core :: union_find
union–find algorithm using an efficient disjoint-set data structure
# Provides methods to compute the SHA1 hash of a String
module sha1
in "C Header" `{
/* This code is public-domain - it is based on libcrypt
* placed in the public domain by Wei Dai and other contributors.
*/
#include <stdint.h>
#include <string.h>
#define HASH_LENGTH 20
#define BLOCK_LENGTH 64
union _buffer {
uint8_t b[BLOCK_LENGTH];
uint32_t w[BLOCK_LENGTH/4];
};
union _state {
uint8_t b[HASH_LENGTH];
uint32_t w[HASH_LENGTH/4];
};
typedef struct sha1nfo {
union _buffer buffer;
uint8_t bufferOffset;
union _state state;
uint32_t byteCount;
uint8_t keyBuffer[BLOCK_LENGTH];
uint8_t innerHash[HASH_LENGTH];
} sha1nfo;
/**
*/
void sha1_init(sha1nfo *s);
/**
*/
void sha1_writebyte(sha1nfo *s, uint8_t data);
/**
*/
void sha1_write(sha1nfo *s, const char *data, size_t len);
/**
*/
uint8_t* sha1_result(sha1nfo *s);
/**
*/
void sha1_initHmac(sha1nfo *s, const uint8_t* key, int keyLength);
/**
*/
uint8_t* sha1_resultHmac(sha1nfo *s);
`}
`{
#define SHA1_K0 0x5a827999
#define SHA1_K20 0x6ed9eba1
#define SHA1_K40 0x8f1bbcdc
#define SHA1_K60 0xca62c1d6
const uint8_t sha1InitState[] = {
0x01,0x23,0x45,0x67, // H0
0x89,0xab,0xcd,0xef, // H1
0xfe,0xdc,0xba,0x98, // H2
0x76,0x54,0x32,0x10, // H3
0xf0,0xe1,0xd2,0xc3 // H4
};
void sha1_init(sha1nfo *s) {
memcpy(s->state.b,sha1InitState,HASH_LENGTH);
s->byteCount = 0;
s->bufferOffset = 0;
}
uint32_t sha1_rol32(uint32_t number, uint8_t bits) {
return ((number << bits) | (number >> (32-bits)));
}
void sha1_hashBlock(sha1nfo *s) {
uint8_t i;
uint32_t a,b,c,d,e,t;
a=s->state.w[0];
b=s->state.w[1];
c=s->state.w[2];
d=s->state.w[3];
e=s->state.w[4];
for (i=0; i<80; i++) {
if (i>=16) {
t = s->buffer.w[(i+13)&15] ^ s->buffer.w[(i+8)&15] ^ s->buffer.w[(i+2)&15] ^ s->buffer.w[i&15];
s->buffer.w[i&15] = sha1_rol32(t,1);
}
if (i<20) {
t = (d ^ (b & (c ^ d))) + SHA1_K0;
} else if (i<40) {
t = (b ^ c ^ d) + SHA1_K20;
} else if (i<60) {
t = ((b & c) | (d & (b | c))) + SHA1_K40;
} else {
t = (b ^ c ^ d) + SHA1_K60;
}
t+=sha1_rol32(a,5) + e + s->buffer.w[i&15];
e=d;
d=c;
c=sha1_rol32(b,30);
b=a;
a=t;
}
s->state.w[0] += a;
s->state.w[1] += b;
s->state.w[2] += c;
s->state.w[3] += d;
s->state.w[4] += e;
}
void sha1_addUncounted(sha1nfo *s, uint8_t data) {
s->buffer.b[s->bufferOffset ^ 3] = data;
s->bufferOffset++;
if (s->bufferOffset == BLOCK_LENGTH) {
sha1_hashBlock(s);
s->bufferOffset = 0;
}
}
void sha1_writebyte(sha1nfo *s, uint8_t data) {
++s->byteCount;
sha1_addUncounted(s, data);
}
void sha1_write(sha1nfo *s, const char *data, size_t len) {
for (;len--;) sha1_writebyte(s, (uint8_t) *data++);
}
void sha1_pad(sha1nfo *s) {
// Implement SHA-1 padding (fips180-2 §5.1.1)
// Pad with 0x80 followed by 0x00 until the end of the block
sha1_addUncounted(s, 0x80);
while (s->bufferOffset != 56) sha1_addUncounted(s, 0x00);
// Append length in the last 8 bytes
sha1_addUncounted(s, 0); // We're only using 32 bit lengths
sha1_addUncounted(s, 0); // But SHA-1 supports 64 bit lengths
sha1_addUncounted(s, 0); // So zero pad the top bits
sha1_addUncounted(s, s->byteCount >> 29); // Shifting to multiply by 8
sha1_addUncounted(s, s->byteCount >> 21); // as SHA-1 supports bitstreams as well as
sha1_addUncounted(s, s->byteCount >> 13); // byte.
