core :: union_find
union–find algorithm using an efficient disjoint-set data structure
# Multi precision integer and rational number using gmp lib
module gmp
private import native_gmp
redef class Numeric
# The BigInt equivalent of `self`
fun to_bi: BigInt do return self.to_i.to_bi
# The Ratio equivalent of `self`
fun to_r: Ratio do return self.to_f.to_r
end
redef class Text
# Is `self` a well-formed BigInt (i.e. parsable via `to_bi`)
#
# assert "123".is_bi
# assert "-123".is_bi
# assert not "0b1011".is_bi
# assert not "123u8".is_bi
# assert not "Not a BigInt".is_bi
fun is_bi: Bool do
var pre = prefix("-")
if pre != null then
return pre.text_after.is_dec
else
return is_dec
end
end
# Is `self` a well-formed Ratio (i.e. parsable via `to_r`)
#
# assert "123".is_r
# assert "-123".is_r
# assert "1/2".is_r
# assert "-1/2".is_r
# assert not "-1/-2".is_r
# assert not "0b1011".is_r
# assert not "123u8".is_r
# assert not "Not an Ratio".is_r
fun is_r: Bool do
var frac = split_once_on('/')
if frac.length == 2 then
return frac[0].is_bi and frac[1].is_dec
else
return is_bi
end
end
# If `self` contains a BigInt, return the corresponding BigInt
#
# assert("123".to_bi == 123.to_bi)
# assert("-123".to_bi == -123.to_bi)
fun to_bi: BigInt do
assert is_bi
var tmp = new NativeMPZ
tmp.set_str(self.to_cstring, 10i32)
return new BigInt(tmp)
end
# If `self` contains a Ratio, return the corresponding Ratio
#
# assert("123".to_r == 123.to_r)
# assert("-123".to_r == -123.to_r)
# assert("1/2".to_r == 0.5.to_r)
# assert("-1/2".to_r == -0.5.to_r)
fun to_r: Ratio do
assert is_r
var tmp = new NativeMPQ
tmp.set_str self.to_cstring
return new Ratio(tmp)
end
end
redef class Float
redef fun to_bi do
var tmp = new NativeMPZ
tmp.set_d self
return new BigInt(tmp)
end
redef fun to_r do
var tmp = new NativeMPQ
tmp.set_d self
return new Ratio(tmp)
end
end
redef class Int
redef fun to_bi do
var tmp = new NativeMPZ
tmp.set_si self
return new BigInt(tmp)
end
redef fun to_r do
var tmp = new NativeMPQ
tmp.set_si(self, 1)
return new Ratio(tmp)
end
end
# Multi precision Integer numbers.
class BigInt
super Discrete
super Numeric
super FinalizableOnce
redef type OTHER: BigInt
private var val: NativeMPZ
redef fun successor(i) do return self + i.to_bi
redef fun predecessor(i) do return self - i.to_bi
redef fun hash do return self.to_i
redef fun <=>(i) do
var res = val.cmp(i.val)
if (res) < 0 then
return -1
else if (res) > 0 then
return 1
else
return 0
end
end
redef fun ==(i) do return i isa BigInt and (self <=> i) == 0
redef fun <=(i) do return (self <=> i) <= 0
redef fun <(i) do return (self <=> i) < 0
redef fun >=(i) do return (self <=> i) >= 0
redef fun >(i) do return (self <=> i) > 0
# assert(2.to_bi + 2.to_bi == 4.to_bi)
redef fun +(i) do
var res = new NativeMPZ
val.add(res, i.val)
return new BigInt(res)
end
# assert(-(2.to_bi) == (-2).to_bi)
redef fun - do
var res = new NativeMPZ
val.neg res
return new BigInt(res)
end
# assert(2.to_bi - 2.to_bi == 0.to_bi)
redef fun -(i) do
var res = new NativeMPZ
val.sub(res, i.val)
return new BigInt(res)
end
# assert(2.to_bi * 2.to_bi == 4.to_bi)
redef fun *(i) do
var res = new NativeMPZ
val.mul(res, i.val)
return new BigInt(res)
end
# assert(3.to_bi / 2.to_bi == 1.to_bi)
redef fun /(i) do
var res = new NativeMPZ
val.tdiv_q(res, i.val)
return new BigInt(res)
end
# Modulo of `self` with `i`.
#
# Finds the remainder of the division of `self` by `i`.
#
# assert(5.to_bi % 2.to_bi == 1.to_bi)
fun %(i: BigInt): BigInt do
var res = new NativeMPZ
val.mod(res, i.val)
return new BigInt(res)
end
# Returns `self` raised to the power of `e`.
#
# assert(3.to_bi ** 2 == 9.to_bi)
fun **(e: Int): BigInt do
var res = new NativeMPZ
var pow = new UInt64
pow.set_si e
val.pow_ui(res, pow)
pow.free
return new BigInt(res)
