core :: union_find
union–find algorithm using an efficient disjoint-set data structure
# Add PageRank computation for vertices in Digraph.
module pagerank
import digraph
redef class Digraph[V]
# Compute PageRank for each vertex
#
# Details of the algorithm can be found in:
# > L. Page, S. Brin, R. Motwani, and T.Winograd.
# > **The pagerank citation ranking: Bringing order to the web.**
# > *Technical report, Stanford Digital Library Technologies Project, 1998*
#
# Example:
# ~~~
# var g = new HashDigraph[String]
# g.add_arc("A", "B")
# g.add_arc("A", "C")
# g.add_arc("B", "C")
# g.add_arc("C", "A")
# g.add_arc("D", "C")
#
# assert g.pagerank.join(", ", ":") == "A:1.488, B:0.782, C:1.575, D:0.15"
# ~~~
fun pagerank: PRMap[V] do
# `d` constant such as `initial_pagerank(node) == (1 - d) != 0`
var d = 0.85 # commonly-choosen value
# Init each node page rank with an initial_value
var values = new PRMap[V]
var vertices = self.vertices
for v in vertices do values[v] = 1.0 - d
# Compute page rank until convergence
var prev = new PRMap[V]
while not values.is_approx(prev, 0.001) do
prev = new PRMap[V].from(values)
for v in vertices do
var in_pr = 0.0
for o in predecessors(v) do
in_pr += values[o] / out_degree(o).to_f
end
values[v] = (1.0 - d) + d * in_pr
end
end
return values
end
end
# Map each Vertice of a Digraph to it's PageRank.
#
# See: `Digraph::pagerank`.
class PRMap[V]
super HashMap[V, Float]
# Init `self` by copying `other` values.
init from(other: PRMap[V]) do
init
for k, v in other do self[k] = v
end
# Is `self` approximately equal to another PRMap?
#
# `self` is approximately equal to `o` if `o` contains all the key from `self`
# with the same values.
#
# Values equality is based on `Float::is_approx` with `precision`.
fun is_approx(o: SELF, precision: Float): Bool do
for k1, v1 in self do
if not o.has_key(k1) then return false
if not v1.is_approx(o[k1], precision) then return false
end
return true
end
end
lib/graph/pagerank.nit:15,1--88,3