sha1_addUncounted(s, s->byteCount >> 5);
sha1_addUncounted(s, s->byteCount << 3);
}
uint8_t* sha1_result(sha1nfo *s) {
int i;
// Pad to complete the last block
sha1_pad(s);
// Swap byte order back
for (i=0; i<5; i++) {
uint32_t a,b;
a=s->state.w[i];
b=a<<24;
b|=(a<<8) & 0x00ff0000;
b|=(a>>8) & 0x0000ff00;
b|=a>>24;
s->state.w[i]=b;
}
// Return pointer to hash (20 characters)
return s->state.b;
}
#define HMAC_IPAD 0x36
#define HMAC_OPAD 0x5c
void sha1_initHmac(sha1nfo *s, const uint8_t* key, int keyLength) {
uint8_t i;
memset(s->keyBuffer, 0, BLOCK_LENGTH);
if (keyLength > BLOCK_LENGTH) {
// Hash long keys
sha1_init(s);
for (;keyLength--;) sha1_writebyte(s, *key++);
memcpy(s->keyBuffer, sha1_result(s), HASH_LENGTH);
} else {
// Block length keys are used as is
memcpy(s->keyBuffer, key, keyLength);
}
// Start inner hash
sha1_init(s);
for (i=0; i<BLOCK_LENGTH; i++) {
sha1_writebyte(s, s->keyBuffer[i] ^ HMAC_IPAD);
}
}
uint8_t* sha1_resultHmac(sha1nfo *s) {
uint8_t i;
// Complete inner hash
memcpy(s->innerHash,sha1_result(s),HASH_LENGTH);
// Calculate outer hash
sha1_init(s);
for (i=0; i<BLOCK_LENGTH; i++) sha1_writebyte(s, s->keyBuffer[i] ^ HMAC_OPAD);
for (i=0; i<HASH_LENGTH; i++) sha1_writebyte(s, s->innerHash[i]);
return sha1_result(s);
}
`}
redef class CString
private fun sha1_intern(len: Int): CString `{
sha1nfo s;
sha1_init(&s);
sha1_write(&s, self, len);
uint8_t* digest = sha1_result(&s);
char* digested = malloc(21);
memcpy(digested, digest, 20);
digested[20] = '\0';
return digested;
`}
end
redef class Text
# Computes the SHA1 of the receiver
#
# Returns a digest of 20 bytes as a CString,
# note that all the characters are not necessarily ASCII.
# If you want the hex string version of the digest, use
# sha1_hexdigest.
#
# import base64
# assert "The quick brown fox jumps over the lazy dog".sha1 == [0x2F, 0xD4, 0xE1, 0xC6, 0x7A, 0x2D, 0x28, 0xFC, 0xED, 0x84, 0x9E, 0xE1, 0xBB, 0x76, 0xE7, 0x39, 0x1B, 0x93, 0xEB, 0x12]
fun sha1: Bytes do
return new Bytes(to_cstring.sha1_intern(byte_length), 20, 20)
end
# Computes the SHA1 of the receiver.
#
# Returns a 40 char String containing the Hexadecimal
# Digest in its Char form.
#
# assert "The quick brown fox jumps over the lazy dog".sha1_hexdigest == "2FD4E1C67A2D28FCED849EE1BB76E7391B93EB12"
fun sha1_hexdigest: String do return sha1.hexdigest
# Is `self` a SHA-1 hexdigest?
#
#~~~nit
# assert "2FD4E1C67A2D28FCED849EE1BB76E7391B93EB12".is_sha1_digest
# assert not "Not a digest".is_sha1_digest
# assert not "2FD4E1C67A2D28FCED849EE1B76E7391B93EB12".is_sha1_digest
# assert not "2FD4E1C67A2D28FCED849EE1UB76E7391B93EB12".is_sha1_digest
#~~~
fun is_sha1_digest: Bool do return length == 40 and is_hex
end
lib/sha1/sha1.nit:15,1--270,3