end
# The absolute value of `self`.
#
# assert((-3).to_bi.abs == 3.to_bi)
fun abs: BigInt do
var res = new NativeMPZ
val.abs res
return new BigInt(res)
end
# Returns the greatest common divisor of `self` and `i`
#
# assert(15.to_bi.gcd(10.to_bi) == 5.to_bi)
fun gcd(i: BigInt): BigInt do
var res = new NativeMPZ
val.gcd(res, i.val)
return new BigInt(res)
end
# Determine if `self` is a prime number.
# Return 2 if `self` is prime, return 1 if `self` is probably prime and
# return 0 if `self` is definitely not a prime number.
#
# This function begins by trying some divisions with small number to find if
# there is other factors then `self` and one. After that, it uses the
# Miller-Rabin probabilistic primality tests. The probability of a non-prime
# being identified as probably prime with that test is less than
# `4^(-reps)`. It is recommended to use a `reps` value between 15 and 50.
#
# assert((0x10001).to_bi.probab_prime(15) == 2)
fun probab_prime(reps: Int): Int do
return val.probab_prime_p(reps.to_i32)
end
# Return the next prime number greater than `self`.
# This fonction uses a probabilistic algorithm.
#
# assert(11.to_bi.next_prime == 13.to_bi)
fun next_prime: BigInt do
var res = new NativeMPZ
val.nextprime res
return new BigInt(res)
end
# assert(11.to_bi.zero == 0.to_bi)
redef fun zero do return new BigInt(new NativeMPZ)
# assert(11.to_bi.value_of(4) == 4.to_bi)
redef fun value_of(i) do return i.to_bi
# assert(11.to_bi.to_i == 11)
redef fun to_i do return val.get_si
# assert(11.to_bi.to_f == 11.0)
redef fun to_f do return val.get_d
# assert(11.to_bi.to_s == "11")
redef fun to_s do
var cstr = val.get_str(10.to_i32)
var str = cstr.to_s
cstr.free
return str
end
redef fun to_bi do return self
# assert(123.to_bi.to_r == 123.to_r)
redef fun to_r do
var tmp = new NativeMPQ
tmp.set_z val
return new Ratio(tmp)
end
# assert(3.to_bi.distance(6.to_bi) == -3)
redef fun distance(i) do return (self - i).to_i
redef fun finalize_once do val.finalize
end
# Multi precision Rational numbers.
#
# assert((0.2 + 0.1) == 0.30000000000000004)
# assert(("1/5".to_r + "1/10".to_r) == "3/10".to_r)
class Ratio
super Numeric
super FinalizableOnce
redef type OTHER: Ratio
private var val: NativeMPQ
redef fun hash do return self.to_i
redef fun <=>(r) do
var res = val.cmp(r.val)
if (res) < 0 then
return -1
else if (res) > 0 then
return 1
else
return 0
end
end
redef fun ==(r) do return r isa Ratio and (self <=> r) == 0
redef fun <=(r) do return (self <=> r) <= 0
redef fun <(r) do return (self <=> r) < 0
redef fun >=(r) do return (self <=> r) >= 0
redef fun >(r) do return (self <=> r) > 0
# assert("3/2".to_r + "5/2".to_r == 4.to_r)
redef fun +(r) do
var res = new NativeMPQ
val.add(res, r.val)
return new Ratio(res)
end
# assert( -("1/2".to_r) == ("-1/2").to_r)
redef fun - do
var res = new NativeMPQ
val.neg res
return new Ratio(res)
end
# assert("5/2".to_r - "3/2".to_r == 1.to_r)
redef fun -(r) do
var res = new NativeMPQ
val.sub(res, r.val)
return new Ratio(res)
end
# assert("3/2".to_r * 2.to_r == 3.to_r)
redef fun *(r) do
var res = new NativeMPQ
val.mul(res, r.val)
return new Ratio(res)
end
# assert(3.to_r / 2.to_r == "3/2".to_r)
redef fun /(r) do
var res = new NativeMPQ
val.div(res, r.val)
return new Ratio(res)
end
# The absolute value of `self`.
#
# assert((-3.to_r).abs == 3.to_r)
# assert(3.to_r.abs == 3.to_r)
fun abs: Ratio do
var res = new NativeMPQ
val.abs res
return new Ratio(res)
end
# assert((3.to_r).zero == 0.to_r)
redef fun zero do return new Ratio(new NativeMPQ)
# assert((3.to_r).value_of(2) == 2.to_r)
redef fun value_of(n) do return n.to_r
# assert("7/2".to_r.to_i == 3)
redef fun to_i do
var res = new NativeMPZ
val.numref.tdiv_q(res, val.denref)
return res.get_si
end
# assert(3.to_r.to_f == 3.0)
redef fun to_f do return val.get_d
# assert(3.to_r.to_s == "3")
redef fun to_s do
var cstr = val.get_str(10i32)
var str = cstr.to_s
cstr.free
return str
end
# assert("7/2".to_r.to_bi == 3.to_bi)
redef fun to_bi do
var res = new NativeMPZ
val.numref.tdiv_q(res, val.denref)
return new BigInt(res)
end
redef fun to_r do return self
redef fun finalize_once do val.finalize
end
lib/gmp/gmp.nit:15,1--399,3