialize_to_json
Serializeself
to JSON
serialization :: Serializable :: to_pretty_json
Serializeself
to plain pretty JSON
Serializer::serialize
# Direct translation of Ken Perlin's improved noise Java implementation
#
# This implementation differs from `PerlinNoise` on two main points.
# This noise is calculated for a 3D point, vs 2D in `PerlinNoise`.
# `PerlinNoise` is based off a customizable seed, while this noise has a static data source.
class ImprovedNoise
# Permutations
private var p: Array[Int] = [151,160,137,91,90,15,
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180] * 2
# Noise value in [-1..1] at 3D coordinates `x, y, z`
fun noise(x, y, z: Float): Float
do
var xx = x.floor.to_i & 255
var yy = y.floor.to_i & 255
var zz = z.floor.to_i & 255
x -= x.floor
y -= y.floor
z -= z.floor
var u = x.fade
var v = y.fade
var w = z.fade
var a = p[xx ] + yy
var aa = p[a ] + zz
var ab = p[a+1 ] + zz
var b = p[xx+1] + yy
var ba = p[b ] + zz
var bb = p[b+1 ] + zz
return w.lerp(v.lerp(u.lerp(grad(p[aa ], x, y, z ),
grad(p[ba ], x-1.0, y, z )),
u.lerp(grad(p[ab ], x, y-1.0, z ),
grad(p[bb ], x-1.0, y-1.0, z ))),
v.lerp(u.lerp(grad(p[aa+1], x, y, z-1.0),
grad(p[ba+1], x-1.0, y, z-1.0)),
u.lerp(grad(p[ab+1], x, y-1.0, z-1.0),
grad(p[bb+1], x-1.0, y-1.0, z-1.0))))
end
# Value at a corner of the grid
private fun grad(hash: Int, x, y, z: Float): Float
do
var h = hash & 15
var u = if h < 8 then x else y
var v = if h < 4 then y else if h == 12 or h == 14 then x else z
return (if h.is_even then u else -u) + (if h & 2 == 0 then v else -v)
end
end
lib/noise/noise.nit:368,1--430,3